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ABSTRACT 

 

Worldwide, declines in coral cover and shifts in coral reef community composition have raised 

concerns about whether reef accretion will continue to exceed reef erosion. Reef persistence is 

influenced by global and local anthropogenic factors, such as ocean warming, acidification, 

eutrophication, and overfishing, as well as natural environmental variability. Predicting reef 

response to environmental stress requires an understanding of both natural and anthropogenic 

environmental drivers of reef accretion and erosion, and how these drivers interact at different 

spatiotemporal scales. In Chapters 2 and 3, I measured the variation in accretion, erosion, and net 

change rates along a natural gradient to determine the dominant environmental drivers of 

accretion-erosion rates at small spatial scales (tens of meters).  In Chapter 4, I expanded the 

geographic range to 1000s of kilometers, measuring variation in accretion and erosion rates, as 

well as bioeroder community composition, across the Hawaiian Archipelago. In Chapter 5, I 

used a controlled mesocosm experiment to directly examine the effects of global anthropogenic 

drivers (i.e., temperature and ocean acidification) on the coral reef accretion-erosion balance. 

The results of my dissertation research highlight the significance of spatial scale in 

understanding reef dynamics and the differential responses of reef accretion and erosion to 

environmental drivers, which will change our predictions of net coral reef response to future 

environmental change. Further, my results suggest that increases in reef erosion, combined with 

expected decreases in calcification, could accelerate the shift of coral reefs to an erosion-

dominated system in a high CO2 world. 
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CHAPTER 1 

INTRODUCTION: AN OVERVIEW OF THE CORAL REEF ACCRETION-EROSION 

BALANCE 

1



Background 

The value of coral reefs to human health and welfare is unequivocal. Coral reefs make up <0.1% 

of the global ocean (Reaka-Kudla et al. 1997), but they provide societal, economic, and health 

benefits to people world-wide. Coral reefs in Hawai‘i alone contribute over $33 billion to the US 

economy by supplying food, goods, tourism opportunities, and shoreline protection (Bishop et al. 

2011); the strong, complex structural framework of coral reefs controls many of these economic 

and ecosystem resources. Corals form the structural framework of coral reef ecosystems, but 

other reef processes influence the integrity of this framework.  

 Coral reefs persist in a balance between reef growth (accretion) and reef breakdown 

(erosion). Corals and other calcifying organisms secrete calcium carbonate (CaCO3) skeleton, 

while a diverse community of bioeroders erode reefs through grazing on and boring into the 

skeletal structure of the reef (Neumann 1966). Enhanced rates of bioerosion can compromise the 

function of the reef framework, undermining the mechanical stability (Scott and Risk 1988), 

structural complexity, and net accretion of coral reefs. Coral reefs absorb up to 90% of the 

energy from wind-driven waves (UNEP-WCMC 2006) providing natural shoreline protection to 

tropical ecosystems. When mechanical stability of coral reefs is compromised (Hutchings 1986), 

coastal property is more susceptible to storm damage and wave action (Reaka-Kudla et al. 1997). 

Structural complexity provides habitat and protection for reef organisms (Mumby and Wabnitz 

2002), and reduced structural complexity can result in decreased abundance and diversity of 

fishes and invertebrates (Jones et al. 2004). Finally, if bioerosion exceeds accretion, coral reefs 

will drown as a result of sea-level rise. The services humans receive from coral reef ecosystems 

depend on the response of both erosion and accretion rates to local and global human impacts, 

including coastal development and increased atmospheric carbon dioxide.  
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The impact of human-induced stressors on corals has been extensively investigated. For 

example, coral cover, and general reef health, is negatively related to human population (Sandin 

et al. 2008; Williams et al. 2015). In response to climate change stressors, coral calcification 

declines in warmer, more acidic ocean conditions (reviewed in Hoegh-Guldberg et al. 2007; 

Pandolfi et al. 2011)  though the species-specific responses are variable (Pandolfi et al. 2011). 

Notably, corals ability to adapt or acclimatize to changing conditions, particularly to rising sea 

surface temperature (SST) and CO2, is a newer area research (Putnam 2012; van Oppen et al. 

2015). Yet, the impacts of many stressors on secondary calcification and bioerosion are not well-

described. In this dissertation, I explore the impacts of a suite of environmental variables on 

secondary accretion and erosion in both natural and simulated ocean conditions with a focus on 

rising SST and ocean acidity.  

 

Bioeroder and secondary calcifier communities 

Bioerosion rates are influenced by community composition. Bioeroding organisms may be 

classified into three functional groups: grazers (e.g., urchins and parrotfish), microborers (e.g., 

euendoliths), and macroborers (e.g., sponges, polychaetes, and bivalves). Grazers erode reefs 

externally by scraping CaCO3 while foraging on the overlying algal or coral tissue. Micro- and 

macroborers erode reefs internally by boring, most frequently in areas where live coral tissue no 

longer covers the reef substrate (Highsmith 1981b). The relative rates of erosion from these 

functional groups differ among regions. For example, on the Great Barrier Reef, bioerosion rates 

from grazers, macroboreres, and microborers were 0.004, 0.13, and 0.15 kg CaCO3 m
-2 yr -1, 

respectively, on an inshore reef, while an offshore reef had rates of 0.68, 0.03, and 1.4 kg CaCO3 

m-2 yr -1 in the same study (Tribollet and Golubic 2005). Among these three functional groups, 
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macroborers may be most diverse, consisting of hundreds of polychaete, sipunculan, sponge, and 

bivalve species with a range of life history strategies and morphological and chemical 

mechanisms for boring.   

Secondary accretion rates are also influenced by community composition. All non-coral 

encrusters (e.g., CCA, bivalves, barnacles, and other calcifying sessile invertebrates) are 

considered secondary calcifiers, but CCA contributes the most to CaCO3 production from this 

group (Perry et al. 2008). In fact, CCA is the dominant calcifier, inclusive of corals, in shallow, 

high energy, reef crest environments (Steneck and Adey 1976; Adey and Steneck 2001). In 

addition to contributing to the CaCO3 budget, CCA helps maintain reef stability by cementing 

the reef together (Littler 1973; Camoin and Montaggioni 1994; Adey 1998) and producing 

chemical cues that induce settlement of many invertebrate larvae including several species of 

corals (Harrington et al. 2004; Price 2010). Similar to erosion, the relative cover of CCA can also 

differ across regions. In the Great Barrier Reef, CCA cover is highest in outer-shelf reefs where 

turf algae cover is lowest (Scott and Russ 1987; Klumpp and McKinnon 1989; Sweatman 1997).  

 

Environmental drivers of the accretion-erosion balance 

Secondary accretion and erosion rates differ across regions, but these patterns are driven by a 

suite of interacting chemical, physical, and biological drivers. The myriad of drivers complicates 

predictions of reef response to environmental variability and warrants an investigation that 

compares the relative influence of multiple parameters in a natural reef environment.  

Chemical drivers: Many carbonate chemistry and nutrient parameters are known to drive 

patterns in accretion and erosion. In response to changing carbonate chemistry resulting from 

increased CO2, erosion rates increase (Tribollet et al. 2009; Wisshak et al. 2012; Fang et al. 
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2013; Reyes-Nivia et al. 2013; Wisshak et al. 2013; Silbiger et al. 2014; DeCarlo et al. 2015; 

Enochs et al. 2015; Silbiger and Donahue 2015) and secondary accretion rates decrease (Jokiel et 

al. 2008; Diaz‐Pulido et al. 2012; Johnson and Carpenter 2012; Comeau et al. 2013). Studies 

have also found a parabolic response between secondary calcification and CO2 (Ries et al. 2009; 

Silbiger and Donahue 2015). Several studies show increased erosion in eutrophic relative to 

oligotrophic conditions (reviewed in Le Grand and Fabricius 2011) suggesting that erosion rates 

are particularly sensitive to nutrients, perhaps because many macroborers are filter feeders. 

Nutrients may increase secondary accretion via enhanced photosynthesis by calcifying algae and 

increased food availability to filter-feeding calcifying invertebrates (such as bivalves), but 

studies have also shown that high concentrations of phosphate could be damaging to CCA (Björk 

et al. 1995). 

Physical drivers: SST, wave energy, and depth can influence secondary accretion and erosion. 

SST can increase metabolic performance in calcifying algae (Harley et al. 2012) or invertebrates 

(Huey and Kingsolver 1989) and thus increase accretion or erosion rates (Davidson et al. 2013; 

Fang et al. 2013; Wisshak et al. 2013). However, if a thermal maximum is reached or if 

temperature stress is combined with other stressors, increased temperature can be damaging, 

particularly to accreting organisms (Johnson and Carpenter 2012; Harvey et al. 2013; Silbiger 

and Donahue 2015). Wave energy can also impact accretion rates: Hamylton et al (2013) found 

an increase in carbonate production (including live coral, carbonate sand, green calcareous 

macroalgae, and encrusting calcified algae) with increasing wave energy (Hamylton et al. 2013). 

In response to depth, erosion rates are positively correlated with depth on Jamaican forereef sites 

(Perry 1998) and accretion rates of photosynthesizing calcifiers could be impacted by depth due 

to light limitations. 
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Biological drivers: Finally, biological parameters such as benthic cover and fish biomass can 

mediate accretion and erosion rates. Benthic cover can influence accretion and erosion rates 

through space availability for settling eroders or calcifiers. Reefs with a high density of dead 

coral or bare substrate will likely have high erosion rates because most eroders prefer dead coral 

(Highsmith 1981a; Hutchings 1986). Some eroders do colonize live coral, as well (see, Le Grand 

and Fabricius 2011; DeCarlo et al. 2015). The presence of secondary calcifiers, mainly CCA, can 

influence erosion by inhibiting the settlement of bioeroders;  CCA seals off the substrate making 

it difficult for borers to penetrate the CaCO3 skeleton (White 1980; Tribollet and Payri 2001). 

Herbivorous fish can directly influence erosion by removing CaCO3 substrate while grazing for 

algae and can indirectly influence accretion by removing fleshy algae and relieving competitive 

interactions with CCA (Harley et al. 2012).  

 

Patterns in accretion-erosion across spatial scales 

Many of the studies describing the relationships between environmental drivers and accretion-

erosion rates were conducted at spatial scales ranging from 1 to over 10,000 km. The relative 

importance of environmental drivers to accretion and erosion may change across spatial scale. A 

study in Kāne‘ohe Bay, Hawai‘i (~ 10 km) hypothesized that gradients in wave energy drove 

patterns in secondary calcifiers while gradients in eutrophication drove patterns in micro-

bioerosion (Tribollet et al. 2006).  In the Great Barrier Reef (~200 km), secondary calcification 

was correlated with grazing and microbioersion; grazing pressure also had the strongest 

influence on total erosion rates (Tribollet and Golubic 2005). A broader Pacific Basin (~16,000 

km) study suggested ocean acidity regulated erosion rates in live corals, but the relationship 

between erosion and ocean acidity was mediated by nutrient concentrations (DeCarlo et al. 
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2015). Further, recent studies highlight the importance of local or small-scale within reef  (~30 

m) environmental variability and suggest that this variability could impact reef processes 

(Gagliano et al. 2010; Guadayol et al. 2014), such as accretion-erosion rates. To link 

environmental variability with reef response, we need to understand the spatial scales at which 

reefs are responding to environmental change, but there has yet to be a study that compares 

multiple accretion-erosion drivers on both broad and small spatial scales.   

 

Could climate change tip the balance? 

Though many environmental parameters influence accretion-erosion rates, the threat of climate 

change may have an overwhelming impact on the coral reef accretion-erosion balance. Rising 

anthropogenic CO2 is increasing sea surface temperature (SST) and ocean acidity (Caldeira and 

Wickett 2003; Feely et al. 2004; Cubasch et al. 2013). Global SST has increased by 0.78 °C 

since pre-industrial times (Cubasch et al. 2013), and it is predicted to increase by another 0.8–5.7 

°C by the end of this century (Van Vuuren et al. 2008; Meinshausen et al. 2011; Rogelj et al. 

2012). The Hawai‘i Ocean Time-series detected a 0.075 decrease in mean annual pH at station 

ALOHA over the past 20 years (Doney et al. 2009) and there have been similar trends at stations 

around the world, including the Bermuda Atlantic Time-series and the European Station for 

Time-series Observations in the ocean (Solomon 2007). pH is expected to drop by an additional 

0.14–0.35 pH units by the end of the twenty-first century (Bopp et al. 2013). All marine 

ecosystems are at risk from rising SST and decreasing pH (Hoegh-Guldberg et al. 2007; Doney 

et al. 2009; Hoegh-Guldberg and Bruno 2010), but coral reefs are particularly vulnerable to these 

stressors (reviewed in Hoegh-Guldberg et al., 2007).  

7



CCA and coral calcification are predicted to decrease by 10 - 50% when pCO2 doubles, 

as expected by 2100 (Kleypas and Langdon 2006) . Hoegh-Guldberg (1999) predicts bleaching 

events will increase with rising SST, reducing coral productivity and growth. Recent evidence 

supports this prediction: corals have shown a decrease in linear extension by 1.02% yr-1 and 

skeletal density by 0.36% yr-1 over 16 years in the Great Barrier Reef (Cooper et al. 2008) which 

was accompanied by a local increase in yearly temperature of approximately 0.4°C (Cooper et al. 

2008) and a global increase in about 25ppm pCO2 (Hawai‘i Ocean Time-series). 

The relationship between ocean acidity and net reef calcification is an area of active 

research. Studies have found a positive relationship between net coral calcification and aragonite 

saturation state (Ωarg; the concentration of calcium and carbonate ions in relation to a dissociation 

constant) (Langdon et al. 2000), suggesting that calcification will decline with the predicted 

decrease in Ωarg. One study suggests that reefs with an Ωarg of less than 3.25 will be net 

dissolving (Hoegh-Guldberg et al. 2007), but this number is highly debatable and, notably, reefs 

in Kāne‘ohe Bay with an Ωarg of < 3 are still net calcifying (Shamberger et al. 2011). The 

puzzling question is why some reefs are in net dissolution when the water is still super-saturated 

with aragonite (i.e. Ωarg >1; see,Yates and Halley 2006; Silverman et al. 2007). Dissolution or, 

perhaps, bioerosion may be more sensitive to changes in ocean acidity than calcification, leading 

to net dissolution in super-saturated waters. Erez  et al. (2011) hypothesize that increased 

dissolution, rather than decreased accretion, maybe be the reason that net coral calcification is so 

sensitive to ocean acidification.    

A handful of studies have examined the impact of rising SST and ocean acidity on 

individual groups of eroders, mainly Clinoid sponges (Wisshak et al. 2012; Fang et al. 2013; 

Wisshak et al. 2013; Enochs et al. 2015) and a community of photosynthesizing microborers 
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(Tribollet et al. 2009; Reyes-Nivia et al. 2013). These studies found that bioerosion increased 

under future climate change scenarios. Several studies have focused on tropical calcifying algae 

and have found decreased calcification (Kleypas and Langdon 2006; Jokiel et al. 2008; Semesi et 

al. 2009; Comeau et al. 2013; Johnson et al. 2014) and increased dissolution (Diaz‐Pulido et al. 

2012) with increasing ocean acidity and/or SST. However, the bioeroder and secondary calcifier 

communities are extremely diverse and an integrative study on the impacts of climate stressors 

incorporating a natural community of bioeroders and secondary calcifiers is lacking.   

 

Objectives 

The overall goal of my dissertation is to determine the dominant drivers of accretion-erosion 

rates and macroborer communities to test if the relationship between accretion-erosion rates and 

environmental drivers are conserved across space, and provide context for the effects of climate 

change on the accretion-erosion balance. I use a combination of field (Chapters 2-4) and 

laboratory experiments (Chapter 5) to address this goal. Further, I present a new technique for 

quantifying accretion-erosion rates to advance the study of accretion-erosion beyond the limits 

imposed by traditional methods. I demonstrate the use of micro computer-aided tomography 

(μCT), a powerful technology for creating 3-dimensional images of the internal structure of solid 

objects, to calculate bioerosion and secondary accretion rates with micrometer-scale precision 

and accuracy. My specific objectives are to: 

1) compare pH with other known environmental predictors as possible drivers of net reef 

erosion on a small (local) spatial scale (Chapter 2); 

2) individually test the relationship between accretion and erosion rates with previously 

described environmental correlates of the accretion-erosion balance (Chapter 3); 

9



3) describe patterns and environmental drivers of accretion-erosion rates and macroborer 

communities across broad spatial scales (Chapter 4); 

4) determine the impact of future climate scenarios on calcification, dissolution, and net 

community production rates from a natural community of secondary calcifiers and 

bioeroders (Chapter 5);  

5) highlight the application of a novel µCT method to analyze accretion and erosion rates 

(Chapters 2 - 4). 
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ABSTRACT

Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from an-

thropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and

calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes

associated with ocean acidification, but the direct effects of lower pH on reef erosion has received

less focus, particularly in the context of known drivers of bioerosion and natural variability. Here,

we examine the balance between reef accretion and erosion along a well-characterized natural

environmental gradient in Kāne‘ohe Bay, Hawai‘i using experimental blocks of coral skeleton.

Comparing before and after µCT scans to quantify net accretion and erosion, we show that, at the

small spatial scale of this study (10s of meters), pH was a better predictor of the accretion-erosion

balance than environmental drivers suggested by prior studies, including resource availability, tem-

perature, distance from shore, or depth. In addition, this study highlights the fine-scale variation

of pH in coastal systems and the importance of microhabitat variation on reef accretion and ero-

sion processes. We demonstrate significant changes in both the mean and variance of pH on the

order of meters, providing the local context for global increases in pCO2. Our findings suggest

that increases in reef erosion, combined with expected decreases in calcification, will accelerate

the shift of coral reefs to an erosion-dominated system in a high CO2 world. This shift will make

reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of

the ecosystem services that coral reefs provide.

INTRODUCTION

Ocean acidification is threatening the persistence of coral reef ecosystems (Hoegh-Guldberg

et al. 2007). The oceans have absorbed ~30% of the anthropogenic increase in carbon dioxide

(CO2), resulting in a decrease in the pH of ocean water (“ocean acidification”) and a shift in the

chemical equilibrium towards dissolution (Caldeira & Wickett 2003, Feely et al. 2004, Sabine

et al. 2004). Current IPCC models predict changes in pH for the open ocean, but these mean pre-

dictions are problematic for coral reefs, which are embedded in highly variable coastal ecosystems
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(Gagliano et al. 2010, Hofmann et al. 2011) where restricted water motion, terrestrial influences,

and feedbacks between benthic productivity and calcification strongly influence the physicochemi-

cal environment (Yates et al. 2007, Drupp et al. 2011, Massaro et al. 2012, Duarte et al. 2013, Smith

et al. 2013). In this variable coastal environment, coral reef organisms experience biologically-

relevant daily variation in pH (Price et al. 2012) and the magnitude of this variation changes over

small spatial scales (meters to tens of meters that are relevant to individual organisms) (Guadayol

et al. 2014). This natural spatial and temporal variation can exceed the 0.07-0.33 pH unit increase

predicted for the global oceans in the 21st century (Bopp et al. 2013), demonstrating the need to

study reef processes on finer spatial and temporal scales than prior studies and presenting an oppor-

tunity to examine ecological responses to environmental variation in situ. Here, we take advantage

of the high spatial variability in lagoon reef systems and directly measure net reef accretion and

erosion in experimental blocks of coral skeleton along a natural environmental gradient.

Coral reef ecosystems persist in a balance between accretion and erosion; this balance is vul-

nerable to observed and predicted changes in ocean carbonate chemistry. While the response of

calcifying organisms to ocean acidification is variable (Ries et al. 2009), calcification rates for

most tropical coral species and other reef calcifiers decline with increasing pCO2 (Kroeker et al.

2010, Pandolfi et al. 2011). However, these demonstrated declines may underestimate the impact

of ocean acidification because net reef accretion, or growth, depends not only on the constructive

process of reef calcification, but also the destructive processes of reef dissolution and bioerosion

– the removal of lithic substrate by bioeroding organisms (Neumann 1966). For reefs to persist,

reef accretion must exceed erosion. Reef erosion by a diverse community of grazers (fish and

urchins) and internal eroders (sponges, marine worms, bivalves, and microboring flora) plays a

major role in the calcium carbonate (CaCO3) budget (reviewed in Hutchings 1986). Reef eroders

are responsible for 90% of coral reef sediment production and just over half of these sediments

are re-incorporated back into the coral framework (Hubbard et al. 1990). In addition, bioerosion

increases the porosity of the coral reef framework, which provides shelter for cryptic organisms

(Moran & Reaka 1988) but also reduces mechanical stability (Scott & Risk 1988).
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Reef bioerosion rates respond strongly to eutrophication (e.g. Rose & Risk 1985, Edinger

et al. 2000, Holmes 2000, Holmes et al. 2000, Le Grand & Fabricius 2011) and substrate type

(Highsmith 1981, Risk et al. 1995, Edinger & Risk 1996, Perry 1998, Schönberg 2002) . Distance

from shore (Risk et al. 1995, Tribollet et al. 2002) and depth (Perry 1998, Le Grand & Fabricius

2011, Schmidt & Richter 2013) are also common correlates of bioerosion rates. However, the in

situ response of erosion rates to pH and temperature – variables most relevant to climate change –

remains poorly characterized. Recent reviews suggest that reef erosion will increase in a high CO2

world (Hoegh-Guldberg et al. 2007, Guinotte & Fabry 2008, Andersson & Gledhill 2013) and that

reefs may shift from an accretion-dominated to an erosion-dominated state (Silverman et al. 2009),

making reefs more susceptible to storm damage and sea-level rise (Hutchings 1986). Yet, there is

little field data testing this for a pH-driven shift from accretion to erosion in situ. Laboratory

studies of bioerosion response to ocean acidification have focused on specific bioeroding groups

and shown increases in the penetration depth and erosion rates of microboring flora (Tribollet et al.

2009, Reyes-Nivia et al. 2013) and the boring sponge, Cliona orientalis (Wisshak et al. 2012, 2013,

Fang et al. 2013), under elevated pCO2 conditions. Field studies have been indirect or strongly

confounded by other environmental variables: Fabricius et al. (2011) showed that the density of

externally visible borer orifices in live Porites sp. were higher in closer proximity to CO2 seeps

in Papua New Guinea (Fabricius et al. 2011). Manzello et al. (2008) compared three sites in the

eastern tropical Pacific and found that erosion rates were higher at sites with frequent upwelling

of water with a low aragonite saturation state (Manzello et al. 2008), but these upwelling sites

also had high nutrients and low temperature: temperature and nutrients are both known drivers of

bioerosion (Le Grand & Fabricius 2011, Davidson et al. 2013).

Here, we take advantage of the natural pH variation in coral reef ecosystems emphasized by re-

cent studies (Gagliano et al. 2010, Hofmann et al. 2011, Guadayol et al. 2014) and directly measure

net reef accretion and erosion using experimental blocks of coral skeleton in response to natural pH

variation. This experimental approach integrates a natural, early successional community of bio-

eroders (including internal eroders and external grazers) and reef calcifiers, but excludes accretion
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by corals. We characterize net erosion along a 32m onshore-offshore transect on a fringing reef

within Kāne‘ohe Bay (O‘ahu, Hawai‘i), a lagoon system with naturally high spatiotemporal vari-

ability in pH (Guadayol et al. 2014). Because recent studies have demonstrated that pH variability

correlates with calcification rates on coral reefs (Price et al. 2012), we measure spatial variation

in both the mean and temporal variability of environmental parameters that are potential drivers of

the accretion-erosion balance at 21 locations along the reef transect (Figure 1). To calculate net

reef accretion and erosion, we use micro-computed tomography (µCT) to create high resolution

(100 µm), 3-dimensional density profiles of experimental CaCO3 blocks before and after deploy-

ment (Figure 2). Previous studies have used µCT to visualize bioerosion by sponges (Schönberg

& Shields 2008) and to examine coral skeletal morphology (Roche et al. 2011); here, we apply

this technology in a novel way to quantify net accretion and erosion more precisely than buoyant

weight methods. Using a model-comparison framework, we compare pH with other known drivers

and correlates of the accretion-erosion balance, including resource availability for filter feeding

bioeroders, temperature, depth, and distance from shore.

MATERIALS AND METHODS

Study site: Our study site is located in Kāne‘ohe Bay, O‘ahu on the windward (eastern) side

of Moku o Lo‘e (Coconut Island), adjacent to the Hawai‘i Institute of Marine Biology (Figure S1;

N21°25.975’, W157°47.175’). This fringing reef is dominated by Porites compressa and Mon-

tipora capitata, with occasional colonies of Pocillopora damicornis, Fungia scutaria, and Porites

lobata. Kāne‘ohe Bay is a protected, semi-enclosed embayment; the residence time can be >1

month in the protected southern portion of Kāne‘ohe Bay, where our study was located (Lowe

et al. 2009a). Wave action is low (Smith et al. 1981, Lowe et al. 2009b,a), and currents are mild

(5cm s−1 maximum) and tidally driven (mean and maximum tidal ranges are 0.7 and 1.1m, re-

spectively) (Lowe et al. 2009b,a). Daily averages in pH, temperature, and O2 in the Kāne‘ohe

Bay waters just offshore our site ranged from 7.83 - 8.03, 21.84-27.86 ◦C, and 5.82-7.81 mg L−1,

respectively, during our study period (Guadayol et al., 2014; Table S1).

Experimental Design: Twenty-one experimental blocks were deployed along a 32m transect,
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stratified between reef flat and reef slope (Figure 1e). Blocks were deployed from March 31, 2011

to April 10, 2012 (Figure S2). Water samples for nutrients, chlorophyll a, total alkalinity (TA), and

pH were collected directly above each block four times within 24 hours in September, December,

and April in order to capture both diel and seasonal variability in the environment. In addition

to discrete water samples, we measured high frequency (0.1 min−1) variation in temperature and

depth using a continuous sensor stationed over each block for a minimum of two weeks. These

short time series were normalized to a continuous time series from a permanent station positioned

adjacent to the transect, allowing comparison of the micro-environments at each block (Guadayol

et al. 2014). Spatial variation in the mean and variance of environmental parameters across the

transect allowed us to compare potential drivers of the accretion-erosion balance (Figures 1, S3-

S4, and Table 1).

Experimental Blocks: Blocks were cut from dead pieces of massive Porites sp. skeleton col-

lected above the high-tide mark from beaches around O‘ahu. Only coral pieces with obvious

calices and no visible external borings were selected. Coral pieces were cut into a 5cm x 5cm x

2cm blocks, soaked in freshwater, and then autoclaved to remove any living organisms. Because

substrate skeletal density can influence reef bioerosion rates (Highsmith 1981, Schönberg 2002),

we used blocks with similar skeletal densities. The average skeletal density of each coral block

was 1.57 ±0.07(sd) g cm−3. The skeletal density of Porites lobata ranges from 1.27 - 1.66 g cm−3

on O‘ahu and ranges from 1.15 - 1.95 g cm−3 across the Hawaiian Archipelago (Grigg 1982).

µCT: Net accretion and erosion rates were calculated using µCT (Figure 2). µCT is an x-ray

technology that non-destructively images the external and internal structures of solid objects, re-

sulting in a three-dimensional array of object densities. Previous studies have used single CT scans

to analyze bioerosion (Becker & Reaka-Kudla 1996, Beuck et al. 2007, Schönberg & Shields 2008,

Crook et al. 2013). Here, we use µCT in a novel way by comparing pre- and post-deployment

scans. This technique allows us to calculate a very accurate rate for net accretion-erosion and

to account for and digitally remove the effect of any pre-existing borings in the experimental sub-

strate. Further, we can visualize new erosion scars by external and internal eroders and new growth
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by secondary calcifiers in 3D –information that cannot be acquired from traditional buoyant weight

techniques. We used an eXplore CT120 µCT (GE Healthcare Xradia, Inc) at the Cornell Univer-

sity Imaging Multiscale CT Facility to scan blocks before and after deployment (voltage = 100kV,

current = 50mA). Angular projections were acquired in a full 360◦ rotation in 0.5◦ increments; two

images at each angle were acquired and averaged. A three-dimensional array of isotropic voxels at

50 µm resolution was generated using the GE Console Software. These 50 µm voxels were aver-

aged to 100µm for data analysis. The intensity value in each voxel is directly related to the density

of the object at that voxel. A global threshold value of 200 Hounsfield Units (HU) was used to

separate CaCO3 from air and remove any effects of partial volume averaging at the coral block-air

interface (Roche et al. 2010). The number of voxels exceeding this threshold was multiplied by

the voxel size (100µm)3 to give the total volume of CaCO3. We measured net accretion-erosion

as the change in volume of CaCO3 from before and after scans. Note that this volumetric analysis

measures changes at the voxel sale of 50µm, which was then averaged to 100µm, and, therefore,

may underestimate erosion by microborers, which make erosion scars between 1 and 100µm (?).

The values were square-root transformed to meet model assumptions of normality, and one block

with a large aggregation of oysters was excluded from the analysis.

Environmental parameters: potential predictors and correlates of net reef erosion:

Previous studies have identified nutrient concentration (e.g. Rose & Risk 1985, Edinger et al.

2000, Holmes 2000, Holmes et al. 2000, Le Grand & Fabricius 2011), chlorophyll (Le Grand &

Fabricius 2011), temperature (Davidson et al. 2013), pH (Tribollet et al. 2009, Wisshak et al. 2012,

Reyes-Nivia et al. 2013, Wisshak et al. 2013, Fang et al. 2013) and depth (Perry 1998, Le Grand &

Fabricius 2011, Schmidt & Richter 2013) as possible drivers of accretion-erosion balance. Here,

we compared the effect of these environmental parameters on net accretion-erosion by collecting

both discrete water samples (pH, TA, nitrate (NO−
3 ), nitrite (NO−

2 ), ammonium (NH+
4 ), phosphate

(PO3−
4 ), and chlorophyll a) and data from continuous sensors (temperature and depth) along the

transect. The discrete water samples were collected directly above each block within two days of

spring tide at 08:00, 14:00, 20:00, and 02:00 on September 10-11, 2011, December 12-13, 2011,
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and April 4-5, 2012. All discrete water samples were collected on snorkel or SCUBA using 60

and 120ml plastic syringes. Syringes and storage vials were all pre-cleaned in a 10% HCl bath

for 24 hours and rinsed three times with MilliQ water; during sample collection and processing,

they were rinsed three times with sample water. The environment was sampled more continuously

for temperature and depth (sampling rate of ~ 0.1 min−1) using one permanent and two mobile

monitoring stations. Two mobile stations were deployed at a time, one on the reef flat and one on

the reef slope, to get simultaneous measurements at two different blocks on the transect. Mobile

stations (Sonde 600XLM, YSI Incorporated) were positioned 5 to 10cm above each block for

a two-week period between May 2011 and March 2012. Blocks were sampled in random order,

ensuring that the spatial gradient along the transect was not systematically confounded by temporal

trends or seasonality (Guadayol et al. 2014). The permanent monitoring station (Sonde 6600-V2-

4, YSI) was mounted to a pole a few meters away from the transect, downward facing at 1.7m

depth over a 3m deep bottom, with sensors for temperature, depth, conductivity, pH, and O2 to

characterize the background water column conditions for the duration of the experiment. All multi-

parametric probes were calibrated periodically using standard procedures and calibration solutions.

The permanent station was recovered, cleaned, calibrated, and re-deployed 3 times during the

study, and the mobile station probes were calibrated 7 times. Pre-calibration measurements of

commercial standard solutions were conducted to detect sensor drift, although none was found for

the period of study. The background water column data are reported in Guadayol et al. (2014).

Nutrients and Chlorophyll: Water samples collected for nutrients were immediately filtered

through combusted 25mm glass fiber filters (GF/F 0.7µm) and transferred into 50ml plastic cen-

trifuge tubes. Nutrient samples were frozen and later analyzed for NO−
3 , NO−

2 , NH+
4 , and PO3−

4

on a Seal Analytical AA3 HR Nutrient Analyzer at the UH SOEST Lab for Analytical Chemistry

(Table S2). GF/F filters were folded in half, wrapped in aluminum foil, and frozen for chloro-

phyll a analysis using a Turner Designs 10AU Benchtop Fluorometer (Table S2). The ratio of

dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN:DIP) was used as a proxy for

resource quality available to filter feeders (Hauss et al. 2012), assuming that elemental composi-
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tion of planktonic prey will be influenced by elemental composition of the water column, and was

calculated from ([NO−
3 ] + [NO−

2 ] + [NH+
4 ]):[PO3−

4 ]) .

pH and TA: Mean and variance in pH at each block was calculated from water samples along

the transect. Water samples for pH were immediately transferred into 25ml borosilicate glass vials,

brought to a constant temperature of 25◦C in a water bath, and immediately analyzed using an m-

cresol dye addition spectrophotometric technique and calibrated against a Tris buffer of known pH

from the Dickson Lab at Scripps Institute of Oceanography (Table S2). TA was fixed with 100

µL of HgCl2 and analyzed using open cell potentiometric titrations on a Mettler T50 autotitrator

and calibrated against a Certified Reference Material following Dickson et al. (2007) protocols.

In situ pH and all other carbonate parameters (see Table S1) were estimated using CO2SYS (van

Heuven et al. 2011) with the following parameters: pHt, TA, temperature, and salinity. The K1K2

dissociation constants were from Mehrbach (1973) (refit by Dickson & Millero (1987)) and HSO4

dissociation constants were taken from Uppström (1974) and Dickson (1990). Accuracy for TA

and pH was better than 0.8% and 0.04%, respectively, and the precision was 3.55 µEq and 0.004

pH units.

Temperature: Temperature sensors (YSI 6560) were thermistors with manufacturer-reported

accuracy of ±0.15°C and resolution of 0.01°C (YSI Incorporated 2011). Average differences in

temperature along the transect were small and measured as a relative anomaly from the permanent

station: ((x̄mobile − x̄permanent)/x̄permanent). To measure relative variability in temperature across

the transect, we calculated the covariance in temperature between the mobile and permanent sensor

arrays over a two-week period and compared this covariance across the transect.

Depth and Distance from Shore: Depth is the average depth measured at each block over the

two week deployment of the mobile station. Distance from shore is the along-transect distance.

Model Selection: Our goal was to compare pH with other known drivers and correlates of 

the accretion-erosion balance. In a model selection framework, we used Akaike Information Cri-

terion (AIC) values to rank candidate models, accounting for both fit and c omplexity. Carefully 

constructed model selection avoids problems associated with multiple hypothesis testing that are
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common in stepwise regression, such as arbitrary α levels and uninterpretable functional relation-

ships (Johnson & Omland 2004, Anderson 2008). Here, we used AICc (AIC corrected), which is

recommended for sample sizes less than 30 (Anderson 2008). While the model with the smallest

AICc value (∆AICc=0) is the "best" of the models considered, models with ∆AICc <4 have some

empirical support; models with a ∆AICc >10-12 are less plausible (Anderson 2008).

Good inference from multivariate analyses is confounded by collinearity among environmental

variables. Many of the environmental variables were collinear along the transect (Figure S5); thus,

we removed collinearity by using the residuals of a regression of each environmental variable

against depth and distance from shore. Correlation coefficients for raw environmental data and

the residual environmental data are shown in Figure S5. Model selection with all raw data is also

presented in the supplemental material (Table S3).

We compared models for 5 specific hypotheses about the accretion-erosion balance (carbonate

chemistry, resource availability, temperature, depth, and distance from shore) to test which of these

drivers had the strongest relationship to net accretion-erosion (Table 1). We used pH to test how

carbonate chemistry influenced net accretion-erosion rates. Carbonate chemistry parameters are

inherently correlated, and pH had the strongest relationship of the carbonate chemistry parameters

(Table S4). The pH model includes both the mean and variance of the discrete pH samples from

each block. The resource availability model includes the means and variances of DIN:DIP ratios

(a proxy for resource quality) and chlorophyll a (a measure of resource quantity) from the discrete

water samples. The temperature model included the mean relative temperature anomaly of each

block from the permanent station and temperature covariance between the mobile and permanent

stations. The final two models were individual models for depth and distance from shore. These

linear models were compared to a full model that includes the means and variances of every pa-

rameter stated above (Table 1). Environmental data that did not meet the assumptions of normality

were log-transformed and net erosion data were square-root transformed.

RESULTS

There were considerable differences in both the mean and variance of pH and nutrients across
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the 32m transect. Mean pH increased from 7.84 to 7.91 and the coefficient of variation decreased

from 0.013 to 0.0032 from onshore to offshore (Figure 1b, Tables S1, S5). Mean DIN:DIP de-

creased from 87.5 to 42.4 and the coefficient of variation increased from 0.36 to 0.59 (Figure 1d,

Table S5) from onshore to offshore. Chlorophyll a and temperature remained relatively constant

across the spatial gradient (Figure 1a,c, Table S5).

We compared models of pH, resource availability, temperature, depth, and distance from shore

as drivers of net accretion and erosion (Table 1, Figures S3, S4). The pH model best explained

patterns in the accretion-erosion balance along the transect in both the residual and raw data models

(Tables 1, S3, Figure 3). Accretion was higher on the deeper reef slope, where pH is higher and

less variable (Figures 1, S6, S7). Removing the effects of depth and distance from shore, pH was

an even better predictor of the accretion-erosion balance (Figures 3, S3), particularly on the reef

flat, and it explains 64% of the variation in net accretion-erosion over a one year deployment (Table

1). The second best model, the depth model (∆AICc = 16.30), explained only 6% of the variance

(Table 1, Figure S7), followed by the distance model which explained only 2% of the variance.

While the resource availability model described 18% of the variance in the data, it also had a larger

number of parameters (6, including mean and variance for both DIN:DIP and chlorophyll a) and,

therefore, ranked sixth in model parsimony.

We also tested whether the mean or variance in pH was a better predictor of net accretion-

erosion. Mean pH was the best model, explaining 64% of the variance (Table 1) and had a strong

negative relationship with net accretion-erosion (Figure 3). pH was also a better predictor of net

accretion-erosion than TA, pCO2, and DIC, but these highly collinear carbonate chemistry pa-

rameters did have some empirical support and explained between 42-58% of the variance in net

accretion-erosion (Table S4).

DISCUSSION

Spatial and temporal variation in pH across the transect:

Across the transect, pH had a range of 0.33 pH units at the most variable site and 0.08 pH units

at the least variable site over the year (Table S1). The organisms at these sites experience a natural
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variation in pH that is within the range that mean pH is predicted to decrease for the 21st century

(Bopp et al. 2013). Indeed, this pH range is not unique to our transect, but is typical of other

shallow coral reef sites in the Pacific. For example, pH at the CRIMP2 buoy, a slightly deeper

(~3m) nearby reef site located in central Kāne‘ohe Bay, ranged from 7.90-8.13 over a 2.5 year

study (Drupp et al. 2013). On a Palmyra reef terrace, pH ranged from 7.85-8.10 (Hofmann et al.

2011) and pH spanned 0.39 units in a study examining the spatial variability in microhabitats on

the Great Barrier Reef (Gagliano et al. 2010). Additionally, Gagliano et al. (2010) found a similar

inshore-offshore pattern: mean pH was lower and more variable inshore compared to offshore

sites, though their study was conducted over a much larger spatial scale. The patterns in the means

and variances here and in other studies arise from both physical and biological processes including:

tidal mixing with offshore waters, P/R cycles, and reef metabolism (Hurd et al. 2011, Kleypas et al.

2011), upwelling events (Leichter et al. 2003, Manzello et al. 2008), and porewater advection from

permeable sediments (Santos et al. 2011). We saw a very strong correlation between pH variance

and distance from shore (Figure S6), suggesting that tidal mixing was an important contributor to

the spatial variation in pH, although we did not specifically test this hypothesis. Using the residual

values that remove the effect of distance and depth from pH eliminates the impact of this large

scale mixing, leaving the effect of small scale processes (such as local P/R and turbulent mixing)

on pH. The raw pH data model explained 48% of the variance in net accretion-erosion (Table S3),

but the residual model was an even better fit (Table 1), suggesting that small-scale physicochemical

differences in microhabitats may strongly influence the patterns of accretion and erosion on coral

reefs. The results of this study suggest that differences in microhabitat variability may be more

important to the accretion-erosion balance than larger-scale processes. A better characterization

of microhabitat variability (see Guadayol et al. 2014) and how this microhabitat variation impacts

reefs will help us predict reef responses to climate change in the context of natural variability.

Implications for the accretion-erosion balance of coral reefs:

Our results show that differences in the seawater chemistry on the scale of meters can have a

substantial influence on the accretion-erosion balance. The majority of the blocks below a mean
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pH of 7.88 were net eroding (Figure S3), a pH value likely to be more prevalent with the predicted

0.3-0.4 pH unit reduction in oceanic pH (Orr et al. 2005, Bopp et al. 2013). Previous studies on

coral reefs have shown shifts from net accretion to erosion after major disturbances, such as ENSO

events or hurricanes (Perry et al. 2008). Our data indicate that pH is a significant driver of net reef

erosion and that, as mean pH decreases, erosion rates will increase. The pH model ranked higher

than the distance, depth, and resource availability models; prior studies where depth, distance, and

resource availability were stronger predictors of bioerosion were performed on much larger spatial

scales and covered a greater range of values (e.g., Perry 1998, Holmes et al. 2000, Tribollet et al.

2002, Le Grand & Fabricius 2011, Schmidt & Richter 2013). For instance, a prior study showing

a strong response of bioerosion to resource availability had mean chlorophyll a values ranging

from 0.25 to 1.24 µg L−1 across their comparison sites (Holmes et al. 2000); mean chlorophyll a

ranged only from 0.14 to 0.31 µg L−1 in this study (Figure 1). Results from the current study are

in agreement with recent lab (Tribollet et al. 2009, Reyes-Nivia et al. 2013, Wisshak et al. 2012,

2013, Fang et al. 2013) and field experiments (Manzello et al. 2008, Fabricius et al. 2011, Crook

et al. 2013) suggesting that erosion rates will increase with ocean acidification. However, this is

the first study to directly test the relationship between the accretion-erosion balance and pH, using

a natural pH gradient, and compare this relationship to other known drivers and correlates of reef

accretion and erosion.

The bioeroder community is diverse and has a number of mechanisms for boring, including

chemical dissolution and mechanical erosion. Individual species respond differently to environ-

mental parameters and, thus, influence the accretion-erosion balance through changes in individ-

ual bioerosion rates and in community composition. For example, previous studies have found

that boring sponges and bivalves respond positively to eutrophication, while the response of poly-

chaetes is more variable (Le Grand & Fabricius 2011). Filter feeding sponges and bivalves are

positively correlated with eutrophic sites in the Bahamas (Rose & Risk 1985), Barbados (Holmes

et al. 2000), the Red Sea (Kleemann 2001), the Great Barrier Reef (Osorno et al. 2005, Tribollet &

Golubic 2005) and the eastern Pacific (Fonseca E et al. 2006); bivalve abundances are also corre-
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lated with high water velocity (Cantera et al. 2003, Londono-Cruz et al. 2003). In contrast, deposit

feeding polychaetes in the Great Barrier Reef are more abundant at eutrophic sites (Osorno et al.

2005), while suspension feeding polychaetes are more abundant in oligotrophic sites (Le Bris et al.

1998). In addition, there are strong successional dynamics in these communities, and patterns of

succession are location specific. In the Great Barrier Reef, microborers and polychaetes are the

initial colonizers followed by sipunculans, bivalves, and then sponges (Hutchings 1986); it may

take up to three years for sponges to fully colonize dead substrate (Tribollet & Golubic 2005). In

the Caribbean, the suggested successional pattern of bioeroders is algae, fungi, clionid sponges,

polychaetes, bivalves, barnacles, and then sipunculans (Risk & MacGeachy 1978). In Hawai’i,

an 18 month study in Kāne‘ohe Bay found no obvious successional patterns (White 1980), but

likely captured only the initial successional stages. Our study highlights the influence of pH on

the accretion-erosion balance after one year, the early-successional stage of this community, and

future studies should include multi-year comparisons to test if this pattern holds. In a previous

Kāne‘ohe Bay study that used similar blocks, the most abundant organisms after a one-year de-

ployment were polychaetes (Spionidae were the most abundant and largest polychaete borers) and

sipunculans (White 1980). These were the most common taxa in our study, as well. Parrotfish

erosion was also evident on our blocks. Common secondary calcifiers in our community were

crustose coralline algae (Hydrolithon spp.), barnacles, and the oyster Crassostrea gigas.

Our results highlight the value of using of µCT as a tool to calculate accretion and erosion rates

on coral reefs. µCT provides a more sensitive measure of net accretion-erosion in the field than

previously published methods (e.g. Edinger & Risk 1996, Tribollet et al. 2009, Perry et al. 2012),

and it is directly comparable across studies. Prior studies have used single CT scans to calculate

skeletal density (Bosscher 1993), skeletal porosity (Roche et al. 2010), and linear extension (Crook

et al. 2013); here, we used µCT in a novel way by comparing before and after images to calculate

the precise volume of CaCO3 removed or accreted. As reef erosion and coral growth are often

decoupled on coral reefs (Edinger et al. 2000), quantification of net erosion must complement

measures of coral growth for a more complete picture of coral reef health.
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Although chemical dissolution will accelerate in future decades as tropical coral reefs shift to

less-saturated aragonite conditions (van Woesik et al. 2013), bioerosion is currently the main driver

of reef loss (Andersson & Gledhill 2013). The mechanisms by which ocean acidification may en-

hance bioerosion rates include lower coral skeletal densities (Hoegh-Guldberg et al. 2007, Cooper

et al. 2008), making it easier for bioeroders to penetrate the coral skeleton (Edinger & Risk 1996,

Dumont et al. 2013), though this point is debated in the literature (see, Highsmith 1981, Schönberg

2002, Hernández-Ballesteros et al. 2013); increased growth rates of photosynthesizing bioeroders

(Tribollet et al. 2009); declines in crustose coralline algae (Jokiel et al. 2008), which can inhibit

settlement and growth of micro- and macroborers (Tribollet & Payri 2001); and increased suscep-

tibility of calcifiers to grazers (Johnson & Carpenter 2012). In addition, many boring organisms

excrete acidic compounds, raising the possibility that a reduction in ocean pH could make it less

metabolically costly to lower pH at the site of erosion.

The combination of slower coral growth (Hoegh-Guldberg et al. 2007, Kroeker et al. 2010,

Pandolfi et al. 2011) and higher erosion rates with ocean acidification could act synergistically to

hinder reef growth. In the Caribbean, erosion rates are highest in areas where coral cover is low

(Perry et al. 2013), indicating that the same drivers that negatively impact corals may also pro-

mote erosion. Further, given the strong relationship between bioerosion and local anthropogenic

impacts like sedimentation and nutrient run-off (Edinger et al. 2000, Le Grand & Fabricius 2011),

the combined effect of these local impacts with decreases in pH in the global oceans could be

devastating to reefs world-wide. This study portrays how coral reef ecosystems may change under

predicted increases in ocean acidity: an existing community of reef secondary calcifiers and bio-

eroders showed a shift from net accretion to net erosion along a naturally occurring, within-reef

gradient of high to low pH.
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Table1: Model Selection: k is the number of parameters in the model, -log(L) is the negative log likelihood of the model, AICc is the 
Akaike Information Criterion corrected, ∆AICc is the difference from the lowest AICc value, R2 is the proportion of total variance 
explained by the model, and Rank is the rank of the model with 1 being the best fit. E ach m odel i s a  l inear r egression o f n et reef 
erosion versus the means (X) and variances (V ar(X)) of each parameter. The Resource Availability Model includes DIN:DIP and 
chlorophyll a concentration and the Full Model includes means and variances for all listed environmental parameters. The ranges for 
each environmental parameter are included in Tables S5. The lower table shows a model selection for pH mean versus variance.

k -log(L) AICc ∆AIC R2 Rank
pH 4 -30.46 68.42 0.00 0.64 1

Y ∼ pH + V ar(pH)
Depth 3 -40.01 84.73 16.30 0.06 2

Y ∼ Depth
Distance 3 -40.40 85.50 17.08 0.02 3

Y ∼ Distance
Temperature 4 -40.42 88.33 19.91 0.03 4

Y ∼ Temp+ Covar(Temp)
Resource Availability 6 -38.91 92.11 23.68 0.18 5

Y ∼ Chl + V ar(Chl) +N : P + V ar(N : P )
Full Model 12 -25.92 106.84 38.42 0.82 6

Y ∼ pH + V ar(pH) + Temp+ Covar(Temp) + Chl + V ar(Chl)+

N : P + V ar(N : P ) +Depth+Distance

pH Mean 3 -30.41 65.52 0.00 0.64 1
Y ∼ pH

pH Mean and Variance 4 -30.46 68.42 2.90 0.64 2
Y ∼ pH + V ar(pH)

pH Variance 3 -39.34 83.39 17.87 0.12 3
Y ∼ V ar(pH)
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Figure 1: Environmental parameters measured at 21 points along the transect. Plots represent
the mean (circles) and variability (error bars are standard deviation) of the environmental along
the transect for a) relative temperature anomalies, b) pH (total scale), c) chlorophyll a (µg L−1) ,
and d) DIN:DIP at e) the location of each experimental block. X-axes are distance (m) across the
transect with 0 being closest to shore, and colors represent depth (m).
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5mm

Figure 2: µCT scan. Visualization of µCT scan of an experimental block before (top) and after
one year deployment (bottom). Scale bar is 5mm long.
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Figure 3: pH versus net erosion. Best fit model and 95 % confidence intervals for percent change
in volume of experimental blocks (N=20) versus a) mean pH residuals (y = 251.81x − 0.29,
R2 = 0.64) and b) pH variance residuals (y = −960.66x− 0.27, R2 = 0.12). Both pH mean and
variance were regressed against depth and distance from shore, and the residuals were used in the
analysis and this figure. Percent change in volume for each block was square-root transformed to
meet model assumptions.
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Table S1: The mean, min, and max for total alkalinity, pH, dissolve inorganic carbon, and pCO2 at each block

Distance from shore (m) TA Mean Min Max pH Mean Min Max DIC Mean Min Max pCO2 Mean Min Max
1 0.67 2165.28 2095.47 2222.46 7.85 7.70 8.03 1962.93 1831.92 2075.01 658.21 383.34 975.33
2 1.10 2163.19 2113.80 2227.00 7.85 7.69 8.02 1961.63 1834.68 2074.01 658.52 395.77 996.26
3 3.10 2165.79 2089.75 2257.98 7.84 7.70 8.02 1968.44 1810.13 2074.89 675.79 390.79 977.94
4 5.80 2162.67 2101.46 2221.84 7.86 7.72 8.03 1959.19 1812.66 2067.66 650.87 377.19 925.28
5 8.20 2160.20 2092.45 2217.20 7.86 7.71 8.03 1956.83 1806.26 2073.59 650.54 378.85 951.15
6 10.00 2162.44 2088.65 2249.94 7.85 7.72 8.01 1961.16 1810.32 2063.16 655.33 392.98 932.32
7 12.60 2153.50 2077.01 2215.51 7.87 7.75 8.00 1945.46 1805.26 2037.73 623.31 402.03 842.97
8 15.70 2148.80 2075.69 2216.86 7.88 7.79 7.99 1934.68 1816.87 2011.11 594.41 422.67 755.96
9 17.20 2151.65 2085.82 2219.42 7.88 7.79 7.98 1940.73 1834.68 2017.91 603.99 433.50 749.74
10 19.60 2146.80 2069.79 2219.24 7.87 7.78 7.97 1938.05 1822.68 2007.47 608.75 444.06 772.08
11 23.70 2144.53 2047.65 2226.42 7.87 7.78 7.97 1936.70 1802.80 2013.38 609.36 442.48 773.40
12 24.80 2149.03 2053.58 2220.95 7.88 7.79 7.99 1937.61 1800.69 2018.77 600.94 418.94 749.22
13 26.10 2153.33 2050.84 2224.86 7.89 7.82 7.98 1938.42 1800.55 1997.31 588.57 431.89 697.11
14 26.70 2159.52 2053.77 2221.09 7.89 7.81 7.98 1940.97 1802.36 2000.49 579.44 432.34 709.40
15 26.90 2161.51 2079.12 2222.29 7.89 7.83 7.98 1942.22 1818.32 2003.07 576.89 427.54 678.45
16 27.70 2170.00 2109.46 2234.96 7.89 7.83 7.95 1950.99 1876.65 2009.64 579.44 483.75 673.61
17 28.80 2166.87 2116.02 2222.18 7.89 7.83 7.94 1947.64 1877.44 2002.80 576.77 497.79 676.40
18 29.50 2174.30 2126.05 2232.07 7.90 7.85 7.95 1950.49 1892.00 2000.87 565.53 498.45 650.80
19 29.80 2190.64 2139.22 2294.06 7.90 7.84 7.95 1966.69 1897.06 2078.80 573.38 498.68 664.07
20 31.60 2182.22 2138.47 2239.22 7.91 7.86 7.94 1954.90 1903.00 1998.34 558.39 504.33 628.52
21 32.40 2187.85 2149.13 2236.12 7.90 7.83 7.94 1964.11 1910.03 2006.13 573.09 511.54 678.21
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Table S2: Parameters and methods used to measure environmental data. LoD is level of detection.

Parameter Method Instrument LoD

Nitrate Armstrong et al (1967);
Grasshoff et al (2009)

Seal Analytical AA3 HR Nu-
trient Autoanalyzer

0.04µmol/l

Nitrite Armstrong et al (1967);
Grasshoff et al (2009)

Seal Analytical AA3 HR Nu-
trient Autoanalyzer

0.01µmol/l

Ammonium Kérouel and Aminot (1997) Seal Analytical AA3 HR Nu-
trient Autoanalyzer

0.02µmol/l

Phosphate Murphy and Riley (1962) Seal Analytical AA3 HR Nu-
trient Autoanalyzer

0.02µmol/l

Chlorophyll a Arar and Collins (1997);
Welschmeyer (1994)

Turner Designs 10AU Bench-
top and Field Fluorometer

0.025µg/l

Temperature Guadayol et al (2014) Sonde 600XLM, YSI Incor-
porates

N/A

Total Alkalinity Dickson et al (2007) SOP 3b Mettler T50 autotitrator N/A
pH Dickson et al (2007) SOP 6b MolecularDevices Spectra-

Max M2
N/A
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Table S3: Model selection of raw data with all carbonate chemistry parameters.

k -log(L) AICc ∆AIC R2 Rank
pH 4 -34.17 75.84 0.00 0.48 1
pCO2 4 -35.19 77.89 2.04 0.42 2
DIC 4 -38.22 83.94 8.10 0.22 3
TA 4 -38.38 84.26 8.41 0.21 4
Depth 3 -40.01 84.73 8.88 0.06 5
Distance 3 -40.40 85.50 9.66 0.02 6
Temperature 4 -40.03 87.56 11.71 0.07 7
Resource Availability 6 -40.03 94.34 18.50 0.09 8
Full Model 18 -12.23 364.46 288.62 0.98 9

Table S4: Model selection of residual data with all carbonate chemistry parameters.

k -log(L) AICc ∆AIC R2 Rank
pH 4 -30.46 68.42 0.00 0.64 1
TA 4 -32.05 71.60 3.17 0.58 2
pCO2 4 -32.31 72.13 3.70 0.57 3
DIC 4 -35.27 78.04 9.62 0.42 4
Depth 3 -40.01 84.73 16.30 0.06 5
Distance 3 -40.40 85.50 17.08 0.02 6
Temperature 4 -40.42 88.33 19.91 0.03 7
Resource Availability 6 -38.91 92.11 23.68 0.18 8
Full Model 18 -12.23 364.46 296.04 0.98 9
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Table S5: List of parameters and parameter ranges across all sampling days and sites.

Parameter Range
Mean Temperature Anomaly -0.0064 - 0.008
Chlorophyll a (µg L−1) 0.019 - 1.36
DIN:DIP 14.56 - 173.75
pHT 7.69 - 8.032
Distance (m) 0.67 - 32.4
Depth (m) 0.12 - 4.52

 0 0.5 1 1.5 20.25
Kilometers

Hawaiian Islands

o`ahu Moku O Lo`e

Figure S1: Map of Kāne‘ohe Bay. Red star represents the location of the study site. Insets on
upper left are the Main Hawaiian Islands and the island of O’ahu.
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Figure S2: Experimental blocks. Images of experimental blocks attached to substrate immediately
after deployment (top) and one year later (bottom).
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Figure S3: Net accretion-erosion (square-root transformed) versus raw environmental data.
All positive values on the y-axis are net accretion and all negative values are net erosion.
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Figure S4: Net accretion-erosion (square-root transformed) versus residual environmental
data. All positive values on the y-axis are net accretion and all negative values are net erosion.
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Movie S1: Three dimensional µCT video of an experimental block after deployed on the

reef for one year. This video was created by Mark Riccio at the Cornell University µCT Facility

for Imaging and Preclinical Research.
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RANKING THE IMPACT OF MULTIPLE ENVIRONMENTAL STRESSORS ON CORAL 
REEF EROSION AND SECONDARY ACCRETION 

Submitted as: Silbiger, NJ, Guadayol, Ò, Donahue, MJ, Thomas, FIM (submitted) Ranking the 
impact of multiple environmental stressors on coral reef erosion and secondary accretion. 
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ABSTRACT:

Ocean acidification threatens to shift coral reefs from net accreting to net eroding. While corals build

reefs through accretion of calcium carbonate (CaCO3) skeletons, net reef growth depends on bioerosion by

grazers and borers and on secondary calcification by crustose coralline algae and other calcifying inverte-

brates. Primary calcification, secondary calcification, and erosion processes respond differently to climate

change stressors; therefore, the combined accretion-erosion response is uncertain. Using a a new micro-

computed tomography (µCT) method, we measured the simultaneous response of secondary accretion and

bioerosion along an environmental gradient. We saw that bioerosion rates ranged from 0.02 to 0.91 kg m−2

yr−1 and secondary accretion rates ranged from 0.01 to 0.4 mm yr−1 across a 32m transect. Co-located

measures of secondary accretion and bioerosion had different environmental drivers: bioerosion rates were

highly sensitive to ocean acidity while secondary accretion rates were most sensitive to physical drivers.

These results suggest that bioerosion likely plays a more significant role in the shift from net accretion to net

erosion on coral reefs than previously thought.

SIGNIFICANCE STATEMENT

Corals build reefs though the accretion of calcium carbonate skeletons, but the structural complexity, me-

chanical stability and net growth of coral reefs also depends on the response of secondary calcification and

bioerosion to local and global anthropogenic disturbances. Here, we highlight the importance of these two

under-studied reef processes and rank the dominant environmental drivers of secondary accretion and bio-

erosion along a natural reef gradient. We also present a novel µCT method to calculate highly accurate rates

of secondary accretion and bioerosion from the same experimental substrate. Our study emphasizes how

important it is to consider both accretion and erosion processes in future work that seek to predict the fate

of coral reefs under a changing climate.

INTRODUCTION

Human-induced changes in ocean chemistry (1–9), temperature (1, 5, 9, 10), and water quality (3, 11–16) are

threatening the net growth of coral reefs (1, 11, 17). Predictions for how reefs will respond to changing ocean

conditions are often only based on the response of reef building corals (17, 18), but coral reef bioerosion from

borers and grazers and secondary accretion from crustose coralline algae and other encrusting invertebrates are also

critical processes for reef sustainability (19). There are several gaps in our knowledge about the response of coral

reefs to future ocean conditions and, particularly, whether reef accretion will continue to exceed reef erosion. For

example, there remains substantial uncertainty about the following: 1) Will primary accretion, secondary accretion,

and reef erosion respond similarly to environmental drivers and will their responses combine to accelerate reef loss?
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Studies that examine accretion or erosion processes individually have found varying responses to environmental

stress. In a field experiment, coral calcification and bioerosion had different functional relationships with land-

based pollution (15). Laboratory experiments focusing on climate stressors (i.e. temperature and ocean acidity)

have found that bioerosion is linearly related to ocean acidity and temperature (5–9), but that calcification exhibits

both linear (17, 20) and parabolic (5, 17, 20, 21) responses. These complex individual responses challenge our

ability to predict the net response of coral reefs to environmental change. 2) How will multiple environmental

stressors impact individual reef processes? Many environmental parameters interact to drive patterns in accretion

and erosion, including ocean acidity (1–9), temperature (1, 5, 9, 10), nutrients(3, 11–14), and gradients of human

influence (e.g., chlorophyll, turbidity, sedimentation) (15, 16). This myriad of drivers complicates the predictions

of reef response to climate change. 3) How does local, natural variability contextualize global changes in the

accretion-erosion balance? Shallow coral reef ecosystems persist in highly variable physicochemical environments

(22–24) driven by tidal flushing, photosynthesis and respiration, ground-water inputs, and other benthic biological

processes (25–30). Little is known about how climate change interacts with this naturally variable environment

to drive patterns accretion and erosion. Here, we address each of these knowledge gaps by leveraging a natural

environmental gradient in Kāne‘ohe Bay to rank the impact of multiple environmental stressors on simultaneous

measures of secondary accretion and reef bioerosion.

The physicochemical variability of reefs in Kāne‘ohe Bay, Hawai‘i has been extensively investigated (22, 27,

31). Like many reefs around the globe (23–25, 32, 33), Kāne‘ohe Bay has persistent areas of natural acidification

that reach the low open-ocean pH values expected by the end of the 21st century (4, 22).Using a space-for-time

framework, we can leverage this natural variability to predict how reefs will respond to ocean acidification in

the context of a naturally variable environment. Prior work in Kāne‘ohe Bay demonstrates that net reef erosion

(calculated as the percent change in volume of experimental blocks) is driven by natural changes in pH and that

reefs could shift from net accretion to net erosion with increasing ocean acidity (4). To compliment previous find-

ings, we rank the importance of different environmental parameters (Figure 1) to individual measures of secondary

accretion and bioerosion along this same environmental gradient. We calculate high-precision bioerosion and sec-

ondary accretion rates, using a new µCT analysis (Figure 2), by comparing before and after µCT scans of blocks

from a year-long deployment.

In prior studies using experimental substrates, pre and post deployment buoyant weights have been used to

calculate changes in density, mass, or volume (reviewed in Table S1), but this method is unable to distinguish be-

tween secondary accretion and bioerosion processes. Imaging methodologies in 2-dimensions and, more recently,

3-dimensions (CT and µCT) can separate accretion and bioerosion on slabs or cores of reef (Table S1), but rates

are difficult to estimate because the time the substrate became available to bioeroders and secondary calcifiers is

unknown. Here, we develop a new analysis that uses µCT to separate secondary accretion and bioerosion from

the same experimental substrate exposed to the same environmental variation over the same time-scale (Figure 2).
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Our µCT method also allows for a 3D visualization of the experimental blocks that highlights specific areas of

secondary accretion and bioerosion (See Movies S1 and S2 in Supplement). Using µCT, we calculate secondary

accretion and bioerosion rates from experimental blocks that were deployed along a 32 m reef transect (Figure S1).

Patterns in carbonate chemistry, nutrients, chlorophyll a, temperature, and depth were characterized along this

same transect (Figure 1; described in Silbiger et al. 2014 (4)) and these data were incorporated into models that

address five specific hypotheses about the accretion-erosion balance (carbonate chemistry, resource availability,

temperature, light availability (depth), and hydrodynamics (distance from shore and depth)). We use a model se-

lection approach to test which of these drivers has the strongest relationship to secondary accretion and bioerosion

and we find new results that are different from those obtained using previously published methods.

RESULTS AND DISCUSSION

Environmental data: The environmental gradient is detailed in Silbiger et al. (2014) (4) and described briefly

here. There were considerable differences in the mean and variance in pH and DIN:DIP across the gradient

(Figure 1e-f). pH mean increased from 7.84 to 7.91 across the transect. At the least variable site pH ranged from

7.84 to 7.94 and at the most variable site pH ranged from 7.76 to 8.02 during the year deployment (Figures 1g,h

and S2). Mean DIN:DIP decreased from 87.5 to 42.4 and the coefficient of variation increased from 0.36 to 0.59

(Figure 1e,f). Chl a and temperature anomalies remained relatively constant (Figure 1a-d).

Bioerosion Rates:

Bioerosion rates increased by nearly two orders of magnitude across our 32 m transect, ranging from 0.02

to 0.91 kg m−2 yr−1 (Figure S3p). These bioerosion rates are similar to rates at other Pacific reefs sites. For

example, a recent study saw bioerosion rates ranging from 0 to 0.6 kg m−2 yr−1 at remote reefs across the Pacific

(3). Interestingly, the range of bioerosion rates on our transect encompassed their Pacific wide study, highlighting

the importance of small-scale within-reef variability. The pH model best predicted patterns in bioerosion along

the transect explaining 54% of the variance (Table 1a, Figure 3). Bioerosion rates were highest in areas of the

reef with the lowest pH (Table 1a and Figure 3). The second best model, the distance and depth model, had low

empirical support (∆AICc = −13.78) and explained only 9% of the variance (Table 1a) and was followed by the

temperature model which explained only 7% of the variance in bioerosion rates. While the resource availability

model described 21% of the variance in the data, it also had a larger number of parameters (6, including mean and

variance for both DIN:DIP and chlorophyll a) and, therefore, ranked fourth in model parsimony. The full model,

which included the means and variances of all parameters, described 79% of the variance in bioerosion rates

indicating that the environmental data we collected adequately described patterns in bioerosion rates across our

transect. Any additional environmental parameter would at most only explain 21% of the variance in bioerosion.

Indeed, all the parameters in these models interact with each other to drive patterns in bioerosion, but when
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ranking individual parameters pH was the dominant driver. It is becoming clear that ocean acidity facilitates

erosion (4–9), but the mechanisms that control this relationship are still not well known. Several studies suggest

that ocean acidification could enhance chemical erosion (5, 6, 8) because many bioeroders erode the coral skeleton

by secreting acidic compounds. Lower pH in the overlaying water-column might make it metabolically easier for

the bioeroders to reduce pH at the site of erosion and therefore promote erosion.

Secondary Accretion Rates:

Secondary accretion rates ranged from 0.01 to 0.4 mm yr−1 across the transect (Figure S4p). These rates are

slightly lower than secondary accretion rates from a Kāne‘ohe Bay study that saw 2 mm crusts of CCA after a 6 mo.

exposure, possibly due to differences in grazing between study sites or the size of the experimental blocks (34).

For secondary accretion, pH was not the best predictor for patterns in accretion across the transect (R2 = 0.13; Ta-

ble 1b). Rather, the distance from shore and depth model ranked highest explaining 23% of the variance in the data

(Figure 4). Differences in light and hydrodynamics along the transect could be mediating the relationship between

secondary accretion and distance from shore and depth. Notably, our accretion rates were limited to secondary

calcifiers such as CCA and encrusting invertebrates that are not light dependent (e.g., oysters and barnacles), and

excluded corals. We did not measure light or photosynthetically active radiation across our transect, but our deepest

site was only 4.5m deep, and, therefore, it is unlikely that light was limiting across the transect. Further, distance

from shore explained more of the variation in secondary accretion than depth (23% vs 13%; Figure 4) and there

is a tight correlation between distance from shore and turbulent kinetic energy dissipation rate (R2 = 0.88, Fig-

ure S5), suggesting that hydrodynamics, rather than light, may be driving the patterns in accretion. Hydrodynamic

energy (e.g., turbulence, wave action, tidal mixing) could impact secondary accretion in several ways: 1) both the

delivery of dissolved compounds and particulates are positively correlated with hydrodynamic parameters increas-

ing nutrient availability for benthic organisms (35, 36), 2) increased flow could promote accretion by facilitating

settlement of benthic invertebrate larval recruits, such as oysters and barnacles (37), and 3) different exchange, or

mixing, rates with offshore waters could impact accretion by replenishing food supplies and removing waste (38).

On our reef transect, the furthest offshore sites on the reef slope were constantly mixed with offshore deep water

masses, whereas the water inside the reef flat was sometimes isolated. Therefore, large-scale mixing is a likely

mechanism driving the patterns between accretion and distance from shore. Lastly, the full model explained 90%

of the variance in secondary accretion. Again, this indicates that the measured parameters adequately described

patterns in secondary accretion. Any additional parameter would only add at most 10% explanatory power to the

over-all model.

Advancing methods for examining secondary accretion and bioerosion

Our new µCT method shows that secondary accretion and bioerosion processes are driven by different envi-

ronmental parameters. Indeed, accretion and erosion rates on coral reefs are controlled by different organisms, so

it is not surprising that they respond to different environmental parameters. Yet, this is the first study to simul-
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taneously measure secondary accretion and bioerosion on the same time-scale and correlate them with multiple

drivers of the accretion-erosion balance. In a prior study, we used before and after µCT scans to calculate a net

change in volume (4). In the present study, we advance this method and subtract before and after scans to separate

differences in secondary accretion and bioerosion. With µCT we can calculate how much volume is added or

removed from an experimental block to the accuracy of the scan (here, 100 µm). We also compared the volume

of the pre-deployment blocks calculated with µCT to the volume calculated using buoyant weight and the data are

in close agreement: the volumes calculated from µCT are nearly identical to standard buoyant weight methods

(Figure S6; F19 = 859, p<0.001, R2 = 0.98, y = 0.96x+ 1.9) and provides a more complete analysis of secondary

accretion and bioerosion processes.

Secondary accretion versus bioerosion in a high CO2 world

Our data indicate that bioerosion is more sensitive to ocean acidity than secondary accretion. Both the R2

values (0.54 vs 0.13) and the effect size of the pH model (Figure 5) were highest for bioerosion. For a 0.1 increase

in pH, we saw a 2.35 kg m−2 yr−1 increase in bioerosion compared to a 0.77 mm yr−1 decrease in secondary

accretion indicating that bioerosion responded more strongly to pH than secondary accretion. Bioerosion also

responded to pH mean 1.7× more strongly than pH variance. In a prior study, we saw a shift from net accretion to

net erosion with increasing ocean acidity (4), but we were unable to uncover the underlying mechanisms driving

this shift. Here, our data indicate that reef erosion (and dissolution), rather than reef accretion, may be driving the

negative relationship between ocean acidification and net calcification of coral reefs, and recent studies support

this hypothesis (5, 39, 40). In a laboratory experiment, chemical dissolution from bioeroders was more strongly

correlated with ocean acidity than secondary calcification (5). In a field study, live coral and mollusc calcification

was unaffected by natural acidification at CO2 vents in the Mediterranean at normal temperatures, but dissolution

of dead skeletons increased with decreasing pH (39). Here, we demonstrate that bioerosion is more sensitive to

ocean acidity than secondary accretion along a natural environmental gradient. Our results and those from previous

studies (3–7, 9) provide compelling evidence that erosion rates will increase under future ocean conditions. The

sensitivity of erosion to ocean acidification could tip the balance of coral reefs in favor of net reef erosion in a more

acidic ocean.

Materials and Methods

(a) Experimental Design: Our study site is located in Kāne‘ohe Bay, O‘ahu on the windward (eastern) side of

Moku o Lo‘e. We used the same environmental gradient as Silbiger et al. (2014) (4), which we briefly describe

here (see supplement for full description of methods). Twenty-one experimental blocks were deployed along a 32

m transect, stratified between reef flat and reef slope (Figure S1). Experimental blocks were cut from dead pieces

of massive Porites sp. skeleton into 5cm x 5cm x 2cm blocks, soaked in freshwater, and then autoclaved to remove

67



any living organisms. The average skeletal density of each experimental block was 1.57±0.07(sd) g cm−3. Blocks

were deployed from March 31, 2011 to April 10, 2012. We collected both discrete water samples (pH, TA, nitrate,

nitrite, ammonium, phosphate, and chlorophyll a) and data from continuous sensors (temperature and depth) along

the transect. Water samples were collected directly above each block four times within 24 hours in September,

December, and April in order to capture both diel and seasonal variability in the environment. Continuous sensors

were stationed over each block for a minimum of two weeks to calculate high frequency (0.1 min−1) variation

in temperature and depth. These short time series were normalized to a continuous time series from a permanent

station positioned adjacent to the transect, allowing comparison of the micro-environments at each block (22).

(b) µCT: Secondary accretion and bioerosion rates were calculated using µCT (Figure 2). µCT is an X-ray

technology that non-destructively images the external and internal structures of solid objects, resulting in a three-

dimensional array of object densities. We used an eXplore CT120 µCT (GE Healthcare Xradia, Inc) at the Cornell

University Imaging Multiscale CT Facility (Figure 2.1-2) to scan blocks before and after deployment (voltage

= 100kV, current = 50mA). A three-dimensional array of isotropic voxels at 50 µm3 resolution was generated

using the GE Console Software and were averaged to 100 µm3 for data analysis. We used a threshold of 200

Hounsfield Units to separate coral from air (4) (Figure 2.3). The pre and post-deployment scans were aligned

using an intensity-based registration technique (Figure 2.4), converted to binary (Figure 2.5), and subtracted from

one another resulting in a matrix of 0’s, 1’s, and -1’s (Figure 2.5). All positive values were new pixels added to the

post-deployment scan which indicate secondary accretion, negative values were pixels that were lost and indicate

bioerosion, and zeros meant there was no change at that pixel between the two scans. All values were summed and

multiplied by the resolution of the scan to obtain the volume lost or gained per block (Figure 2.6).

(c) Rates: Bioerosion and secondary accretion rates were calculated using the following equations: Bioerosion

Rate (kg m−2 yr−1) = (V oli × ρi)/(SAi × Time) and Secondary Accretion Rate (mm yr−1) = V oli/(SAi ×

Time) , where i represents an individual block, V ol is the volume lost (bioerosion) or gained (secondary accretion)

in m3, SA is the surface area of the pre-deployment blocks (m2), ρ is the skeletal density of the pre-deployment

block (kg m−3), and Time is the deployment time (years). Secondary accretion rates were converted from m to

mm per year to compare with literature values.

(d) Model Selection: Our goal was to compare pH with other known drivers and correlates of the accretion-

erosion balance. Many of the environmental variables were collinear along the transect; thus, we removed collinear-

ity by using the residuals of a regression of each environmental variable against log(depth) and distance from

shore(4). Correlation coefficients for raw environmental data and the residual environmental data are available in

Silbiger et al. 2014 (4).

We used a model selection framework to compare models for five specific hypotheses about the accretion-

erosion balance and test which of these drivers had the strongest relationship to secondary accretion and bioerosion

(Table 1). In a model selection framework, Akaike Information Criterion (AIC) values are used to rank candidate
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models, accounting for both fit and complexity. Carefully constructed model selection avoids problems associated

with multiple hypothesis testing that are common in stepwise regression, such as arbitrary α levels and uninter-

pretable functional relationships (41, 42). Here, we used the corrected AIC (AICc), which is recommended for

sample sizes <30 (42). While the model with the smallest AICc value (∆AICc = 0) is the ‘best’ of the models

considered, models with an ∆AICc value of <4 have some empirical support (42). We used pH to test how carbon-

ate chemistry influenced secondary accretion and bioerosion rates. Carbonate chemistry parameters are inherently

correlated, and pH had the strongest relationship of the carbonate chemistry parameters (Table S2). The pH model

includes both the mean and variance of the discrete pH samples from each block. The resource availability model

includes the means and variances of DIN:DIP ratios (a proxy for resource quality) and chlorophyll a (a measure

of resource quantity) from the discrete water samples. The temperature model included the mean relative tem-

perature anomaly of each block from the overlaying water column and temperature covariance between the block

and overlaying water column. The final model was the combination of log(depth) and distance from shore. These

linear models were compared to a full model that includes the means and variances of every parameter stated above

(Table 1). Environmental data that did not meet the assumptions of normality were log-transformed, secondary

accretion and bioerosion data were square-root transformed to meet assumptions of normality, and one block with

a large aggregation of oysters was excluded from the analysis. Figures showing secondary accretion (Figure S4)

and bioerosion (Figure S3) versus the means and variances of all environmental parameters are available in the

supplement.
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Table 1: Model Selection: k is the number of parameters in the model, -log(L) is the negative log likelihood of
the model, AICc is the Akaike Information Criterion corrected, ∆AICc is the difference from the lowest AICc

value, R2 is the proportion of total variance explained by the model, and Rank is the rank of the model where 1 is
the best fit.

1

Model Parameters k -log(L) AICc ∆AIC R2 Rank
(a) Model selection for bioerosion vs environmental parameters
pH 4 -13.34 -18.97 0 0.54 1

Y ∼ pH + V ar(pH)
Depth & Distance 4 -6.34 -5.19 13.78 0.09 2

Y ∼ Depth+Distance
Temperature 4 -6.11 -5.19 14.26 0.07 3

Y ∼ Temp+ Covar(Temp)
Resource Availability 6 -7.44 -0.60 18.38 0.21 4

Y ∼ Chl + V ar(Chl) +DIN : DIP + V ar(DIN : DIP )
Full 12 -18.61 17.79 36.76 0.79 5

Y ∼ pH + V ar(pH) + Temp+ Covar(Temp) + Chl+

V ar(Chl) +DIN : DIP + V ar(DIN : DIP ) +Depth+
Distance

(b) Model selection for secondary accretion vs environmental parameters
Depth & Distance 4 -16.19 -24.89 0 0.23 1
pH 4 -15.00 -22.51 2.38 0.13 2
Temperature 4 -14.32 -21.15 3.74 0.07 3
Resource Availability 6 -14.13 -13.97 10.91 0.08 4
Full 12 -33.81 -12.62 12.26 0.90 5

1Each model is a linear regression of bioerosion versus the means (X) and variances (V ar(X)) or covariance (Cov(X)) of each parameter.
The Resource Availability Model includes DIN:DIP and chlorophyll a concentration and the Full Model includes means and variances or
covariance for all listed environmental parameters. Environmental data are the residuals from a regression between each parameter versus
log(depth) and distance from shore. Secondary accretion and bioerosion rates were square-root transformed to meet model assumptions. The
upper table is the model selection for bioerosion and the lower table is the model selection for accretion. The ranges for each environmental
parameter are included in Silbiger et al. 2014 (4).
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Figure Legends:

Figure 1: Environmental data. Means and variances for temperature anomalies (a-b), chlorophyll a (c-d),

DIN:DIP (e-f), and pHt (g-h) along the transect (N=21).

Figure 2: Schematic illustrating the µCT methods. 1. Experimental blocks were cut from dead Porites

lobata skeleton and sent to the Cornell University Multiscale CT facility for Imaging and Preclinical Research

for pre-deployment scans. Blocks were scanned at a resolution of 50 µm3 and then averaged to 100 µm3 for

data analysis. 2. Pre-scanned blocks were deployed along the reef transect for one year, retrieved, and scanned

a second time. 3. During data analysis a threshold of 200 Hounsfield Units (shown by the grey line) was set to

remove edge effects and separate CaCO3 fom air. Figure shows histograms for a pre-deployment block (green)

and a post-deployment block (magenta). The inset shows the histograms of the blocks after thresholding. 4. Pre

and post-deployment scans were aligned using image registration tools in MATLAB’s Image Processing Toolbox.

Images are pre and post-deployment scans overlayed on top of each other before (left) and after (right) image

registration. 5. Images were converted to binary (white is a value of 1 and black is a value of 0) and subtracted

from each other. All positive values (red) were new pixels and were counted as secondary accretion and all neg-

ative values (blue) were lost pixels and counted as bioerosion. Values of zero (green) correspond to areas where

there were no changes between pre and post-deployment scans. 6. We calculated secondary accretion by summing

all positive values and bioerosion by summing all negative values in the subtracted image. Images are 3D repre-

sentations highlighting only secondary accretion (left) and bioerosion (right). See supplement for 3D movies of

secondary accretion (Movie S1) and bioerosion (Movie S2). Image credits: N. Silbiger and M. Riccio.

Figure 3: pH versus bioerosion. Best fit model and 95 % confidence intervals for bioerosion (kg CaCO3 m−2

yr−1) of experimental blocks (N=20) versus mean pH residuals (y = −22.45x+ 0.55, R2 = 0.54). pH mean was

regressed against log(depth) and distance from shore, and the residuals were used in the analysis and this figure.

Bioerosion rate for each block was square-root transformed to meet model assumptions. Color represents depth

(m) along the transect with blue representing blocks closest to shore and red representing blocks the farthest.

Figure 4: Depth and distance from shore versus secondary accretion. Best fit model and 95 % confidence

intervals for secondary accretion (mm CaCO3 yr−1) of experimental blocks (N=20) versus a) distance from shore

(m) (y = 0.0055x+ 0.29, R2 = 0.23) and b) log(depth) (m) (y = 0.048x+ 0.41, R2 = 0.14). Accretion rate for

each block was square-root transformed to meet model assumptions.

Figure 5: Mean pH effect size for secondary accretion and bioerosion. The effect size was calculated as

the absolute value of the slope for mean pH in each model.
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Table S2: Bioerosion Model Selection with all carbonate parameters: k is the number of parameters in the model,
-log(L) is the negative log likelihood of the model,AICc is the Akaike Information Criterion corrected, ∆AICc is
the difference from the lowestAICc value,R2 is the proportion of total variance explained by the model, and Rank
is the rank of the model with 1 representing the best fit. Each model is a linear regression of total bioerosion versus
the means (X) and variances (V ar(X)) or covariance (Cov(X)) of each parameter. The Resource Availability
Model includes DIN:DIP and chlorophyll a concentration and the Full Model includes means and variances or co-
variances for all listed environmental parameters. Environmental data are the residuals from a regression between
each parameter versus log(depth) and distance from shore. Bioerosion rates were square-root transformed to meet
model assumptions.The ranges for each environmental parameter are included in Silbiger et al. 2014.

k -log(L) AICc ∆AIC R2 Rank
pH 4.00 -13.24 -18.97 0.00 0.54 1
pCO2 4.00 -12.02 -16.54 2.43 0.49 2
TA 4.00 -9.52 -11.55 7.43 0.34 3
DIC 4.00 -8.65 -9.79 9.18 0.28 4
Depth & Distance 4.00 -6.35 -5.19 13.78 0.09 5
Temperature 4.00 -6.11 -4.71 14.26 0.07 6
Resource Availability 6.00 7.44 -0.60 18.38 0.21 7
Full 18.00 -37.25 265.50 284.47 0.99 8
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Detailed Methods:

Study site: Our study site is located in Kāne‘ohe Bay, O‘ahu on the windward (eastern) side of Moku o

Lo‘e (Coconut Island), adjacent to the Hawai‘i Institute of Marine Biology; N21°25.975’, W157°47.175’). This

fringing reef is dominated by Porites compressa and Montipora capitata, with occasional colonies of Pocillopora

damicornis, Fungia scutaria, and Porites lobata. Kāne‘ohe Bay is a protected, semi-enclosed embayment; the

residence time can be >1 month in the protected southern portion of Kāne‘ohe Bay, where our study was located

(84). Wave action is low (31, 84, 85), and currents are slow (5cm s−1 maximum) and tidally driven (mean and

maximum tidal ranges are 0.7 and 1.1m, respectively) (31, 84). Daily averages in pH, temperature, and O2 in

the Kāne‘ohe Bay waters just offshore our site ranged from 7.83 - 8.03, 21.84-27.86 ◦C, and 5.82-7.81 mg L−1,

respectively, during our study period (22).

Environmental Parameters:

The discrete water samples were collected directly above each block within two days of spring tide at 08:00,

14:00, 20:00, and 02:00 on September 10-11, 2011, December 12-13, 2011, and April 4-5, 2012. All discrete

water samples were collected on snorkel or SCUBA using 60 and 120ml plastic syringes. Syringes and storage

vials were all pre-cleaned in a 10% HCl bath for 24 hours and rinsed three times with MilliQ water; during sample

collection and processing syringes were rinsed three times with sample water. The environment was sampled

more continuously for temperature and depth (sampling rate of ~ 0.1 min−1) using one permanent and two mobile

monitoring stations. Two mobile stations were deployed at a time, one on the reef flat and one on the reef slope,

to get simultaneous measurements at two different blocks on the transect. Mobile stations (Sonde 600XLM,

YSI Incorporated) were positioned 5 - 10cm above each block for a two-week period between May 2011 and

March 2012. Blocks were sampled in random order, ensuring that the spatial gradient along the transect was not

systematically confounded by temporal trends or seasonality (22). The permanent monitoring station (Sonde 6600-

V2-4, YSI) was mounted to a pole a few meters away from the transect, downward facing at 1.7m depth over a 3m

deep bottom, with sensors for temperature, depth, conductivity, pH, and O2 to characterize the background water

column conditions for the duration of the experiment. All multi-parametric probes were calibrated periodically

using standard procedures and calibration solutions. The permanent station was recovered, cleaned, calibrated,

and re-deployed 3 times during the study, and the mobile station probes were calibrated 7 times. Pre-calibration

measurements of commercial standard solutions were conducted to detect sensor drift, although none was found for

the period of study. Environmental data from the transect are reported in Silbiger et al. (2014)(4) and background

water column data are reported in Guadayol et al. (2014) (22).

Nutrients and Chlorophyll: Water samples collected for nutrients were immediately filtered through com-

busted 25 mm diameter glass fiber filters (GF/F 0.2 µm) and transferred into 50 ml plastic centrifuge tubes. Nutrient

samples were frozen and later analyzed for NO−
3 , NO−

2 , NH+
4 , and PO3−

4 on a Seal Analytical AA3 HR Nu-

trient Analyzer at the UH SOEST Laboratory for Analytical Chemistry. GF/F filters were folded in half, wrapped
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in aluminum foil, and frozen for chlorophyll a analysis using a Turner Designs 10AU Benchtop Fluorometer. The

ratio of dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN:DIP) was used as a proxy for resource

quality available to filter feeders (86), assuming that elemental composition of planktonic prey will be influenced

by elemental composition of the water column, and was calculated from ([NO−
3 ] + [NO−

2 ] + [NH+
4 ]):[PO3−

4 ]) .

pH and TA: Mean and variance in pH at each block was calculated from water samples along the transect.

Water samples for pH were immediately transferred into 25 ml borosilicate glass vials, brought to a constant

temperature of 25◦C in a water bath, and immediately analyzed using an m-cresol dye addition spectrophotometric

technique and calibrated against a Tris buffer of known pH from the Dickson Laboratory at Scripps Institution of

Oceanography. TA was fixed with 100 µL of HgCl2 and analyzed using open cell potentiometric titrations on a

Mettler T50 autotitrator and calibrated against a Certified Reference Material following Dickson et al. (2007) (87)

protocols. In situ pH and all other carbonate parameters were estimated using CO2SYS (88) with the following

parameters: pHt, TA, temperature, and salinity. The K1K2 dissociation constants were from Mehrbach (1973) (89)

(refit by Dickson and Millero (1987) (90)) and HSO−
4 dissociation constants were taken from Uppstrom (1974)

(91) and Dickson (1990) (92). Accuracy for TA and pH was better than 0.8% and 0.04%, respectively, and the

precision was 3.55 µEq and 0.004 pH units.

Temperature: Temperature sensors (YSI 6560) were thermistors with manufacturer-reported accuracy of

±0.15°C and resolution of 0.01°C (YSI Incorporated 2011). Average differences in temperature along the transect

were small and measured as a relative anomaly from the permanent station: ((x̄mobile− x̄permanent)/x̄permanent).

To measure relative variability in temperature across the transect, we calculated the covariance in temperature be-

tween the mobile and permanent sensor arrays over a two-week period and compared this covariance across the

transect.

Depth and Distance from Shore: Depth is the average depth measured at each block over the two week

deployment of the mobile station. Distance from shore is the along-transect distance.

Turbulent Kinetic Energy Dissipation Rate (ε): Acoustic doppler velocimeters (Vectrino Field, Nortek A.S.)

were deployed 5-10 cm above the blocks along with the multiparametric sondes measuring temperature and depth

at 11 of the 21 stations. Unfortunately one of the velocimeters broke during deployment, and flow data could not

be acquired for the rest of the stations and therefore was not included in the model selection. However, given the

tight correlation between ε and distance from shore (R2 = 0.88), distance from shore was used as a proxy for the

hydrodynamic gradient.

Spikes were removed following a 3D phase-space thresholding technique (93, 94) in the beam coordinates.

Values with correlations <60 were also removed (95). Gaps were linearly interpolated when shorter than 10

measurements. Empirical orthogonal functions (EOF) were used to align coordinates to streamwise/cross-stream

axes for the entire sampling period

Turbulent kinetic energy dissipation rates (ε; m2s−3) for each segment were estimated from the spectra using
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the inertial subrange dissipation method (96). Briefly, data was partitioned in 10 minutes intervals, the same

sampling period as the multiparameter sonde measuring temperature and depth. For each segment, data was further

partitioned into 180 second segments of uninterrupted data, from which the fast fourier transforms were obtained.

A smoothed spectra was generated by averaging all the raw spectra. The inertial subrange was identified in the log

transformed spectra as the segment that best fit a -5/3 model, with a minimum coefficient of determination (R2) of

0.75, and encompassing at least one order of magnitude of frequencies. Fits were evaluated using F statistics and

R2. To account for the effect of advection by current and waves on the turbulent spectra, we used a generalized

frozen turbulence model (97). All calculations were done using MATLAB.

µCT:We used an eXplore CT120 µCT (GE Healthcare Xradia, Inc) at the Cornell University Imaging Multi-

scale CT Facility (Figure 2.1,1.2) to scan blocks before and after deployment (voltage = 100kV, current = 50mA).

Angular projections were acquired in a full 360◦ rotation in 0.5◦ increments; two images at each angle were ac-

quired and averaged creating a three-dimensional array of isotropic voxels at 50 µm3 which was then averaged

to 100 µm3. Pre- and post-deployment scans were aligned, or registered, using an intensity-based image regis-

tration algorithm from the MATLAB ®Image Processing Toolbox. Mattes Mutual Information metric maximizes

the number of corresponding pixels with similar intensity values (98) which was used to describe the accuracy of

the registration. We used the One Plus One Evolutionary Optimizer, an iterative algorithm that maximizes the best

registration results by perturbing the parameters between iterations (99), as our optimization technique. A global

threshold value was set at an intensity value of 200 to separate CaCO3 from air and remove any effects of partial

volume averaging at the coral block-air interface (4). Intensity values are directly correlated with skeletal density

at each pixel. The number of voxels exceeding this threshold was used in calculating secondary accretion and

bioerosion. After the images were registered, both pre- and post-deployment scans were converted to binary, such

that any positive intensity value (a pixel with CaCO3) was assigned a one and all other values (air) were assigned a

zero. The two images were then subtracted from one another giving a matrix of 1’s, 0’s, and -1’s. I n the subtracted

matrix, all pixels with a value of one represented areas of new CaCO3 (accretion) and all values of negative one

were areas where CaCO3 was removed (bioerosion). A value of zero meant there was no change at that pixel be-

tween the before and after scans. Converting images to binary is the most conservative way to calculate secondary

accretion and bioerosion; it does not account for any change in skeletal density, but rather an absolute loss of

CaCO3. Subtracting the two raw images, without converting to binary, would potentially over-estimate secondary

accretion and bioerosion due to partial volume averaging of surrounding pixels or a change in skeletal density due

to chemical dissolution. To calculate secondary accretion and bioerosion rates, all positive and negative values

were summed in the subtracted matrix and multiplied by the voxel size (100 µm)3 to give the total volume of

CaCO3 gained or lost, respectively. These values were then normalized to the surface area of the pre-deployment

block and multiplied by the skeletal density and are expressed as kg CaCO3 m−2 yr−1 for bioerosion and mm

CaCO3 yr−1 for secondary accretion. Bulk skeletal density of pre-deployment blocks was calculated using the
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buoyant weight technique. Surface area was calculated following methods by Legland et al. 2011(100). Note

that this volumetric analysis measures changes at the voxel scale of 100 µm3, and, therefore, may underestimate

bioerosion by microborers, which make erosion scars between 1 and 100 µm (76).
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Figure S1: Schematic of reef transect. Experimental blocks (grey rectangles) were stratified between reef flat and
reef slope along a 32 m transect and were deployed for one year. The depth ranged from 0.5 to 4.5 m. Discrete
environmental samples were collected directly above each experimental block. Continuous sensors were stationed
over each block for a minimum of two weeks (mobile sensors) and were normalized to a continuous time series
from a permanent sensor station (Permanent sensors).
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Each dot is one sample and there are 12 samples per each of the 21 blocks. The colors represent collection times
where blue, green, black, and magenta represent 0800h, 1400h, 2000h, and 0200h.
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Figure S3: Bioerosion versus the means and variances of all environmental parameters. Environmental parameters
were regressed against log(depth) and distance from shore and the residuals from those regressions are used in this
figure.
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Figure S4: Secondary accretion versus the means and variances of all environmental parameters. Environmental
parameters were regressed against log(depth) and distance from shore and the residuals from those regressions are
used in this figure.
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Figure S5: Turbulent kinetic energy dissipation rate (ε) (m2s−3) versus (a) distance from shore (b) and depth
(n=11). Turbulence was measured at 11 of the 21 sites and there was a significant relationship between ε and
distance from shore (F11,9 = 63.1, p<0.0001, R2=0.88) and depth (F11,9 = 35.0, p=0.0002, R2=0.80).
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Figure S6: Comparison of calculated volumes (cm3) using the buoyant weight and µCT methods described in
this paper. Black circles are volumes calculated from the pre-deployment experimental blocks. We used a linear
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Movie Legends

MovieS1: 3D visualization of µCT scan highlighting secondary accretion onto a block.

MovieS2: 3D visualization of µCT scan highlighting bioerosion from a block.
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A MULTI-SCALE ANALYSIS OF CORAL REEF ACCRETION-EROSION RATES AND 

BIOERODER COMMUNITIES  
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ABSTRACT 

 Management efforts to sustain coral reefs often focus on coral health and growth, but reef 

resilience also depends on bioerosion rates and their response to local and global human impacts. 

A persistent challenge is to distinguish the effects of climate change from other forms of 

environmental variation, and to understand how environmental variation impacts accretion-

erosion processes across different spatial scales. In this study, we used a natural environmental 

gradient to test how accretion rates by secondary calcifiers, erosion rates by borers and grazers, 

and net change rates respond to natural environmental variability across a range of spatial scales 

in the Hawaiian Archipelago. Highly accurate erosion, secondary calcification, and percent 

change in volume rates were calculated from micrometer-scale 3D images of CaCO3 blocks from 

year-long deployments at 29 reefs across Hawai‘i. We correlated these rates with a suite of co-

measured chemical, biological, and physical datasets compiled from multiple data sources and 

determined the strongest drivers of accretion and erosion at each spatial scale. There are three 

major outcomes from this study: 1) accretion and erosion rates were driven by different 

environmental parameters, 2) the bulk of the variability in accretion and erosion rates were at the 

smallest within-reef spatial scale, and 3) the strongest correlates of accretion and erosion differed 

across spatial scales. This dataset highlights the significance of spatial scale in understanding 

reef dynamics and, further, the need to recognize both reef accretion and erosion processes in 

order to predict net coral reef response to future environmental change.    

1. INTRODUCTION 

Worldwide, declines in coral cover and shifts in coral reef community composition (Hughes 

1994; Bellwood et al. 2004) have raised concerns about reef persistence and whether reef 

accretion will continue to exceed reef erosion. The anthropogenic impacts influencing reef 
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decline act at a range of spatial scales, from global impacts on ocean temperature and acidity to 

local impacts of overfishing, eutrophication, and sedimentation. These anthropogenic impacts 

interact with physical, chemical, and biological processes that influence accretion and erosion at 

a range of spatial and temporal scales. The management of coral reefs requires an understanding 

of environmental drivers of reef accretion and erosion and how these drivers interact at different 

scales.    

Corals and other calcifying organisms build reefs through the accretion of calcium 

carbonate (CaCO3) skeletons while a diverse community of bioeroders erode reefs through 

grazing on and boring into CaCO3 reef substrate (Neumann 1966). The accretion-erosion balance 

is influenced by a variety of environmental processes and these processes may vary at different 

spatial scales. Chemical drivers, such as ocean acidity, can increase erosion (Tribollet et al. 2009; 

Wisshak et al. 2012; Fang et al. 2013; Reyes-Nivia et al. 2013; Wisshak et al. 2013; Silbiger et 

al. 2014; DeCarlo et al. 2015; Enochs et al. 2015; Silbiger and Donahue 2015) by making it 

easier for chemical eroders to dissolve the CaCO3 skeleton and can decrease accretion (Hoegh-

Guldberg et al. 2007; Jokiel et al. 2008; Diaz‐Pulido et al. 2012; Johnson and Carpenter 2012; 

Comeau et al. 2013) through metabolic stress. Several studies show increased erosion in 

eutrophic relative to oligotrophic conditions (reviewed in Le Grand and Fabricius 2011) 

suggesting that erosion rates are particularly sensitive to nutrients, perhaps because many 

macroborers are filter feeders. However, studies that examined the impact of nutrients and ocean 

acidity on erosion simultaneously found different responses at different spatial scales. A local-

scale within reef study (~30 m) found that ocean acidity was the best predictor of reef erosion 

when compared to resource availability (nutrients and chlorophyll), temperature, depth, and 

distance from shore (Silbiger et al. in review and Silbiger et al. (2014)). A much broader Pacific 

106



basin (~16,000 km) study found that the relationship between erosion rates and ocean acidity 

was enhanced at higher nutrient concentrations (DeCarlo et al. 2015).  Physical parameters, like 

hydrodynamics, can enhance accretion through transport and removal of nutrients and metabolic 

wastes (Hearn et al. 2001) or decrease accretion through dislodgement and abrasion (Madin and 

Connolly 2006). In a Lizard Island study (~5 km), accretion of crustose coralline algae and 

corals was highest at sites with the highest wave energy (Hamylton et al. 2013). Conversely, in 

much broader Pacific-wide study (~8000 km), coral cover declined with increasing wave energy 

(Williams et al. 2015). Lastly, biological parameters, like grazing pressure by herbivorous fish, 

can directly influence erosion by removing CaCO3 substrate while grazing for algae (Hutchings 

1986) and can indirectly influence accretion by removing fleshy algae and relieving competitive 

interactions with CCA (Harley et al. 2012). These studies all highlight the complex interactions 

between the accretion-erosion balance and chemical, physical, and biological parameters at 

different spatial scales. To predict the impact of environmental change on coral reefs, we need to 

have a better understanding of the different drivers of the accretion-erosion balance and the 

relative influence of each of these drivers at different spatial scales.  

Erosion rates are also influenced by bioeroder community composition (Kiene and 

Hutchings 1994). Bioeroding organisms may be classified into three functional groups: grazers 

(e.g., urchins and parrotfish), microborers (e.g., endoliths), and macroborers (e.g., sponges, 

polychaetes, and bivalves). Grazers erode reefs externally by scraping CaCO3 while foraging on 

the overlying algal or coral tissue. Micro- and macroborers erode reefs internally by boring into 

the reef framework. Among these three functional groups, macroborers are most diverse, 

consisting of hundreds of polychaete, sipunculan, sponge, and bivalve species with a range of 

life history strategies and morphological and chemical mechanisms for boring (Hutchings 1986). 
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The macroborer community composition is shaped by physical, chemical and biological 

processes (Hutchings 1986; Hutchings et al. 1992; Hutchings and Peyrot-Clausade 2002). For 

example, boring sponges and bivalves respond positively to eutrophication, while the response of 

polychaetes is more variable (Le Grand and Fabricius 2011). Filter feeding sponges and bivalves 

are positively correlated with eutrophic sites in the Bahamas (Rose and Risk 1985), Barbados 

(Holmes et al. 2000), the Red Sea (Kleemann 2001), the Great Barrier Reef (Osorno et al. 2005; 

Tribollet and Golubic 2005) and the eastern Pacific (Fonseca et al. 2006); bivalve abundances 

are also correlated with high water velocity (Cantera et al. 2003; Londono-Cruz et al. 2003). In 

contrast, deposit feeding polychaetes in the Great Barrier Reef are more abundant at eutrophic 

sites (Osorno et al. 2005), while suspension feeding polychaetes are more abundant in 

oligotrophic sites (Le Bris et al. 1998). The interaction between the macroborer community and 

the environment ultimately drives patterns in bioerosion rates on coral reefs.  

In this study, we describe spatial patterns in accretion-erosion rates from of experimental 

blocks, as well as spatial patterns in macroborer communities from benthic samples, and relate 

these patterns to chemical, physical, and biological data from long-term monitoring and remote 

sensing at multiple spatial scales. We use a newly developed µCT methodology (Silbiger et al 

2014, Silbiger et al in review) to measure in situ accretion, erosion, and percent change in 

volume rates from experimental blocks across the Hawaiian Archipelago. Using µCT to calculate 

accretion, erosion, and percent change in volume is superior to previously described methods 

(Silbiger et al. in review) because it is a high resolution analysis that can separately identify 

accretion and erosion processes from the same experimental substrate (Silbiger et al. in review) 

and also calculate a highly accurate percent change in volume (Silbiger et al. 2014) to determine 

if blocks are net accreting (positive change) or net eroding (negative change) over a known 
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deployment time. Further, it allows for the 3D visualization of accretion and erosion (Silbiger et 

al. 2014, Silbiger et al in review). Here, we use µCT to calculate accretion rates from secondary 

calcifiers and erosion rates from borers and grazers from an early successional community after a 

one-year deployment period. This study is the first broad-scale application of this method.  

 

2. MATERIALS AND METHODS 

2.1 Study Sites: This study was conducted at 29 forereef sites (8-16 m depth) across six 

islands/atolls in the Hawaiian Archipelago (Fig. 1).  Kure Atoll (KUR), Pearl and Hermes Atoll 

(PHR), Lisianski Atoll (LIS), and French Frigate Shoals (FFS), are atolls in the Northwestern 

Hawaiian Islands (NWHI) and protected by the Papahānaumokuākea Marine National 

Monument (PMNM), one of the largest and most remote marine protected areas in the world. 

O‘ahu and Maui are populated, volcanic islands in the Main Hawaiian Islands (MHI). Twenty-

seven of these sites were co-located with long-term monitoring sites maintained by the NOAA 

Coral Reef Ecosystem Division (CRED) to take advantage of pre-existing environmental data 

and research cruise logistics. The remaining two sites, O‘ahu-KBay and Maui-A27, were 

selected with similar depth and exposure characteristics.  

2.2 Accretion, Erosion, and Percent Change in Volume Rates: Five blocks (5 x 5 x 2.5 cm) cut 

from dead Porites lobata were deployed at each site for approximately one year (Fig. S1 and 

Table S1). Blocks were deployed at FFS, LIS, and PHR sites in July/August 2011 on NOAA 

cruise HA1103 and retrieved in August 2012 on NOAA cruise HA1204; at KUR sites in August 

2012 on NOAA cruise HA1204 and retrieved in July 2013 on NOAA cruise SE1305; and at 

O‘ahu and Maui sites in September/October 2012 on NOAA cruise SE1207 and retrieved 

September/October 2013 with small boat operations (Table S1). We recovered 143 of the 145 
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deployed experimental blocks and 122 had adequate quality before/after µCT scans for data 

analysis.  

 Accretion rate, erosion rate, and percent changes in volume were calculated for each 

block by comparing before and after µCT scans (Silbiger et al. 2014; Silbiger et al in review). 

µCT is an X-ray technology that non-destructively images the external and internal structures of 

solid objects, resulting in a three-dimensional array of object densities. We used an eXplore 

CT120 µCT (GE Healthcare Xradia, Inc) at the Cornell University Imaging Multiscale CT 

Facility to scan blocks before and after deployment (voltage = 100kV, current = 50mA). A three-

dimensional array of isotropic voxels at 50 µm3 resolution was generated using the GE Console 

Software and were averaged to 100 µm3 for data analysis. We used a threshold of 200 

Hounsfield Units to separate coral from air (Silbiger et al. 2014).The  number of voxels 

exceeding this threshold was multiplied by the voxel size (100 μm)3 to give the total volume of 

CaCO3 for pre and post-deployment blocks. The pre and post-deployment scans were then 

aligned using an intensity-based registration technique from the MATLAB R2014b Image 

Processing Toolbox, converted to binary, and subtracted from one another resulting in a matrix 

of 0’s, 1’s, and -1’s. All positive values were new pixels added to the post-deployment scan 

which indicate accretion, negative values were pixels that were lost and indicate erosion, and 

zeros meant there was no change at that pixel between the two scans. All values were summed 

and multiplied by the resolution of the scan to obtain the volume lost (erosion) or gained per 

block (accretion). 

Prior studies highlight the need to analyze both accretion and erosion independently 

(Silbiger and Donahue 2015, Silbiger et al in review), but net change rates are also necessary for 

understanding the net growth of coral reefs (i.e. are reefs net accreting or net eroding; Silbiger et 
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al. 2014). Here, we calculated accretion rates, erosion rates, and the percent change in volume of 

experimental blocks over the one year deployment time. Accretion rates are typically presented 

in mm yr-1(e.g, Payri 1995; Tribollet et al. 2006) and erosion rates are presented as kg m-2 yr-1 

(e.g., Tribollet and Golubic 2005; Wisshak et al. 2012) in the literature. Because accretion and 

erosion rates were in different units to stay consistent with literature values, they could not 

simply be added together to determine the net rate of the block; thus, we used percent change in 

volume of the block to determine whether blocks were net accreting (positive change) or net 

eroding (negative change). Erosion and accretion rates were calculated using the following 

equations:  

Erosion Rate (kg m-2 yr-1) = (∆𝑉𝑜𝑙𝑖  ×  𝜌𝑖)/(𝑆𝐴𝑖  × 𝑇𝑖𝑚𝑒)     (1) 

 Accretion Rate (mm yr-1) = 1000 × (∆𝑉𝑜𝑙𝑖)/(𝑆𝐴𝑖  × 𝑇𝑖𝑚𝑒) ,    (2) 

 where i represents an individual block, ∆Vol is the volume lost (erosion) or gained (accretion) in 

m3, SA is the surface area of the pre-deployment blocks (m2), ρ is the skeletal density of the pre-

deployment block (kg m-3), and Time is the deployment time (years). Accretion rates were 

multiplied by 1000 to convert from m to mm yr-1. Surface area was calculated from the µCT 

scans following methods by Legland et al. (2011). Skeletal density of the blocks was calculated 

by converting intensity values from the µCT scans to bulk skeletal density following methods in 

DeCarlo et al. (2015). Percent change in volume per year was calculated as:   

Percent change in volume (% y-1) = 100 × (𝑉𝑜𝑙𝑡2 −  𝑉𝑜𝑙𝑡1)/(𝑉𝑜𝑙𝑡1 × 𝑇𝑖𝑚𝑒) .  (3) 

Where 𝑉𝑜𝑙𝑡2 and 𝑉𝑜𝑙𝑡1 were the volumes of the blocks at time 2 (post-deployment) and time 1 

(pre-deployment), respectively.   
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2.3 Community Data:  At each site, we characterized the infaunal community, including 

polychaetes, sipunculans, echinoids, and bivalves but excluding sponges, by extracting 

organisms from samples of dead coral substrate (Table S2). We excluded bioeroding sponges 

from this analysis because they are difficult to extract and quantify. Using a hammer and chisel, 

we collected 983 ± 96 cm3 (mean ± SE) of dead massive Porites spp. reef substrate at each site. 

The average skeletal density of the rubble was 1.82 ± 0.03 (mean ± SE) and there was no 

relationship between rubble skeletal density and bioeroder abundances. Samples were collected 

and immediately placed into a plastic bag and sealed underwater. Samples were collected at all 

NWHI sites between July and August, 2012 on NOAA cruise HA1204 and all the MHI sites 

between September and October, 2013 using small boat operations (Table S1). Rubble from each 

site was transferred into individual buckets filled with approximately 10 L of seawater. To each 

bucket, we added 5 ml of a 95% ethanol and 5% clove oil solution and left the rubble to soak in 

the solution for 2-3 hours. This solution coerces mobile organisms out of the interstitial spaces of 

the rubble without compromising the integrity of the organisms, easing later identification. At 

the end of the soak period, we sieved the seawater from each bucket through a 100 µm mesh 

sieve, extracted the organisms and preserved them in 95% ethanol. All rubble pieces were broken 

apart and carefully inspected for any other organisms that were not extracted using the solution. 

We calculated the volume of all reef substrate pieces via volume displacement to normalize the 

organism abundances to the total volume of rubble from each site. Polychaeta, Sipuncula, 

Echinometra, and Bivalvia were counted and identified to the lowest possible taxonomic unit by 

taxonomic experts (co-authors Scott Godwin and Holly Bolick) as potential macroborers, but 

were pooled by family for data analysis. These groups include both macroborers and non-eroders 

(Table S2). All species from these groups were used in the community analyses. Some species 
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within these groups were identified as known macroborers (pers. com. S. Godwin; Table S2) and 

were pooled to test for relationships between macroborer abundances and erosion rates.   

   

2.4 Environmental Data: We compiled data describing the chemical, physical, and biological 

characteristics of each site (Table 1) from NOAA CRED, Hawai‘i Department of Aquatic 

Resources (DAR), NOAA satellite data, NOAA global wave models, and in situ sampling. 

Detailed methods and collections protocols are described in the supplemental material. 

 

2.5 Statistical Analysis:  

2.5.1 Environmental data: There were three specific groups of predictor variables: chemical 

drivers, biological drivers, and physical drivers (Table 1). We used separate principle 

components analyses (PCA) for each group of predictor variables as well as a summary PCA 

with all 23 variables to summarize the spatial patterns in the environment (Figs. 2 and 3).   

2.5.2 Accretion, erosion, and percent change in volume rates: To evaluate the contribution of 

variance at each spatial scale (regions, islands, sites, within sites). We used a variance 

components analysis, where site in island in region are all considered random effects. To 

compare means at each level, we used a nested analysis of variance (ANOVA) with a Tukey 

Honestly Significant Difference (HSD) post-hoc, where sites, islands, and regions were all fixed 

effects. Because secondary calcification can inhibit erosion (White 1980; Tribollet and Payri 

2001), we also tested for a relationship between accretion and erosion rates with a non-linear 

regression. Accretion and erosion rates were both log-transformed to meet assumptions of 

normality.     
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To determine environmental drivers of accretion-erosion rates, we used a model selection 

approach by ranking Akaike Information Criterion (AIC) values from simple linear models that 

correlate environmental predictors with accretion, erosion, and percent change in volume rates. 

Models with the smallest AIC value (ΔAIC = 0) are the ‘best’ of the models considered, but 

models with an ΔAIC value of <4 have some empirical support and models with a ΔAIC value 

greater than 10 to 12 are less plausible (Anderson 2007). To test if the relationship between the 

environmental predictors and accretion-erosion is conserved across spatial-scale, we also 

constructed individual models for each region (MHI and NWHI). All environmental data were 

transformed to fit a normal distribution (Table 1).  

2.5.3. Community analysis: To test whether infaunal community composition varied by region or 

island, we used a nested multivariate generalized linear model with a negative binomial 

distribution (mvabund package in R; Wang et al. (2012)). We did not collect within site 

community replicates and, therefore, compared community composition only at the region and 

island levels. We used volume of the rubble as a covariate to account for minor differences in 

collection volume across sites. We chose a multivariate generalized linear model approach, 

rather than a distance-based approach (e.g., ANOSIM, SIMPER) because there was a strong 

mean-variance relationship in the abundance data (Fig. S2; F28,1=399, p<0.0001, R2=0.94) and 

mean-variance relationships confound region and dispersion effects in distance-based approaches 

(Warton et al. 2012). To visualize the data, we used a non-metric multi-dimensional scaling 

analysis (nMDS) with a Bray-Curtis dissimilarity index (Vegan package in R; Oksanen et al. 

(2007)).  

We used a model selection approach by ranking AIC values to determine the best 

environmental predictors of macroborer community composition. Because this is a multivariate 
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analysis, we reduced the dimensionality of the data by using the first and second PC axes from 

each of the four PCAs as our independent variables in the models instead of individual 

parameters. Multivariate generalized linear models with a negative binomial distribution were 

used to test the relationship between environmental models (PC axes) and macroborer 

community composition (mvabund package in R; Wang et al. (2012)); rubble volume was also 

included as a covariate in these analyses. We did not have enough statistical power to construct 

individual models for the community data across region and, therefore, did not test to see if 

patterns were conserved across spatial scales. Because the bioeroder community ultimately 

drives patterns in erosion rates, we also examined the relationship between the macroborer 

community and erosion rates with a simple linear regression (Table S2). 

  

3. RESULTS 

3.1 Environmental drivers:  For the chemistry data, changes in carbonate chemistry (loadings = 

0.33 - 0.51) explained the majority of the variance in PC1, while phosphate and silicate 

(loadings= 0.57 - 0.64; Fig. 2a and 3a) explained the majority of the variance in PC2 (loadings= 

0.57 - 0.64; Fig. 2a and 3a). The first principal component in the biological data accounted for 

herbivore biomass (loadings = 0.49) and turf algae (loadings = 0.53), where sites in the negative 

direction had the highest herbivorous fish biomass and the lowest % cover of turf algae (Figs. 2b 

and 3b). The second principal component was driven by a coral (loadings = 0.56) – macroalgae 

gradient (loadings = 0.72): sites in the negative direction had the highest coral cover while sites 

in the positive direction had the highest macroalgal cover (Figs. 2b and 3b). For the physical 

data, max wave energy described the majority of the variance in PC1 (loadings =0.42) and std 

SST described the majority of the variance in PC2 (loadings = 0.40; Figs. 2c and 3c). Lastly, in 
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the model with all 23 parameters, min SST (loadings = 0.35) and std SST (loadings = 0.34) 

explained the majority of the variance in PC1, while N+N (loadings = 0.30) and TA (loadings = 

0.36) explained the majority of the variance in the PC2 (Figs. 2d and 3d).  

 

3.2 Accretion, erosion, and percent change in volume rates:   

3.2.1 Spatial patterns in accretion, erosion and percent change in volume: We compared rates of 

accretion, erosion, and the percent change in block volume at between regions, between islands 

within regions, and between sites within islands. We found variation in erosion rates at the 

region and site scale (Table 2 and Figs. 4c and 5b), variation in accretion at the island and site 

scale (Table 2 and Figs. 4b and 5a), and variation in percent change in volume at the island and 

site scale (Table 2 and Figs. 4f and 5c). All three measures had substantial within-site variability 

(Table 2 and Figs. 5 and 6). In fact, the highest portion of variance in the data was attributed to 

the smallest (within sites) spatial scale, explaining between 47 and 72% of the variance in 

accretion, erosion, and percent change in volume rates (Fig. 6). The two largest spatial-scales, 

region and island, explained substantially less of the variation (<0.01 – 18%) for all rates (Fig. 

6).  

Overall, accretion, erosion, and percent change in volume rates ranged from 0.16 – 

6.5mm y-1, 0.012 – 0.46 kg m-2 y-1, and -13 – 16% y-1, respectively, and 73% of all the 

experimental blocks were net accreting after the one year deployment. There was also a 

significant exponential relationship between accretion and erosion rates (F120,2 = 99, p<0.001, R2 

= 0.19; Fig. S3). Erosion rates were 39% higher at the MHI sites than the NWHI sites (Table 2, 

Figure 3c), while accretion rates were similar between regions (Table 2, Fig 4a); percent change 

in volume was not significantly higher in the NWHI than the MHI (Fig. 4e and Table 3). 
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Accretion rates varied at the island scale, driven primarily by exceptionally high accretion at LIS 

(nearly double the accretion rate of other NWHI sites, Table 3, Fig. 4d); percent change in 

volume also varied by site, with a similar pattern for LIS (Fig. 4f). In contrast, there were only 

marginal differences in erosion at the island scale (Table 3, Fig. 4d). Lisianski had the highest 

average percent change in volume, the highest accretion rate, and second lowest erosion rate. 

O‘ahu had the most blocks that were net eroding (46%), had the lowest average percent change 

in volume, coupled with the second lowest accretion rate and highest erosion rate (Fig. 4b,d,f and 

Table 3). Site level variation was significant for erosion, accretion, and percent change in volume 

(Fig. 5 and S4, and Table 2). For all sites, MauiA27 (Kahekili, Maui) had the highest average 

erosion rate (0.35 kg m-2 y-1 ± 0.03) and the lowest percent change in volume (-8.2% ±1.97), 

while LIS18 had the highest accretion rate (3.68 ± 0.57 mm y-1) (Fig. 5 and S4).   

3.2.2 Environmental drivers of accretion, erosion and percent change in volume: We compared 

models with parameters that represented the chemical, biological, and physical environment as 

drivers of accretion, erosion, and percent change in volume. The highest ranking models for 

accretion and erosion were always different from each other (Fig. 7 and Tables S3 and S4). The 

highest ranking models for percent change in volume were similar to erosion models in the 

Hawaiian Archipelago and the MHI and to accretion models in the NWHI (Fig. 7, Table S5). 

Relationships between environmental parameters and accretion, erosion, and percent change in 

volume were not conserved across space; the highest ranking models were always different 

between the MHI and NWHI sites (Fig. 7 and Tables S3-5). 

For accretion, carbonate chemistry parameters were the most parsimonious models for 

the Hawaiian Archipelago (Fig. 7a, Table S3) and for the NWHI (Fig. 7c, Table S3) while 

physical and biological parameters were the most parsimonious for the MHI (Fig. 7b, Table S3).  
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TA was the highest ranking model in the Hawaiian Archipelago (R2 = 0.17) and the NWHI (R2 = 

0.29) while macroalgae (R2 = 0.14) was the highest ranking model in the MHI (Figure 7a-c, 

Table S3).    

 For erosion, biological and physical models were the most parsimonious for the Hawaiian 

Archipelago (Fig. 7d and Table S4), while biological and chemical models were the most 

parsimonious for the MHI (Fig. 7e and Table S4) and the NWHI (Fig. 7f and Table S4). 

Herbivore biomass was the highest ranking model for the Hawaiian Archipelago (R2 = 0.14) and 

the MHI (R2 = 0.28), while benthic cover descriptors (% other: mainly bare substrate, 

cyanobacteria, and sessile invertebrates) ranking highest (R2 = 0.11; Fig. 7d-f and Table S3). 

Lastly, for percent change in volume, biological and chemical models were the most 

parsimonious in the Hawaiian Archipelago (Fig. 7g and Table S5), chemical models were the 

most parsimonious in the NWHI (Fig. 7i and Table S5), and chemical, physical, and biological 

parameters all had models with ∆AIC values of < 4 in the MHI (Fig. 7h and Table S5). 

Herbivore biomass ranked highest for percent change in volume in the Hawaiian Archipelago 

(R2 = 0.08; Fig. 7g and Table S5), macroalgae ranked highest in the MHI (R2 = 0.16; Fig. 7h and 

Table S5), but herbivore biomass only had a ∆AIC of 0.36 and explained nearly the same amount 

of variance in the data (R2 = 0.15; Fig. 7h, Table S4), and DIC ranked highest in the NWHI (R2 = 

0.16; Fig. 7i and Table S4).     

 

 3.3 Community data:   

3.3.1 Spatial patterns in infaunal community: We collected 2073 organisms from 29 different 

families (Table S2) from the phyla Sipuncula, Annelida, Mollusca, and Echinodermata. The most 

common and abundant organisms were from the Eunicidae family followed by organisms from 
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the Syllidae, Aspidosiphonidae and Mytilidae families (Fig. S5 and Table S2). There was a 

significant difference in the community across regions (F27,1 = 139.51, p = 0.001; Figs. 6 and S6 

and Table 4) and across islands (F22,10 = 16.94, p = 0.001; Fig. 8 and Table 4). MHI communities 

were clustered, but there was greater community variation throughout the NWHI (Fig. 8).  

3.1.2 Environmental drivers of infaunalcommunity: When testing for relationships between the 

community and environmental models, we found that the chemical model ranked highest in 

model parsimony (Table 5). The second best model, the biological model, had a ∆AIC of 17.1, 

explaining substantially less of the variation in the data. We also tested for a relationship 

between the macroborer abundances (Table S2) and erosion rates and found that erosion rates 

were highest at sites with the highest abundance macroborers (F27,1 = 9.45, p =  0.005, and R2 = 

0.26; Fig. 9). 

 

4 DISCUSSION 

4.1 Spatial patterns of accretion, erosion, and percent change in volume 

Ecological patterns are incontrovertibly entwined with scale (Hutchinson 1953; Levin 1992), and 

the present study evokes this classic ecological phenomenon.  Across the 2500 km linear extent 

of our study, accretion and percent change rates vary among islands (Fig 4c,f) and sites within 

islands (Fig. 5a,c), but not between regions (Fig 4a,e). Conversely, erosion rates differed across 

regions and sites (Fig. 4b and Fig. 5b), but not islands (Fig. 4d). At the regional or island-scale, 

differences may be driven by large climatic gradients, recruitment pulses in bioeroders and 

calcifiers, ocean circulation, or major disturbances such as storm events. However, for all factors 

investigated here, the smallest scale of variation (within sites) holds a disproportionately higher 

amount of variance than any other spatial scale in this study.   
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Although many processes interact at multiple scales to shape patterns in the accretion-

erosion balance (e.g., Tribollet et al. 2002; Tribollet and Golubic 2005; Tribollet et al. 2006; 

Silbiger et al. 2014; DeCarlo et al. 2015), these data provide compelling evidence that local 

variability is important  in shaping the accretion-erosion balance (Silbiger et al. 2014; Silbiger et 

al in review). The within-site spatial scale was the highest source of variance in the data, 

responsible for 71.8%, 47.4%, and 65.6% of the variation in accretion, erosion, and percent 

change in volume, respectively (Fig 6). This high within-site variance indicates that individual 

blocks within a site were more different than blocks 2500 km apart. The relative importance of 

local-scale variance is not restricted to Hawai‘i and its isolated location in the Pacific. For 

example, on the Great Barrier Reef (GBR), over 65% of the variance in coral cover was 

explained by local, within site differences (Hughes et al. 2012). Within-site variability at 

backreef sites also accounted for the highest amount of variance in Scarid (bioeroding parrotfish) 

biomass and abundance across multiple spatial scales on the GBR (Gust et al. 2001). Both broad 

and local scale gradients in biological and physicochemical drivers are likely interacting to shape 

patterns in these studies. 

 

4.2 Environmental drivers of accretion, erosion, and percent change in volume rates  

Our data indicate that chemical parameters are the strongest drivers of accretion (Fig. 7a) 

while biological and physical parameters are the strongest drivers of erosion when analyzed for 

the entire Hawaiian Archipelago (Fig. 7d). These results corroborate previous work showing that 

accretion and erosion are influenced by different environmental parameters (Silbiger et al. in 

review, Silbiger and Donahue 2015). Though it is clear which categories of environmental 

parameters ranked highest for accretion and erosion, the top five highest-ranking models often 
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had ∆AIC values of <4, indicating empirical support for several models. We anticipated 

interactive effects among parameters because all environmental parameters used in this study 

were known drivers of accretion and/or erosion; however, we wanted to test if these parameters 

separate on our a spatial gradient, given the large differences in geography, chemistry, 

hydrodynamics, and community structure across this 2500 km transect (Figs. 2 and 3).  

 The strongest drivers of accretion and erosion were different in the MHI and NWHI. 

Physical parameters dominated the accretion models in the MHI (though the macroalgae model 

was ranked highest; Fig. 7b), while carbonate chemistry parameters dominated the accretion 

models in the NWHI (Fig. 7c), likely because there was a larger range in the carbonate chemistry 

in the NWHI (mostly driven by Lisianksi Atoll) than the MHI (Fig. 2a and 3a). For erosion, 

herbivore biomass was the best model in the MHI while benthic cover descriptors were the best 

models in the NWHI which was likely driven by considerable differences in fish biomass 

between NWHI and MHI (Williams et al. 2010). Herbivorous fish are abundant at all NWHI 

sites because of the inaccessibility and special protection status of the PMNM (Williams et al. 

2010), whereas there is a strong gradient in fish biomass throughout the MHI due to varying 

fishing pressures (Williams et al. 2008). The highest ranking models for percent change in 

volume rates also differed between the MHI and the NWHI sites. In the MHI, the highest ranking 

models were similar to the erosion models which were most strongly influenced by herbivorous 

fish and % cover of macroalgae, but in the NWHI, the highest ranking models most closely 

resembled to the accretion models which were most strongly influenced by carbonate chemistry 

parameters (Fig. 7). Further, erosion rates were much higher in the MHI than the NWHI (Fig 4c); 

these patterns indicate that erosion rates have a higher impact on percent change in volume rates 

in the MHI than the NWHI. A prior Pacific Basin study also found that the relationship between 
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environmental models and reef characteristics (coral, CCA, and macroalgal cover) were not 

conserved across space (Williams et al. 2015). Williams et al (2015) split sites between 

populated and unpopulated islands, found that biophysical parameters had higher explanatory 

power at unpopulated islands, and concluded that local human impacts decouple biophysical 

relationships on coral reefs. The MHI versus NWHI comparison is similarly populated versus 

unpopulated, and differences between sites could be driven by local human impacts; however, 

there are also several other major differences between these regions that may be more directly 

related (e.g., high vs low islands, benthic habitat differences, etc.).  

 The carbonate chemistry models had the highest explanatory power for accretion in the 

Hawaiian Archipelago (R2 = 0.17; Fig. 7a) and the NWHI (R2 = 0.29; Fig. 7c). The carbonate 

chemistry models also had the highest explanatory power for percent change in volume in the 

NWHI (R2 = 0.16; Fig. 7i). Both erosion and secondary accretion are sensitive to changes in 

carbonate chemistry: typically erosion rates increase (Tribollet et al. 2009; Wisshak et al. 2012; 

Fang et al. 2013; Reyes-Nivia et al. 2013; Wisshak et al. 2013; Silbiger et al. 2014; Enochs et al. 

2015; Silbiger and Donahue 2015) and secondary accretion rates decrease (Jokiel et al. 2008; 

Diaz‐Pulido et al. 2012; Johnson and Carpenter 2012; Comeau et al. 2013), though some studies 

have found parabolic responses with increasing CO2 (Ries et al. 2009; Silbiger and Donahue 

2015).  

 The biological models, specifically herbivorous fish, had the highest explanatory power 

for erosion rates in the Hawaiian Archipelago overall (R2 = 0.14; Fig. 7d) and the MHI 

specifically (R2 = 0.28; Fig. 7e). The biological models were also the highest ranking models for 

percent change in volume for the Hawaiian Archipelago and MHI (Fig. 7a,b). Herbivorous fish 

can directly influence erosion by removing CaCO3 substrate while grazing for algae and they can 
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indirectly influence accretion by removing fleshy algae and relieving competitive interactions 

with CCA (Harley et al. 2012). Because the presence of secondary calcifiers, mainly CCA, can 

inhibit the settlement of bioeroders by sealing off the substrate and making it difficult for borers 

to penetrate (White 1980; Tribollet and Payri 2001), herbivore biomass can also indirectly 

influence erosion rates. Notably, we saw a negative exponential relationship between accretion 

and erosion (Fig S3) and a negative relationship between herbivore biomass and erosion (Fig. 

7e), suggesting that there is a complex interaction between herbivorous fish, secondary calcifiers, 

and erosion.  

  

4.3 Spatial patterns in infaunal communities along the Hawaiian Archipelago 

 Variation in infaunal community composition also differed across spatial-scales. The 

community composition was significantly different across islands and across regions (Figs. 8 and 

S6), but the community was highly variable in the NWHI, likely due to the fact that the NWHI 

has much higher habitat variation between sites than the MHI (Friedlander et al. 2005; 

Friedlander et al. 2008).We did not collect community replicates within each site so we could not 

assess the importance of within site variability to macroborer communities. Hutchings et al. 

(1992) proposed that many mobile macroborers have strong site preferences, suggesting that 

broad-scale environmental processes can have a strong influence on recruitment. Although not 

addressed in this study, we would expect high within-site variability in the infaunal community 

as well because they are sensitive to differences in substrate type (Enochs 2012; Enochs and 

Manzello 2012); dead corals typically have a higher richness of cryptic organisms than live 

corals (Enochs and Manzello 2012).  

 

123



4.3 Environmental drivers of infaunal communities 

The chemical parameters ranked highest for the infaunal communities. The infaunal community 

structure could be affected by nutrients and resource availability because many infaunal 

organisms are filter feeders (reviewed in Le Grand and Fabricius 2011). The carbonate chemistry 

parameters could also influence infaunal macroborers because macro-bioerosion is sensitive to 

pH (Wisshak et al. 2012; Silbiger and Donahue 2015). We were not surprised to find that erosion 

rates and infaunal communities had different environmental predictors. Indeed, erosion rates on 

our experimental blocks were controlled by organisms in addition to macroborers such as 

microborers and grazers which is likely responsible for this difference. Further, we used a late 

successional community that included both macroborers and non-eroders in our community 

analysis (samples were collected from dead substrate), while the erosion rates were from an early 

successional community of bioeroders that only appear during the first year. Still, there was a 

significant relationship between abundances of macroborers (Table S2) and erosion rates (Fig. 

9).   

 

4.4 Constraints  

 There are some limitations to this study that should be carefully considered when 

interpreting the results. First, the temporal scales of the environmental variables differ and, 

particularly in the case of water chemistry, are disconnected from the block deployment period 

(Table S1 and S6). While fish and benthic community data are generally stable over a year-long 

time frame, water chemistry data are not (Guadayol et al. 2014; Silbiger et al. 2014). Chemistry 

data in this analysis were from single data points collected between spring and summer during 

daylight hours. This ignores differences in diel or seasonal variation across sites. In some 
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instances, diel variance is a stronger predictor of secondary accretion than the mean (Price et al. 

2012), and this could not be accounted for in our analysis. The sampling intensity reported here 

reflects the data available for these remote sites. If more, higher-frequency data were available 

then we may have seen stronger or different relationships between the chemical parameters and 

accretion-erosion rates.    

Second, the highest spatial resolution of the environmental data was at the site level, but 

the majority of the variance in the accretion-erosion data was within sites. The low R2 values for 

all environmental models (highest R2 value was 0.29) are likely in response to the highly variable 

accretion-erosion data. Prior studies examining within site environmental variability and 

accretion-erosion rates had markedly higher explanatory power between accretion-erosion rates 

and environmental parameters (Silbiger et al. 2014; Silbiger et al. in review), further highlighting 

the importance of local-scale environmental variability to the accretion-erosion balance of coral 

reefs. Monitoring protocols are typically in place to track broad environmental trends; however, 

a better understanding of local-scale variability is necessary to predict how environmental 

change will impact the accretion-erosion balance.  

Last, there are some limitations to the µCT analysis: i) blocks need a long deployment 

time to quantify late successional stage bioeroders; it may take up to three years for sponges to 

fully colonize dead substrates (Tribollet and Golubic 2005), ii) the accretion rates exclude adult 

corals, but include secondary calcifiers such as calcifying algae and sessile invertebrates, and iii) 

it does not distinguish between different types of eroders or secondary calcifiers (though this 

analysis could be developed). Given these limitations, though, our analysis is currently the 

highest resolution analysis that allows for the simultaneous measurement of accretion and 

erosion from the same experimental substrate. 
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4.5 Management considerations 

Within the United States, long-term coral reef monitoring efforts have been implemented 

by the NOAA and other state and federal agencies to track reef response to changing ocean 

conditions, but the large spatial extent (~10,000 km2) of coral reefs within U.S. waters make this 

challenging. Coral reef managers often do not have the capabilities to monitor environmental 

conditions and reef response at fine temporal and spatial scales due to time, money, and 

logistical constraints, especially in remote management zones such as those in the central Pacific. 

Still, there are several modes of data acquisition currently being used to monitor coral reefs 

across a range of spatial and temporal scales. Using stationary buoys, managers can collect high 

temporal resolution data over small areas of reef. With satellite data, managers can monitor 

broad areas at a high temporal resolution, but with low spatial resolution (the best satellite data 

available is at a 1km grid cell). Using in situ monitoring protocols on research cruises, managers 

can collect information over a broad spatial-scale, but at a low temporal resolution. In the present 

study, we used a combination of data from these monitoring protocols to describe patterns in 

accretion, erosion, and percent change in volume rates and macroborer communities across 

multiple spatial scales, and, further, test whether monitoring data can adequately predict patterns 

in accretion-erosion rates and macroborer communities. While we did find significant patterns 

between rates, communities, and environmental drivers, there was low explanatory power. It is 

clear that local, small-scale variability is more important in driving accretion-erosion patterns 

than broad-scale differences in the environment—the data resolution captured currently through 

monitoring. A better understanding of the local-scale variability is necessary to identify 

mechanisms driving these patterns and to predict how reefs will respond to a changing 

environment.  
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 This is the first study that used µCT to quantify accretion, erosion and percent change in 

volume rates over large spatial scales. Using this method, we highlight the importance of spatial 

scale in interpreting patterns in accretion-erosion data and infaunal communities. Our results and 

those from previous studies (Silbiger et al. 2014; Silbiger et al. in review) provide compelling 

evidence that local-scale environmental variability is particularly important to the coral reef 

accretion-erosion balance. We also demonstrate that the relationships between explanatory and 

response variables are not conserved across space, as there were differences in the highest 

ranking environmental models between the MHI and NWHI datasets. NOAA is currently using 

similar µCT methods to monitor bioerosion rates at sites throughout the Pacific and the 

Caribbean. The differing relationships between environmental variability and accretion-erosion 

data should be taken into consideration when interpreting those results and in future management 

decisions on coral reefs. 
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Table 1: Environmental parameters grouped by chemical (a), physical (b), and biological 

(c) drivers. Parameters is environmental parameter, transformation is data transformation, data 

source is the agency, satellite, or model source for the data, and method is collection method for 

each parameter.   

  Parameters Transformation Data Source Method 

(a) Chemical         

  PO4
3- log(X) CRED/Silbiger1 Water Sample 

  Si log(X) CRED/Silbiger1 Water Sample 

  NO3
- + NO2

- log(X) CRED/Silbiger1 Water Sample 

  Ωarag log(X) CRED/Silbiger1 CO2SYS 

  pH log(X) CRED/Silbiger1 CO2SYS 

  TA (salinity normalized) log(X) CRED/Silbiger1 Water Sample 

  DIC (salinity normalized) log(X) CRED/Silbiger1 Water Sample 

(b) Physical         

  Depth NA CRED Dive computer 

  mean(SST) NA G1SST Satellite 

  max(SST) NA G1SST Satellite 

  min(SST) NA G1SST Satellite 

  std(SST) log(X) G1SST Satellite 

  mean(Wave Energy) log(X) Wave Watch III Satellite 

  max(Wave Energy) log(X) Wave Watch III Satellite 

  sum(Wave Energy) NA Wave Watch III Satellite 

  std(Wave Energy) log(X) Wave Watch III Satellite 

(c) Biological         

  Fish herbivore biomass log(X) CRED/DAR2 BLT/nSPC 

  % Coral cover log(X) CRED/DAR2 LPI/Photoquad3 

  % Calcified algae log(X+1) CRED/DAR2 LPI/Photoquad3 

  % Macroalgae log(X+1) CRED/DAR2 LPI/Photoquad3 

  % Turf algae log(X) CRED/DAR2 LPI/Photoquad3 

  % Sand log(X+1) CRED/DAR2 LPI/Photoquad3 

  % Other log(X+1) CRED/DAR2 LPI/Photoquad3 

 

                                                 
1 Nutrient samples from O‘ahu sites and carbonate chemistry samples from Maui, OahuKB, and OahuKN were 

collected by Silbiger. All other data were collected by CRED.  N+N, Si, or PO data are not available for MauiA27. 
2 MauiA27 fish and benthic data were collected by DAR; biological data at all other sites were collected by CRED 
3 Photoquads were used for benthic cover estimates only at OahuKBay, OahuKN, Oahu10, Oahu4, and MauiA27 
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Table 2: Heirarchical ANOVA for accretion (a), erosion (b), and percent change in volume 

rates (c) across regions, islands, and sites. DF is degrees of freedom, SS is sum of squares, 

Mean SS is mean sum of squares, F is the F-test, and p is the p-value. Bold values represent 

statistically significant differences at α <0.05. 

  

Model DF SS Mean SS F p 

a) Accretion           

Region 1 0.025 0.25 1.26 0.27 

Island:Region 4 5.48 1.37 7.03 <0.001 

Site:Island:Region 23 8.55 0.37 1.91 0.01 

Residuals 93 18.11 0.19 
 

  

b) Erosion           

Region 1 7.15 7.15 20.18 <0.001 

Island:Region 4 3.41 0.85 2.4 0.055 

Site:Island:Region 23 35.6 1.55 4.37 <0.001 

Residuals 93 32.96 0.35 

 

  

c) Percent change in volume           

Region 1 65.1 65.14 2.76 0.1 

Island:Region 4 374.2 93.56 3.97 0.005 

Site:Island:Region 21 1641.7 71.38 3.03 <0.001 

Residuals 93 2215.1 23.57     
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Table 3: Means and standard errors for erosion, accretion, and percent change in volume 

rates across regions (a) and sites (b). 

  Accretion (mm y-1) Erosion (kg m-2 y-1) Net Change (% y-1) 

  Mean Std Mean Std Mean Std 

(a) Region             

MHI 1.72 0.12 0.15 0.02 1.29 1.06 

NWHI 1.86 0.11 0.092 0.009 2.82 0.60 

(b) Site             

MAI 1.98 0.20 0.15 0.03 2.87 1.94 

OAH 1.52 0.14 0.15 0.02 0.05 1.11 

FFS 1.49 0.13 0.12 0.02 0.79 1.31 

LIS 2.92 0.34 0.074 0.02 6.3 1.62 

PHR 1.65 0.17 0.094 0.01 2.23 1.12 

KUR 1.64 0.09 0.072 0.007 2.82 0.30 

 

 

Table 4: ANOVA table for hierarchical multivariate generalized linear model with negative 

binomial distribution for community across regions and islands. Volume is the rubble 

volume from each site. Bold values indicate statistical significance at α <0.05. 

Model Residual DF DF F p 

Community data         

Region 27 1 139.4 0.001 

Island:Region 22 10 16.9 0.001 

Volume 26 1 38.8 0.231 

Intercept 28       
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Table 5: Model selection for infaunal community composition versus chemical, biological, 

physical, and all environmental parameters. Models outputs are from multivariate GLMs with 

a negative binomial distribution. Vol is volume of rubble from each site. PC1 is the first PC axis 

and PC2 is the second PC axis from the chemical (Fig 2a and 3a), biological (Fig 2b and 3b), 

physical (Fig 2c and 3c) and all data (Fig 2d and 3d) PCAs.  k is the number of parameters in the 

model, -L is the sum of all the log likelihoods across all families, AIC is the sum of all the AIC 

values across families, ∆AIC is the difference from the lowest AIC value, and rank is the rank of 

the model with 1 being the best. 

 

Model k -L AIC ∆AIC Rank 

Chemical         

Y ~ Vol + PC1 + PC2 150 955.09 2210.17 0 1 

Biological         

Y ~ Vol + PC1 + PC2 150 993.64 2227.28 17.1 2 

Full         

Y ~ Vol + PC1 + PC2 150 969.01 2238.02 27.84 3 

Physical   
 

    

Y ~ Vol + PC1 + PC2 150 975.12 2250.25 40.07 4 
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Figure 1: Map of 29 forereef sites across the Hawaiian Archipelago. Top inset shows the extent of the Hawaiian
Archipelago (area outlined in black is the Papahānaumokuākea Marine National Monument). Maui and O‘ahu are
in the Main Hawaiian Islands region and French Frigate Shoals, Lisianksi Atoll, Pearl and Hermes Atoll, and Kure
Atoll are in the Northwestern Hawaiian Islands region. Red dots are individual sites. Grey areas in maps are 0-40m
bathymetry data from NOAA CRED.
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Figure 2: PCA for (a) chemical, (b) biological, (c) physical, and (d) all environmental data. Each PCA is
a combination of all environmental parameters for chemical (Table 1a), biological (Table 1c), physical (Table
1b), and all 23 parameters collected. Open circles are sites from the MHI and closed squares are sites from the
NWHI. Colors represent different islands. X-axis is the first principal component and y-axis is the second principal
component. Numbers in parentheses are the percent of variance explained by each PC axis. Biplots of each PCA
are in Fig 3. Polygons in inset (d) represent data from individual islands.
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different across both islands (F22,10=16.9, p=0.001; Table 5) and regions (F27,1=139.4, p=0.001; Table 5). In inset
(a), colors represent islands where Maui is blue, O‘ahu is grey, French Frigate Shoals is green, Lisianski is red,
Pearl and Hermes is purple, and Kure is orange. For inset (b), colors represent regions where the NWHI sites are
in red and the MHI sites are in blue. Stress for the nMDS was 0.19.

146



0 1 2 3 4

−3
.5

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

log(# of Macroborers cm-3)

lo
g(

Er
os

io
n 

R
at

e)
 k

g 
m

-2
 y

-1
)

Figure 9: Erosion rate versus bioeroder abundance. Figure shows a linear regression for abundance of bio-
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p=0.005, R2=0.26, y ∼ 0.22x− 2.83).
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Supplemental Material 
Methods for environmental data collection 
Tables S1-S6 
References 
Figures S1-S6 
 
Methods for environmental data collection: 

Chemical Data: Discrete water samples for silica (Si), phosphate (PO), nitrate + nitrite (N+N), 

total alkalinity (TA), dissolve inorganic carbon (DIC), and salinity were collected at each site 

from benthic water with horizontally oriented 5L Niskin® bottles fired directly above the 

substrate  (Table 1a). At most sites (Table 1), these samples were co-located with conductivity, 

temperature and depth (CTD) casts. TA and DIC samples were immediately decanted into Tedlar 

bags or BOD bottles, fixed with HgCl2, and then stored in a cool, dark area until further 

processing. All nutrient samples were filtered through combusted GF/F filters, stored in acid-

washed HDPE bottles, and frozen until processing. Salinity samples were decanted into HDPE 

bottles, wrapped in parafilm, and stored in a cool, dark location until processing. All NWHI and 

most MHI samples were collected as part of the NOAA Pacific Reef Assessment and Monitoring 

Program (RAMP) monitoring efforts from 2008 – 2010 and were collected and analyzed using 

standard protocols. Some samples from Maui and O‘ahu (Table 1) were collected following 

similar protocols in 2013 - 2014. All NOAA-RAMP samples were analyzed at NOAA Pacific 

Marine Environmental Laboratory (PMEL); the remaining samples were analyzed at the 

University of Hawai‘i SOEST Laboratory for Analytical Chemistry (UH S-LAB) and at the 

Hawai‘i Institute of Marine Biology. All samples were analyzed using standard protocols 

(Dickson et al. 2007). pH and aragonite saturation states (Ωarag) for each site were calculated in 

CO2SYS (van Heuven et al. 2011) with the temperature, salinity, TA, and DIC as parameters. 
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Any site that had more than one water sample taken during this time period was averaged for 

data analysis (Table S6). 

 

Physical Data: The physical data includes depth, sea surface temperature (SST) metrics, and 

wave power (Ef) metrics (Table 1b). Depth was measured by placing a dive computer in the 

middle of each site and recording the depth. SST data was compiled from ultra-high resolution (1 

km grid) satellite data from the G1SST dataset 

(http://oceanwatch.pfeg.noaa.gov/thredds/dodsC/satellite/JS/ssta/1day.html). The G1SST dataset 

is a blended (across eight satellites) global dataset produced by the Regional Ocean Modeling 

System group at the Jet Propulsion Laboratory. We extracted SST data for the deployment period 

at each site and used an ordinary kriging method with a spherical semivariogram model to 

average over missing values using ArcGIS (version 10.1). SST data from each site was used to 

calculate the mean, max, min, and standard deviation in temperature over the deployment period.  

 Wave power was calculated for the deployment period at each site using a 1-hr output at 

a 0.5 × 0.5 degree resolution of mean significant wave height (Hs), peak period (tp) and peak 

direction (dp) from the Wavewatch III Global Wave Model 

(WWIII, http://oos.soest.hawaii.edu/erddap/griddap/NWW3_Global_Best.html). Wave power 

(Ef) in kilowatts per meter (kW m-1) was calculated using the following equation: 

𝐸𝐸𝑓𝑓 = 𝜌𝜌𝑔𝑔2

64𝜋𝜋
𝐻𝐻𝑠𝑠2𝑡𝑡𝑝𝑝/1000         (1) 

 
where,  𝜌𝜌 is the density of seawater (1024 kg m-3) and 𝑔𝑔 is the acceleration of gravity. Previous 

studies suggest that wave power, which combines both Hs and tp, is a more representative metric 

of wave events than using only Hs and tp (Storlazzi et al. 2003; Storlazzi et al. 2005; Gove et al. 

2013).  Wave power statistics (mean, cumulative sum, max, and standard deviation) were 
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calculated from incident wave angles for each site. Note that this is a conservative method that 

ignores any wave energy caused by wave-bathymetry interactions (e.g. refraction). 

 

Biological Data: Herbivorous fish biomass and benthic cover (Table 1c) data were used to 

describe the biological characteristics of each site.  Herbivorous fish biomass was estimated from 

visual surveys of fish size and abundance throughout the MHI and NWHI from 2000-2014 using 

three different methods: fixed benthic transects by CRED (BLT_CRED), fixed benthic transects 

by DAR (BLT_DAR), and stratified random stationary point count by CRED (nSPC). CRED 

methods are described in Williams et al. (2010) and the DAR method is described in Walsh et al. 

(2010). Fish biomass (kg m-2) for each species was calculated using conversion parameters from 

the literature (Kulbicki et al. 2005; Froese and Pauly 2010), and fish biomass data were 

standardized to the BLT_CRED method using conversion factors from M. Donovan (unpub). 

CRED pools their data by trophic functional group (herbivore, invertivore, apex predator, 

planktivore, and corallivore) and by depth zone (shallow= 0 - 6 m, mid=6 - 18 m, deep=18 - 30 

m). We restricted our analysis to herbivore biomass from the mid depth zone (6 - 18 m) because 

herbivorous grazers are the functional group most likely to impact accretion-erosion processes 

and the mid depth zone overlapped with the depth of our sites. To calculate herbivore biomass 

for each site, we used a distance-weighted average for all fish transects within 3km of our study 

site for all years:  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑥𝑥 =  ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑖𝑖/(1 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,     (2) 

where Biomassx is estimated herbivore biomass at site x, Biomassi is the measured herbivore 

biomass at fish transect i, and Distanceix is the distance from sampling site x to fish transect i  
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 Benthic cover was measured at each site using the least point intercept (LPI) method 

(collected in 2010 by CRED) or the photoquadrat method (collected in 2010 – 2012 by CRED or 

DAR). The LPI method uses visual surveys of benthic cover along a 25 m transect. The species 

(or lowest possible taxonomic unit) that fell directly under the transect tape was recorded every 

0.5 m along the transect. For sites where LPI data was unavailable, we used photoquad data 

(Table 1c; methods described in Walsh et al. (2010)). All benthic data were pooled into 5 

categories for data analysis: % coral, % calcified algae, % macroalgae, % turf algae, % sand, and 

% other (mobile invertebrates, cyanobacteria, and unidentified sessile organisms).   
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Table S1: Site information. These are the latitudes, longitudes, and depths for each site and 
well as the deployment and retrieval dates for experimental blocks and collection dates for rubble 
used in community analysis. Five blocks were deployed at all sites, but some blocks were not 
retrieved or did not have adequate quality µCT scans. Sample size is the number of blocks that 
were used in the analysis from each site.  

Site Latitude Longitude Depth (m) Deployment 
Date 

Retrieval 
Date 

Sample 
size 

Rubble 
Collection 

Date 
Maui-01 20.762 -155.980 32 9/8/2012 9/30/2013 5 9/30/2013 
Maui-02 20.864 -156.151 42 9/8/2012 9/30/2013 5 9/30/2013 

Maui-A27 20.951 -156.694 46 9/26/2012 9/29/2013 4 9/29/2013 
Maui-07 21.007 -156.668 45 9/9/2012 9/29/2013 5 9/29/2013 

O‘ahu-KN 21.289 -157.865 38 10/16/2012 10/8/2013 5 10/8/2013 
O‘ahu-1 21.312 -158.127 43 9/13/2012 9/12/2013 5 9/12/2013 

O‘ahu-Kbay 21.508 -157.805 47 9/20/2012 9/26/2013 5 9/26/2013 
O‘ahu-04 21.534 -158.233 43 9/10/2012 9/12/2013 5 9/12/2013 
O‘ahu-10 21.612 -158.111 48 9/2/2012 9/9/2013 4 9/9/2013 
FFS-34 23.628 -166.135 30 7/27/2011 8/6/2012 4 7/8/2012 
FFS-12 23.639 -166.180 35 7/27/2011 8/4/2012 5 7/8/2012 
FFS-33 23.837 -166.267 27 7/28/2011 8/5/2012 4 7/9/2012 
FFS-21 23.847 -166.327 40 7/28/2011 8/5/2012 4 7/9/2012 
FFS-H6 23.880 -166.273 25 7/28/2011 8/5/2012 5 7/9/2012 
LIS-R10 25.945 -173.954 44 8/10/2011 8/17/2012 2 8/17/2012 
LIS-09 25.958 -173.882 44 8/10/2011 8/17/2012 3 8/17/2012 
LIS-18 26.004 -173.994 27 8/10/2011 8/18/2012 3 8/18/2012 
LIS-R9 26.040 -174.012 25 8/11/2011 8/18/2012 3 8/18/2012 

LIS-R14 26.078 -173.997 46 8/11/2011 8/18/2012 5 8/18/2012 
PHR-R42 27.753 -175.949 45 8/9/2011 8/12/2012 3 7/13/2012 
PHR-R33 27.785 -175.824 44 8/9/2011 8/12/2012 3 8/12/2012 
PHR-R26 27.786 -175.780 49 8/9/2011 8/12/2012 5 8/12/2012 
PHR-R44 27.910 -175.905 42 8/8/2011 8/9/2012 3 7/13/2012 
PHR-R39 27.940 -175.861 34 8/8/2011 8/9/2012 5 7/13/2012 
KUR-12 28.382 -178.324 33 8/15/2012 7/14/2013 4 7/14/2013 
KUR-6 28.387 -178.348 32 8/15/2012 7/13/2013 4 7/13/2013 

KUR-R33 28.417 -178.378 50 8/14/2012 7/14/2013 4 7/14/2013 
KUR-4 28.427 -178.286 36 8/14/2012 7/13/2013 5 7/13/2013 
KUR-2 28.454 -178.344 39 8/14/2012 7/14/2013 5 7/14/2013 
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Table S2: List of all organisms included in community analysis.  If there is a "yes" in the 
bioeroder column, organisms are known bioeroders (pers. com. S. Godwin). All organisms listed 
here were used in the community analysis. Only known bioeroders were used in linear regression 
between erosion rates and macroborers. UNID stands for unidentified. Codes in parenthesis are 
the 3 letter codes from Fig S6a. Count is the total number of organisms across all sites from each 
species. 

Common Name Bioeroder? Family  Genus Species Count 

Bivalve 
Yes 

Arcidae (Arc) 
Arca ventricosa 1 

Barbatia divaricata 45 

Gastrochaenidae (Gas) Gastrochaena 
cuneiformis 8 

kanaka 2 
Hiatellidae (Hia) Hiatella arctica 7 

Hipponicidae (Hip) Hipponix foliaceus 2 
Mytilidae (Myt) Lithophaga fasciola 168 

No Mytilidae (Myt) Brachidontes crebristriatus 6 

Polychaete 

Yes 
Eunicidae (Eun) Palola siciliensis 30 
Sabellidae (Sab) Hypsicomus phaeotaenia 32 

No 

Dorvellidae (Dor) UNID UNID 2 

Amphinomidae (Amp) 

Eurythoe complanata 3 

Notopygos 
gregoryi 1 
UNID 3 

Pherecardia striata 5 
UNID UNID 15 

Capitellidae (Cap) UNID UNID 4 

Chaetopteridae (Cha) 

Mesochaetopterus sagittarius 2 

Phyllochaetopterus 
socialis 2 
verrilli 2 

UNID UNID 1 
Chrysopetellidae (Chr) UNID UNID 22 

Cirratulidae (Cir) UNID UNID 8 

Dorvellidae (Dor) 
Dorvillea angolana 1 

UNID UNID 25 

Eunicidae (Eun) 

Eunice 

afra 5 
antennata 9 
australis 4 
cariboea 2 

nicicoformis 1 
Lysidice ninetta 32 

Marphysa UNID 19 
Nematoneris unicornis 227 

154



UNID UNID 159 

Glyceridae (Gly) 
Glycera tesselata 6 
UNID UNID 4 

Lumbrineridae (Lum) 
Lumbrineris dentata 5 

UNID UNID 7 
Maldanidae (Mal) UNID UNID 22 

Nereidae Ner) 
Ceratoneris tentaculata 2 

Neanthes arenaceodonta 5 
UNID UNID 144 

Opheliidae (Oph) UNID UNID 2 
Phyllodocidae (Phy) UNID UNID 32 

Polynoidae (Pol) 

Iphione muricata 5 
Lepidasthenia alba 2 
Lepidonotus havaicus 1 

Thormora 
jukesii 3 
UNID 2 

UNID UNID 67 

Sabellidae Sab) 
Megalomma intermedium 1 

UNID UNID 10 

Serpulidae (Ser) 

Pomatoleios kraussii 1 
Spirobranchus giganteus corn. 4 

UNID UNID 8 
Vermilopsis torquata 4 

Spirorbiidae (Spi) 
Neodexiospira foraminosa 1 

Nidificaria dalestraughanae 1 
UNID UNID 65 

Syllidae (Syl) UNID UNID 418 

Terebellidae (Ter) 
Lysilla ubianansis 1 
UNID UNID 13 

Sipunculid Yes 

Aspidosiphonidae (Asp) 
Aspidosiphon elegans 279 

Lithacrosiphon cristatus 39 

Phascolosomatidae (Pha) 
Phascolosoma 

perlucens 14 
stephensoni 8 
nigrescens 8 

scolops 2 
sp 2 

Antillesoma antillarium 1 

Urchin 
Yes Echinometridae (Echt) 

Echinometra mathaei 3 
Echinostrephus aciculatus 2 

No 
Echinoneidae (Ech) Echinoneus cyclostomus 13 
Eucidaridae (Euc) Eucidarus metularia 11 
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Table S3: Model selection for environmental parameters versus accretion. Pink are chemical parameters, blue are biological 
parameters, and yellow are physical parameters. The top five models are bolded and a star is next to the highest ranked model. 
  
  

  Hawaiian Archipelago MHI NWHI 

Model L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank 

Si -92.21 188.42 -22.08 0.000 22 -35.37 74.75 -4.20 0.057 8 -54.30 112.59 -26.85 0.001 20 
N+N -90.77 185.55 -19.20 0.023 9 -36.03 76.06 -5.52 0.028 15 -50.00 104.01 -18.27 0.104 6 
PO -92.14 188.28 -21.94 0.001 19 -35.52 75.04 -4.49 0.051 9 -50.80 105.61 -19.86 0.086 8 
Ωarag -81.81 167.63 -1.28 0.157 2 -35.68 75.35 -4.80 0.044 10 -43.84 91.68 -5.94 0.233 3 
pH -82.54 169.08 -2.73 0.147 3 -36.07 76.14 -5.60 0.026 16 -43.90 91.80 -6.06 0.232 4 
TA -81.17 166.35 0.00 0.166 1* -35.88 75.76 -5.22 0.035 13 -40.87 85.74 0.00 0.289 1* 
DIC -87.69 179.38 -13.03 0.072 4 -36.63 77.27 -6.72 0.000 22 -43.33 90.65 -4.91 0.243 2 
Herb -89.90 183.80 -17.46 0.037 7 -35.99 75.98 -5.43 0.030 14 -52.77 109.54 -23.79 0.039 10 

%Coral -92.18 188.36 -22.02 0.001 21 -36.63 77.26 -6.72 0.000 21 -54.33 112.65 -26.91 0.000 21 
%Calc -91.72 187.43 -21.09 0.008 14 -36.47 76.95 -6.40 0.008 18 -54.12 112.23 -26.49 0.006 18 

%Macroalgae -91.53 187.06 -20.72 0.011 13 -33.27 70.55 0.00 0.145 1* -54.34 112.69 -26.94 0.000 23 
%Turf -88.86 181.71 -15.37 0.054 6 -35.84 75.68 -5.14 0.036 12 -51.73 107.46 -21.71 0.064 9 
%Sand -92.16 188.31 -21.97 0.001 20 -36.56 77.12 -6.57 0.004 19 -53.78 111.55 -25.81 0.014 13 
%Other -88.44 180.89 -14.54 0.060 5 -36.59 77.19 -6.64 0.002 20 -49.93 103.86 -18.11 0.106 5 
Depth -90.53 185.05 -18.71 0.027 8 -35.24 74.48 -3.93 0.063 6 -53.73 111.46 -25.71 0.015 12 

mean SST -92.21 188.43 -22.08 0.000 23 -34.16 72.32 -1.77 0.109 2 -53.53 111.06 -25.31 0.020 11 
max SST -91.25 186.49 -20.15 0.016 11 -34.56 73.13 -2.58 0.092 3 -50.48 104.96 -19.22 0.093 7 
min SST -91.11 186.22 -19.87 0.018 10 -35.79 75.59 -5.04 0.039 11 -53.90 111.79 -26.05 0.011 16 
std SST -91.39 186.77 -20.43 0.014 12 -36.64 77.28 -6.73 0.000 23 -53.90 111.79 -26.05 0.011 15 

mean Energy -91.80 187.61 -21.26 0.007 16 -35.08 74.17 -3.62 0.070 5 -53.83 111.67 -25.93 0.013 14 
max Energy -92.08 188.16 -21.81 0.002 18 -36.30 76.60 -6.05 0.016 17 -54.07 112.14 -26.40 0.007 17 
sum Energy -91.80 187.59 -21.25 0.007 15 -34.82 73.64 -3.09 0.081 4 -54.33 112.65 -26.91 0.000 22 
std Energy -91.93 187.87 -21.52 0.005 17 -35.28 74.56 -4.01 0.061 7 -54.25 112.49 -26.75 0.002 19 
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 Table S4: Model selection for environmental parameters versus erosion. Pink are chemical parameters, blue are biological 
parameters, and yellow are physical parameters. The top five models are bolded and a star is next to the highest ranked model. 

  Hawaiian Archipelago MHI NWHI 

Model L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank 

Si -145.45 294.90 -16.20 0.020 11 -43.88 91.77 -3.62 0.214 2 -91.77 187.53 -9.28 0.002 21 
N+N -146.67 297.33 -18.63 0.000 22 -49.01 102.01 -13.86 0.002 21 -91.63 187.26 -9.01 0.005 20 
PO -145.67 295.35 -16.65 0.017 13 -49.05 102.11 -13.96 0.000 23 -90.46 184.91 -6.66 0.034 5 
Ωarag -145.66 295.32 -16.62 0.017 12 -48.50 100.99 -12.84 0.026 15 -91.58 187.16 -8.91 0.007 19 
pH -145.03 294.07 -15.37 0.027 10 -49.05 102.10 -13.95 0.000 22 -91.54 187.07 -8.83 0.008 17 
TA -146.42 296.84 -18.14 0.004 17 -48.82 101.64 -13.49 0.011 17 -90.74 185.48 -7.23 0.028 8 
DIC -146.63 297.26 -18.56 0.001 19 -45.60 95.20 -7.05 0.148 5 -88.64 181.27 -3.02 0.078 2 
Herb -137.35 278.70 0.00 0.142 1* -42.08 88.15 0.00 0.277 1* -91.84 187.68 -9.43 0.000 22 

%Coral -146.46 296.93 -18.23 0.004 18 -48.88 101.76 -13.61 0.008 18 -90.32 184.63 -6.39 0.038 4 
%Calc -146.67 297.34 -18.63 0.000 23 -48.97 101.94 -13.78 0.004 20 -91.48 186.96 -8.71 0.009 16 

%Macroalgae -140.91 285.82 -7.12 0.090 5 -45.31 94.61 -6.46 0.160 3 -90.84 185.67 -7.42 0.025 9 
%Turf -140.42 284.84 -6.14 0.098 3 -48.24 100.47 -12.32 0.037 14 -90.84 185.69 -7.44 0.025 10 
%Sand -146.37 296.74 -18.04 0.005 16 -48.93 101.85 -13.70 0.006 19 -89.77 183.55 -5.30 0.051 3 
%Other -142.09 288.18 -9.48 0.073 6 -47.72 99.45 -11.29 0.060 11 -87.12 178.25 0.00 0.113 1* 
Depth -142.43 288.85 -10.15 0.068 7 -46.77 97.54 -9.39 0.101 8 -90.96 185.92 -7.67 0.022 11 

mean SST -144.86 293.73 -15.02 0.030 9 -45.98 95.97 -7.82 0.133 6 -91.84 187.68 -9.43 0.000 23 
max SST -146.30 296.60 -17.90 0.006 15 -45.59 95.17 -7.02 0.149 4 -91.36 186.72 -8.47 0.012 14 
min SST -139.46 282.92 -4.22 0.112 2 -47.01 98.03 -9.87 0.091 9 -90.96 185.93 -7.68 0.022 12 
std SST -140.46 284.92 -6.22 0.097 4 -47.63 99.26 -11.10 0.064 10 -91.41 186.81 -8.57 0.011 15 

mean Energy -146.66 297.32 -18.62 0.001 21 -48.22 100.45 -12.30 0.038 13 -91.06 186.13 -7.88 0.020 13 
max Energy -146.65 297.30 -18.60 0.001 20 -46.43 96.85 -8.70 0.115 7 -91.54 187.08 -8.84 0.008 18 
sum Energy -142.83 289.66 -10.96 0.061 8 -48.68 101.35 -13.20 0.017 16 -90.56 185.11 -6.87 0.032 6 
std Energy -146.19 296.38 -17.68 0.008 14 -48.09 100.18 -12.03 0.044 12 -90.72 185.44 -7.19 0.028 7 
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Table S5: Model selection for environmental parameters versus percent change in volume. Pink are chemical parameters, blue 
are biological parameters, and yellow are physical parameters. The top five models are bolded and a star is next to the highest ranked 
model. 
 

  Hawaiian Archipelago MHI NWHI 

Model L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank L AIC ∆AIC R2 Rank 

Si -390.35 784.69 -9.84 0.000 22 -43.88 91.77 -3.62 0.214 2 -243.24 490.48 -13.81 0.000 21 
N+N -389.98 783.96 -9.10 0.006 13 -49.01 102.01 -13.86 0.002 21 -241.04 486.09 -9.43 0.054 7 
PO -390.32 784.65 -9.80 0.000 19 -49.05 102.11 -13.96 0.000 23 -240.00 483.99 -7.33 0.079 4 
Ωarag -387.19 778.38 -3.52 0.051 3 -48.50 100.99 -12.84 0.026 15 -240.25 484.51 -7.85 0.073 6 
pH -387.24 778.48 -3.62 0.050 4 -49.05 102.10 -13.95 0.000 22 -240.08 484.17 -7.51 0.077 5 
TA -387.53 779.05 -4.20 0.045 6 -48.82 101.64 -13.49 0.011 17 -238.09 480.19 -3.53 0.122 2 
DIC -389.38 782.77 -7.92 0.016 12 -45.60 95.20 -7.05 0.148 5 -236.33 476.66 0.00 0.160 1 
Herb -385.43 774.85 0.00 0.078 1* -42.08 88.15 0.00 0.277 1* -243.06 490.13 -13.47 0.004 18 

%Coral -390.16 784.32 -9.47 0.003 16 -48.88 101.76 -13.61 0.008 18 -242.63 489.26 -12.60 0.015 14 
%Calc -390.29 784.57 -9.72 0.001 17 -48.97 101.94 -13.78 0.004 20 -243.24 490.48 -13.82 0.000 22 

%Macroalgae -387.68 779.36 -4.51 0.043 7 -45.31 94.61 -6.46 0.160 3 -242.58 489.16 -12.50 0.017 13 
%Turf -386.97 777.95 -3.09 0.054 2 -48.24 100.47 -12.32 0.037 14 -241.05 486.10 -9.44 0.054 8 
%Sand -390.34 784.67 -9.82 0.000 20 -48.93 101.85 -13.70 0.006 19 -241.13 486.27 -9.61 0.052 9 
%Other -387.42 778.84 -3.99 0.047 5 -47.72 99.45 -11.29 0.060 11 -239.28 482.56 -5.90 0.095 3 
Depth -388.22 780.45 -5.59 0.034 9 -46.77 97.54 -9.39 0.101 8 -242.65 489.30 -12.64 0.015 15 

mean SST -390.07 784.15 -9.30 0.005 14 -45.98 95.97 -7.82 0.133 6 -243.13 490.26 -13.60 0.003 20 
max SST -390.12 784.25 -9.39 0.004 15 -45.59 95.17 -7.02 0.149 4 -241.38 486.77 -10.10 0.046 10 
min SST -388.11 780.22 -5.37 0.036 8 -47.01 98.03 -9.87 0.091 9 -242.15 488.29 -11.63 0.027 11 
std SST -388.38 780.76 -5.91 0.032 10 -47.63 99.26 -11.10 0.064 10 -242.42 488.85 -12.19 0.020 12 

mean Energy -390.29 784.59 -9.73 0.001 18 -48.22 100.45 -12.30 0.038 13 -243.24 490.48 -13.82 0.000 23 
max Energy -390.35 784.70 -9.85 0.000 23 -46.43 96.85 -8.70 0.115 7 -243.05 490.10 -13.44 0.005 17 
sum Energy -389.23 782.46 -7.61 0.018 11 -48.68 101.35 -13.20 0.017 16 -242.98 489.96 -13.30 0.007 16 
std Energy -390.35 784.69 -9.84 0.000 21 -48.09 100.18 -12.03 0.044 12 -243.10 490.20 -13.54 0.003 19 
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Table S6: Collections dates for nutrient and carbonate chemistry samples. 
Site Date 

Collected 
Samples 
collected 

Maui-01 10/15/2010 All 
  9/30/2013 TA/DIC 

Maui-02 10/16/2010 All 
  9/30/2013 TA/DIC 

Maui-07 10/18/2010 All 
  9/29/2013 TA/DIC 

Maui-A27 9/29/2013 TA/DIC 
O‘ahu-04 9/18/2013 TA/DIC 

  11/6/2014 N+N/PO/Si 
O‘ahu-1 10/25/2010 All 

  11/6/2014 N+N/PO/Si 
O‘ahu-10 8/18/2013 TA/DIC 

  11/5/2014 N+N/PO/Si 
O‘ahu-Kbay 9/26/2013 TA/DIC 

  11/10/2014 N+N/PO/Si 
O‘ahu-KN 10/8/2013 TA/DIC 

  11/5/2014 N+N/PO/Si 
FFS-12 9/9/2010 All 
FFS-21 9/8/2010 All 
FFS-33 10/9/2008 All 
FFS-34 9/10/2010 All 
FFS-H6 9/8/2010 All 
LIS-09 9/24/2010 All 
LIS-18 9/23/2010 All 

LIS-R10 9/23/2010 All 
LIS-R14 9/23/2010 All 
LIS-R9 9/24/2010 All 

PHR-R26 9/14/2010 All 
PHR-R33 9/15/2010 All 
PHR-R39 9/15/2010 All 
PHR-R42 9/16/2010 All 
PHR-R44 9/16/2010 All 
KUR-12 9/19/2010 All 
KUR-2 9/20/2010 All 
KUR-4 9/20/2010 All 
KUR-6 9/20/2010 All 

KUR-R33 9/19/2010 All 
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Figure S1:Before (left) and after (right) image of an experimental block.
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Figure S2: Mean-variation relationship of community data. Data are log-transformed mean and variance for
all 29 families across all sites. Log(mean) and log(variance) are highly collinear (F28,1=399, p<0.0001, R2=0.94)
suggesting that a negative binomial distribution is most appropriate.
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Figure S3: Erosion versus accretion. There was a significant exponential relationship between accretion rate
(mm y−1) and erosion rate (kg m−2 y−1) across all experimental blocks (F120,2 = 99, p<0.001, R2 = 0.19, y ∼
0.25 × e(−0.49x)). We used a combined error model to account for the heteroscedasticity in the data.
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Figure S4: Within island comparison of accretion, erosion, and percent change in volume rates. Data are means ± SE for sites within each island. Data were
log-transformed for analysis and back-transformed in this figure.
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Figure S5: Abundances of infaunal organisms. Data are from the top 12 most abundant families out of the 29
families in the analysis. Each circle represents data from one site.
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CHAPTER 5 

SECONDARY CALCIFICATION AND DISSOLUTION RESPOND DIFFERENTLY TO 

FUTURE OCEAN CONDITIONS. 

 

Published as: Silbiger, NJ, and Donahue, MJ (2015). Secondary dalcification and dissolution 

respond differently to future ocean conditions. Biogeosciences, 12:567-578
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ABSTRACT 

Climate change threatens both the accretion and erosion processes that sustain coral reefs. 

Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity 

and long-term persistence of coral reefs, yet these processes have received less research attention 

than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine 

the combined effects of rising ocean acidity and sea surface temperature (SST) on both 

secondary calcification and dissolution rates of a natural coral rubble community using a flow-

through aquarium system. We found that secondary reef calcification and dissolution responded 

differently to the combined effect of pCO2 and temperature. Calcification had a non-linear 

response to the combined effect of temperature-pCO2: the highest calcification rate occurred 

slightly above ambient conditions and the lowest calcification rate was in the highest pCO2-

temperature condition. In contrast, dissolution increased linearly with temperature-pCO2. The 

rubble community switched from net calcification to net dissolution at +271 µatm pCO2 and 

0.75° C above ambient conditions, suggesting that rubble reefs may shift from net calcification 

to net dissolution before the end of the century. Our results indicate that (i) dissolution may be 

more sensitive to climate change than calcification and (ii) that calcification and dissolution have 

different functional responses to climate stressors; this highlights the need to study the effects of 

climate stressors on both calcification and dissolution to predict future changes in coral reefs.  

 

1 INTRODUCTION 

In 2013, atmospheric carbon dioxide (CO2(atm)) reached an unprecedented milestone of 

400 ppm (Tans and Keeling, 2013), and this rising CO2(atm)  is increasing sea-surface temperature 
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(SST) and ocean acidity (Caldeira and Wickett, 2003;Cubasch et al., 2013;Feely et al., 2004). 

Global SST has increased by 0.78°C since pre-industrial times (Cubasch et al., 2013), and it is 

predicted to increase by another 0.8-5.7°C by the end of this century (Meinshausen et al., 

2011;Van Vuuren et al., 2008;Rogelj et al., 2012). The Hawai`i Ocean Time-series detected a 

0.075 decrease in mean annual pH at Station ALOHA over the past 20 years (Doney et al., 2009) 

and there have been similar trends at stations around the world including the Bermuda Atlantic 

Time-series and the European Station for Time-series Observations in the ocean (Solomon et al. 

2007).  pH is expected to drop by an additional 0.14-0.35 pH units by the end of the 21
st
 century 

(Bopp et al., 2013). All marine ecosystems are at risk from rising SST and decreasing pH (Doney 

et al., 2009;Hoegh-Guldberg et al., 2007;Hoegh-Guldberg and Bruno, 2010), but coral reefs are 

particularly vulnerable to these stressors (reviewed in Hoegh-Guldberg et al., 2007).  

Corals create the structurally complex calcium carbonate (CaCO3) foundation of coral 

reef ecosystems. This structural complexity is at risk from climate-driven shifts from high-

complexity, branched coral species to mounding and encrusting growth forms (Fabricius et al., 

2011) and from increases in the natural processes of reef destruction, including bioerosion and 

dissolution (Wisshak et al., 2012, 2013;Tribollet et al., 2006). While substantial research 

attention has focused on the response of reef-building corals to climate change (reviewed in 

Hoegh-Guldberg et al., 2007;Fabricius, 2005;Pandolfi et al., 2011), secondary calcification 

(calcification by non-coral invertebrates and calcareous algae), bioerosion, and reef dissolution 

that are integral to maintaining the structural complexity and net growth of coral reefs has 

received less attention (Andersson and Gledhill, 2013;Andersson et al., 2011;Andersson and 

Mackenzie, 2012). Bioerosion and dissolution breakdown the reef framework while secondary 

calcification helps maintain reef stability by cementing the reef together (Adey, 1998; Camoin 
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and Montaggioni, 1994; Littler, 1973) and producing chemical cues that induce settlement of 

many invertebrate larvae including several species of corals (Harrington et al. 2004; Price 2010). 

Coral reefs will only persist if constructive reef processes (growth by corals and secondary 

calcifiers) exceed destructive reef processes (bioerosion and dissolution). In this study, we 

examine the combined effects of rising ocean acidity and SST on both calcification and 

dissolution rates of a natural community of secondary calcifiers and bioeroders.  

Recent laboratory experiments have focused on the response of individual taxa of 

bioeroders or secondary calcifiers to climate stressors. For example, studies have specifically 

addressed the effects of rising ocean acidity and/or temperature on bioerosion by a Clionid 

sponge (Wisshak et al., 2012, 2013;Fang et al., 2013) and a community of photosynthesizing 

microborers (Tribollet et al., 2009;Reyes-Nivia et al., 2013). These studies found that bioerosion 

increased under future climate change scenarios. Several studies have focused on tropical 

calcifying algae and have found decreased calcification (Semesi et al., 2009; Johnson et al., 

2014; Comeau et al., 2013;Jokiel et al., 2008;Kleypas and Langdon, 2006) and increased 

dissolution (Diaz‐Pulido et al., 2012) with increasing ocean acidity and/or SST. However, the 

bioeroding community is extremely diverse and can interact with the surrounding community of 

secondary calcifiers: for example, crustose coralline algae (CCA) can inhibit internal bioerosion 

(White, 1980;Tribollet and Payri, 2001). To understand the combined response of bioeroders and 

secondary calcifiers, we take a community perspective and examine the synergistic effects of 

rising SST and ocean acidity on a natural community of secondary calcifiers and bioeroders. 

Using the total alkalinity anomaly technique, we test for net changes in calcification during the 

day and dissolution (most of which is caused by bioeroders; Andersson and Gledhill, 2013) at 

night. Our climate change treatments are modelled after the Representative Concentration 
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Pathway (RCP) 8.5 climate scenario (Van Vuuren et al., 2011;Meinshausen et al., 2011), one of 

the high emissions scenarios used in the most recent Intergovernmental Panel on Climate Change 

(IPCC) report  (Cubasch et al., 2013). The RCP 8.5 scenario predicts an increase in temperature 

of 3.8 – 5.7°C (Rogelj et al., 2012) and an increase in atmospheric CO2 of 557 ppm by the year 

2100 (Meinshausen et al., 2011). We use the RCP 8.5 scenario because the current CO2 

concentrations are tracking just above what this scenario predicts (Sanford et al., 2014). While 

prior studies have focused on the contributions of individual community members to increased 

temperature and CO2; here, we examine the community response to the RCP 8.5 climate scenario 

and measure calcification, dissolution, and net community production rates.   

2 MATERIALS AND METHODS 

2.1 Collection Site 

All collections were made on the windward side of Moku o Lo‘e (Coconut Island) in 

Kāne‘ohe Bay, Hawai‘i adjacent to the Hawai‘i Institute of Marine Biology. This fringing reef is 

dominated by Porites compressa and Montipora capitata, with occasional colonies of 

Pocillopora damicornis, Fungia scutaria, and Porites lobata. Kāne‘ohe Bay is a protected, semi-

enclosed embayment; the residence time can be >1 month long in the protected southern portion 

of the Bay (Lowe et al., 2009a;Lowe et al., 2009b) that is coupled with a high daily variance in 

pH (Guadayol et al., 2014). The wave action is minimal (Smith et al., 1981;Lowe et al., 

2009a;Lowe et al., 2009b) and currents are relatively slow (5cm s
-1

 maximum) and wind-driven  

(Lowe et al., 2009a;Lowe et al., 2009b).  
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2.2 Sample Collection 

We collected pieces of dead Porites compressa coral skeleton (hereafter, referred to as rubble) as 

representative communities of bioeroders and secondary calcifiers. Rubble was collected with a 

hammer and chisel from a shallow reef flat (~1m depth) in November, 2012. Only pieces of 

rubble without any live coral were collected. The rubble community in Kāne‘ohe Bay is 

comprised of secondary calcifiers, including CCA from the genera Hydrolithon, Sporolithon, and 

Peyssonnelia and non-coral calcifying invertebrates (e.g. boring bivalves (Lithophaga fasciola 

and Barbatia divaricate), oysters (Crassostrea gigas), and small crustaceans); filamentous and 

turf algae; and internal bioeroders, including  boring bivalves (L. fasciola and B.divaricate), 

sipunculids (Aspidosiphon elegans, Lithacrosiphon cristatus, Phascolosoma perlucens, and 

Phascolosoma stephensoni), phoronids (Phoronis ovalis), sponges (Cliona spp.) and a diverse 

assemblage of polychaetes (White, 1980). All rubble pieces were combined after collection and 

maintained in a 100L flow-through tank with ambient seawater from Kāne‘ohe Bay until random 

assignment to treatments.   

2.3. Experimental Design 

The Hawai‘i Institute of Marine Biology (HIMB) hosts a mesocosm facility with flow-

through seawater from Kāne‘ohe Bay and controls for light, temperature, pCO2, and flow rate. 

The facility is comprised of 24 experimental aquaria split between four racks; each rack has a 

150L header tank which feeds 6 experimental aquaria, each 50L in volume (Figure 1).   

Before adding rubble to the experimental aquaria, we collected day and night samples of 

pH, total alkalinity (TA), temperature, and salinity from all aquaria to demonstrate the 

consistency of water conditions across aquaria without any rubble present (Table 1).  The long-
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term temporal stability of the mesocosm system is reported in Putnam (2012). We then 

conducted “control” and “treatment” experiments to determine how RCP 8.5 predictions affect 

daytime calcification and nighttime dissolution rates in a natural rubble community. The first 

“control experiment” characterized baseline calcification and dissolution in each aquarium 

caused by differences in rubble communities. In the second “treatment experiment”, we 

manipulated pCO2 and temperature to simulate four climate scenarios (pre-industrial, present 

day, 2050, and 2100) and tested the response of calcification, dissolution, and net community 

production. Each experiment used the TA anomaly method (Smith and Key, 1975; Andersson et 

al., 2009).  This method calculates net calcification from changes in total alkalinity, and 

calculates net community production from changes in total dissolved inorganic carbon (DIC) 

adjusted for changes in carbon due to calcificaiton. Because estimates of calcification are based 

on changes in TA, this method does not account for mechanical erosion (e.g., small chips of 

CaCO3 produced by sponge erosion). However, given the short duration of the experiment and 

the types of bioeroders present, we expect that chemical dissolution captured a significant 

proportion of the erosion in the system.  

Approximately 1.2L of rubble (3-4 pieces of weight 499 ± 148 g and skeletal density 1.53 

± 0.1 g cm
-3

 (mean ± SD, n=85)) were placed in each of the 24 experimental aquaria and 

acclimated to tank conditions in ambient seawater for three days. On the fourth day, we 

performed the control experiment, calculating daytime calcification and nighttime dissolution for 

rubble in ambient seawater conditions using the TA anomaly technique. The next day we 

manipulated seawater pCO2 and temperature to replicate four climate scenarios for the treatment 

experiment: pre-industrial (-1±0.057°C and -205±11.9 µatm), present day (natural Kāne‘ohe Bay 

seawater 24.8±0.09 °C, 614±15.6 µatm), 2050 (+1.4±0.09 °C and +255±31 µatm), and 2100 
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(+2.4±0.08 and +433±40 µatm). Note that all changes in temperature and pCO2 were made 

relative to present day Kāne‘ohe Bay seawater conditions: pCO2 in Kāne‘ohe Bay is consistently 

high relative to the open ocean and can range from 196-976 µatm in southern Kāne‘ohe bay 

depending on conditions (Drupp et al., 2013). The yearly average pCO2 at our collection site 

ranged from 565-675 µatm (Silbiger et al., 2014). After an acclimation time of seven days, we 

sampled the treatment experiment, calculating daytime calcification and nighttime dissolution 

over a 24 hour period.  

During both experiments, TA, pH, salinity, temperature, and dissolved inorganic nutrient 

(DIN) samples were collected every 12 hours over a 24 hour period: just before lights-on in the 

morning (time 1) and just before lights-off at night (time 2) to capture light conditions, and then 

again before lights-on the next morning (time 3) to capture dark conditions. Flow into each 

aquarium was monitored and adjusted every three hours to ensure a consistent flow rate over the 

24 hour experiment. We calculated net ecosystem calcification and net community production 

using a simple box model (Andersson et al., 2009) and normalized all our calculations to the 

surface area of the rubble in each tank. Surface area of the rubble was calculated using the wax 

dipping technique (Stimson and Kinzie III, 1991) at the end of the experiment.     

2.4 Mesocosm Set-up 

The mesocosm facility (Figure 1) is supplied with ambient seawater from Kāne‘ohe Bay, 

which is filtered through a sand filter, passed through a water chiller (Aqualogic Multi Temp 

MT-1 Model # 2TTB3024A1000AA), and then fed into one of the four header tanks. pCO2 was 

manipulated using a CO2 gas blending system (see Fangue et al., 2010; Johnson and Carpenter, 

2012). Each target pCO2 concentration was created by mixing CO2-free atmospheric air with 
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pure CO2 using mass flow controllers (C100L Sierra Instruments). Output pCO2 was analyzed 

using a calibrated infrared CO2 analyzer (A151, Qubit Systems). CO2 mixtures were then 

bubbled into one of the four header tanks and water from each individual header tank fed into the 

six individual treatment aquaria (Figure 1). The pCO2 in each treatment aquarium was estimated 

with CO2SYS (Van Heuven et al., 2011) using pH and TA as the parameters. 

Temperature was manipulated in each treatment aquarium using dual-stage temperature 

controllers (Aqualogic TR115DN). The temperature was continuously monitored with 

temperature loggers (TidbiT v2 Water Temperature Data Logger, sampling every 20 min) and 

point measurements were taken during every sampling period with a handheld digital 

thermometer (Traceable Digital Thermometer, Thermo Fisher Scientific; precision = 0.001 °C). 

Light was controlled by positioning an oscillating pendant metal-halide light (250 W) over a set 

of three aquaria and was programmed to emit an equal amount of light to each tank (~500µE of 

light). Lights were set to a 12h:12h hour photoperiod and were monitored using a LI-COR 

spherical quantum PAR sensor. Flow rate was maintained at 115±1 ml min
-1

, resulting in a 

residence time of 7.3±0.07 hours per tank. Each aquarium was equipped with a submersible 

powerhead pump (Sedra KSP-7000 powerhead) to ensure that the tank was well-mixed. 

2.5 Seawater Chemistry 

All sample collection and storage vials were cleaned in a 10% HCl bath for 24 hours and rinsed 

three times with MilliQ water before use and rinsed three times with sample water during sample 

collection and processing.  
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2.5.1 Total Alkalinity 

Duplicate TA samples were collected in 300 ml borosilicate sample containers with glass 

stoppers. Each sample was preserved with 100µL of 50% saturated HgCl2 and analyzed within 3 

days using open cell potentiometric titrations on a Mettler T50 autotitrator (Dickson et al., 2007). 

A Certified Reference Material (CRM - Reference Material for Oceanic CO2 Measurements, A. 

Dickson, Scripps Institution of Oceanography) was run at the beginning of each sample set. The 

accuracy of the titrator never deviated more than ±0.8% from the standard, and TA 

measurements were corrected for these deviations. The precision was 3.55µEq (measured as 

standard deviation of the duplicate water samples). During the 24-hour control experiment the 

average changes in TA were 37µEq over the day and 20µEq over the night (day and night TA 

changes were of larger magnitude in the treatment experiments):  these are measurable changes 

given the precision and accuracy of the TA measurements. 

2.5.2 pHt (total scale) 

Duplicate pHt samples were collected in 20ml borosilicate glass vials, brought to a constant 

temperature of 25ºC in a water bath, and immediately analyzed using an m-cresol dye addition 

spectrophotometric technique (Dickson et al., 2007). Accuracy of the pH was tested against a 

Tris buffer of known pHt from the Dickson Lab at Scripps Institution of Oceanography (Dickson 

et al., 2007). Our accuracy was better than ±0.04%, and the precision was 0.004 pH units 

(measured as standard deviation of the duplicate water samples). In situ pH and the remaining 

carbonate parameters were calculated using CO2SYS (Van Heuven et al., 2011) with the 

following measured parameters: pHt, TA, temperature, and salinity. The K1K2 apparent 
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equilibrium constants were from Mehrbach (1973) and refit by Dickson & Millero (1987) and 

HSO4
-
 dissociation constants were taken from Uppström (1974) and Dickson (1990).  

2.5.3 Salinity 

Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer calibrated with 

an OSIL IAPSO standard (accuracy = ±0.003, precision = ±0.0003). 

2.5.4 Nutrients 

Nutrient samples were collected with 60ml plastic syringes and immediately filtered through 

combusted 25mm glass fiber filters (GF/F 0.7µm) and transferred into 50ml plastic centrifuge 

tubes. Nutrient samples were frozen and later analyzed for Si(OH)4, NO3
-
, NO2

-
, NH4

+
, and PO4

3-
 

on a Seal Analytical AA3 HR Nutrient Analyzer at the UH SOEST Lab for Analytical 

Chemistry. 

2.6 Measuring Net Ecosystem Calcification  

We assumed that the mesocosms were well mixed systems; thus, we calculated net ecosystem 

calcification and net communtity photosynthesis following the simple box model presented in 

Andersson et al. (2009).  TA was normalized to a constant salinity (35) to account for changes 

due to evaporation and then corrected for dissolved inorganic nitrogen and phosphate to account 

for their small contributions to the acid-base system (Wolf-Gladrow et al., 2007). Net ecosystem 

calcification, or G, was calculated using the following equation: 

𝐺 = [𝐹𝑇𝐴𝑖𝑛 − 𝐹𝑇𝐴𝑜𝑢𝑡 −
𝑑TA

𝑑𝑡
] /2 

 Eq. 1 
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where FTAin is the rate of TA flowing into an aquarium ( = average TA in the header tank times 

the inflow rate),  FTAout is the rate of TA flowing out of an aquarium ( = average TA in the 

aquarium times the outflow rate), and ,  
dTA

dt
 is the change in TA in an aquarium during the 

measurement period (change in TA normalized to the volume of water and the surface area of the 

rubble); specific calculations are given in the supplemental material. The equation is divided by 

two because one mole of CaCO3 is precipitated or dissolved for every two moles of TA removed 

or added to the water column. Here, G represents the sum of all the calcification processes minus 

the sum of all the dissolution processes in mmol CaCO3 m
-2

 hr
-1

; thus, all positive numbers are 

net calcification, and all negative numbers are negative net calcification (i.e., net dissolution). 

Net daytime calcification (Gday) is calculated from the first 12 hour sampling period in the light, 

net nightime dissolution (Gnight) is calculated from the second 12 hour sampling period in the 

dark, and total net calcification (Gnet) is calculated from the full 24 hour cycle (Gday + Gnight). 

Gday, Gnight, and Gnet are converted from hourly to daily rates and presented as mmol CaCO3 m
-2

 

d
-1

. 

2.7 Measuring Net Community Production and Respiration 

Net community production (NCP) was calculated by measuring changes in DIC (Gattuso et al., 

1999). DIC was normalized to a constant salinity (35) to account for any evaporation over the 24 

hour period. We used a simple box model to calculate NCP: 

𝑁𝐶𝑃 = [𝐹DIC𝑖𝑛 − 𝐹DIC𝑜𝑢𝑡 −
𝑑DIC

𝑑𝑡
] − 𝐺 

 Eq. 2 

𝐹DIC𝑖𝑛, 𝐹DIC𝑜𝑢𝑡, and 
𝑑DIC

𝑑𝑡
 are the rates of DIC flowing into the aquaria, flowing out of the aquaria, 

and the change in DIC in the aquaria per unit time in mmol C m
-2

 hr
-1

, respectively.  To measure 
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NCP, we subtract G to remove any change in carbon due to inorganic processes. NCP represents 

the sum of all the photynthetic processes minus the sum of all the respiration processes, thus all 

positive numbers are net photosynthesis and all negative numbers are negative net 

photosynthesis (i.e., net respiration). Net daytime NCP (NCPday) is calculated from the first 12 

hour sampling period in the light, net nightime NCP (NCPnight) is calculated from the second 12 

hour sampling period in the dark, and total NCP (NCPnet) is calculated from the full 24 hour 

cycle (NCPday + NCPnight). All rates are presented as mmol C m
-2

 d
-1

. 

2.8 Statistical Analysis 

Each aquarium contained a slightly different rubble community because of the 

randomization of rubble pieces to each treatment. To ensure there were no systematic differences 

in rubble communities between racks (rack effects) before the experimental treatments were 

applied, we tested for differences in calcification and NCP between racks in the control 

experiment using an ANOVA (Figure A2).   

In the treatment experiment, we first tested for feedbacks in carbonate chemistry due to 

the presence of rubble: using a paired t-test, we compared the day-night difference in measured 

pCO2 in each aquarium with rubble, (𝑝𝐶𝑂2,𝑑𝑎𝑦
−  𝑝𝐶𝑂2,𝑛𝑖𝑔ℎ𝑡

)
𝑟𝑢𝑏𝑏𝑙𝑒

, and without rubble, 

(𝑝𝐶𝑂2,𝑑𝑎𝑦
−  𝑝𝐶𝑂2,𝑛𝑖𝑔ℎ𝑡

)
𝑛𝑜 𝑟𝑢𝑏𝑏𝑙𝑒

.  

Although we imposed four discrete temperature-pCO2 scenario treatments on each tank 

(Table 1), random variation between treatments and the feedback between the rubble 

communities and the water chemistry resulted in near-continuous variation in temperature-pCO2 

treatments across aquaria (Figures 2 and A1).  To capture this continuous variation in 
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temperature-pCO2 in the analysis, we used the measured temperature-pCO2 seawater condition 

as a continuous independent variable in a regression rather than the four categorical treatment 

conditions in an ANOVA (an analysis of G and NCP using the ANOVA approach is included in 

Figures A3, A4 and Tables A1, A2). The regression approach allowed us to better capture the 

quantitative relationships between net calcification (G) or NCP and the temperature-pCO2 

treatment.  We created a single, continuous variable, Standardized Climate Change (SCC), from 

a linear combination of temperature and pCO2 values in each aquarium. A simple linear 

combination was used because pCO2 increased linearly with temperature (Figure 2), as imposed 

by our treatments. We first calculated the relationship between ∆Temp (Eq 3) and ∆pCO2 (Eq 4) 

using linear regression. The coefficients from this regression (slope:  = 0.0031; y-intercept:  = 

- 0.078) were used to combine pCO2 and temperature onto the same scale, as a measure of 

Standardized Climate Change (Eq 5):  

∆𝑇𝑒𝑚𝑝𝑖 =  𝑇𝑒𝑚𝑝𝑡𝑟𝑡,𝑖 −  𝑇𝑒𝑚𝑝𝑐𝑜𝑛𝑡,𝑖      Eq. 3 

∆𝑝𝐶𝑂2𝑖
 =  𝑝𝐶𝑂2𝑡𝑟𝑡,𝑖

 −  𝑝𝐶𝑂2𝑐𝑜𝑛𝑡,
    Eq. 4 

𝑆𝐶𝐶𝑖 = ∆𝑇𝑒𝑚𝑝𝑖 +  𝛼 ∗ ∆𝑝𝐶𝑂2𝑖
+ 𝛽    Eq. 5 

This synthetic temperature-pCO2 axis, SCC, is centered on the ambient (control) conditions such 

that a value of 0 corresponds to present day Kāne‘ohe Bay conditions, a negative value 

corresponds to water that is colder and less acidic (pre-industrial) and a positive value 

corresponds to water that is warmer and more acidic (future conditions) compared to background 

seawater.  (The independent relationships between G and NCP with ∆Temp and ∆pCO2 are 

shown in Figures A5 and A6 and are similar to the relationship with SCC.) 
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With SCC as a continuous, independent variable, we used a regression to test for linear 

and non-linear relationships between day, night, and net calcification (Gday, Gnight, and Gnet) and 

NCP (NCPday, NCPnight, and NCPnet) versus SCC.  For a simple test of nonlinearity in the 

response of calcification to SCC, we included a quadratic term (SCC
2
) in the model. For Gday, we 

used weighted regression (weight function: wi=1/(1+|ri|), where wi = weight and ri = residual, 

Fair, 1974) to account for heteroscedasticity. All other data met assumptions for a linear 

regression. Lastly, we used a linear regression to test the relationship between G and NCP.  

3 RESULTS 

3.1 Control Experiment  

For rubble in ambient seawater conditions, the average Gday, Gnight, and Gnet in the control 

experiment were 3.4±0.16 mmol m
-2

 d
-1

, -2.4±0.15 mmol m
-2

 d
-1

, and 0.96±0.20 mmol m
-2

 d
-1

, 

respectively. There was no significant difference in Gday (F3,23=0.68, p=0.58), Gnight (F3,23=1.52, 

p=0.24), or Gnet (F3,23=1.38, p=0.28) between racks in the control experiment (Figure A2). NCP 

rates also did not show any racks effects. Average NCP rates were 23.2±1.4 mmol m
-2

 d
-1

 

(F3,23=0.07, p=0.94) during the day, -20.7±1.9 mmol m
-2

 d
-1

 (F3,23=1.95, p=0.15) during the 

night, and 2.5±2.1 mmol m
-2

 d
-1

 (F3,23=1.5, p=0.25) over the entire 24 hour period. 

3.2 Treatment Experiment 

The rubble communities significantly altered the seawater chemistry, with higher pCO2 than the 

applied pCO2 manipulation, particularly at night (Figure A1). The mean difference between day 

and night pCO2 for all treatments was 134.4 ± 39 µatm without rubble and was 438.5 ± 163.9 

µatm when rubble was present (t23= -7.23, p<0.0001; Figure 2).   
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 Standardized Climate Change was a significant predictor for Gday, Gnight, and Gnet (Table 

2; Figure 3). Gday had a non-linear relationship with Standardized Climate Change (Table 2, 

Figure 3a), increasing to a threshold and then rapidly declining. Gnight, however, had a strong 

linear relationship with Standardized Climate Change (Table 2; Figure 3c), suggesting that joint 

increases in ocean pCO2 and temperature will increase nighttime dissolution of coral rubble. 

Lastly, Gnet had a strong negative relationship with Standardized Climate Change (Table 2; 

Figure 3e) and the rubble community switched from net calcification to net dissolution at an 

increase in pCO2 and temperature of 271 µatm and 0.75° C, respectively.  Standardized Climate 

Change was also a significant predictor of NCP: Day, night, and net NCP rates all declined with 

standardized climate change (Table 2; Figure 3b,d,f). 

Net ecosystem calcification increased with net community production (F1,46 = 260, 

p<0.0001, R
2
=0.85; Figure 4).  In general, communities were net photosynthesizing and net 

calcifying during the day (Figure 4a: squares in the upper right quadrant) and were net respiring 

and net dissolving at night (Figure 4a: circles in the lower left quadrant). The exception was 

communities in the most extreme temperature-pCO2 treatment: these communities were net 

respiring during the day while holding a positive, yet very low, calcification rate (Figure 4a: 

squares in the upper left quadrant).  

 

4 DISCUSSION 

4.1 Carbonate Chemistry Feedbacks 

The rubble communities in the aquaria significantly altered the seawater chemistry, 

particularly at night (t23= -7.23, p<0.0001; Figure 2, Figure A1). This day-night difference in 
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seawater chemistry increased under more extreme climate scenarios, as predicted by Jury et al. 

(2013). This large diel swing in pCO2 is not uncommon on shallow coral reef environments. 

pCO2 ranged from 480 to 975µatm over 24 hours on a shallow reef flat adjacent to our collection 

site (Silbiger et al. 2014) and from 450 to 742 µatm on a Moloka‘i reef flat dominated by coral 

rubble (Yates and Halley, 2006). Here, pCO2 had an average difference of 438 µatm between day 

and night with a range of 412 µatm in the pre-industrial treatment to 854 µatm in the most 

extreme temperature-pCO2 treatments (Figure 2). In our study, we incorporated these feedbacks 

into the statistical analysis by using the actual, sampled pCO2 (and temperature) in each aquaria 

(Figure 3) rather than using the intended pCO2 (and temperature) treatments in an ANOVA 

(Tables A1, A2 and Figures A3, A4), better reflecting the pCO2 experienced by organisms in 

each aquarium. 

4.2 Calcification, Dissolution, and Net Community Production in a High CO2 and 

Temperature Environment 

Our results suggest that as pCO2 and temperature increase over time, rubble reefs may 

shift from net calcification to net dissolution. In our study, this tipping point occurred at a pCO2 

and temperature increase of 271 µatm and 0.75° C. Further, our results showed that Gday and 

Gnight in a natural coral rubble community have different functional responses to changing pCO2 

and temperature (Figure 3). The ranges in Gday and Gnight in our aquaria were similar to in situ 

rates on Hawaiian rubble reefs. Yates &  Halley (2006) saw Gday values between 3.3 to 11.7 

mmol CaCO3 m
-2

 d
-1

 and Gnight values between -2.4 to -24 mmol CaCO3 m
-2

 d
-1

 on a Moloka‘i 

reef flat with only coral rubble (Note that Yates and Halley calculated G over a 4 hour 

timeframes and the data was multiplied by 3 here to show G in mmol m
-2

 d
-1

. Also note that we 
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normalized our rates to the surface area of the rubble while Yates and Halley (2006) normalized 

their rates to planar surface area.). Gday and Gnight in our experiment ranged from 1.9 to 9.4 and -

1.3 to -10.5 mmol CaCO3 m
-2

 d
-1

, respectively, across all treatment conditions. The higher 

dissolution rates in the in situ study by Yates and Halley (2006) are likely due to dissolution in 

the sediment, which was not present in our study. 

Gday had a non-linear response to Standardized Climate Change. Gday increased with 

temperature-pCO2 until slightly above ambient conditions, and then decreased under more 

extreme climate conditions (Figure 3a). This mixed response, increasing and then decreasing 

with Standardized Climate Change, is reflected in prior experiments. We suggest three possible 

mechanisms to explain why calcification increases in slightly higher temperature-pCO2 than 

ambient conditions. 1) Some calcifiers can maintain and even increase their calcification rates in 

acidic conditions (Kamenos et al., 2013;Findlay et al., 2011;Rodolfo-Metalpa et al., 2011;Martin 

et al., 2013) by either modifying their local pH environment (Hurd et al., 2011) or partitioning 

their energetic resources towards calcification (Kamenos et al., 2013). For example, in low, 

stable pH conditions the coralline algae, Lithothamnion glaciale, increased its calcification rate 

relative to a control treatment but, did not concurrently increase its rate of photosynthesis 

(Kamenos et al., 2013). Kamenos et al (2013) suggest that the up-regulation of calcification may 

limit photosynthetic efficiency. In the present study, the increase in Gday coincided with a 

decrease in net photosynthesis (Figure 3a,b). Photosynthesizing calcifiers in the community may 

be partitioning their energetic resources more towards calcification and away from 

photosynthesis in order to maintain a positive calcification rate (Kamenos et al., 2013). Notably, 

turf algae likely have a major control over the NCP in this community which would not have any 

impact on calcification. 2) An alternative hypothesis is that the calcifiers may be adapted or 
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acclimatized to high pCO2 conditions (Johnson et al., 2014) and have not yet reached their 

threshold because the rubble was collected from a naturally high and variable pCO2 environment 

(Guadayol et al., 2014; Silbiger et al. 2014). 3) In this study, the calcifiers experienced a 

combined increase in both pCO2 and temperature and, thus, the non-linear response in Gday may 

also be due a metabolic response. In a typical thermal performance curve, organisms increase 

their metabolism until they have reached a thermal maximum and then rapidly decline (Huey and 

Kingsolver, 1989; Pörtner et al., 2006), and we see this response in our results. A recent study 

found a similar nonlinear response to temperature and pCO2 in the coral Siderastrea sidera 

(Castillo et al. 2014). While they attribute the pCO2 response to photosynthesis being neutralized 

(we did not see this response in our non-coral community), they suggest that the thermal 

response is due to both changes in metabolism and thermally-driven changes in aragonite 

saturation state (Castillo et al. 2014).    

We saw a decline in both calcification and NCP in the extreme temperature-pCO2 

condition (Figure 3). Calcification has been shown to decline with climate stressors and the 

magnitude of decline differs across species (Kroeker et al., 2010;Pandolfi et al., 2011;Ries et al., 

2009;Kroeker et al., 2013). The concurrent decline in NCP and calcification (Figure 3a,b & 4) 

suggests that non-photosynthesizing invertebrates in the community (such as bivalves) might be 

dominating the calcification signal in these conditions. This hypothesis would explain the pattern 

that we see in Figure 4, where communities in the most extreme pCO2 and temperature 

conditions are net respiring during the day while still maintaining a small, positive calcification 

rate (Figure 4a: five points in the upper left quadrant).  

Gnight rates are more straightforward, decreasing linearly with pCO2 and temperature 

(Figures 3c and 4). NCPnight rates also decreased linearly with pCO2 and temperature (Figure 3d). 
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Similarly, Andersson et al. (2009) saw an increase in dissolution under acidic conditions in a 

community of corals, sand, and CCA. Previous studies on individual bioeroder taxa have also 

found higher rates of bioerosion or dissolution in more acidic, higher temperature conditions 

(Wisshak et al., 2013;Fang et al., 2013;Reyes-Nivia et al., 2013;Tribollet et al., 2009;Wisshak et 

al., 2012). There are several mechanisms that could be mediating the increased dissolution rates 

in the high temperature-pCO2 treatments: 1) Higher temperatures could increase the metabolism 

of the bioeroder community, thus increasing borer activity (e.g., Davidson et al. 2013). 2) 

Because many boring organisms excrete acidic compounds to erode the skeletal structure 

(Hutchings 1986), reduced pH in the overlaying water column may reduce the metabolic cost to 

the organisms, making it easier for eroders to breakdown the CaCO3. 3) Higher dissolution rates 

could be mediated by an increase in the proportion of dolomite in the skeletal structure of CCA 

on the rubble. A recent study found a 200% increase in dolomite in CCA that were exposed to 

high pCO2 and temperature conditions; this increase in dolomite resulted in increased bioerosion 

by endolithic algae (Diaz-Pulido et al., 2014).  However, it is unlikely that changes in the 

mineralogy of the CCA indirectly increased dissolution here given the short time-scale of our 

study.  In the present study, we used the TA anomaly method to calculate chemical dissolution as 

a proxy for bioerosion. Future studies should also include measures of mechanical breakdown 

(e.g. the production of sponge chips) in addition to chemical dissolution for a more complete 

picture of the impacts of climate stress on reef breakdown.  Studies, including the present one, 

which focused on community-level responses, have consistently found that ocean acidification 

will increase dissolution rates on coral reefs (Andersson and Gledhill, 2013).  
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Standardized Climate Change explained more of the variance in dissolution than in 

calcification in our rubble community:  (𝑅𝐺𝑛𝑖𝑔ℎ𝑡

2 = 0.64 >  𝑅𝐺𝑑𝑎𝑦

2 = 0.33; Table 2) this result is 

not surprising. Bioerosion, an important driver of dissolution, may be more sensitive to changes 

in ocean acidity than calcification, leading to net dissolution in high CO2 waters. Many boring 

organisms excrete acidic compounds, which may be less metabolically costly in a low pH 

environment. Erez et al. (2011) hypothesize that increased dissolution, rather than decreased 

calcification, maybe be the reason that net coral reef calcification is sensitive to ocean 

acidification. The results of this study support this hypothesis. Although Gnet declines linearly 

with temperature- pCO2, calcification (Gday) and dissolution (Gnight) have distinct responses to 

Standardized Climate Change: Gday had a non-linear response while Gnight declined linearly with 

Standardized Climate Change. Our results highlight the need to study the effects of climate 

stressors on both calcification and dissolution. 
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Table 1: Means and standard errors of all measured parameters by rack. pCO2, HCO3
- 
,
 
CO3

2- 
, DIC, and Ωarag were all calculated from 

the measured TA and pH samples using CO2SYS. Each table entry is the mean of 12 water samples: one daytime sample and one 

nighttime sample for six aquaria within a rack. Data are all from the imposed treatment conditions with no rubble inside the aquaria.  

Rack Pre-industrial Present Day 2050 prediction 2100 prediction 

Temp (ºC) 23.8±0.07 24.8±0.08 26.2±0.06 27.2±0.08 

Salinity 35.65±0.01 35.71±0.02 35.62±0.02 35.71±0.02 

TA (µmol kg
-1

) 2137±1.7 2138±2.3 2139±2.0 2142±1.9 

pHt 8.02±0.02 7.87±0.01 7.74±0.02 7.67±0.02 

pCO2 (µatm) 409±20.0 614±15.6 868±33.0 1047±38.7 

HCO3
- 
(µmol kg

-1
) 1692±16.9 1815±7.3 1894±7.8 1939±6.6 

CO3
2- 

(µmol kg
-1

) 194.20±6.7 147.08±2.8 113.98±3.8 99.24±3.3 

DIC (µmol kg
-1

) 1898±10.9 1980±5.1 2032±5.0 2067±4.5 

Ωarag 3.06±0.1 2.32±0.04 1.80±0.06 1.57±0.05 

NO2
-
 (µmol L

-1
) 0.082 ± 0.0028     0.078 ±0.0045     0.074 ± 0.0047     0.070 ± 0.0051     

PO4
3- 

(µmol L
-1

) 0.017 ±0.014     0.0097 ±0.0081     0.033 ±0.016    0.018±0.0061     

Si(OH)4  (µmol L
-1

) 3.60 ±0.58     3.64 ±0.61    3.88 ± 0.49     3.78 ± 0.52     

NH4
+
 (µmol L

-1
) 0.45 ±0.30     0.19 ±0.067     0.23 ±0.15     0.34 ± 0.14     

NO3
-
(µmol L

-1
) 2.13±0.20 2.25±0.21 2.55±0.10 2.48±0.11 
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Table 2: Regression results for the treatment experiments: Gday, Gnight, and Gnet versus 

Standardized Climate Change (Figure 3a,c,e) and NCPday, NCPnight, and NCPnet versus 

Standardized Climate Change (Figure 3b,d,f).  Bold values indicate a statistically significant 

p-value at an α <0.05. 

 SS df F p R
2
 

Gday      

Standardized Climate Change 3.79 1 1.45 0.06  

(Standardized Climate Change)
2
 23.63 1 9.04 0.007  

Error 54.89 21   0.33 

Gnight      

Standardized Climate Change  67.80 1 39.14 <0.0001  

Error 38.11 22   0.64 

Gnet      

Standardized Climate Change 88.01 1 19.49 <0.001  

Error 99.35 22   0.47 

NCPday      

Standardized Climate Change 5687.2 1 57.36 <0.0001  

Error 
2181.4 22   0.72 

NCPnight      

Standardized Climate Change  3816.1 1 52.06 <0.0001  

Error 
1612.6 22   0.70 

 NCPnet      

Standardized Climate Change  17925 1    121.47 <0.0001  

Error 3246.4 22 
  

0.85 
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}

}}

Filtered Ambient Seawater

Header Tanks

Individual Aquaria
Flow
Temperature

Rack
Light

pCO2

Figure 1: A schematic of the mesocosm system at the Hawai‘i Institute of Marine Biology. Ambient seawater
is pumped into the system from a nearby fringing reef in Kāne‘ohe Bay. The seawater is filtered with a sand trap
filter, passed through a water chiller and then fed into one of four header tanks. pCO2 is manipulated in each header
tank by bubbling a mixture of CO2-free air and pure CO2 to the desired concentration. The water from one header
tank flows into 6 aquaria (a rack). Light is controlled by rack with metal-halide lights. There are two metal-halide
lights per rack with each light oscillating over a set of three aquaria. Flow and temperature are controlled in each
individual aquarium with flow valves and aquarium heaters and coolers, respectively.
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Figure 2: pCO2 and temperature in each aquarium (a) without any rubble present and (b) with rubble
present. Daily variability in pCO2 was higher when rubble was present due to feedbacks from the rubble commu-
nity (note the different x-axis scales in panels a and b). Panel (c) shows the mean difference between day and night
pCO2 with and without rubble present with observations paired by aquarium (error bars are standard error) (t23=
-7.23, p<0.0001).
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Figure 3: Net ecosystem calcification ( (a) Gday , (c) Gnight, (e) and Gnet) and net community production ( (b)
NCPday , (d) NCPnight, and (f) NCPnet) versus Standardized Climate Change (SCC). Each point represents
net ecosystem calcification (left panel) or net community production (right panel) calculated from an individual
aquarium. Standardized Climate Change was centered around background seawater conditions such that a value
of 0 indicated that there was no change in pCO2 or temperature. Positive values indicate an elevated pCO2 and
temperature condition relative to background and negative values represent lower pCO2 and temperature condi-
tions. Gday had a non-linear relationship with Standardized Climate Change (y = −0.27x2 + 0.59x+ 5.7), while
Gnight (y = −0.63x − 3.6) and Gnet (y = −0.76x + 1.1) each had a negative linear relationship with Standard-
ized Climate Change (Table 2). NCPday (y = −7.01x + 23.4), NCPnight (y = −35.76 − 4.74), and NCPnet

(y = −12.07x − 10.85) all had significant negative relationships with Standardized Climate Change. Black lines
are best fit lines for each model with 95 % confidence intervals in gray. The x’s on the top panel represent the
imposed conditions for Pre-industrial, Present Day, 2050, and 2100. The black horizontal line in in panels (b), (e)
and (f) shows the point where G and NCP = 0. Points above the line are net calcifying (e) or net photosynethsizing
(f) and points below the line are net dissolving (e) or net respiring (f) over the entire 24 hour period.
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Figure 4: (a) Calculated G and NCP rates for all treatment aquaria. Squares are data collected during light
(day) conditions and circles represent data collected during dark (night) conditions, and the color represents Stan-
dardized Climate Change (color bar). There is a strong positive relationship between G and NCP (y = 0.14x+1.9,
p<0.0001, R2=0.85). Negative and positive y-values are net dissolution and net calcification, respectively; nega-
tive and positive x-values are net respiration and net photosynthesis, respectively. (b) TA versus DIC: There is a
strong positive relationship between TA and DIC (y = 0.31x+1577.4, p<0.0001, R2=0.85). Black and gray lines
represent the best-fit line and 95 % confidence intervals, respectively. As expected, the slope of TA versus DIC
(0.31) is approximately twice that of G versus NCP (0.14).
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SUPPLEMENTAL MATERIAL: 

Tables S1-S2 
G and NCP calculations: 
Figures S1-S6 
 
Table S1: Analysis of variance for Gday, Gnight, and Gnet across the four climate scenario 

treatments (Figure S3).  

 

 SS df MS F p 

Gday      

Treatment 28.83 3 9.81 3.65 0.030 

Error 52.61 20 2.63   

Total 81.45 23    

Gnight      

Treatment 

 

60.39 3 20.13 8.84 <0.0001 
Error 
 45.53 

 

20 

 

2.28 

 

 

  
Total 105.92 23    

Gnet      

Treatment 

 

104.31 3 34.77 8.37 <0.0001 
Error 83.05 

 
20 4.15   

Total 197.36 23    
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Table S2: Analysis of variance for NCPday, NCPnight, and NCPnet versus climate scenario 

treatments (Figure S4).  

 

 

 

 

 

 

 

 

 

 SS df MS F p 

NCPday      

Treatment 6265.3 3 2088.4 26.0 <0.0001 

Error 1603.2 20 80.2   

Total 7868.6 23    

NCPnight      

Treatment  4145.2 3 1381.7 21.5 <0.0001 
Error 
 1283.4 

 

20 

 

64.2 

 

 

  
Total 5428.6 23    

NCPnet      

Treatment  1936.8 3 6456.0 71.6 <0.0001 
Error 1803.4 

 
20 90.17   

Total 2117.1 23    
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G and NCP calculations: Below are the specific calculations for G and NCP for Equations 1 

and 2 in the text (in mmol C m-2 hr-1). For comparisons with existing literature, G and NCP 

were both multiplied by 12 hr/day to get mmol m-2 d-1. 

Equation 1 (equations modified from Andersson et al. 2009): 

      

𝐺𝐺 = �𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
𝑑𝑑TA
𝑑𝑑𝑑𝑑
� /2     (S1) 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the rate of TA flowing into the aquaria in mmol CaCO3 m-2 hr-1: 

    

 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ((𝑇𝑇𝑇𝑇𝐻𝐻,𝑡𝑡2 + 𝑇𝑇𝑇𝑇𝐻𝐻,𝑡𝑡1) 1
2
∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎)/1000  (S2) 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the rate of TA flowing out of the aquaria in mmol CaCO3 m-2 hr-1: 

   

 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ((𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎,𝑡𝑡2 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎,𝑡𝑡1) 1
2
∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎)/1000  (S3) 

 𝑑𝑑TA
𝑑𝑑𝑑𝑑

 is the change in TA in each aquaria in mmol CaCO3 m-2 hr-1: 

       

 𝑑𝑑TA
𝑑𝑑𝑑𝑑

=
𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎,𝑡𝑡2−𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎,𝑡𝑡1

∆𝑡𝑡∗𝑆𝑆𝑆𝑆 ∗𝑉𝑉𝑉𝑉𝑉𝑉∗𝜌𝜌

1000
      (S4) 

Each equation is divided by 1000 to convert from µmol of CaCO3 to mmol of CaCO3 

Parameters: 

TAH,t1 = Total alkalinity in the header tank at the first sampling time point (µEq kg-1). 

TAH,t2 = Total alkalinity in the header tank at the second sampling time point (µEq kg-1). 

TAaq,t1 = Total alkalinity in the aquarium at the first sampling time point (µEq kg-1). 

TAaq,t2 = Total alkalinity in the aquarium at the second sampling time point (µEq kg-1). 

∆t = Time between first and second sampling time point (h) 

SA = Surface area of the rubble in the aquarium (m-2) 
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Vol= Volume of water in the aquarium (L) 

ρ = Density of seawater (kg L-1) 

FlowRateaq = Flow rate of the water coming into the aquarium in kg m-2 h-1 (equal to flow 

rate of the water leaving the aquarium) 

 

NCP is net community production rate in mmol C m-2 d-1 : 

  𝑁𝑁𝑁𝑁𝑁𝑁 = �𝐹𝐹DIC𝑖𝑖𝑖𝑖 − 𝐹𝐹DIC𝑜𝑜𝑜𝑜𝑜𝑜 −
𝑑𝑑DIC
𝑑𝑑𝑑𝑑
� − 𝐺𝐺   (S5) 

𝐹𝐹DIC𝑖𝑖𝑖𝑖,  𝐹𝐹DIC𝑜𝑜𝑜𝑜𝑜𝑜, 
𝑑𝑑DIC
𝑑𝑑𝑑𝑑

 are calculated in the same way as, 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, and 𝑑𝑑TA
𝑑𝑑𝑑𝑑

 in Equations S2-

S4), replacing Total Alkalinity with Dissolved Inorganic Carbon.  
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Figure S1: Feedbacks in seawater chemistry caused by the presence of rubble during the (a) day and (b)
night. X-axis is pCO2 in seawater without any rubble and y-axis is pCO2 in seawater with rubble present. Color
represents temperature. The black dashed line is a 1:1 line and the blue line is a regression line. The pCO2

conditions drift farther away from the manipulated conditions during the night. The slopes from each regression
analysis were both greater than one (Day: y = 1.12x + 19.83, Night: y = 1.43x + 44.54) meaning that the
biological feedbacks were greater at more extreme treatments and greater during the night than the day.
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Figure S2: Boxplots for (a) Gday , (b) Gnight , and (c) Gnet for the control experiment separated by rack.
We used an ANOVA to test for differences across racks and found no significant difference in Gday (F3,23=0.68,
p=0.58), Gnight (F3,23=1.52, p=0.24), or Gnet (F3,23=1.38, p=0.28).
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Figure S3: Means and standard error bars for (a) Gday, (b) Gnight, and (c) Gnet in mmol m−2 d−1 in the four
climate scenario treatment categories. There were significant differences between treatments for Gday (p=0.03),
Gnight (p<0.0001), and Gnet (p<0.0001) (Table S1).
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Figure S4: Means and standard error bars for (a) NCPday , (b) NCPnight, and (c) NCPnet in mmol m−2 d−1

across the four climate scenario treatments. There were significant differences across treatments for NCPday

(p<0.0001), NCPnight (p<0.0001), and NCPnet (p<0.0001) (Table S2).
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Figure S5: Net ecosystem calcification (Gday, Gnight, and Gnet) versus ∆Temperature (left panel) and
∆pCO2 (right panel). Lines are best fit lines. Gday has a significant non-linear relationship ∆pCO2 (p=0.04)
and ∆Temperature (p=0.01). night, (∆Temp: p<0.001, ∆pCO2: p<0.001) and Gnet (∆Temp: p<0.001, ∆pCO2:
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Figure S6: Net community production (NCPday , NCPnight, and NCPnet) versus ∆Temperature (left panel)
and ∆pCO2 (right panel). Lines are best fit lines. NCPday (∆Temp: p<0.001, ∆pCO2: p<0.001), NCPnight,
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CHAPTER 6 

SUMMARY AND SYNTHESIS  
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SUMMARY 

General Summary 

Coral reefs live in a balance between reef growth (accretion) and reef breakdown (erosion) and 

both processes are necessary to maintain the integrity of the coral reef framework. If the balance 

shifts, and erosion becomes excessive, the complex structural reef framework will cease to exist. 

In this dissertation, I explore different facets of the accretion-erosion balance and make 

inferences for how the balance may shift under predicted ocean conditions. Corals have been the 

primary focus of research on the drivers and stressors influencing net reef growth (see, Hoegh-

Guldberg et al. 2007; Pandolfi et al. 2011). However, “secondary” calcification and erosion 

processes are critical to net reef growth and comparatively understudied. Thus, to showcase an 

underrepresented area of research, I focused only on secondary accretion (hereafter, “accretion”) 

and erosion. Using a combination of natural and controlled environmental conditions, I aimed to 

answer three fundamental questions about the coral reef accretion-erosion balance: 

1) What are the dominant environmental drivers of accretion-erosion rates and of bioeroder 

community composition?  

2) Is the relationship between environmental drivers and accretion-erosion rates conserved 

across different spatial scales? 

3) How will predicted changes in sea surface temperature (SST) and ocean acidity impact the 

accretion-erosion balance? 

To answer these questions, I measured accretion and erosion rates across natural environmental 

gradients ranging from within a single reef (~30m) to across an archipelago (~2500 km).  Using 

new methods for visualizing and analyzing accretion and erosion, I determined how different 

environmental parameters drive accretion and erosion at different spatial scales. Taking an 
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experimental approach, I used a controlled laboratory setting to simulate the impact of climate 

change scenarios on calcification and dissolution rates by a natural community of borers and 

encrusters.    

 

Summary of experimental findings 

In Chapter 2, I characterized the spatial and temporal variability in pH, temperature, and resource 

availability (DIN:DIP and chorophyll a) at 21 sites along a 34m onshore to offshore reef transect. 

Using a model selection approach, I compared the means and variances of these environmental 

parameters along with depth and distance from shore as potential predictors of net reef erosion 

(calculated as the % change in volume of experimental CaCO3 blocks). There were steep 

gradients in the means and variances of pH along the transect. In fact, several of the 21 sites 

experience natural, daily pH variation that exceeds the predicted range for mean pH in the 21st 

century (Bopp et al. 2013). pH was the best predictor of net reef erosion with net erosion being 

highest at the most acidic sites. This chapter highlights pH variation at small spatial scales (<1m) 

in coastal systems and the importance of micro-habitat variation for net reef erosion. My findings 

also suggest that increases in reef erosion, combined with expected decreases in calcification 

(Hoegh-Guldberg et al. 2007; Kroeker et al. 2010; Pandolfi et al. 2011), could accelerate the shift 

of coral reefs to an erosion-dominated system in a high-CO2 world.  

In Chapter 3, I used a more sophisticated analysis of the µCT data presented in Chapter 2 

to separate accretion and erosion rates along the same environmental gradient. I also highlighted 

the applicability of µCT as a novel method for quantifying accretion and erosion rates. In 

Chapter 2, I used µCT to calculate net erosion as a percent change in volume of experimental 

blocks, but, in Chapter 3, I advanced this technique and separated accretion and erosion 
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processes using before and after µCT scans. There were two major outcomes from this chapter: 

1) accretion and erosion were driven by different environmental parameters: distance from shore 

drove patterns in accretion and pH drove patterns in erosion and 2) erosion was more sensitive to 

pH than accretion.  

Chapter 4 assessed the patterns and drivers of accretion-erosion rates and macroborer 

communities across the Hawaiian Archipelago.  For this chapter, I deployed bioerosion blocks 

and sampled bioeroder communities in natural substrate at 29 sites from Maui to Kure.  Using a 

hierarchical framework, I described spatial patterns in accretion-erosion rates and macroborer 

communities and determined the source of variance across four spatial scales (regions, islands, 

sites, within sites). In all cases, the highest source of variance in the data was from the within-site 

spatial scale, highlighting the importance of small-scale variability to accretion-erosion 

processes.  Using existing data from state and federal agencies, I compiled a suite of chemical, 

physical, and biological datasets that described the environment at each site.  I found, again, that 

accretion and erosion were driven by different environmental parameters.  The chemical 

parameters (which included carbonate chemistry and nutrients) ranked highest for the 

macroborer communities. I also tested relationships between environmental parameters and 

accretion-erosion rates across spatial scales and found that the relationships were not conserved 

across space; there were different dominant drivers for all accretion-erosion rates between the 

Main Hawaiian Island and Northwestern Hawaiian Island models.  

Chapter 5 focused on the impacts of rising SST and ocean acidity on calcification and 

dissolution on the community of borers and secondary calcifiers living on and in dead coral 

rubble. In a controlled laboratory setting, I manipulated pCO2 and temperature to expose these 

rubble communities to pre-industrial, present day, 2050, and 2100 ocean conditions based on the 
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RCP 8.5 climate scenario (Meinshausen et al. 2011; Rogelj et al. 2012). Secondary reef 

calcification and dissolution responded differently to the combined effect of pCO2 and 

temperature. Calcification had a non-linear response to pCO2 and temperature: the highest 

calcification rate occurred slightly above ambient conditions and the lowest calcification rate was 

in the highest temperature– pCO2 condition. In contrast, dissolution increased linearly with 

temperature– pCO2. These results indicate that dissolution may be more sensitive to climate 

change than calcification and that calcification and dissolution have different functional 

responses to climate stressors. 

 

SYNTHESIS 

 

There were several themes that arose from my dissertation: 

1) Accretion and erosion are driven by different environmental parameters. At a small, 

within-reef scale (Ch 2-3), pH was the best predictor for erosion, while distance from shore was 

the best predictor for accretion. At a large scale (Ch 4), chemical parameters were the strongest 

drivers of accretion while biological and physical parameters were the strongest drivers of 

erosion. Even in the controlled laboratory study, where only temperature and ocean acidity were 

manipulated, accretion (or calcification) responded differently from erosion (or dissolution). 

Previous studies that examined accretion and erosion individually have, similarly, found 

different responses to environmental stress. For example, coral calcification and bioerosion have 

different functional relationships with land-based pollution on Indonesian reefs (Edinger et al. 

2000). Laboratory experiments focusing on temperature and ocean acidity have found linear 

relationships with erosion (Tribollet et al. 2009; Wisshak et al. 2012; Fang et al. 2013; Reyes-
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Nivia et al. 2013) and both linear (Pandolfi et al. 2011; Comeau et al. 2013) and parabolic 

(Pandolfi et al. 2011; Comeau et al. 2013; Castillo et al. 2014) relationships with calcification. 

These complex responses to environmental variation highlight the need to examine both 

accretion and erosion when predicting reef response to environmental stress. 

 

2) Erosion is more sensitive to ocean acidity than accretion. Erosion, and dissolution, was 

more sensitive to ocean acidity than accretion in response to natural and manipulated pH 

variability. In Chapter 3, pH ranked highest when compared to other environmental models and 

explained 54% of the variation in erosion. For accretion, pH ranked second and only explained 

13% of the variance in the data. Complementary to these findings, dissolution had a sharp 

negative relationship with pH (and temperature) while calcification had a weak, parabolic 

response to pH (and temperature) in the manipulation experiment. Reef erosion (and dissolution), 

rather than reef accretion, may be driving the negative relationship between ocean acidification 

and net calcification of coral reefs (Erez et al. 2011), and recent studies support this hypothesis 

(Rodolfo-Metalpa et al. 2011). My results and those from previous studies (Tribollet et al. 2009; 

Wisshak et al. 2012; Fang et al. 2013; Silbiger et al. 2014; DeCarlo et al. 2015; Silbiger and 

Donahue 2015) provide compelling evidence that erosion rates will increase under future ocean 

conditions.  

 

3) Local-scale variability is important to the accretion-erosion balance. Coral reefs are 

embedded in highly variable coastal ecosystems (Gagliano et al. 2010, Hofmann et al. 2011, 

Guadayol et al. 2014) where restricted water motion, terrestrial influences, and feedbacks 

between benthic productivity and calcification strongly influence the physicochemical 
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environment (Yates et al. 2007, Drupp et al. 2011, Massaro et al. 2012, Duarte et al. 2013, Smith 

et al. 2013). In Chapters 2 & 3, we characterized the spatiotemporal variability in pH, nutrients, 

chlorphyll a, and temperature along a 34m reef transect. Local-scale differences in pH drove 

patterns in accretion-erosion rates and had high explanatory power: net reef erosion (% change in 

volume) had an R2 of 0.64 and erosion rates had an R2 of 0.54, suggesting that local-scale 

physicochemical differences in microhabitats strongly influence accretion-erosion rates. Further, 

in the broad scale study (Chapter 4), the within-site spatial scale had the highest amount of 

variability in the data. These data provide compelling evidence that local-scale environmental 

variability is particularly important to the coral reef accretion-erosion balance and may pose 

challenges for predicting reef response. 

 

4) µCT is a good tool for measuring accretion-erosion rates. In Chapters 2-4, I used before 

and after µCT scans to calculate accretion rates, erosion rates, and percent change in volume in 

experimental blocks of CaCO3. In prior studies using experimental substrates, pre and post 

deployment buoyant weights have been used to calculate changes in density, mass, or volume, 

but buoyant weights are unable to distinguish between accretion and erosion processes. Imaging 

methodologies in 2-dimensions and, more recently, 3-dimensions (CT and µCT) can separate 

accretion and erosion on slabs or cores of reef, but rates are difficult to estimate because the 

period of exposure is unknown. Here, I developed a new analysis that uses µCT to separate reef 

accretion and erosion with a micrometer-scale resolution from the same experimental substrate 

exposed to the same environmental variation over the same time-scale. This µCT method also 

allows for a 3D visualization of the experimental blocks that highlights specific areas of 
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accretion and erosion. The development of this technique will advance the understanding of 

accretion-erosion beyond the limits imposed by traditional methods.   

  

5) Ocean acidity could tip the balance. Although there are many environmental drivers of 

accretion-erosion, there is a consistent pattern of higher erosion rates with higher ocean acidity. 

Erosion rates have shown an increase with rising ocean acidity on small spatial scales (Silbiger et 

al. 2014), large spatial scales (DeCarlo et al. 2015), and in laboratory studies (Tribollet et al. 

2009; Wisshak et al. 2012; Fang et al. 2013; Reyes-Nivia et al. 2013; Wisshak et al. 2013; 

Enochs et al. 2015; Silbiger and Donahue 2015). Though we did not find pH to be a strong 

predictor in secondary accretion, several studies have shown that coral calcification decreases 

with increasing CO2 (Hoegh-Guldberg et al. 2007; Kroeker et al. 2010; Pandolfi et al. 2011). 

Could ocean acidity tip the accretion-erosion balance? Previous studies on coral reefs have 

shown shifts from net accretion to erosion after major disturbances, such as El Niño-Southern 

Oscillation events or hurricanes  (Perry et al. 2008). The data from this dissertation indicate that 

pH is a significant driver of reef erosion and that, as mean pH decreases, erosion rates will 

increase. The combination of slower coral growth (Hoegh-Guldberg et al. 2007; Kroeker et al. 

2010; Pandolfi et al. 2011) and higher erosion rates (Tribollet et al. 2009; Wisshak et al. 2012; 

Fang et al. 2013; Reyes-Nivia et al. 2013; Wisshak et al. 2013; Enochs et al. 2015; Silbiger and 

Donahue 2015) in response to ocean acidification could act synergistically to hinder reef growth. 

Further, given the strong relationship between bioerosion and local anthropogenic impacts like 

sedimentation and nutrient runoff (Edinger et al. 2000; Le Grand and Fabricius 2011), the 

combined effect of these local impacts with decreases in pH in the global oceans could be 

devastating to reefs worldwide.  
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