

Susceptibility Weighted Magnetic Resonance

Imaging

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI„I AT MĀNOA IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCES

IN

ELECTRICAL ENGINEERING

May 2011

By

Eric K. Baxter

Thesis Committee:

Victor Stenger, Chairperson

Alek Kavcic

 Galen Sasaki

Keywords: GPU spiral recon, relaxometry, quantitative susceptibility, iron concentration

i

DEDICATION

 The culmination of this research and work is dedicated to my loving wife and son

for their patience and support during this time along with my father for his example of

perseverance and my mother for instilling in me her curiosity and love of science.

ii

ACKNOWLEDGMENTS

My deep appreciation goes to Dr. Victor A. Stenger for allowing me this

wonderful opportunity to conduct this research with him and his team. His mentoring is

the chief reason for the success of this effort. I would also like to thank Dr. Linda Chang

and Dr. Thomas Ernst for their support in bringing this to fruition. My gratitude also

goes to Dr. Weiran Deng who was my principle source for learning about the GPU and its

programming. Finally, my thanks go to the entire 3T MRI Research Lab team for their

friendship and commiseration in working to solve the challenges of MRI.

iii

ABSTRACT

 Susceptibility-weighted imaging (SWI) is an important MRI modality for

monitoring the progression of disease in the human brain. SWI is particularly sensitive to

iron. Iron concentration holds great clinical interest in the progression of many

neurological diseases as well as imaging blood. Challenges of these methods include long

acquisition and reconstruction times as well as artifacts due to bulk susceptibility

variations such as air/tissue boundaries. The scans in this study use spiral trajectories

which are efficient but computationally demanding to reconstruct which has prevented

spiral adoption in clinical applications.

In this thesis I helped address these concerns with the following four engineering

developments:

1. A simple method for T2* relaxometry was tested and analyzed. T2*-weighting

imaging proved most effective for detecting these effects.

2. An examination of the benefits and costs of a spiral-in versus spiral-out k-space

trajectory is presented. For observing blood vessels in MIPs, spiral-in shows advantages

due to T2* relaxometry high-pass filtering.

3. Long scans with high resolution are required to image small iron deposits. High

resolution scans become computationally challenging. A GPU-accelerated

implementation of the conjugate-gradient least-squares algorithm is presented to

reconstruct parallel MRI images quickly and accurately. This algorithm incorporates

iv

environmental corrections including T2* relaxation effects, coil SENSE, and off-

resonance field map to improve accuracy. The speed and effectiveness of this GPU

implementation is presented here.

4. The CGLS algorithm incorporating Tikhonov regularization is also implemented to

solve for quantitative susceptibility as a more direct measurement of iron concentration in

tissue. Results of a GPU-accelerated implementation of the susceptibility solver are

presented and compared with current literature and my relaxometry results.

v

TABLE OF CONTENTS

DEDICATION .. i

ACKNOWLEDGMENTS .. ii

ABSTRACT .. iii

LIST OF FIGURES .. viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 MRI Physics .. 1

1.2 Signal acquisition ... 2

1.3 Sampling ... 3

1.3.1 Spiral Trajectories ... 4

1.4 Imaging ... 5

1.4.1 T2* decay .. 6

1.4.2 Sensitivity Encoding (SENSE) ... 7

1.4.3 Field map correction ... 9

1.5 The Scanner.. 10

CHAPTER 2 ... 11

T2/T2* RELAXOMETRY ... 11

2.1 Clinical Background .. 11

2.2 Method .. 11

2.3 Analysis .. 13

2.4 Results .. 14

CHAPTER 3 ... 20

INHERENT HIGH-PASS FILTERING WITH SPIRAL-IN TRAJECTORIES .. 20

3.1 T2-Based Spatial Frequency Weighting ... 20

3.2 Results .. 22

CHAPTER 4 ... 25

THE RECONSTRUCTION PROBLEM ... 25

4.1 Regridding .. 25

4.2 The Conjugate-Gradient Least-Squares Approach ... 27

CHAPTER 5 ... 29

GPU ARCHITECTURE ... 29

vi

5.1 Design Philosophy .. 29

5.2 GPU Memory Types ... 30

5.2.1 Global Memory ... 30

5.2.2 Constant Memory ... 30

5.2.3 Texture Memory ... 30

5.2.4 Shared Memory .. 31

5.2.5 Registers .. 31

5.3 Computational Units .. 31

5.4 The Test System ... 32

CHAPTER 6 ... 33

CGLS IMPLEMENTATION ON GPU .. 33

6.1 Implementation Philosophy ... 33

6.1.1 Issues to be Addressed ... 33

6.1.2 Algorithm Design Requirements ... 34

6.1.3 The CPU Implementation .. 37

6.2 Reading Inputs ... 38

6.2.1 The RAW file .. 38

6.2.2 The SENSE file ... 39

6.2.3 The field map file .. 40

6.3 Generating K-space, spatial coordinates, and T2 Decay .. 40

6.3.1 Spatial coordinate calculations ... 40

6.3.2 K-space trajectory calculations ... 40

6.3.3 T2* decay vector ... 41

6.4 CGLS Calculations ... 41

6.4.1 Multiplying along k-space ... 43

6.4.2 Multiplying along image space ... 45

6.4.3 Miscellaneous calculations ... 47

6.4.4 Output ... 48

CHAPTER 7 ... 51

RECONSTRUCTION RESULTS AND DISCUSSION ... 51

7.1 Testing .. 51

7.2 Quantitative Analysis ... 51

vii

7.2.1 Sufficiency of SP floating-point representation .. 52

7.3 Image Quality ... 54

7.3.1 Effectiveness of SENSE .. 54

7.3.2 Effectiveness of the field map... 57

7.3.3 Noise rejection .. 58

7.4 Speed ... 59

7.5 CGLS Convergence ... 60

7.6 GPU Usage.. 62

7.7 Multiple GPUs .. 63

CHAPTER 8 ... 67

SUSCEPTIBILITY MAPPING.. 67

8.1 Introduction ... 67

8.2 Susceptibility Mapping ... 67

8.3 Implementation of CGLS for Susceptibility Mapping ... 71

8.4 Susceptibility Results ... 72

CONCLUSION .. 75

APPENDIX A .. 76

CONJUGATE-GRADIENT LEAST-SQUARES ALGORITHM ... 76

GLOSSARY .. 77

BIBLIOGRAPHY ... 79

viii

LIST OF FIGURES

Figure 1: Illustration of spiral trajectory sampling using 4 interleaved spirals. The k-

space plane is seen in a) while the behavior of kx and ky gradients is seen in b)................ 4

Figure 2: T2* decay illustration. T2* relaxation time is shortened in the presence of iron.

... 7
Figure 3: Illustration of coil sensitivities. Coils (blue circles) each have their own

sensitivity map. ... 8
Figure 4: a) fully sampled reconstruction. b) 2x undersampled with no SENSE map. c) 2x

undersampled with SENSE map ... 8
Figure 5: susceptibility artifact worsening with longer TE .. 9
Figure 6: images of typical mappings of a) T2 and b) T2* after using exponential fitting.

... 13
Figure 7: Mapping of a) T2 versus age and b) T2* versus age. Darker regions indicate

faster relaxation with increasing age... 14

Figure 8: Statistical significance maps of T2 age effect overlaid on the MNI brain

template for anatomical reference. Blue regions indicate statistical certainty of p<0.0005

... 15

Figure 9: Statistical significance maps of T2* age effect overlaid on the MNI template for

anatomical reference. Blue regions indicate statistical certainty of p<0.0005. 16

Figure 10: Statistical significance maps of T2* HIV effect overlaid on the MNI template

for anatomical reference. Blue regions indicate statistical certainty of p<0.02. 17
Figure 11: Statistical significance maps of T2* age-HIV interaction effect overlaid on the

MNI template for anatomical reference. Blue regions indicate statistical certainty of

p<0.01. .. 18
Figure 12: Illustration of the T2* relaxation effect on spiral-out versus spiral-in. Both

spirals trace same k-space locations. .. 20

Figure 13: Waveforms of scan protocol used to acquire both spiral-in and spiral-out scans

with similar TEs. ... 21

Figure 14: MIPs over 7 slices of a) spiral-in and b) spiral-out acquired scans. 22
Figure 15: Magnified view of MIPs shown in Figure 29. Arrows indicate regions of

better vascular acuity in a) spiral-in scans versus b) spiral-out. 23

Figure 16: Magnitude images showing susceptibility induced signal decay in both a)

spiral-in and b) spiral-out scans. ROIs outline identical regions in both images. Some

signal recovery is evident in the spiral-in ROIs. ... 24
Figure 17: a) gridded reconstruction with attenuation of object edges. b) CGLS

reconstruction with no edge attenuation. c) overlaid crossection of object magnitude for a

(blue), b (red). ... 26
Figure 18: Illustration of SENSE input rearrangement for optimal implementation. 40
Figure 19: Plot of T2* decay vectors applied to encoding matrix 41
Figure 20: Illustration of the matrix-vector multiplication along k-space with point-wise

multiplication with SENSE ... 44
Figure 21: CUDA kernel code implemented to perform matrix-vector multiplication

along k-space. ... 45
Figure 22: Illustration of the matrix-vector multiplication along the spatial domain with

SENSE incorporated into the encoding matrix. .. 46

file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658751
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658751
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658752
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658752
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658753
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658754
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658754
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658755
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658755
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658756
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658756
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658756
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658757
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658757
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658758
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658758
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658759
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658759
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658759
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658760
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658760
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658761
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658761
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658762
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658763
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658763
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658764
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658764
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658764
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658765
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658765
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658765
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658766
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658767
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658768
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658768
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658769
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658769
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658770
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658770

ix

Figure 23: CUDA kernel code implementing matrix-vector multiplication along the

spatial domain incorporating both SENSE and the field map. ... 47
Figure 24: Flow of algorithm to combine data from multiple coils into a single output

image. .. 49

Figure 25: Flow of algorithm to combine data from multiple oils into a single output

image. .. 49
Figure 26: Demonstration of phase wrapping and final phase image after high-pass

filtering. ... 49
Figure 27: a) Comparison of fully sampled images reconstructed with SENSE and b)

without SENSE. Note better tissue contrast with SENSE. .. 55
Figure 28: 2x undersampled reconstructing a) with SENSE and b) without SENSE. The

undersampling scheme used here also undersampled the center of k-space introducing

strong aliasing effects. .. 56

Figure 29: NRMSE measurements of 4 different undersampling rates with SENSE (blue)

and without SENSE (orange). ... 57

Figure 30: a) image reconstruction with field map applied b) calculated field map c)

image reconstruction with no field map applied. .. 58

Figure 31: Time comparison of CGLS algorithm implemented on a CPU (squares) and

the Tesla C1060 GPU (triangles) for increasing encoding matrix sizes. 60
Figure 32: plot of NRMSE at each iteration tested against an idealized reconstruction. . 61

Figure 33: demonstration of CGLS convergence at several iterations. 62
Figure 34: Illustration of CGLS implementation with multiple GPUs. 65

Figure 35: graph of CGLS reconstruction time for a 10 slice volume using several GPUs

in parallel. ... 66
Figure 36: Surface plot of the dipole response through 5 slices. 69

Figure 37: a) Example of phase image input into susceptibility calculations. b) Resultant

susceptibility map calculated using 5 surrounding slices. Brighter areas indicate stronger

susceptibility. .. 73
Figure 38: Mapping of regions with susceptibility calculated to be ferromagnetic. 74

file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658771
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658771
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658772
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658772
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658773
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658773
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658774
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658774
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658775
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658775
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658776
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658776
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658776
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658778
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658778
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658779
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658779
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658780
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658781
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658782
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658783
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658783
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658784
file:///C:/Users/Eric/Documents/Baxter_thesis.docx%23_Toc291658786

1

CHAPTER 1

INTRODUCTION

1.1 MRI Physics

Magnetic Resonance Imaging (MRI) has become one of the most widely used

medical imaging techniques today. MRI makes use of magnetism and radio frequency

(RF) transmissions rather than ionizing radiation used by other biomedical scan

technologies. This removes concerns of damage to DNA and makes MRI an attractive

choice for longitudinal studies such as monitoring the progression of disease and effects

of aging. While MRI can be employed in many flexible modalities, the underlying

principle remains Nuclear Magnetic Resonance (NMR).

NMR was independently discovered in 1946 by Felix Bloch and Edward Purcell.

These two men shared the Nobel Prize for Physics in 1952 for their work. The principle

of NMR derives from the observation that many nuclei have both intrinsic magnetic

moments and quantum spin. In their natural state most objects do not exhibit any net

magnetization because the magnetic moments of each of the nuclei are not aligned.

When an external magnetic field, B0, is applied to the object the magnetic moments of

the nuclei are forced to align themselves parallel to the external field. This yields a net

magnetization from the object.

The application of an external magnetic field will induce a torque on the magnetic

moment of the nuclei. This will cause a precession of the moment around the axis of the

applied field. The angular momentum of this precession is specific to the nuclei and

2

proportional to the strength of the applied field. The angular frequency, known as the

Larmor frequency is described by: ω = -γ*B0. The gyromagnetic ratio, γ, is a isotope-

specific ratio of proportionality between angular frequency and the applied field. The

hydrogen atom is most commonly imaged due to the abundance of water in the brain and

has a gyromagnetic ratio of γ = 42.58Mhz/T. The precessing nuclei are now susceptible

to energy absorption when an electromagnetic pulse is applied at the correct resonant

frequency equal to the Larmor frequency. These resonant frequencies fall within the RF

range of the electromagnetic spectrum. Applying a RF pulse orthogonal to B0 at the

Larmor frequency will cause the nuclei to absorb energy and begin to precess at an angle

further away from the direction of the B0 field. This angle is known as the flip angle and

is proportional to the energy of the RF pulse. The nuclei are now in a higher energy state.

When the RF pulse is removed the nuclei will radiate RF energy as their flip angle

decreases again toward the axis of B0. This process is known as relaxation and yields the

means to measure local magnetism through the Maxwell-Faraday equation.

1.2 Signal acquisition

When relaxation occurs the change in magnetization in the spin system causes RF

energy to be radiated from each nucleus and return to its normal energy state. In NMR

this signal is detected by the principle of electromagnetic induction by a nearby receiver

coil. A small current is induced in the coil which is then converted to voltage which is

then digitized and stored. The actual electromagnetic response of each coil is dependent

of magnetic loading which varies with subjects‟ physiology and can effect phase

measurements between each coil.

3

1.3 Sampling

 Sampling of k-space must be done in such a manner as to allow us to reconstruct

an image of the scanned object with sufficient quality. Enough detail must be present in

the image and the entire region of interest (ROI) must be displayed for an image to be of

diagnostic quality. These two criteria are controlled by k-space sampling.

 The finer details of an image are often of great interest. These may be tissue

boundaries, blood vessels, or signs of traumatic injury such as hemorrhagic lesions.

Small, highly localized, details in images are represented in the higher spatial

frequencies. These frequencies correspond to the farther regions of k-space. Most of the

energy in the image will be obtained at relatively low frequency regions centered around

the k-space. In spiral imaging, the sampling density is highest in these low spatial

frequency areas. While having less of the overall signal energy the higher spatial

frequency areas contain the more visually interesting details. Unfortunately, reaching

these higher frequencies requires either very strong gradients with fast slew rates or

additional scan time at more reasonable gradients. Strong gradients with high slew rates

may not be realizable as they can induce Peripheral Nerve Stimulation (PNS) and violate

Specific Absorption Rate (SAR) limitations. Both of these effects must be mitigated in

order to maintain proper safety margins. The alternative is to use smaller gradients and

take a longer time in reaching higher spatial frequencies. This is one of the fundamental

tradeoffs in obtaining high-resolution MRI images.

 The other major sampling consideration for MRI is obtaining a proper Field-of-

View (FOV). The FOV is the image's region of support based upon the underlying k-

space sampling scheme. The FOV is a consequence of the Nyquist-Shannon sampling

4

theorem and is defined as 1/Δk. Decreasing the distance between k-space samples will

expand the unaliased region of image space, the FOV. Given an object of a known size, it

can be determined the appropriate sampling density to use in k-space to establish a

sufficient FOV. Of course, increasing the sampling density, thus expanding the FOV, also

requires additional samples and longer scan time. If it is desirable to keep scan time

short, one must settle for a lower kmax which decreases the image resolution. These are

the tradeoffs that must be made for an unaliased reconstruction.

1.3.1 Spiral Trajectories

 All scans and tests done in this study were performed by spiral k-space

trajectories. Spiral trajectories have several advantages that make them very attractive.

Spiral sampling is done by oscillating the kx and ky gradients to sample in a spiral k-space

pattern. Such a trajectory is seen in Figure 1.

Figure 1: Illustration of spiral trajectory sampling using 4 interleaved spirals. The k-

space plane is seen in a) while the behavior of kx and ky gradients is seen in b).

 Spiral sampling is ideal for quickly and efficiently covering k-space. By sampling

in a spiral pattern we can keep the gradients from abrupt changes which could induce

PNS in the subject. Maximum slew rates for gradient switching can be constantly

5

achieved without uncomfortable or potentially dangerous side effects to the subject. The

spiral pattern is a very fast method of scanning because the gradients almost constantly

operate at their maximum while yielding good coverage of k-space.

 While the spiral has many sampling advantages, the non-equispaced sampling

locations disallow the use of the FFT and make it computationally demanding to

reconstruct into an image. The challenges associated with this are discussed in detail in

Chapter 4.

1.4 Imaging

While these signals can be detected more must be done in order to form an image of

an object. Spatial information must be encoded for a coherent image to be reconstructed.

As stated in Section 1.1, the Larmor frequency is directly proportional to the applied

magnetic field. Orthogonal field gradients are applied concurrent with the B0 field. This

varies the resonant frequency along the B0 field axis, usually referred to as the z axis.

The resonant frequency is now a function of position along the B0 field. This allows one

to select a plane perpendicular to the z axis by selecting the specific resonant frequency

for that position. All nuclei within the object are subjected to the selective RF pulse but

only those precessing within the bandwidth of pulse absorb and then emit RF energy.

Any signals detected at the receiving coils are then known to originate from nuclei in that

plane. The bandwidth of the RF slice selection pulse dictates the slice thickness and has a

powerful effect on the signal-to-noise ratio (SNR). The thickness of scan slices is also

dictated by the bandwidth.

Spatial information must also be encoded in the xy in-plane directions. Frequency

encoding gradients in the x and y-axis directions are now applied to correlate spatial

6

position with gradient strength. During a signal acquisition, these gradients, Gx and Gy

are varied according to the pattern of trajectory dictated by the user. The gradients are

representative of spatial frequencies being sampled as the scan progresses. Plotting the

spatial frequencies forms an abstraction known as k-space. For each position in k-space a

complex value is sampled by the receiver coils and stored. These data form a two

dimensional representation of the Fourier transform of the spatial image of the scanned

object. For our purposes a spiral k-space trajectory was used for all scans.

1.4.1 T2* decay

T2* relaxation is due to de-phasing effects of transverse magnetization after the

application of the RF excitation pulse. The ferromagnetic properties of iron cause the

T2* effect to be accelerated. Iron acts as its own magnetic source in the surrounding

tissue and prompts de-phasing to occur more quickly. This effect is illustrated in Figure

2. Clearly T2* is sensitive to the magnetic susceptibility of the tissue being scanned.

Fast de-phasing is observed as darker areas in image magnitude compared to surrounding

tissues with normal T2* relaxometry.

7

Figure 2: T2* decay illustration. T2* relaxation time is shortened in the presence of

iron.

1.4.2 Sensitivity Encoding (SENSE)

In order to reduce the amount of time patients and subjects spend in the scanner

parallel imaging techniques (pMRI) have been developed. Time is gained during scans

by sampling smaller sets of k-space. Less data is being acquired and so less time is

needed for the gradients to complete their decreased trajectories. This undersampling

saves scan time but increases the Δk between samples and shrinks the FOV accordingly.

Trying to reconstruct an object smaller than the new FOV will result in aliasing of that

object in image space. Information from multiple receiver coils is used to combat this.

Sensitivity encoding (SENSE) was first proposed by Pruessman and Weiger (1) as a

way to minimize aliasing and increase SNR by using multiple receiver coils to insert

some additional spatial information into scan data. A coil's sensitivity is related to its

proximity to the signal source, in this case hydrogen protons. A coil's sensitivity is

8

increased for those parts of the object closest to it and diminishes radially outward.

Increasing the number of coils can also increase the reduction factor that can be gained in

scan time.

SENSE maps are typically measured by obtaining a fully sampled dataset at low

resolution. The relative strength of the signal magnitude can then be determined for each

coil at every point within the FOV. This concept is demonstrated in Figure 3.

By knowing the sensitivity map of each coil we can weight the scan data

appropriately in reconstruction to significantly reduce aliasing artifacts. A simulated

demonstration of SENSE can be seen in Figure 4.

Figure 4: a) fully sampled reconstruction. b) 2x undersampled with no SENSE map. c)

2x undersampled with SENSE map

Figure 3: Illustration of coil sensitivities. Coils (blue circles) each have their own

sensitivity map.

9

1.4.3 Field map correction

Ideally the B0 field is homogeneous, however; in practice this is not the case.

When performing in vivo scans, field inhomogeneities arise near air/tissue boundaries.

When imaging the brain, this problem is often observed above the sinus cavities and

surrounding ear canals. This disturbance in the field‟s flatness causes an off-resonance

effect to occur in those areas. The Larmor frequency is now regionally varying

depending on the physiology of the subject. The larger the off-resonance the faster signal

decay will occur in T2 and T2*. The problem is compounded with longer scans as the

effect accumulates. This is illustrated in Figure 5. Signal voids appear tissue areas that

may be of interest. With knowledge of the off-resonance field map it is possible to apply

some correction in off-line image reconstruction.

 Here we represent the spatially varying off-resonance term as ω(r) later in

Equation. 1. Calculation of this parameter is done by performing two scans with a small

ΔTE between them. Two phase maps are created from these scans. The difference

between these two phase measurements and the known time between them gives us the

off-resonance map for our calculations.

Figure 5: susceptibility artifact worsening with longer TE

10

1.5 The Scanner

 The scanner used for all MRI scans in this study was a Siemens Trio 3T whole-

body scanner using 4 head coils. Brain images presented in this paper were all acquired

in vivo from adult subjects in accordance with IRB standards. Each dataset was scanned

using a spiral sequence with multiple interleaves. For the susceptibility-weighted images

shown here the slice thickness was 2mm with a 15
o
 flip angle, TE = 30ms, and TR = 1s.

11

CHAPTER 2

T2/T2* RELAXOMETRY

2.1 Clinical Background

 In 1958 Hallgren and Sourander (2) published a landmark paper from a

postmortem study of iron distribution throughout the brain. Since then, iron

concentration has been the subject of many studies investigating iron and its role in both

the aging process and disease progression. Iron's ferromagnetic properties make it an

ideal choice for imaging using magnetic resonance techniques in vivo. Iron concentration

in the brain is of medical interest in many neurodegenerative diseases including

Alzheimer's and Parkinson's (3), Huntington's (4) (5), multiple sclerosis (6), HIV (7) and

a slew of others. With such a wide-ranging neuropathy it is clear the ability to monitor

iron in the brain could be a crucial clinical tool.

 Directly imaging iron with MRI can be problematic. The ferromagnetic nature of

iron causes de-phasing and signal decay more rapidly than the tissue itself. This causes

signal gaps to appear at shorter TEs in areas of higher iron concentrations. This effect is

evidenced by a shorter transverse relaxation time, T2, as well as T2*. We expect

relaxation times should also decrease, signaling increased iron, as a part of the aging

process as well. This would correlate with Hallgren and Sourander's results of elevated

iron as a function of age.

2.2 Method

 This study scanned 43 healthy HIV-negative and 34 HIV-positive subjects ranging

12

in age from 18-72 years. To balance age distribution for covariance analysis 34 subjects

of each group were compared. The seronegative subjects' ages were 50 ± 12.4 years.

The HIV-positive subjects' ages ranged 48 ± 9.7 years. According to (7), HIV-positive

subjects should exhibit a quicker T2 and T2* signal decay due to increased iron

accumulation. The normal aging process should also evidence this effect. A multi-scan

method of increasing echo times was tested to see if this effect could be detected and if so

to what extent.

 To measure T2 and T2*, relaxation ten scans of both types were done per research

subject with increasing TE for each scan. T2-weighted images were obtained at TEs

ranging from 8-150ms. T2*-weighted images were obtained at TEs ranging from 3-

100ms. Every scan was performed on the Siemens Trio 3T whole-body scanner using

four head coils. The scan used four spiral interleaves with a 4s TR and a flip-angle of

90
o
. The FOV was set at 22cm. Each scan obtained 24 5mm thick slices reconstructed to

a 128 x 128 x 24 image matrix.

 The image volumes were placed into a 4D matrix, the 4
th

 dimension being TE, for

linear registration to a standard MNI brain in the FSL (8) software package. The MNI

brain is a commonly used template for standardizing an image space for group analysis.

Registration of the scanned images was done in the FSL software package by applying an

affine transformation to translate the images into a standard image space. The results

were then loaded into MATLAB for numerical analysis.

 To determine the actual values of T2 and T2* decay within a voxel an exponential

decay was fit for each voxel along the TE dimension of the 4D matrix. This yielded a

rate of decay for that subject at the voxel. This was done throughout the whole brain to

13

produce full mappings of T2 and T2* decay. Example images can be seen in Figure 6.

2.3 Analysis

 If these T2 and T2* mappings are to be useful in monitoring the aging process, we

must determine whether we can observe an age-related effect on the relaxometry.

Subjects' T2 and T2* mappings were arranged in aged order then used to calculate values

for T2-versus-age and T2*-versus-age maps. These maps of the rate of T2 and T2*

change are displayed in Figure 7. A blurring effect is evident due to the group averaging

that has been done when combining many subjects into a single image. Even with some

blurring anatomical structures can still be observed.

Figure 6: images of typical mappings of a) T2 and b) T2* after

using exponential fitting.

14

As aging occurs, such T2- and T2*-vs-aging maps show the fastest signal relaxation in

the putamen and pallidum in both hemispheres. This appears more pronounced in the left

hemisphere of the brain. This observation was present for both HIV-positive and

negative subject groups.

 ANCOVA tests were done to establish whether these observations were

statistically significant. The two subject groups' T2 measurements at each voxel in the

scan volume were tested co-varying for age. HIV status, age, and their statistical

interaction on the relaxometry measures were calculated for each voxel. This created a

whole brain map of the statistical significance of the differences observed both between

the groups and as a result of the aging process. The age distributions of both groups were

matched as closely as possible to increase the certainty of statistical results.

2.4 Results

 The ANCOVA calculations were performed in MATLAB using their statistical

toolbox and aoctool. A T2 age effect was measured in both putamen, particularly in the

Figure 7: Mapping of a) T2 versus age and b) T2* versus age.

Darker regions indicate faster relaxation with increasing age.

15

left putamen, with the level of statistical significance being p<0.0005 as displayed in

Figure 8.

No similar regions of statistical significance were observed when testing for an HIV-

related effect on the relaxometry measures for T2. Significant age-HIV statistical

interaction was not observed in the T2 scans either.

 When testing the T2* scans, strong statistical significance for an age-related effect

was observed again in the left putamen with a certainty of p<0.0005. A mapping of this

Figure 8: Statistical significance maps of T2 age effect overlaid on the MNI brain

template for anatomical reference. Blue regions indicate statistical certainty of

p<0.0005

16

result is seen in Figure 9 for slices of interest.

In analyzing the HIV-driven effect on T2* measurements some statistical significance

was calculated in the pallidum in both hemispheres where p<0.02. This mapping can be

seen in Figure 10.

Figure 9: Statistical significance maps of T2* age effect overlaid on the MNI template

for anatomical reference. Blue regions indicate statistical certainty of p<0.0005.

17

 T2* scans were also able to show an age-HIV related interaction in the

relaxometry measurements. The result is less significant than age itself but it is still

present. A mapping of this significance can be seen in Figure 11 for p < 0.01. As with

the HIV effect by itself, this interaction was most significant in the pallidum.

Figure 10: Statistical significance maps of T2* HIV effect overlaid on the MNI

template for anatomical reference. Blue regions indicate statistical certainty of

p<0.02.

18

The T2 age-related effects in the putamen and pallidum are in agreement with

current literature such as (9). HIV-driven effects seen in T2* concurs with a similar study

done by KA Miszkiel et al., (7). Asymmetry between the hemispheres is a well-known

neurological issue. A review of this literature can be found in (10). This may be in part

due to handedness, education, linguist skills, or other tasks which are hemispherically

preferential.

 The clinical importance of these specific results is outside the scope of this

Figure 11: Statistical significance maps of T2* age-HIV interaction effect overlaid on

the MNI template for anatomical reference. Blue regions indicate statistical certainty

of p<0.01.

19

investigation but the agreement with literature serves as validation that the method is

sound. Aging effects and disease progression both show statistical significance in

specific areas of the brain. However, a relaxometry investigation like this is only useful

for groups and cannot be easily applied to the individual. As a surrogate marker for iron

concentration, relaxometry is able to show relativistic changes in tissues but yields no

way of measuring actual iron density in any given region. Furthermore, large voxel sizes

suffer from partial volume effects. This is the averaging of effects within each voxel

which can mask out minute changes. Using a higher resolution scan with very accurate

image reconstruction is desirable. A fast and accurate method for image reconstruction is

necessary to accommodate higher resolutions with more k-space samples. This motivates

the use of GPUs (Graphics Processing Units) in Chapters 4-7. Furthermore, quantitative

susceptibility measurements are needed to begin measuring actual iron concentrations in

vivo. An approach to this problem is presented in Chapter 8.

20

CHAPTER 3

INHERENT HIGH-PASS FILTERING WITH SPIRAL-IN

TRAJECTORIES

3.1 T2-Based Spatial Frequency Weighting

 T2* signal decay occurs even as a MRI readout is being acquired. This has a

filtering effect on any images reconstructed from the k-space data. Spatial frequencies

which are obtained early during readout have endured less T2* signal decay and so will

be weighted more heavily in image reconstruction. This is demonstrated in figure 12.

Notice the classical high-pass filtering shape inherent in the spiral-in acquisition.

It was hypothesized that a spiral-in trajectory would be weighted toward the higher

spatial frequencies because they would be acquired before significant T2* decay had

occurred. This should give spiral-in images better fine details while only mildly

sacrificing overall contrast. We also anticipated that spiral-in scans would also show

some signal recovery near air-tissue boundaries were susceptibility artifacts are large.

This occurs in regions such as those above the sinuses and around the ear canals. These

regions, particularly above the sinuses, are of neurological interest and T2* decay effects

present a challenge for imaging.

Figure 12: Illustration of the T2* relaxation effect on spiral-out versus spiral-in.

Both spirals trace same k-space locations.

21

 Images were reconstructed from both spiral-in and spiral-out trajectories and

qualitatively compared. Volumes of susceptibility-weighted images (SWIs) for both

spiral-in and spiral-out scans consisted of 32 2mm thick slices reconstructed to a 512 x

512 x 32 image. The FOV was set to be 22cm, TE = 30ms, TR = 100ms, with a flip-

angle of 30
o
. The spiral-in was immediately followed by the spiral-out. This gives a

nearly identical TE for both trajectories. The k-space trajectory had 36 interleaved spirals

of 5,120 samples each. Identical k-space trajectories were traced for both spiral-in and

spiral-out. The gradient waveforms shown in Figure 13 show the progression of the

spiral-in/out protocol.

Figure 13: Waveforms of scan protocol used to acquire both spiral-in and spiral-out

scans with similar TEs.

22

3.2 Results

 Spiral-in and spiral-out images were reconstructed using identical methods.

Because the images were simultaneously acquired they needed no further steps to make

direct comparisons. As theorized, the spiral-in images displayed more fine details than

the spiral-out images. This is most clearly seen around the edges of blood vessels. A

typical method for viewing blood vessels is to produce what is called a Minimum

Intensity Projection (MIP). This is done by simply projecting the minimum intensity

value along a desired line of sight into a single plane. Blood vessels show up as dark

regions in SWI and so these MIPs will show the connectivity of blood vessels through

multiple slices. MIPs taken over the same slices from both spiral-in and spiral-out were

compared. Examples of these MIP images can be seen in Figure 14. A zoomed in view

of identical areas is presented in Figure 15 for closer inspection of the blood vessels.

Figure 14: MIPs over 7 slices of a) spiral-in and b) spiral-out acquired scans.

23

 To visualize the signal recovery seen in the spiral-in scans two identical Regions-

Of-Interest (ROIs) were drawn on images with large susceptibility artifacts where

significant signal loss has taken place. As predicted, more signal was present in the sinus

and ear canal regions of the spiral-in acquisitions than the spiral-out. An example of this

comparison can be seen in Figure 16.

Figure 15: Magnified view of MIPs shown in Figure 29. Arrows indicate regions of

better vascular acuity in a) spiral-in scans versus b) spiral-out.

24

While spiral-in shows advantages in the magnitude images for signal recovery and

vascular detail an analysis of the phase images shows advantages for the spiral-out

trajectory. Magnitude imaging is T2*-dependent. The longer the TE or the later after the

RF pulse, the more strongly T2* decay affects the image. Magnitude images benefit

from quick echo times. To maximize the contrast of a phase image, however, we must

allow sufficient time for tissue de-phasing to occur. The higher spatial resolution

components of the spiral-out are acquired at a later TE than our spiral-in scans. This

gives spiral-out an advantage in exhibiting fine vascular detail in the phase images. It is

tempting to keep increasing TE to obtain stronger contrast in phase imaging. The benefit

is negated for echo times which are too long by the total de-phasing of the protons. As

the TE becomes longer, phase wrapping is exacerbated. Eventually the excessive phase

wrapping will foil attempts to high-pass filter them out and obtain a useable image. A

balance must be maintained between these criteria.

Figure 16: Magnitude images showing susceptibility induced signal decay in both a)

spiral-in and b) spiral-out scans. ROIs outline identical regions in both images. Some

signal recovery is evident in the spiral-in ROIs.

25

CHAPTER 4

THE RECONSTRUCTION PROBLEM

4.1 Regridding

 Images must be reconstructed by applying an inverse Fourier transform-type

operation on the scanned data. Data acquired with non-Cartesian k-space trajectories,

such as spirals, can no longer be directly reconstructed into image space by an inverse

FFT (Fast Fourier Transform). Non-equispaced sampling schemes must employ a variety

of other techniques for image reconstruction.

 The most widely used of these techniques is called gridding. Conceptually,

gridding refers to the process of resampling the non-Cartesian data onto a Cartesian grid.

Once this is done a standard inverse FFT can very quickly and easily reconstruct the

image. Unfortunately, the speed and ease at which this can be done comes at a cost. In

the process of resampling errors are introduced. An interpolation of data from their

present positions to new ones along Cartesian coordinates cannot be perfect. It has been

shown in (11) that the optimal gridding operation is convolution with a sinc function

before Cartesian resampling. The impracticality of representing a sinc function to an

infinite extent requires a more reasonable convolution kernel. In (12), the authors present

results from convolving the data with a Kaiser-Bessel windowing function (13) instead.

While the Kaiser-Bessel function has a strong central lobe it is accompanied by many

smaller sidelobes which can degrade the image. Furthermore, the central lobe exhibits

rolloff on its edges which will cause attenuation of the object's edges in the final image.

Figure 17 displays this effect. A rolloff correction can be applied to flatten out the central

26

lobe's profile but this causes the relative strength of the sidelobes to increase. The

sidelobes will be a source of aliasing in the reconstructed image. A proposed solution to

this problem is to extend the FOV. This has the effect of extending the effective size of

the central lobe to encompass the object while aliasing from the sidelobes will be outside

our actual region of interest. However, to increase the FOV requires decreasing k-space

sample spacings, Δkx and Δky, which lengthens scan time. Ideally, we would like to

avoid the need to resample onto a Cartesian grid and its inherent difficulties.

2.2 The conjugate-gradient

Figure 17: a) gridded reconstruction with attenuation of object edges. b) CGLS

reconstruction with no edge attenuation. c) overlaid crossection of object magnitude

for a (blue), b (red).

27

4.2 The Conjugate-Gradient Least-Squares Approach

 The conjugate-gradient least-squares (CGLS) approach to the image

reconstruction problem is essentially an inverse linear system optimization problem.

Eqn. 1 describes the relationship between the acquired signal data and the image to be

reconstructed.

 𝑆𝑁(𝑘(𝑡)) = ∫ 𝐶𝑁(𝑟)𝑓(𝑟)

𝐹𝑂𝑉

𝑒−𝑖[𝑟∙𝑘(𝑡)+𝜔(𝑟)]𝑑𝑟
[1]

 Here, 𝑆𝑁(𝑘(𝑡)) denotes the signal measured at each receiver coil, N, as a function

of time. The vector 𝑟 contains each spatial coordinate in the final reconstructed image.

The variable 𝑓 represents the complex values of the resultant image for which we are

trying to solve. 𝐶𝑁(𝑟) contains the coil sensitivity values based on spatial location. The

k-space trajectory is seen in k(t). The integral is taken over the entire FOV.

 A discrete version of Equation. 1 can be written as a simple linear system of the

form

 𝑲𝑓 = 𝑆 [2]

The matrix, K, contains the complex exponential Fourier transform components defined

by the FOV spatial coordinates and the k-space trajectory sample locations. Also within

the encoding matrix are the coil sensitivities and field map information. In the linear

system the Fourier transformation has already been applied to the scanned object

producing the time-dependent signal measured at the coils. The K matrix is almost never

directly invertible. In order to resolve the image we apply the conjugate-gradient least-

squares solver. We now wish to perform the following minimization:

28

𝑚𝑖𝑛

𝑓
‖𝑲𝑓 − 𝑆‖

2

2

[3]

 An iterative approach is used to resolve the image incrementally closer to the

actual image. Such an algorithm was implemented on CUDA-enabled GPUs and tested

for execution speed and image quality verses a CPU-based implementation. The exact

algorithm followed for both can be seen in Appendix A. This algorithm requires the

calculation of each element in the K matrix, which can be quite large. A computationally

efficient method for populating these values is required for any implementation to be of

practical use. The architecture of Graphics Processing Units (GPUs) has proven very

beneficial for such operations.

29

CHAPTER 5

GPU ARCHITECTURE

5.1 Design Philosophy

 The philosophy behind the GPU architecture has been massive parallelization.

While traditional pipelined CPUs operate on only a thread at a time at different pipeline

stages, GPUs are capable of performing operations on many threads simultaneously. This

is ideal for calculating results which are each independent. The GPU design was born

from the need for faster graphics calculations involving many matrix and vector

operations. These devices require fast memory accesses, good availability of floating-

point ALUs, and minimal synchronization. Such devices have already been shown

effective in accelerating tailored RF pulse design (14) and (15).

 High memory bandwidth is essential for GPU applications as all input data and

output results must be passed between the GPU and the host system and be able to

accommodate results from the massive parallelism of the GPU. This often means writing

to many sequential memory addresses. Therefore, an emphasis is put on one- and two-

dimensional memory locality for optimal speed. The GPUs themselves contain several

levels of memory. Each have their own advantages and must be used properly to avoid

potential bottlenecks as described in Section 5.2.

 GPUs contain many identical units known as stream processors. These processors

are designed to operate in parallel and yield high through put of arithmetic instructions.

The management of these resources is typically left to the GPU device itself. The GPUs

operate in tandem with their host CPU machines which largely control the logical flow of

a given algorithm.

30

5.2 GPU Memory Types

 5.2.1 Global Memory

 The GPU's global memory is the largest available on the device. The host

machine will perform memory copies into this area of the GPU before any further

processing occurs. These take place in 32-, 64,-, or 128-byte memory transactions. This

storage area is typically implemented with DRAM. Unfortunately, the tradeoff for large

storage capacity is slower bandwidth and long latencies. Accesses to global memory

must be minimized in order to avoid creating bottlenecks in execution. All GPUs used in

this study had 512MB of global memory available on-chip.

 5.2.2 Constant Memory

 The constant memory also physically resides within the global memory but is also

loading into a cache to speed read accesses. In order to achieve fetch acceleration, the

constant cache is read-only during kernel executions. If a kernel requests a value not

currently in the cache, a miss occurs and necessitates a read from the slower global

memory. Constant memory accesses will usually be faster, and never worse than, global

memory accesses. Constant memory can cache 64KB of data.

 5.2.3 Texture Memory

 Texture memory is also a kind of cache of global memory space. Usage of this

area is ideal when repeatedly accessing data with high one- or two-dimensional locality.

Texture memory is optimized for broadcast to many stream processors. Memory

addressing is performed outside the kernel execution. The performance of this cache

achieves a constant latency. Only when a cache miss occurs does the access slow to

31

global memory performance. Texture memory can contain 2
27

 bytes which is

approximately 128 MB.

 5.2.4 Shared Memory

 Shared Memory resides within the stream processors themselves. If care is taken

to avoid access collisions, this memory, along with registers, is the fastest available

storage on the GPU. Their spatial proximity to the processors allows shared memory to

be faster than any other memory. The scope of shared memory only extends to the

current threadblocks being executed. Once the threadblocks are done and the kernel

finishes execution the shared memory is cleared. Maximizing the use of shared memory

is ideal for reducing computation time but size limitations must be observed. Only 8KB

of shared memory was available on the GPU devices in this study.

 5.2.5 Registers

 Registers are also only accessible within their threadblocks. These have similar

latency to shared memory but are typically used for storing temporary values. It is

common for the compiler to determine the exact use of registers as needed in execution

but they can also be specified by code. Registers are relatively few in number and their

use must be kept to a minimum. If too many registers are demanded by a kernel it may

force a reduction in warp size, the number of threads that can be executed in parallel.

Overuse of registers can also force the compiler to use the slower global memory as a

stand-in. This causes a dramatic reduction in performance and should be avoided.

5.3 Computational Units

 The GPU devices used in this study were NVIDIA Tesla C1060s, each GPU

32

device used in this study was of compute capability 1.3. This refers to the architectural

version of the NVIDIA hardware. This hardware includes special computational cores

and functional units to carry out specific common tasks. These units include 8 CUDA

cores used for both integer and single-precision (SP) floating-point arithmetic along with

one double-precision floating-point unit. Two special floating-point units (SFUs) are

present in the architecture and are useful for calculating the results of certain functions

such as trigonometric or exponential operations. A warp scheduler is available to control

the execution of the warps across numerous multiprocessors. Each of these devices

contains 30 multiprocessors and 240 CUDA cores, (16).

5.4 The Test System

 All CPU tests were performed on a 2.66 GHz quad-core Intel Xeon machine with

3GB of system RAM running the Mac OS X 10.6 operating system. Experiments for

performing reconstructions using GPU device cards were performed on a Linux PC with

a 2.66 GHz quad-core Xeon central processor with 32GB DRAM. Through the PCI

express 2.0 slots, the machine was installed with four NVIDIA Tesla C1060 GPU

devices. Each of the Tesla devices contains 240 CUDA cores, running on a 1.3 GHz

clock with 4 GB of GDDR3 on-card memory with a memory bandwidth of 102 GB/sec.

Both the Xeon CPU and Tesla C1060 graphics cards are capable of IEEE-754 Standard

for single-precision (SP) floating point format. The Tesla C1060 also includes capability

for double-precision (DP) floating point format as well.

33

CHAPTER 6

CGLS IMPLEMENTATION ON GPU

6.1 Implementation Philosophy

 6.1.1 Issues to be Addressed

 A few guiding principles were established to ensure the fastest reconstruction and

quality of results. The matrix-vector multiplications are the most computationally

intensive instructions in the CGLS algorithm. This is especially true as k-space trajectory

readouts become longer or a higher spatial resolution is required. These two parameters

dictate the size of the encoding matrix, K. If we wish to reconstruct to an image matrix of

size MxM (single slice) pixels with a readout length of T samples and employ N number

of coils the resultant encoding matrix is of size 4xMxMxTxN elements. The 4x multiplier

is necessary because of the need to split the matrix into both real and imaginary parts in

the following manner:

 (
𝑲𝑅 −𝑲𝐼

𝑲𝑰 𝑲𝑹
)

[4]

Each of these elements is stored as a SP float and therefore occupies four times the

number of bytes as elements. Clearly for high resolution MRI scans with long readouts it

is vitally important to calculate the elements of the encoding matrix in the most efficient

manner possible.

 Explicitly storing the K matrix is also out of the question. MRI datasets of even

modest resolutions and readouts quickly overwhelm the GPU's global memory space.

Even if sufficient memory was available, the matrix is used twice per CGLS iteration,

necessitating a great deal of fetching from global memory which introduces a very

34

constrictive bottleneck. The solution to these issues is to avoid explicitly storing the

encoding matrix itself but instead to calculate matrix elements on an as-needed basis.

 The image quality that results from GPU computation must also be carefully

tested against traditional reconstruction techniques. Because of the asynchronous nature

of threadblock scheduling in the GPU, long floating-point summations are not guaranteed

to yield the same results as those performed in a deterministic order on a CPU. It is

possible to structure the algorithm such that threadblocks are executed in a consistent

order on the GPU but this would be detrimental to the speed advantages from massive

parallelism. This issue is discussed in further detail in Section 5.2.1.

 Another question that needs to be addressed is whether or not SP floating-point

calculations are sufficient for the purpose of the algorithm. While it's true the algorithm

could simply be extended to operate with double-precision (DP) floating-point

representation, the limited availability of DP calculation units present a bottleneck for

execution. As seen in section 5.3, the number of SP units available is 8 verses only 1 DP

unit. This introduces congestion for these resources when using DP. It is shown in

section 7.2.1 that with proper care potential limitations of SP can be avoided without

resorting to DP and drastically slowing down reconstruction. The latest generation of

GPU devices with compute capability 2.0 has additional DP units which should help to

alleviate this limitation.

 6.1.2 Algorithm Design Requirements

 MR image reconstruction often requires very large encoding matrices as well as

transposed versions for each iteration of CGLS execution. The matrix can quickly

overwhelm all available device memory if stored explicitly. It is therefore necessary to

35

calculate elements of the matrix on an as-needed basis. It is very important that these

values be calculated quickly so that the algorithm can finish in a reasonable amount of

time. As seen below, six principles were proposed as design goals in order to streamline

the algorithm.

1) Use fastest available memory

2) Reuse calculations as much as possible

3) Ensure all kernel inputs are cached

4) Use fast Special Function Units

5) Maximize parallelism and occupancy

6) Optimize blocksize

 The fastest available memory within the GPU is the shared memory, described in

Section 5.2.4. This memory was used to calculate and store the elements of the encoding

matrix as needed in the CGLS algorithm. Using this level of memory minimizes accesses

to global memory which would cause a couple orders of magnitude slowdown in

execution. Since this memory is cleared when a threadblock has completed execution no

extra code was needed to prepare the shared memory for use again.

 Ideally one can reuse elements of the K matrix once they have been calculated in a

particular sub-block. It can be observed from Equation 4 that the upper left quadrant of

the matrix and the lower right quadrant are identical. Therefore the algorithm

implements the calculation of only the upper left quadrant values but multiplies these

values with both the real and imaginary parts of the data. A similar observation is made

for the lower left quadrant and the upper right quadrant, differing only by sign. These

symmetries allow us to only calculate half of the elements of the full matrix. This

36

provides a very large advantage.

 The third design principle is to cache all kernel inputs. Size limitations in cached

memories force careful use of these tools. Vectors of long k-space trajectories or high

spatial resolutions must be stored in the slower global memory. When a CUDA kernel is

about to execute the sections of the k-space trajectory and the spatial coordinates

necessary for that particular section of the encoding matrix are cached into the texture

memory, described in Section 5.2.3. The memory reads within the kernel itself are all to

the cached texture memory to feed the inputs to the encoding matrix element calculations.

These accesses are quite fast and are in accordance with the strong spatial localities

which the texture memory fetches are optimized for. This type of memory is the fastest

available which can accommodate the necessary data sizes. Binding the texture cache to

global memory locations just before kernel execution minimizes cache misses which

would drastically hurt speed performance.

 Part of the CUDA architecture is the SFU (Special Function Unit). These are

specialized ALUs with built-in SP floating-point functions such a trigonometric and

exponential functions. These units operate more quickly than the typical arithmetic

functions by sacrificing some accuracy. Truncated Taylor series are used in the case of

sine and cosine functions used in the CGLS implementation. These functions are well-

behaved and no limitations are necessary to restrict their outputs to acceptable ranges.

The qualitative and quantitative effect the reduction in numerical accuracy has on the

final image reconstruction requires careful analysis.

 Parallelism is the most important advantage offered by a GPU implementation.

Maximizing the amount of parallel execution can have a tremendous effect on

37

performance. The GPUs used in this study are capable of executing 512 threads per

multiprocessor simultaneously. This number may be decreased by overuse of registers

and shared memory. A balance must be struck between using the ultra-fast shared

memory and registers against maximizing the amount of parallelism. The CUDA

Occupancy Calculator (17) was used to assist in analyzing the appropriate allocation of

these resources. Ideally 100% occupancy can be achieved without reducing register or

shared memory use to a detrimental level.

 The dimensions of threadblocks in the kernel execution are also important to

speed. User code can vary the size of threadblocks while keeping the number of threads

in a threadblock constant to maximize occupancy. The optimal size of the blocks is

algorithm dependent and must be experimentally determined. The performance

variations of different sizes are largely dictated by the spatial locality of the memory

accesses in the kernel. Memory collisions caused by non-optimal block sizes force

serialized access and cause large delays.

 Some of the simple matrix-vector operations necessary for the CGLS algorithm

are already freely available in code libraries. For this program the freely available

CUBLAS (CUDA Basic Linear Algebra Subprograms) were used to implement vector-

vector dot product operations as well as vector copies from one variable to another for

each iteration.

 The GPU implementation of the CGLS algorithm presented here employs all of

the techniques described above. The performance impact of these optimization principles

is analyzed in the Chapter 7.

 6.1.3 The CPU Implementation

38

 Many of the optimizations described in Section 6.1.2 are not available in a CPU

implementation of the same algorithm. This is simply due to the serialized nature of the

CPU execution pipeline. The operational flow of the CPU code mirrors that of the GPU

implementation as much as possible. CUBLAS functions available to the GPU execution

are replaced with CBLAS (Complex Basic Linear Algebra Subprograms) library. All

program inputs are read from command line parameters and data files in identical ways

between the two versions. Close similarity of the code adaptations is necessary to

properly analyze advantages and disadvantages of GPU or CPU execution.

6.2 Reading Inputs

 6.2.1 The RAW file

 Code to read in all data from disk drives was identical in both CPU and GPU

implementations of the program. Raw data files from the scanner were used as data input

to the algorithm. These files have no preprocessing and are exactly as copied from the

scanner computer. The first 48 bytes of the file are dedicated to scan parameter values

which are used to parse the rest of the data. This header is followed by the measured data

from the MRI signal acquired during the scan in SP floating-point representation.

 The header contains information about the arrangement of data in the file these

include the number of receiver coils, slices, spiral interleaves, and k-space samples per

interleave as well as gradient levels and slew rates. Image domain parameters such as

FOV and an appropriate image matrix size are given. All of these values are read into

variables with global scope to be used throughout the image reconstruction process.

 The scan data must now be read in and careful parsing must take place to arrange

the data into the most appropriate ordering to use in the CGLS algorithm.

39

 A rearrangement of the raw data as it is read in is motivated by a desire to

simplify array indexing which would otherwise be quite complicated. This is especially

important within the kernel executions. Thread IDs are used inside the CUDA kernels as

indexes for k-space and spatial location arrays. By arranging the raw data into a

favorable organization up front the indexes can be more straightforward and prevent extra

indexing calculations inside CUDA kernels which would need to execute for every

thread.

 6.2.2 The SENSE file

 Coil sensitivities are also included in an input file given to the CGLS code. The

SENSE file contains image information to properly weight those parts of the image that

were in closest proximity to that particular receiver coil during scan. This file is also

organized such that indexing is simplified within the CUDA kernel. The SENSE

coefficients from each coil are duplicated so that there are now both real and imaginary

versions of the coil information. This requires slightly more global memory to store the

vector which is now twice as long but saves overly complicated array indexing when

applying the coefficients to the encoding matrix. This arrangement is performed only

once rather than repeated index calculations for each thread during parallel execution.

All data from the SENSE file are read in as SP floats. Figure 18 displays the on-disk

SENSE file data arrangement and the duplication that takes place. The SENSE data can

now be applied by point-wise multiplication when operating in the spatial image domain.

40

6.2.3 The field map file

 The field map input file is simply a vector representation of the off-resonance

frequencies calculated using the method described in Section 1.4.3. These measurements

are independent of the number of coils so the same correction values were applied to each

coil. These values are stored in global memory and then loaded into texture cache for fast

retrieval.

6.3 Generating K-space, spatial coordinates, and T2 Decay

 6.3.1 Spatial coordinate calculations

 The two domains needed for the population of the encoding matrix are the k-space

trajectory and the image-domain coordinates to be reconstructed. The image coordinates

are derived directly from the desired reconstruction resolution and the FOV. The x and y

vectors to specify these locations will be identical and can be easily calculated by

determining the image dimensions and equally dividing the FOV between these locations.

 6.3.2 K-space trajectory calculations

 The k-space sample locations are also calculated based on scan parameters which

are read from the raw data file's header. The spiral trajectory code in the reconstruction

Figure 18: Illustration of SENSE input rearrangement for optimal implementation.

41

code matches code used in the MRI scan computer. The code used in the GPU

reconstruction algorithm is an adaptation of the spiral trajectory code from Douglas C.

Noll of the University of Pittsburgh and John Pauly of Stanford University. Calculations

to create the kx and ky vectors are based on scan parameters such as the number of spiral

interleaves, the desired FOV, the sampling frequency, and maximum gradient slew rates.

These calculations are done only once during the algorithm and are completed very

quickly.

 6.3.3 T2* decay vector

 A vector to quantify the T2* decay must be calculated for the encoding matrix as

well. This vector takes into account the relative amount of signal decay that has occurred

throughout a single ADC readout. The T2* decay effect is addressed in more detail in

chapter 2. Accounting for T2* attenuation properly weights the sampled data along a

readout. This becomes especially important with long readouts. Knowing the k-space

sampling period, the echo time (TE), and the number of samples in each readout the

vector is calculated and plotted in Figure 19.

6.4 CGLS Calculations

 All of the steps described above occur identically in the CPU and GPU

Figure 19: Plot of T2* decay vectors applied to encoding matrix

42

implementations of the reconstruction code. At this point there is some divergence as the

GPU version begins to take a multithreaded approach to the CGLS calculations. Copies

of the data described in Sections 6.2 and 6.3 are moved into global memory on the GPU

device. This is a straightforward memory copy and requires negligible time in the

algorithm.

 In accordance with the design principles laid out in Section 6.1.2, the vectors used

to populate the elements of the encoding matrix are cached into texture memory. Texture

memory is the fastest available storage for data of this size. The sizes of the thread- and

gridblocks needed to perform the matrix-vector multiplication step, d = K
H
m, are now

determined. The Tesla C1060 GPU used in this study allows threadblocks of up to 512

total threads. Grid sizes are limited to 65,535 blocks in either the first or second grid

dimension. The grid limitation can present a problem when reconstructing very large

datasets.

 Two approaches can be taken when constrained by the grid size limitation. First,

the threadblock sizes can be increased in that dimension if doing so does not create a

problem along the other dimension. This solution, however, can have profound

performance implications when the threadblock dimensions are not optimal. The second

approach is to simply divide the problem into manageable grid sizes and execute the

kernel for as many grids are necessary. In this case, two sets of grid dimensions are

created. One set will be maximized along the problematic dimension. The other set will

be scaled back along the same dimension to take care of any residual threads not

calculated in the maximum sized grids. This creates some additional overhead but is not

as drastic a performance cost as altering the threadblock dimensions.

43

 Threadblock sizes were chosen to maximize multiprocessor occupancy and allow

the calculations to be performed in shortest time possible. All threadblocks were set to

execute 512 threads. This is a convenient value since data in the k-space spirals is

acquired in 1024 sample interleaved chunks and makes sizing easy. The dimensions of

the blocks were determined experimentally.

 6.4.1 Multiplying along k-space

 The first matrix-vector operation to be performed for the CGLS solver requires

the calculation of the inner product of the encoding matrix, K, against the raw k-space

sampled scan data. This is the first step of the algorithm which will make extensive use

of parallel execution on the GPU. A kernel is launched to perform the multiplication

including the population of the elements of K. The inputs of this kernel are the spatial

and k-space trajectory vectors as well as the SENSE, field map, and T2 decay vectors all

previously cached into the texture memory.

 A block of shared memory identical to the size and dimensions of the threadblock

is allocated to store the elements of K needed for that particular block, part of the overall

matrix. The corresponding section of raw scan data required is also copied into another

portion of shared memory. Shared memory is the fastest available and will be cleared

when the block's execution is completed.

 The elements of K are now calculated without the trigonometric functions

required to split the values into real and imaginary parts. This allows for the reuse of

these elements for either situation. Included in this calculation are the field map and T2

decay terms. The SENSE component has been factored out to be applied after the

matrix-vector multiplication is complete. A point-wise multiplication can quickly apply

44

the SENSE coefficients to the matrix-vector product. This greatly reduces the number of

floating-point operations necessary. Figure 20 shows how the multiplication takes place.

 In order to form the real and imaginary components of the matrix trigonometric

functions are necessary. For the real components a simple cosine function is needed. In

the imaginary components a sine function is required and the sign changes as well. These

functions are implemented in the SFUs of the GPU as truncated Taylor series. A shorter

truncation than normal allows for faster calculation at the expense of numerical accuracy.

The limited availability of SFUs for DP floating point is a principle reason for remaining

in SP floating-point representation.

 The fast trigonometric functions are applied to the real and imaginary components

then these two pieces and partial summations already computed across the row are added.

This step requires a write to global memory. This is performed for both real and

imaginary portions of the product. Several syncthreads() commands are needed in the

kernel to keep threads synchronized for each step. The kernel code described here is seen

in Figure 21.

Figure 20: Illustration of the matrix-vector multiplication along k-space with point-

wise multiplication with SENSE

45

 A separate kernel is used to perform the point-wise multiplication to apply the

SENSE coefficients to the image-domain result. The non-SENSE product is pre-cached

into the texture memory for the multiplication to take place in the quickest way possible.

 6.4.2 Multiplying along image space

 The multiplication along image space is very similar to the multiplication that

takes place along k-space. The difference here is mainly how the SENSE information is

incorporated into the encoding matrix. Multiplying along the image-domain coordinates

will yield a representation of the data in k-space. The SENSE coefficients can no longer

simply be point-wise multiplied to the result because they are an image-domain

Figure 21: CUDA kernel code implemented to perform matrix-vector multiplication

along k-space.

46

representation. The values must now be incorporated directly into the matrix-vector

multiplication. As in Section 6.4.1, the k-space, image-domain coordinates, SENSE and

field map values along with the now image-domain transformed scan data are cached into

the texture memory.

 The threadblock size is optimized again for best speed performance and the kernel

is launched. Here again it may be necessary to employ multiple grids if any grid

dimensions are too large for the GPU. A block of shared memory is allocated to the

storage of the K matrix elements. The transformed scan data is also read into shared

memory. As before, the K values are calculated with the exception of applying the

trigonometric functions. The fast trigonometric functions are again applied as needed to

account for the real and imaginary components along with the appropriate sign changes.

The sine and cosine are again implemented with the SFUs. After the trigonometric

functions are applied the SENSE coefficients are multiplied to the result. Both the real

and imaginary portions as well as any partial sums previously calculated are summed and

written to global memory. The layout of these operations is displayed in Figure 22.

Figure 22: Illustration of the matrix-vector multiplication along the spatial domain

with SENSE incorporated into the encoding matrix.

47

 Again syncthreads() commands are necessary to avoid creating memory race

conditions. The kernel code governing these calculations is given below in Figure 23.

6.4.3 Miscellaneous calculations

 Other than the major matrix-vector calculations there are several more steps to

complete in the CGLS algorithm. Several memory copies are required as well as

calculating L2 norms. These are implemented by using CUBLAS library tools. The

Figure 23: CUDA kernel code implementing matrix-vector multiplication along the

spatial domain incorporating both SENSE and the field map.

48

CUBLAS library is freely available and gives the user access to common linear algebra

functions in very streamlined implementations.

 The steps described above are completed for each of the coils used in the scan.

Originally, the attempt was made to implement a CGLS algorithm which would

automatically combine the separate images from each coil into a single image within the

conjugate-gradient itself. This approach yielded poor results. It was found that without

phase unwrap filtering the images could not be easily combined. Each coil detects a

different phase image. These images are similar but phase wrapping complicates their

combination if no filtering is done. If the coils are directly combined without

unwrapping the phase images, phase cancellations occur and yield an image full of

artifacts. If the phase is unwrapped and then combined during the CGLS iterations, then

the algorithm is attempting to converge to a wrapped version of the raw scan data.

Incorporating the unwrap filter would require filtering of both the raw data itself before

any other CGLS calculations are done. This would be costly in time and more

complicated than simply applying the filter afterward. The two methods yield

mathematically identical results. Allowing each coil to be reconstructed separately then

combined in the last step is more straightforward, faster to compute, and more easily

debugged for errors in particular coils.

 6.4.4 Output

 At the completion of each iteration the current solution is copied from the GPU's

global memory to the host system's central RAM, then to the hard drive. This output file

is in SP floating-point representation. Each coil is represented separately with the first

half of the values for that coil being the real component while the second half contains

49

the imaginary values. The solutions for each coil are concatenated as seen in figure 24.

In order to combine the coils into a single composite image the phase of each coil

must be unwrapped. The real and imaginary components are first combined into their

Figure 26: Demonstration of phase wrapping and final phase image after high-pass

filtering.

Figure 24: Flow of algorithm to combine data from multiple coils into a single

output image.

50

magnitude/phase representation. A high-pass filter is applied to each coil's phase image

to remove the low frequency phase wraps which obscure the underlying tissue-contrasted

phase. A simple Fermi filter is employed to perform this operation. Both the wrapped

and unwrapped images are demonstrated in Figure 25.

51

CHAPTER 7

RECONSTRUCTION RESULTS AND DISCUSSION

7.1 Testing

 Image reconstruction tests were performed from a variety of datasets to evaluate

the GPU implementation of the CGLS reconstruction algorithm. Simulated datasets were

generated using MATLAB code to mimic scanner raw data output. These were used to

test the code under conditions which may have not been practical in the scanner. The

MATLAB code is capable of creating datasets of any number of coils with any image or

k-space parameters desired. Noise of different types and strengths can also be applied to

the simulated datasets. This allows us to evaluate the reconstruction under known

conditions.

 Actual scanner data was also reconstructed and analyzed. These datasets were

acquired by sequences currently used in the lab's other research protocols. Brain scans

were taken of human test subjects in accordance with IRB regulations. These scans are

real-world test conditions with all of the associated confounding factors including

physiological differences increasing B0 field inhomogeneity, T2 decay, coil SENSE, and

signal noise. Parallel MRI scans were performed using 4 head coils.

7.2 Quantitative Analysis

 The Normalized Root Mean-Squared Error (NRMSE) was used as a quantitative

measure for how well the reconstructions have performed. Several simulated phantom

objects were reconstructed with both the CPU and GPU implementations of the CGLS

reconstruction algorithm. Despite having identical algorithms, reconstructions resulting

52

from the two approaches are not identical. The average NRMSE between CPU and GPU

CGLS reconstructions on the same dataset was 0.07. The source of these variations

appears to be two fold. First, the fast trigonometric functions used in the GPU algorithm

sacrifice accuracy for speed. In our tests, the effects of this tradeoff were negligible as

the calculation of the trigonometric functions was not a major bottleneck for speed. A

slowdown of 2% was measured for the GPU algorithm when not using the fast

trigonometric functions without improving the error observed earlier.

 The second source of variation in reconstruction results arises from the nature of

floating-point operations. In a CPU serial-pipeline environment the addition of values

represented as floats takes place in a deterministic order, yielding a consistent result. The

dynamic thread scheduling of the GPU architecture means that without explicit code to

order the pairwise additions, which would incur additional latency, there is nothing

guaranteeing that results from all threads are added in the same pairing. It is important to

note that while the CPU and GPU solutions may differ slightly, neither one can be said to

be more correct than the other. Additionally, the error bound of floating-point arithmetic

on a set of values is independent of the data distribution (18) based on the assumptions of

Wilkinson's standard model (19). Therefore, results from both the CPU and GPU

implementation, while different, agree very closely. No visual distinction was observed.

 7.2.1 Sufficiency of SP floating-point representation

 As alluded to in section 6.1.1, it is appropriate to ask whether or not SP is

sufficient for the needs of the CGLS algorithm. SP was chosen over DP based on

consideration for data sizes and availability of computational resources in the GPU. Of

particular concern are datasets with very long k-space trajectories or high-resolution

53

reconstructed images. Either of these situations necessitates long reduction operations

when performing matrix-vector calculations which could cause overflow problems when

using SP. This would occur when trying to represent a number whose value exceeds 10
38

.

Assuming a k-space trajectory with 1 million points (about 1/3 more than our longest

scans), we can calculate that the average value required in a sum, such as occurs in the

dot-product operations, to cause an overflow exception is on the order of 10
32

. This is

many orders of magnitude beyond anything in our scans or the algorithm. Therefore,

single-precision floats are sufficient to avoid overflow issues and this issue has never

been observed in actual scan data.

 To test the algorithm to its fullest, a pathological simulated dataset was generated

to force a SP overflow when performing the matrix-vector operations. This introduced

NaN values into calculated results in the recursion, rendering the output images useless.

However, including a simple scaling factor on the raw data as soon as it is read from the

file allows the values to be scaled to avoid an overflow occurrence while preserving

reconstructed image quality and contrast. SP is therefore sufficient for the algorithm.

 This is advantageous as DP instructions in the GPU are significantly more

computationally costly. SP functions require 28 bytes of local memory, doubles require

44 bytes (20). Executing instructions for each thread using single-precision requires 4

clock cycles, whereas double-precision requires 32. Also, for CUDA-enabled

architectures of compute capability less than 2.0, each multiprocessor contains 2 single-

precision functional units but only 1 DP functional unit. SP representation is the best

choice because it requires less memory, fewer clock cycles, and makes better use of

available functional units.

54

7.3 Image Quality

 Evaluating the quality of the image reconstructions is a subjective comparison and

does not easily lend itself to a direct process. Three criteria were established to judge the

relative quality of the different reconstruction methods. These are:

 1) Contrast

 2) Blur

 3) Noise

 Image contrast must be strong enough to enable the differentiation of tissue types

and blood vessels and to be able to discern anatomical structures. The resultant images

must not be blurry but have sharply localized tissue boundaries and features. Noise must

be rejected sufficiently to allow for a clear view of the underlying image.

 7.3.1 Effectiveness of SENSE

 The inclusion of coil sensitivities into the reconstruction improves SNR and adds

some regularization to the linear inverse problem. This allows us to try to reconstruct

images from undersampled k-space. As discussed in Section 1.4.2, when we

undersample k-space we are effectively reducing the FOV and therefore introducing

aliasing artifacts into our image. By including SENSE we are including additional

weighting information in our calculations which can mitigate this aliasing.

 To easily test the effectiveness of including the coil sensitivities we generated a k-

space trajectory in the normal fashion then ignored every other interleave. This has the

effect of undersampling k-space by a factor of 2. It is important to note that this is not the

typical undersampling scheme. The usual approach to undersampling will still include a

full or nearly full sampling of values near the k-space origin. This gives the benefit of

55

eliminating aliasing artifacts stemming from the lower spatial frequencies where these

components would be stronger than those from the higher spatial frequencies. A

comparison of reconstructions using no SENSE map and one employing the appropriate

SENSE map are seen in Figure 26.

Applying a SENSE map to the 2x undersampled case we can still see some

degradation of the image but many of the aliasing effects have been reduced. An

example of a 2x undersampled image reconstruction using SENSE is seen in Figure 27.

Notice that aliasing has been pushed mostly to the edges of the FOV. These aliasing

effects could be further reduced by fully sampling the area around the k-space origin

while undersampling the more outlying spatial frequencies.

Figure 27: a) Comparison of fully sampled images reconstructed with SENSE and b)

without SENSE. Note better tissue contrast with SENSE.

56

By reducing the number of data samples by a 2x factor this also reduces the calculation

time by a factor of 2x as well.

 Further undersampling is possible but the amount of aliasing increases

accordingly. This diminishes the utility of the reconstructed images if the amount of

undersampling is too great. However, an accurate SENSE map with information from

several coils this problem can be mitigated to some extent. To test our implementation of

the GPU-accelerated CGLS solver a fully sampled image was reconstructed using a four

coil SENSE map. This was considered as our benchmark image against which we

compared various undersampling rates both with and without SENSE maps. The

NRMSE was calculated between our undersampled reconstructions and the fully sampled

ideal. The results of these measurements are displayed in Figure 28. The tests show

increasing NRMSE as the undersampling factor increases but the error is significantly

less using an accurate multiple coil SENSE map. This demonstrates the advantage of

Figure 28: 2x undersampled reconstructing a) with SENSE and b) without SENSE.

The undersampling scheme used here also undersampled the center of k-space

introducing strong aliasing effects.

57

parallel MRI which can achieve higher SNR and allow undersampling. This is also an

advantage of the CGLS algorithm over gridding techniques which cannot perform

SENSE reconstruction with undersampling.

Figure 29: NRMSE measurements of 4 different undersampling rates with SENSE

(blue) and without SENSE (orange).

 7.3.2 Effectiveness of the field map

 To accurately reconstruct an MRI image we must also take into account

inhomogeneity in the B0 field. These off-resonance effects occur near air/tissue

boundaries. This is most frequently seen in areas above the sinus cavities and around the

ear canals in brain scans. So far in the reconstructions we have assumed that the

underlying B0 field is homogeneous. Because of air/tissue boundary susceptibility off-

resonances this is a poor assumption. If this effect is not taken into account areas with

strong inhomogeneity are somewhat blurred in the image reconstructions. We can see the

effect of the field map represented as ω in Equation 1.

58

 A common method for measuring the field map is to take two scans with a small

ΔTE between them. This allows a phase difference to accrue between the scans. In a

completely homogeneous case with no off-resonance the difference should be the same

everywhere. In the presence of inhomogeneity the phase difference, ΔΦ, is increased.

The images in Figure 29 show the reconstruction without a field map, the calculated field

map itself, and the reconstruction applying that field map.

 Notice the images are still very similar but some signal recovery has occurred in

the frontal area above the sinus.

 7.3.3 Noise rejection

 With any real-world MRI scan noise is present. The two CGLS algorithms were

tested against each other to ensure the GPU version is as effective as the CPU approach

in rejecting noise as well as to demonstrate the ability of the CGLS algorithm itself.

Simulated phantom datasets were generated which allow us to control noise levels for

testing. Each dataset was tested on both the GPU and GPU implementations of the

CGLS algorithm. An ideal dataset with no noise was created with otherwise identical

Figure 30: a) image reconstruction with field map applied b) calculated field map c)

image reconstruction with no field map applied.

59

parameters for comparison. The results of this comparison are seen in Figure 30.

Figure 30: SNR of reconstructed images plotted against the SNR of the given input for

CPU (blue squares) and GPU (red triangles)

7.4 Speed

 The reconstructed images from the CPU and GPU versions of the CGLS

algorithm are intended to be identical. This is not precisely the case for reasons outlined

in Section 7.2.1 but the two images should be indistinguishable to the eye. The

advantage of employing the parallelism of the GPU is speed. Many parallel threads

calculating simultaneously should enjoy greater throughput than a CPU implementation

executing one or a few threads at a time.

To measure the algorithm's acceleration on the GPU several simulated phantom

datasets were generated in MATLAB and reconstructed on both the CPU and GPU code

versions. The length of the k-space trajectories and final image resolution were varied to

increase the size of the encoding matrix. Times were measured by start/stop commands

within the code to measure total execution times of the CGLS iterations. Reading and

60

processing of program inputs were not included in these measurements because the two

code versions are identical in this respect and doing these tasks requires negligible time in

the overall execution.

 The vast majority of execution time is spent performing the matrix-vector

multiplications necessary for the CGLS solver. This is also the easiest code to execute in

parallel. The acceleration afforded by the GPU is clearly demonstrated in Figure 31. The

GPU reconstruction shows acceleration factors ranging from 72-98x over the CPU

implementation.

7.5 CGLS Convergence

 It is important to understand the convergence behavior of the CGLS algorithm to

develop reasonable stopping criteria. CGLS can be performed for an arbitrary number of

iterations but we would like to know the point of diminishing returns where taking the

time to calculate additional iterations will not yield any appreciable benefit. To test this

many experiments were performed on simulated images of various resolutions versus an

Figure 31: Time comparison of CGLS algorithm implemented on a CPU (squares) and

the Tesla C1060 GPU (triangles) for increasing encoding matrix sizes.

61

idealized version of these images. This allows us to calculate the NRMSE of each

iteration against the ideal. The expected L-curve convergence behavior was observed

and can be seen in Figure 32. In repeated experiments of different scan parameters the

lowest NRMSE consistently occurred on or just after iteration number corresponding to

√𝑟𝑒𝑠. This is advantageous since increasing the image resolution will more slowly

increase the number of iteration required for convergence.

It should be stressed that low NRMSE does not necessarily mean that the image is

the best one. An analysis of error does not necessarily correspond with human perception

of the highest quality image. A simple inspection of different iterations revealed good

correlation between low NRMSE and image quality with no discernible difference in

iterations beyond the lowest NRMSE. For an idea of the improvement in image quality

versus the number of iterations see Figure 33.

Figure 32: plot of NRMSE at each iteration tested against an idealized reconstruction.

62

7.6 GPU Usage

 Taking full advantage of the GPU's parallel architecture is paramount in the

algorithm's performance. In an ideal situation, maximum occupancy of the

multiprocessors will give the greatest instruction throughput. The CUDA Occupancy

Calculator (17) was used to evaluate potential block sizes and register and shared

memory usages. The Occupancy Calculator is a spreadsheet-based tool provided by

NVIDIA which allows the user to select a GPU compute capability along with block sizes

along with shared memory and register requirements. The user can see what effect

changes in these parameters will have on multiprocessor occupancy and what may be

causing any limitation.

 An option is available with the CUDA nvcc compiler to display actual kernel

usage of important computing resources. These include usage of local, shared, and

constant memories along with register and the overall occupancy achieved by each kernel

in the code. Results from these measurements were used to help analyze and reduce

bottlenecks limiting occupancy of the multiprocessors.

 Initially the CUDA kernels achieved 67% occupancy on the multiprocessors. This

was seen to be limited by the number of registers being used. After some code

Figure 33: demonstration of CGLS convergence at several iterations.

63

adjustments to reduce the register usage and increase use of shared memory occupancy

now achieves 100% during all kernel executions. The limitation is now simply due to the

number of blocks per multiprocessor. This number can vary depending on the compute

capability of the GPU. Testing the same design parameters on the latest GPU

architecture, compute capability 2.0 the results still show 100% occupancy. The code is

well designed to reach maximum parallelism in all CUDA GPUs currently available and

for the foreseeable future.

7.7 Multiple GPUs

 The ability to quickly and easily install multiple GPU devices in a single

computer is another advantage of the GPU approach. Several GPU cards may be

installed and increase the parallelism available to the algorithm. In contrast, CPU

clusters are needed to extend their computational power but these are much more

complicated to set up and maintain. A 4 GPU Tesla C1060 system, such as used in this

study, is capable of 4 tera-FLOPS (floating-point operations per second). A CPU cluster

of similar capability would cost roughly 20 times this configuration (14).

 The multi-GPU environment can be easily programmed with the CUDA language

extensions. CPU clusters are not as easily programmable and their use has a much higher

learning curve. Any changes to the number or configuration of a CPU cluster may

necessitate code changes to adjust to the new environment. Meanwhile CUDA greatly

simplifies the problem and very easily accommodates upgrades and changes.

 The system in this study used 4 Tesla C1060 GPU devices. There are many

different ways the GPUs could be used together in the reconstruction problem. It is

desirable to maintain maximum occupancy across all of these devices and each of the

64

multiprocessors within them. Minimizing data sharing between GPUs is important for

performance reasons. Interdependence between the devices could create a situation

where one device is waiting on another for some result. This would prolong latency and

slow down the overall performance of the algorithm. Also, data sharing between GPUs

must be transferred on the host's data bus. Such bus accesses are much slower than

internal memory accesses within a single GPU. An optimal solution maintains

independence of the GPUs while using all of them to their fullest extent.

 Dividing the reconstruction problem evenly across the GPU devices by scan slice

is the most efficient and straightforward approach. Slices are acquired independently in

the MRI scan and can also be reconstructed separately. It might seem ideal to divide the

computation by coil. This is possible but makes reaching the goal of reusing sections of

the encoding matrix as much as possible more complicated. For instance, the field map

of each slice is unique. If the problem is divided by coil field maps for every slice will

need to be loaded into every device. This takes additional time and memory. Splitting

the problem by reconstructing one whole slice per device ensures the independence of the

GPUs, uses the minimum memory space, and requires the least control overhead by the

host machine.

 This solution was testing by reconstructing a volume of slices allocating each

slice to a separate GPU. This approach is illustrated in Figure 34.

65

 In reconstructing a large volume of many slices a new slice would begin

reconstruction on a GPU as soon as the previously assigned one was done. The time

required to reconstruct the entire volume should be reduced by a factor of N number of

GPUs used. Figure 35 below shows very good results from this arrangement. A multi-

slice dataset of a set size was reconstructed on a varying number of GPUs. As the

number of GPUs used in the test were increased, the total reconstruction time decreased

in close agreement with the expected 1/N rate. There is some cost associated with using

multiple GPUs. This is due to control overhead created by the host communicating with

Figure 34: Illustration of CGLS implementation with multiple GPUs.

66

the GPUs. Per slice this overhead never exceeded 13% in any of the tests. This means

that while using multiple GPUs each slice may take slightly longer to reconstruct than it

would only using one GPU but the total throughput is roughly N times higher.

Figure 35: graph of CGLS reconstruction time for a 10 slice volume using several

GPUs in parallel.

67

CHAPTER 8

SUSCEPTIBILITY MAPPING

8.1 Introduction

 As we have seen, analysis of iron concentration is of great importance in

monitoring the progression of disease in the brain. The ability to specifically quantify

and analyze the distribution of ferromagnetic materials in human tissue could provide

useful contrast and important metrics for the study of disease. Of particular interest are

artificial magnetic contrasts such as gadolinium. Such paramagnetic contrasts are used to

increase tissue contrast by changing a tissue's natural relaxation time.

 Traditional methods relying predominantly on tissue contrast from image

magnitude is limited when imaging ferromagnetic molecules due to strong T2* effects

which cause rapid signal decay. By creating a susceptibility map we can quantify how

much iron may be present in a given voxel.

8.2 Susceptibility Mapping

 Susceptibility mapping can be done by considering a detailed fieldmap as the

result of the sum of all dipole-dipole interactions within the FOV. The interactions of the

dipoles are governed by Maxwell's magnetostatic field equation (21) and the Lorentz

sphere correction. These principles are employed to calculate the localized magnetic

fields created by dipole moments. The dipole response is the spatial domain is described

by Equation 5 below.

 𝑑(𝑟) =
3 𝑐𝑜𝑠2(𝜃) − 1

4𝜋𝑟3

[5]

68

 To calculate the field map based upon a susceptibility distribution this dipole

response is convoluted with the susceptibility map. This convolution is done in the

spatial domain. This formulation is seen in Equation 6 (22) where it can be seen that the

change in the B0 field is a convolution of the dipole response with the distribution of

susceptibility. Alternately, this can be done by a point-wise multiplication of the Fourier

transformed dipole response by the Fourier transformed susceptibility map. This

formulation is seen in Equation 7. An example of the spatial dipole response is seen in

Figure 36.

 ∆𝐵(𝑟) =
1

4𝜋
∫ 𝜒(𝑟′)

3 𝑐𝑜𝑠2(𝜃) − 1

|𝑟′ − 𝑟|3
𝑑3𝑟′

𝑟≠𝑟′

[6]

 ∆𝐵(𝑟) = 𝐹−1 {(
1

3
−

𝑘𝑧
2

𝑘2
)

−1

𝐹(𝜒)}
[7]

69

 At first, this point-wise frequency multiplication relationship makes the inverse

problem of solving for the susceptibility map from the field map appear to be a

straightforward operation. Unfortunately, the dipole response does not lend itself to easy

inversion. At points where k
2
 = 3kz

2
the dipole response becomes zero. In the spatial

domain, this corresponds to the “magic” angle of 54.7
o
 between two dipoles and the B0

applied field. When performing the inverse of the frequency domain relationship these

zeros cause the problem to be ill-posed. It has been suggested that an appropriate

discretization can avoid these zeros while substituting very small coefficients, (23). This

avoids some computational problems but further problems remain. The small values near

Figure 27: Surface plot of the dipole response through 5 slices. Figure 36: Surface plot of the dipole response through 5 slices.

70

the zeros cause strong noise amplification in the solution when the inversion is

performed. Another approach is necessary.

 If we formulate the forward problem as a convolution in the spatial domain and

express this relationship in a matrix-vector format we get eqn. 8.

 Dχ = ψ [8]

 Here, D, is the dipole response matrix. Each column represents a different voxel

location. The same is true for each row. At the matrix' intersection of a particular row

and column is the dipole response between them based upon their Euclidean distance and

the angle between them in relation to the external B0 applied field. The variable, χ, is the

susceptibility mapping to be solved for. The measured field map is represented here by

ψ.

 Eqn. 8 is in the familiar system form for our CGLS linear system solver. In this

spatial formulation the “magic” angle zero values are still present but the problem is now

analogous to an undersampled dataset. We can now apply techniques from chapters 5-7

to solve for the susceptibility map. Since the problem is ill-conditioned additional

constraints to regularize the system are required in our solver.

 A method known as COSMOS (Calculation Of Susceptibility through Multiple

Orientation Sampling) has been suggested to improve the condition number of the dipole

response matrix. By performing multiple scans of an object each with a different

orientation to the B0 field the intersection of ill-posed magic angles in the linear system

can be minimized. Liu et al. (24) analyze optimal sampling orientations needed to

stabilize this problem. From this work at least three scans are needed at widely different

angles, (0
0
, 60

0
, and 120

0
). These angles are unrealistic for a human subject within the

71

MRI scanner. Additionally, the multiple scans needed increase the time the subject is in

the scanner.

 A more practical approach is to use a typical regularization technique on the

single-scan data. Tikhonov regularization has been suggested in (22) to provide data-

driven stability to the inverse solver. This approach was taken here to minimize the

propagation of noise from the ill-posed magic angle components. The minimization

problem can now be formulated as seen in eqn. 9.

 𝜒
𝑚𝑖𝑛 ‖𝐷𝜒 − 𝜓‖2

2 + 𝜆‖𝜒‖2 [9]

 The regularization parameter is used to tune the strength of the penalty provided

by χ itself. The calculated susceptibility is useful for the penalty because noisier high

frequency regions of the mapping will be more heavily penalized. The familiar CGLS

algorithm can now be implemented to solve this problem.

8.3 Implementation of CGLS for Susceptibility Mapping

 The form of eqn. 9 can be rewritten to a more direct form for implementation of

the CGLS solver. We will now work with the matrix vector relationship seen in eqn. 10.

𝑚𝑖𝑛

𝜒
‖[

𝑫
𝜆

] 𝜒 − [
𝜓
0

]‖
2

2

[10]

 Since χ is in the form of a diagonal matrix in toward left-hand side of the equation

the implementation of the multiplication is a point-wise operation. This keeps the

regularization from significantly slowing our calculation time. Another implementation

of the CGLS algorithm was coded for the GPU with the same design goals as Section

6.1.2. The length of intermediate variable p in the CGLS algorithm was doubled to

accommodate the regularization values. This did not stress global memory resources on

72

the GPU.

 Two major issues need to be addressed to accelerate calculation speed as much as

possible. First, the size of the dipole response matrix is extremely large and quite dense.

This matrix contains the interaction coefficients for each dipole acting on every other

dipole in the system. For a volume of dimensions MxMxN the size of this matrix is

(MxMxN)
2
. The time needed to calculate such a large matrix is exacerbated by the

complexity of calculating each value. This involves calculating both the Euclidean

distance between the dipoles and the angle between them with respect to the B0 field.

These values must then be combined into the dipole response equation seen in Equation

5. Also, calculation of the angle requires prior calculation of the distance this introduces

some serialization. Once these are calculated, the overall dipole response can be

calculated. While each dipole-dipole response can be calculated independently, the

components of each calculation must be calculated in sequence.

8.4 Susceptibility Results

 The susceptibility linear solver was tested using phase maps from our SWI

sequences. The maps have an in-plane resolution of 1.4mm and a slice thickness of

2mm. A scaling z-ratio of slice thickness:in-plane resolution is used to calculate

distances between voxels. Phase maps were unwrapped using a high-pass Fermi filter.

The phase maps were then scaled according to the proposed relation: ω = -ф/(γ*TE*B0).

This provides an estimate from a single echo, (22). The CGLS algorithm can now take

this scaled phase map along with the z-ratio to calculate susceptibility maps. An example

of such a map is seen in Figure 37a).

73

Figure 37: a) Example of phase image input into susceptibility calculations. b)

Resultant susceptibility map calculated using 5 surrounding slices. Brighter areas

indicate stronger susceptibility.

 It was observed in several of the subjects that susceptibility was highest in the

putamen and pallidum of both hemispheres. This is especially true in the left hemisphere,

which is consistent with both our own findings as detailed in Section 2.4 and our review

of the literature. Our results also reveal higher susceptibility in the regions above the

sinus where the air/tissue boundary increases the off-resonance.

 With the calculated susceptibilities we can now make some differentiation of the

overall magnetic properties of each voxel. Diamagnetic materials account for 99% of

human tissue, (25). Our results concur that the majority of tissue in the brain is

diamagnetic. The ferromagnetic iron of interest exhibits positive susceptibility relative to

the B0 field. Visualizing only those measurements with positive susceptibility produces

in the image seen in Figure 38. The ferromagnetic effect of iron is very clearly seen in

the putamen and pallidum with a preference for the left hemisphere. This correlates with

our T2/T2* relaxometry results from Section 2.4.

74

This method allows us to image only the ferromagnetic contributions to the

resultant field map. Partial volume effects are still present but the high image resolutions

afforded by CGLS reconstruction helps to minimize this confounding factor. Mapping

the susceptibility in this way provides high spatial specificity and a more direct

measurement of iron concentration.

Figure 38: Mapping of regions with susceptibility calculated to be ferromagnetic.

75

CONCLUSION

The relaxometry method implemented here does show utility as a tool to monitor

the progression of neurodegenerative disease. The T2* shortening effect associated with

increased iron concentration was observed both as a function of the normal aging process

and HIV. The areas in which this effect was measured agree well with other clinical

research results. While this relaxometry approach was effective in observing statistically

significant changes in populations with many subjects, it is only a surrogate measurement

which remains sensitive to off-resonance and partial volume effects.

High resolution, higher quality images were obtained by employing a GPU-

accelerated CGLS algorithm. The algorithm was shown to be capable of producing good

quality images by using SENSE undersampling and off-resonance field map correction.

This GPU achieved a 72-98x speed advantage over a CPU implementation. The resultant

phase images are well-suited for susceptibility mapping.

Using the new high-quality phase images, a GPU-accelerated susceptibility

inverse calculator was implemented using another CGLS approach. The GPU cuts

iteration time considerably, making a previously intractable problem more practical for

high resolution images over multiple slices. The resultant susceptibility maps provide a

more direct and quantitative measure of iron concentration with great spatial specificity.

76

APPENDIX A

CONJUGATE-GRADIENT LEAST-SQUARES

ALGORITHM

In order to solve a system of linear equations of the form Equation 2, the CGLS

algorithm uses the following iterative approach.

Initialization:

 d = A
H
*m r = m, ρ0=d

H
*d, b = 0

Iterations until convergence or maximum specified iterations reached:

 p = A*d

 α = ρk / p
H
*p

 b = b + α*d

 r = r + α*p

 s = A
H
*r

 ρk-1 = ρk, ρk = s
H
*s, β = ρk / ρk-1

 s = s + β*d

 d = s

77

GLOSSARY

CGLS:

 Conjugate-Gradient Least Squares. The conjugate-gradient least squares

algorithm iteratively applies forward and backward matrix/vector operators along with

error residuals to solve an optimization problem relating two transform domains.

Flip angle:

The angle between the axis of a magnetic moments precession and the main B0

field. This angle is induced by the application of the RF pulse to apply a torque around

an axis parallel to the B0 field.

Larmor frequency:

 The angular frequency of a nuclear magnetic moment in an applied field. The

Larmor frequency of hydrogen nuclei is 42.58Mhz/T.

MIP:

Minimum Intensity Projection. A MIP is created by retaining the value of

minimum intensity along a given view, such as along the z-axis across multiple slices.

Such images are often used to visualize vascular connectivity.

MRI:

Magnetic Resonance Imaging. Magnetic Resonance Imaging makes use of an

applied magnetic field, magnetic field gradients, and radio frequency excitation pulses to

create and measure signals which can be transformed into an image of the scanned object.

Precession:

 The wobbling of an axis of rotation under the influence of an applied torque

tracing a conical space, as in the action of a top.

78

SENSE:

Sensitivity Encoding. SENSE is used in parallel MRI to incorporate multiple coil

sensitivity information to assist in image reconstruction. This method allows for proper

regularization of undersampled data and can decrease scan time.

SWI:

Susceptibility-Weighted Imaging. This imaging modality makes use of T2*-

driven tissue contrast which is sensitive to localized magnetic susceptibility of tissues and

blood.

T2 :

The exponential time constant for a 63% relaxation of transverse magnetization

due to proton dephasing.

T2*:

The exponential time constant for spin-spin relaxation 63% of transverse

magnetization. T2* is sensitive to localized inhomogeneities in the magnetic field. This

is the principle contrast in susceptibility-weighted imaging.

79

BIBLIOGRAPHY

1. SENSE: Sensitivity Encoding for fast MRI. Pruessman KP, Weiger M, Scheidegger

MB, Boesiger P. 5, Nov. 1999, Magn. Reson. Med., Vol. 42, pp. 952-962.

2. The effects of age on the non-haemin iron in the human brain. Hallgren, B. and

Sourander, P. 1, Oct. 1958, Journal of Neurochemistry, Vol. 3, pp. 41-51.

3. Transferrin and Iron in Normal, Alzheimer's Disease, and Parkinson's Disease Brain

Regions. Loeffler, D.A., et al., et al. 2, Aug. 1995, Journal of Neurochemistry, Vol. 65,

pp. 710-716.

4. Increased Basil Ganglia Iron Levels in Huntington's Disease. G. Bartzokis, MD, et

al., et al. 5, 1999, Archives of Neurology, Vol. 56, pp. 569-574.

5. Myelin Breakdown and Iron Changes in Huntington's Disease: Pathogenesis and

Treatment Implications. Bartzokis, G., et al., et al. 10, 2007, Neurochemical Research,

Vol. 32, pp. 1655-1664.

6. Characterizing Iron Deposition in Multiple Sclerosis Lesions using Susceptibility-

Weighted Imaging. Haacke, E.M., et al., et al. 3, Feb. 2009, Magn. Reson. in Medicine,

Vol. 29, pp. 537-544.

7. The Measurement of R2, R2*, and R2' in HIV-infected Patients using the Prime

Sequence as a measure of Brain Iron Deposition. Miszkiel, K.A., et al., et al. 10, Apr.

1997, Magn. Reson. Imaging, Vol. 15, pp. 1113-1119.

8. FSL: New tools for functional and structural brain image analysis. Smith, S., et al., et

al. 2001, NeuroImage, Vol. 13.

9. Age distribution and iron dependancy of the T2 relaxtion time in the globus pallidus

and putamen. Schenker, C., et al., et al. 2, 1993, Neuroradiology, Vol. 35, pp. 119-124.

10. Mapping Brain Assymetry. Toga, A.W. and Thompson, P.M. Jan. 2003, Nature

Reviews Neuroscience, Vol. 4, pp. 37-48.

11. A fast sinc function gridding algorithm for Fourier inversion in computer

tomography. O'Sullivan, J. 1985, IEEE Trans. Med. Imaging, Vols. MI-4, pp. 200-207.

12. Selection of a convolution function for Fourier inversion using gridding. Jackson,

J.I., et al., et al. 3, Sept. 1991, IEEE Trans. Medical Imaging, Vol. 10, pp. 473-478.

13. Kaiser, J.F. Digital Filters. [book auth.] Kuo F.F. and Kaiser J.F. System Analysis by

Digital Computer. New York : Wiley, 1966, 7.

80

14. Accelerated multidimensional radiofrequency pulse design for parallel transmission

using concurrent computation on multiple graphics processing units. Deng, W., Yang, C.

and Stenger, V.A. 2, Nov. 2010, Magn. Reson. in Medicine, Vol. 65, pp. 363-369.

15. Cai, Wei. Optimization of a GPU Implementation of Multii-Dimensional RF Pulse

Design Algorithm. Electrical Engineering, University of Hawaii at Manoa. Honolulu, HI :

s.n., 2011.

16. NVIDIA Corporation. NVIDIA Tesla C1060 Computing Processor. [Online] Feb.

2011. http://www.nvidia.com/object/product_tesla_c1060_us.html.

17. —. CUDA Occupancy Calculator. CUDA Toolkit 3.2. [Online] Jan. 2011.

http://developer.nvidia.com/object/cuda_3_2_downloads.html.

18. Tasche, M. and Zeuner, H. Roundoff Error Analysis for Fast Trigonometric

Transforms. [book auth.] G.A. Anastassiou. Handbook of Analytic-Computational

Methods in Applied Mathematics. Boca Raton : CRC Press, 2000, 8.

19. Wilkinson, J.H. Rounding Errors in Algebraic Processes. Mineola : Courier Dover

Publications, 1994.

20. NVIDIA Corporation. CUDA C Programming Guide. CUDA Toolkit 3.2. [Online]

Jan. 2011.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Pr

ogramming_Guide.pdf.

21. Classical Electrodynamcis, 3rd Ed. Jackson, J.D. 9, Sept. 1999, American Journal of

Physics, Vol. 67, p. 841.

22. Nonlinear regularization for per voxel estimation of magnetic susceptibility

distributions from MRI field maps. Kressler, B., et al., et al. 2, Feb. 2010, IEEE Trans. on

Medical Imaging, Vol. 29, pp. 273-281.

23. Imaging iron stores in the brain using magnetic resonance imaging. Haacke, E.M.,

et al., et al. 1, 2005, Magn. Reson. Imaging, Vol. 23, pp. 1-25.

24. Calculation of susceptibility through multiple orientation sampling (COSMOS): A

method for conditioning the inverse problem from measured magnetic field map to

susceptibility source image in MRI. Liu, T., et al., et al. 2009, Magn. Reson. Imaging,

Vol. 61, pp. 196-204.

25. Atlas, S.W. Magnetic Resonance Imaging of the Brain and Spine, 4th Ed. Magnetic

Resonance Imaging of the Brain and Spine, 4th Ed. s.l. : Lippincott Williams & Wilkins,

2008, Vol. 1 & 2, p. 646.

