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ABSTRACT 
 

 

 Susceptibility-weighted imaging (SWI) is an important MRI modality for 

monitoring the progression of disease in the human brain.  SWI is particularly sensitive to 

iron.  Iron concentration holds great clinical interest in the progression of many 

neurological diseases as well as imaging blood. Challenges of these methods include long 

acquisition and reconstruction times as well as artifacts due to bulk susceptibility 

variations such as air/tissue boundaries. The scans in this study use spiral trajectories 

which are efficient but computationally demanding to reconstruct which has prevented 

spiral adoption in clinical applications. 

 

In this thesis I helped address these concerns with the following four engineering 

developments:  

1. A simple method for T2* relaxometry was tested and analyzed.  T2*-weighting 

imaging proved most effective for detecting these effects.  

 

2. An examination of the benefits and costs of a spiral-in versus spiral-out k-space 

trajectory is presented.  For observing blood vessels in MIPs, spiral-in shows advantages 

due to T2* relaxometry high-pass filtering. 

 

3. Long scans with high resolution are required to image small iron deposits.  High 

resolution scans become computationally challenging.  A GPU-accelerated 

implementation of the conjugate-gradient least-squares algorithm is presented to 

reconstruct parallel MRI images quickly and accurately.  This algorithm incorporates 
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environmental corrections including T2* relaxation effects, coil SENSE, and off-

resonance field map to improve accuracy.  The speed and effectiveness of this GPU 

implementation is presented here.   

 

4. The CGLS algorithm incorporating Tikhonov regularization is also implemented to 

solve for quantitative susceptibility as a more direct measurement of iron concentration in 

tissue.  Results of a GPU-accelerated implementation of the susceptibility solver are 

presented and compared with current literature and my relaxometry results.   
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CHAPTER 1 

INTRODUCTION 
 

1.1 MRI Physics 

 

Magnetic Resonance Imaging (MRI) has become one of the most widely used 

medical imaging techniques today.  MRI makes use of magnetism and radio frequency 

(RF) transmissions rather than ionizing radiation used by other biomedical scan 

technologies.  This removes concerns of damage to DNA and makes MRI an attractive 

choice for longitudinal studies such as monitoring the progression of disease and effects 

of aging.  While MRI can be employed in many flexible modalities, the underlying 

principle remains Nuclear Magnetic Resonance (NMR).   

NMR was independently discovered in 1946 by Felix Bloch and Edward Purcell.  

These two men shared the Nobel Prize for Physics in 1952 for their work.  The principle 

of NMR derives from the observation that many nuclei have both intrinsic magnetic 

moments and quantum spin.  In their natural state most objects do not exhibit any net 

magnetization because the magnetic moments of each of the nuclei are not aligned.  

When an external magnetic field, B0, is applied to the object the magnetic moments of 

the nuclei are forced to align themselves parallel to the external field.  This yields a net 

magnetization from the object.   

The application of an external magnetic field will induce a torque on the magnetic 

moment of the nuclei.  This will cause a precession of the moment around the axis of the 

applied field.  The angular momentum of this precession is specific to the nuclei and 
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proportional to the strength of the applied field.  The angular frequency, known as the 

Larmor frequency is described by:  ω = -γ*B0.  The gyromagnetic ratio, γ, is a isotope-

specific ratio of proportionality between angular frequency and the applied field.  The 

hydrogen atom is most commonly imaged due to the abundance of water in the brain and 

has a gyromagnetic ratio of γ = 42.58Mhz/T.  The precessing nuclei are now susceptible 

to energy absorption when an electromagnetic pulse is applied at the correct resonant 

frequency equal to the Larmor frequency.  These resonant frequencies fall within the RF 

range of the electromagnetic spectrum.  Applying a RF pulse orthogonal to B0 at the 

Larmor frequency will cause the nuclei to absorb energy and begin to precess at an angle 

further away from the direction of the B0 field.  This angle is known as the flip angle and 

is proportional to the energy of the RF pulse.  The nuclei are now in a higher energy state.  

When the RF pulse is removed the nuclei will radiate RF energy as their flip angle 

decreases again toward the axis of B0.  This process is known as relaxation and yields the 

means to measure local magnetism through the Maxwell-Faraday equation.   

1.2 Signal acquisition 

 

When relaxation occurs the change in magnetization in the spin system causes RF 

energy to be radiated from each nucleus and return to its normal energy state.  In NMR 

this signal is detected by the principle of electromagnetic induction by a nearby receiver 

coil.  A small current is induced in the coil which is then converted to voltage which is 

then digitized and stored.  The actual electromagnetic response of each coil is dependent 

of magnetic loading which varies with subjects‟ physiology and can effect phase 

measurements between each coil.   
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1.3 Sampling 

 

 Sampling of k-space must be done in such a manner as to allow us to reconstruct 

an image of the scanned object with sufficient quality.  Enough detail must be present in 

the image and the entire region of interest (ROI) must be displayed for an image to be of 

diagnostic quality.  These two criteria are controlled by k-space sampling.   

 The finer details of an image are often of great interest.  These may be tissue 

boundaries, blood vessels, or signs of traumatic injury such as hemorrhagic lesions.  

Small, highly localized, details in images are represented in the higher spatial 

frequencies.  These frequencies correspond to the farther regions of k-space.  Most of the 

energy in the image will be obtained at relatively low frequency regions centered around 

the k-space.  In spiral imaging, the sampling density is highest in these low spatial 

frequency areas.  While having less of the overall signal energy the higher spatial 

frequency areas contain the more visually interesting details.  Unfortunately, reaching 

these higher frequencies requires either very strong gradients with fast slew rates or 

additional scan time at more reasonable gradients.  Strong gradients with high slew rates 

may not be realizable as they can induce Peripheral Nerve Stimulation (PNS) and violate 

Specific Absorption Rate (SAR) limitations.  Both of these effects must be mitigated in 

order to maintain proper safety margins.  The alternative is to use smaller gradients and 

take a longer time in reaching higher spatial frequencies.  This is one of the fundamental 

tradeoffs in obtaining high-resolution MRI images.   

 The other major sampling consideration for MRI is obtaining a proper Field-of-

View (FOV).  The FOV is the image's region of support based upon the underlying k-

space sampling scheme.  The FOV is a consequence of the Nyquist-Shannon sampling 
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theorem and is defined as 1/Δk.  Decreasing the distance between k-space samples will 

expand the unaliased region of image space, the FOV.  Given an object of a known size, it 

can be determined the appropriate sampling density to use in k-space to establish a 

sufficient FOV.  Of course, increasing the sampling density, thus expanding the FOV, also 

requires additional samples and longer scan time.  If it is desirable to keep scan time 

short, one must settle for a lower kmax which decreases the image resolution.  These are 

the tradeoffs that must be made for an unaliased reconstruction.   

1.3.1 Spiral Trajectories 

 

 All scans and tests done in this study were performed by spiral k-space 

trajectories.  Spiral trajectories have several advantages that make them very attractive.  

Spiral sampling is done by oscillating the kx and ky gradients to sample in a spiral k-space 

pattern.  Such a trajectory is seen in Figure 1. 

 

Figure 1: Illustration of spiral trajectory sampling using 4 interleaved spirals.  The k-

space plane is seen in a) while the behavior of kx and ky gradients is seen in b).   

 Spiral sampling is ideal for quickly and efficiently covering k-space.  By sampling 

in a spiral pattern we can keep the gradients from abrupt changes which could induce 

PNS in the subject.  Maximum slew rates for gradient switching can be constantly 
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achieved without uncomfortable or potentially dangerous side effects to the subject.  The 

spiral pattern is a very fast method of scanning because the gradients almost constantly 

operate at their maximum while yielding good coverage of k-space.   

 While the spiral has many sampling advantages, the non-equispaced sampling 

locations disallow the use of the FFT and make it computationally demanding to 

reconstruct into an image.  The challenges associated with this are discussed in detail in 

Chapter 4.   

1.4 Imaging 

 

While these signals can be detected more must be done in order to form an image of 

an object.  Spatial information must be encoded for a coherent image to be reconstructed.  

As stated in Section 1.1, the Larmor frequency is directly proportional to the applied 

magnetic field.  Orthogonal field gradients are applied concurrent with the B0 field.  This 

varies the resonant frequency along the B0 field axis, usually referred to as the z axis.  

The resonant frequency is now a function of position along the B0 field.  This allows one 

to select a plane perpendicular to the z axis by selecting the specific resonant frequency 

for that position.  All nuclei within the object are subjected to the selective RF pulse but 

only those precessing within the bandwidth of pulse absorb and then emit RF energy.  

Any signals detected at the receiving coils are then known to originate from nuclei in that 

plane.  The bandwidth of the RF slice selection pulse dictates the slice thickness and has a 

powerful effect on the signal-to-noise ratio (SNR).  The thickness of scan slices is also 

dictated by the bandwidth.   

Spatial information must also be encoded in the xy in-plane directions.  Frequency 

encoding gradients in the x and y-axis directions are now applied to correlate spatial 
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position with gradient strength.  During a signal acquisition, these gradients, Gx and Gy 

are varied according to the pattern of trajectory dictated by the user.  The gradients are 

representative of spatial frequencies being sampled as the scan progresses.  Plotting the 

spatial frequencies forms an abstraction known as k-space.  For each position in k-space a 

complex value is sampled by the receiver coils and stored.  These data form a two 

dimensional representation of the Fourier transform of the spatial image of the scanned 

object.  For our purposes a spiral k-space trajectory was used for all scans.   

1.4.1 T2* decay 

 

T2* relaxation is due to de-phasing effects of transverse magnetization after the 

application of the RF excitation pulse.  The ferromagnetic properties of iron cause the 

T2* effect to be accelerated.  Iron acts as its own magnetic source in the surrounding 

tissue and prompts de-phasing to occur more quickly.  This effect is illustrated in Figure 

2.    Clearly T2* is sensitive to the magnetic susceptibility of the tissue being scanned.  

Fast de-phasing is observed as darker areas in image magnitude compared to surrounding 

tissues with normal T2* relaxometry.   
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Figure 2: T2* decay illustration.  T2* relaxation time is shortened in the presence of 

iron. 

1.4.2 Sensitivity Encoding (SENSE) 

 

In order to reduce the amount of time patients and subjects spend in the scanner 

parallel imaging techniques (pMRI) have been developed.  Time is gained during scans 

by sampling smaller sets of k-space.  Less data is being acquired and so less time is 

needed for the gradients to complete their decreased trajectories.  This undersampling 

saves scan time but increases the Δk between samples and shrinks the FOV accordingly.  

Trying to reconstruct an object smaller than the new FOV will result in aliasing of that 

object in image space.  Information from multiple receiver coils is used to combat this.   

Sensitivity encoding (SENSE) was first proposed by Pruessman and Weiger (1) as a 

way to minimize aliasing and increase SNR by using multiple receiver coils to insert 

some additional spatial information into scan data.  A coil's sensitivity is related to its 

proximity to the signal source, in this case hydrogen protons.  A coil's sensitivity is 
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increased for those parts of the object closest to it and diminishes radially outward.  

Increasing the number of coils can also increase the reduction factor that can be gained in 

scan time.   

SENSE maps are typically measured by obtaining a fully sampled dataset at low 

resolution.  The relative strength of the signal magnitude can then be determined for each 

coil at every point within the FOV.  This concept is demonstrated in Figure 3.   

By knowing the sensitivity map of each coil we can weight the scan data 

appropriately in reconstruction to significantly reduce aliasing artifacts.  A simulated 

demonstration of SENSE can be seen in Figure 4.   

 
Figure 4: a) fully sampled reconstruction. b) 2x undersampled with no SENSE map. c) 

2x undersampled with SENSE map 

Figure 3: Illustration of coil sensitivities.  Coils (blue circles) each have their own 

sensitivity map. 
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1.4.3 Field map correction 

 

Ideally the B0 field is homogeneous, however; in practice this is not the case.  

When performing in vivo scans, field inhomogeneities arise near air/tissue boundaries.  

When imaging the brain, this problem is often observed above the sinus cavities and 

surrounding ear canals.  This disturbance in the field‟s flatness causes an off-resonance 

effect to occur in those areas.  The Larmor frequency is now regionally varying 

depending on the physiology of the subject.  The larger the off-resonance the faster signal 

decay will occur in T2 and T2*.  The problem is compounded with longer scans as the 

effect accumulates.  This is illustrated in Figure 5.  Signal voids appear tissue areas that 

may be of interest.  With knowledge of the off-resonance field map it is possible to apply 

some correction in off-line image reconstruction.   

 

 Here we represent the spatially varying off-resonance term as ω(r) later in 

Equation. 1.  Calculation of this parameter is done by performing two scans with a small 

ΔTE between them.  Two phase maps are created from these scans.  The difference 

between these two phase measurements and the known time between them gives us the 

off-resonance map for our calculations.   

Figure 5: susceptibility artifact worsening with longer TE 
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1.5 The Scanner 

 

 The scanner used for all MRI scans in this study was a Siemens Trio 3T whole-

body scanner using 4 head coils.  Brain images presented in this paper were all acquired 

in vivo from adult subjects in accordance with IRB standards.  Each dataset was scanned 

using a spiral sequence with multiple interleaves.  For the susceptibility-weighted images 

shown here the slice thickness was 2mm with a 15
o
 flip angle, TE = 30ms, and TR = 1s.   
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CHAPTER 2 

T2/T2* RELAXOMETRY 

2.1 Clinical Background 

 

 In 1958 Hallgren and Sourander (2) published a landmark paper from a 

postmortem study of iron distribution throughout the brain.  Since then, iron 

concentration has been the subject of many studies investigating iron and its role in both 

the aging process and disease progression.  Iron's ferromagnetic properties make it an 

ideal choice for imaging using magnetic resonance techniques in vivo.  Iron concentration 

in the brain is of medical interest in many neurodegenerative diseases including 

Alzheimer's and Parkinson's (3), Huntington's (4) (5), multiple sclerosis (6), HIV (7) and 

a slew of others.  With such a wide-ranging neuropathy it is clear the ability to monitor 

iron in the brain could be a crucial clinical tool.   

 Directly imaging iron with MRI can be problematic.  The ferromagnetic nature of 

iron causes de-phasing and signal decay more rapidly than the tissue itself.  This causes 

signal gaps to appear at shorter TEs in areas of higher iron concentrations.  This effect is 

evidenced by a shorter transverse relaxation time, T2, as well as T2*.  We expect 

relaxation times should also decrease, signaling increased iron, as a part of the aging 

process as well.  This would correlate with Hallgren and Sourander's results of elevated 

iron as a function of age.   

2.2 Method 

 

 This study scanned 43 healthy HIV-negative and 34 HIV-positive subjects ranging 
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in age from 18-72 years.  To balance age distribution for covariance analysis 34 subjects 

of each group were compared.  The seronegative subjects' ages were 50 ± 12.4 years.  

The HIV-positive subjects' ages ranged 48 ± 9.7 years.  According to (7), HIV-positive 

subjects should exhibit a quicker T2 and T2* signal decay due to increased iron 

accumulation.  The normal aging process should also evidence this effect.  A multi-scan 

method of increasing echo times was tested to see if this effect could be detected and if so 

to what extent.    

 To measure T2 and T2*, relaxation ten scans of both types were done per research 

subject with increasing TE for each scan.  T2-weighted images were obtained at TEs 

ranging from 8-150ms.  T2*-weighted images were obtained at TEs ranging from 3-

100ms.  Every scan was performed on the Siemens Trio 3T whole-body scanner using 

four head coils.  The scan used four spiral interleaves with a 4s TR and a flip-angle of 

90
o
. The FOV was set at 22cm.  Each scan obtained 24 5mm thick slices reconstructed to 

a 128 x 128 x 24 image matrix.   

 The image volumes were placed into a 4D matrix, the 4
th

 dimension being TE, for 

linear registration to a standard MNI brain in the FSL (8) software package.  The MNI 

brain is a commonly used template for standardizing an image space for group analysis.  

Registration of the scanned images was done in the FSL software package by applying an 

affine transformation to translate the images into a standard image space.  The results 

were then loaded into MATLAB for numerical analysis.   

 To determine the actual values of T2 and T2* decay within a voxel an exponential 

decay was fit for each voxel along the TE dimension of the 4D matrix.  This yielded a 

rate of decay for that subject at the voxel.  This was done throughout the whole brain to 
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produce full mappings of T2 and T2* decay.  Example images can be seen in Figure 6.   

 

 

 

2.3 Analysis 

 

 If these T2 and T2* mappings are to be useful in monitoring the aging process, we 

must determine whether we can observe an age-related effect on the relaxometry.  

Subjects' T2 and T2* mappings were arranged in aged order then used to calculate values 

for T2-versus-age and T2*-versus-age maps.  These maps of the rate of T2 and T2* 

change are displayed in Figure 7.  A blurring effect is evident due to the group averaging 

that has been done when combining many subjects into a single image.  Even with some 

blurring anatomical structures can still be observed.    

 

 

Figure 6: images of typical mappings of a) T2 and b) T2* after 

using exponential fitting. 
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As aging occurs, such T2- and T2*-vs-aging maps show the fastest signal relaxation in 

the putamen and pallidum in both hemispheres.  This appears more pronounced in the left 

hemisphere of the brain.  This observation was present for both HIV-positive and 

negative subject groups.   

 ANCOVA tests were done to establish whether these observations were 

statistically significant.  The two subject groups' T2 measurements at each voxel in the 

scan volume were tested co-varying for age.  HIV status, age, and their statistical 

interaction on the relaxometry measures were calculated for each voxel.  This created a 

whole brain map of the statistical significance of the differences observed both between 

the groups and as a result of the aging process.  The age distributions of both groups were 

matched as closely as possible to increase the certainty of statistical results.   

2.4 Results  

 

 The ANCOVA calculations were performed in MATLAB using their statistical 

toolbox and aoctool.  A T2 age effect was measured in both putamen, particularly in the 

Figure 7: Mapping of a) T2 versus age and b) T2* versus age.  

Darker regions indicate faster relaxation with increasing age. 
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left putamen, with the level of statistical significance being p<0.0005 as displayed in 

Figure 8.   

 

  

 

No similar regions of statistical significance were observed when testing for an HIV-

related effect on the relaxometry measures for T2.  Significant age-HIV statistical 

interaction was not observed in the T2 scans either.   

 When testing the T2* scans, strong statistical significance for an age-related effect 

was observed again in the left putamen with a certainty of p<0.0005.  A mapping of this 

Figure 8: Statistical significance maps of T2 age effect overlaid on the MNI brain 

template for anatomical reference.  Blue regions indicate statistical certainty of 

p<0.0005 
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result is seen in Figure 9 for slices of interest.   

 

  

 

In analyzing the HIV-driven effect on T2* measurements some statistical significance 

was calculated in the pallidum in both hemispheres where p<0.02.  This mapping can be 

seen in Figure 10.   

  

Figure 9: Statistical significance maps of T2* age effect overlaid on the MNI template 

for anatomical reference.  Blue regions indicate statistical certainty of p<0.0005.   
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 T2* scans were also able to show an age-HIV related interaction in the 

relaxometry measurements.  The result is less significant than age itself but it is still 

present.  A mapping of this significance can be seen in Figure 11 for p < 0.01.  As with 

the HIV effect by itself, this interaction was most significant in the pallidum.   

Figure 10: Statistical significance maps of T2* HIV effect overlaid on the MNI 

template for anatomical reference.  Blue regions indicate statistical certainty of 

p<0.02. 
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The T2 age-related effects in the putamen and pallidum are in agreement with 

current literature such as (9).  HIV-driven effects seen in T2* concurs with a similar study 

done by KA Miszkiel et al., (7).  Asymmetry between the hemispheres is a well-known 

neurological issue.  A review of this literature can be found in (10).  This may be in part 

due to handedness, education, linguist skills, or other tasks which are hemispherically 

preferential.   

 The clinical importance of these specific results is outside the scope of this 

Figure 11: Statistical significance maps of T2* age-HIV interaction effect overlaid on 

the MNI template for anatomical reference.  Blue regions indicate statistical certainty 

of p<0.01. 
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investigation but the agreement with literature serves as validation that the method is 

sound.  Aging effects and disease progression both show statistical significance in 

specific areas of the brain.  However, a relaxometry investigation like this is only useful 

for groups and cannot be easily applied to the individual.  As a surrogate marker for iron 

concentration, relaxometry is able to show relativistic changes in tissues but yields no 

way of measuring actual iron density in any given region.  Furthermore, large voxel sizes 

suffer from partial volume effects.  This is the averaging of effects within each voxel 

which can mask out minute changes.  Using a higher resolution scan with very accurate 

image reconstruction is desirable.  A fast and accurate method for image reconstruction is 

necessary to accommodate higher resolutions with more k-space samples.  This motivates 

the use of GPUs (Graphics Processing Units) in Chapters 4-7.  Furthermore, quantitative 

susceptibility measurements are needed to begin measuring actual iron concentrations in 

vivo.  An approach to this problem is presented in Chapter 8.   

 

  



20 

 

CHAPTER 3 

INHERENT HIGH-PASS FILTERING WITH SPIRAL-IN 

TRAJECTORIES 

3.1 T2-Based Spatial Frequency Weighting 

 

 T2* signal decay occurs even as a MRI readout is being acquired.  This has a 

filtering effect on any images reconstructed from the k-space data.  Spatial frequencies 

which are obtained early during readout have endured less T2* signal decay and so will 

be weighted more heavily in image reconstruction.  This is demonstrated in figure 12.  

Notice the classical high-pass filtering shape inherent in the spiral-in acquisition.   

 

 

It was hypothesized that a spiral-in trajectory would be weighted toward the higher 

spatial frequencies because they would be acquired before significant T2* decay had 

occurred.  This should give spiral-in images better fine details while only mildly 

sacrificing overall contrast.  We also anticipated that spiral-in scans would also show 

some signal recovery near air-tissue boundaries were susceptibility artifacts are large.  

This occurs in regions such as those above the sinuses and around the ear canals.  These 

regions, particularly above the sinuses, are of neurological interest and T2* decay effects 

present a challenge for imaging.   

Figure 12: Illustration of the T2* relaxation effect on spiral-out versus spiral-in.  

Both spirals trace same k-space locations. 
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 Images were reconstructed from both spiral-in and spiral-out trajectories and 

qualitatively compared.  Volumes of susceptibility-weighted images (SWIs) for both 

spiral-in and spiral-out scans consisted of 32 2mm thick slices reconstructed to a 512 x 

512 x 32 image.  The FOV was set to be 22cm, TE = 30ms, TR = 100ms, with a flip-

angle of 30
o
.  The spiral-in was immediately followed by the spiral-out.  This gives a 

nearly identical TE for both trajectories.  The k-space trajectory had 36 interleaved spirals 

of 5,120 samples each.  Identical k-space trajectories were traced for both spiral-in and 

spiral-out.  The gradient waveforms shown in Figure 13 show the progression of the 

spiral-in/out protocol.   

 

 

 

 

 

Figure 13: Waveforms of scan protocol used to acquire both spiral-in and spiral-out 

scans with similar TEs. 
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3.2 Results 

 

 Spiral-in and spiral-out images were reconstructed using identical methods.  

Because the images were simultaneously acquired they needed no further steps to make 

direct comparisons.  As theorized, the spiral-in images displayed more fine details than 

the spiral-out images.  This is most clearly seen around the edges of blood vessels.  A 

typical method for viewing blood vessels is to produce what is called a Minimum 

Intensity Projection (MIP).  This is done by simply projecting the minimum intensity 

value along a desired line of sight into a single plane.  Blood vessels show up as dark 

regions in SWI and so these MIPs will show the connectivity of blood vessels through 

multiple slices.  MIPs taken over the same slices from both spiral-in and spiral-out were 

compared.  Examples of these MIP images can be seen in Figure 14.  A zoomed in view 

of identical areas is presented in Figure 15 for closer inspection of the blood vessels.   

Figure 14: MIPs over 7 slices of a) spiral-in and b) spiral-out acquired scans. 
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 To visualize the signal recovery seen in the spiral-in scans two identical Regions-

Of-Interest (ROIs) were drawn on images with large susceptibility artifacts where 

significant signal loss has taken place.  As predicted, more signal was present in the sinus 

and ear canal regions of the spiral-in acquisitions than the spiral-out.  An example of this 

comparison can be seen in Figure 16.   

Figure 15: Magnified view of MIPs shown in Figure 29.  Arrows indicate regions of 

better vascular acuity in a) spiral-in scans versus b) spiral-out. 
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While spiral-in shows advantages in the magnitude images for signal recovery and 

vascular detail an analysis of the phase images shows advantages for the spiral-out 

trajectory.  Magnitude imaging is T2*-dependent.  The longer the TE or the later after the 

RF pulse, the more strongly T2* decay affects the image.  Magnitude images benefit 

from quick echo times.  To maximize the contrast of a phase image, however, we must 

allow sufficient time for tissue de-phasing to occur.  The higher spatial resolution 

components of the spiral-out are acquired at a later TE than our spiral-in scans.  This 

gives spiral-out an advantage in exhibiting fine vascular detail in the phase images.  It is 

tempting to keep increasing TE to obtain stronger contrast in phase imaging.  The benefit 

is negated for echo times which are too long by the total de-phasing of the protons.  As 

the TE becomes longer, phase wrapping is exacerbated.  Eventually the excessive phase 

wrapping will foil attempts to high-pass filter them out and obtain a useable image.  A 

balance must be maintained between these criteria.   

Figure 16: Magnitude images showing susceptibility induced signal decay in both a) 

spiral-in and b) spiral-out scans.  ROIs outline identical regions in both images.  Some 

signal recovery is evident in the spiral-in ROIs. 
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CHAPTER 4 

THE RECONSTRUCTION PROBLEM 
 

4.1 Regridding 

 

 Images must be reconstructed by applying an inverse Fourier transform-type 

operation on the scanned data.  Data acquired with non-Cartesian k-space trajectories, 

such as spirals, can no longer be directly reconstructed into image space by an inverse 

FFT (Fast Fourier Transform).  Non-equispaced sampling schemes must employ a variety 

of other techniques for image reconstruction.   

 The most widely used of these techniques is called gridding.  Conceptually, 

gridding refers to the process of resampling the non-Cartesian data onto a Cartesian grid.  

Once this is done a standard inverse FFT can very quickly and easily reconstruct the 

image.  Unfortunately, the speed and ease at which this can be done comes at a cost.  In 

the process of resampling errors are introduced.  An interpolation of data from their 

present positions to new ones along Cartesian coordinates cannot be perfect.  It has been 

shown in (11) that the optimal gridding operation is convolution with a sinc function 

before Cartesian resampling.  The impracticality of representing a sinc function to an 

infinite extent requires a more reasonable convolution kernel.  In (12), the authors present 

results from convolving the data with a Kaiser-Bessel windowing function (13) instead.  

While the Kaiser-Bessel function has a strong central lobe it is accompanied by many 

smaller sidelobes which can degrade the image.  Furthermore, the central lobe exhibits 

rolloff on its edges which will cause attenuation of the object's edges in the final image.  

Figure 17 displays this effect.  A rolloff correction can be applied to flatten out the central 
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lobe's profile but this causes the relative strength of the sidelobes to increase.  The 

sidelobes will be a source of aliasing in the reconstructed image.  A proposed solution to 

this problem is to extend the FOV.  This has the effect of extending the effective size of 

the central lobe to encompass the object while aliasing from the sidelobes will be outside 

our actual region of interest.  However, to increase the FOV requires decreasing k-space 

sample spacings, Δkx and Δky, which lengthens scan time.  Ideally, we would like to 

avoid the need to resample onto a Cartesian grid and its inherent difficulties.   

 

2.2 The conjugate-gradient 

Figure 17: a) gridded reconstruction with attenuation of object edges. b) CGLS 

reconstruction with no edge attenuation. c) overlaid crossection of object magnitude 

for a (blue), b (red). 
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4.2 The Conjugate-Gradient Least-Squares Approach 

 

 The conjugate-gradient least-squares (CGLS) approach to the image 

reconstruction problem is essentially an inverse linear system optimization problem.  

Eqn. 1 describes the relationship between the acquired signal data and the image to be 

reconstructed.   

 𝑆𝑁(𝑘(𝑡)) =  ∫ 𝐶𝑁(𝑟)𝑓(𝑟)
 

𝐹𝑂𝑉

𝑒−𝑖[𝑟∙𝑘(𝑡)+𝜔(𝑟)]𝑑𝑟 
[1]  

 Here, 𝑆𝑁(𝑘(𝑡)) denotes the signal measured at each receiver coil, N, as a function 

of time.  The vector 𝑟 contains each spatial coordinate in the final reconstructed image.  

The variable 𝑓 represents the complex values of the resultant image for which we are 

trying to solve.  𝐶𝑁(𝑟) contains the coil sensitivity values based on spatial location.  The 

k-space trajectory is seen in k(t).  The integral is taken over the entire FOV.   

 A discrete version of Equation. 1 can be written as a simple linear system of the 

form  

 𝑲𝑓 = 𝑆 [2] 

The matrix, K, contains the complex exponential Fourier transform components defined 

by the FOV spatial coordinates and the k-space trajectory sample locations.  Also within 

the encoding matrix are the coil sensitivities and field map information.   In the linear 

system the Fourier transformation has already been applied to the scanned object 

producing the time-dependent signal measured at the coils.  The K matrix is almost never 

directly invertible.  In order to resolve the image we apply the conjugate-gradient least-

squares solver.  We now wish to perform the following minimization:   
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𝑚𝑖𝑛

𝑓
‖𝑲𝑓 − 𝑆‖

2

2

 
[3] 

 An iterative approach is used to resolve the image incrementally closer to the 

actual image.  Such an algorithm was implemented on CUDA-enabled GPUs and tested 

for execution speed and image quality verses a CPU-based implementation.  The exact 

algorithm followed for both can be seen in Appendix A.    This algorithm requires the 

calculation of each element in the K matrix, which can be quite large.  A computationally 

efficient method for populating these values is required for any implementation to be of 

practical use.  The architecture of Graphics Processing Units (GPUs) has proven very 

beneficial for such operations.   
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CHAPTER 5 

GPU ARCHITECTURE 

5.1 Design Philosophy 

 

 The philosophy behind the GPU architecture has been massive parallelization.  

While traditional pipelined CPUs operate on only a thread at a time at different pipeline 

stages, GPUs are capable of performing operations on many threads simultaneously.  This 

is ideal for calculating results which are each independent.   The GPU design was born 

from the need for faster graphics calculations involving many matrix and vector 

operations.  These devices require fast memory accesses, good availability of floating-

point ALUs, and minimal synchronization.  Such devices have already been shown 

effective in accelerating tailored RF pulse design (14) and (15).   

 High memory bandwidth is essential for GPU applications as all input data and 

output results must be passed between the GPU and the host system and be able to 

accommodate results from the massive parallelism of the GPU.  This often means writing 

to many sequential memory addresses.  Therefore, an emphasis is put on one- and two-

dimensional memory locality for optimal speed.  The GPUs themselves contain several 

levels of memory.  Each have their own advantages and must be used properly to avoid 

potential bottlenecks as described in Section 5.2.   

 GPUs contain many identical units known as stream processors.  These processors 

are designed to operate in parallel and yield high through put of arithmetic instructions.  

The management of these resources is typically left to the GPU device itself.  The GPUs 

operate in tandem with their host CPU machines which largely control the logical flow of 

a given algorithm.   
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5.2 GPU Memory Types 

 5.2.1 Global Memory 

 

 The GPU's global memory is the largest available on the device.  The host 

machine will perform memory copies into this area of the GPU before any further 

processing occurs. These take place in 32-, 64,-, or 128-byte memory transactions.  This 

storage area is typically implemented with DRAM.  Unfortunately, the tradeoff for large 

storage capacity is slower bandwidth and long latencies.  Accesses to global memory 

must be minimized in order to avoid creating bottlenecks in execution.  All GPUs used in 

this study had 512MB of global memory available on-chip.   

 5.2.2 Constant Memory 

 

 The constant memory also physically resides within the global memory but is also 

loading into a cache to speed read accesses.  In order to achieve fetch acceleration, the 

constant cache is read-only during kernel executions.  If a kernel requests a value not 

currently in the cache, a miss occurs and necessitates a read from the slower global 

memory.  Constant memory accesses will usually be faster, and never worse than, global 

memory accesses.  Constant memory can cache 64KB of data.   

 5.2.3 Texture Memory 

 

 Texture memory is also a kind of cache of global memory space.  Usage of this 

area is ideal when repeatedly accessing data with high one- or two-dimensional locality.  

Texture memory is optimized for broadcast to many stream processors.  Memory 

addressing is performed outside the kernel execution.  The performance of this cache 

achieves a constant latency.  Only when a cache miss occurs does the access slow to 
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global memory performance.  Texture memory can contain 2
27

 bytes which is 

approximately 128 MB.   

 5.2.4 Shared Memory 

 

 Shared Memory resides within the stream processors themselves.  If care is taken 

to avoid access collisions, this memory, along with registers, is the fastest available 

storage on the GPU.  Their spatial proximity to the processors allows shared memory to 

be faster than any other memory.  The scope of shared memory only extends to the 

current threadblocks being executed.  Once the threadblocks are done and the kernel 

finishes execution the shared memory is cleared.  Maximizing the use of shared memory 

is ideal for reducing computation time but size limitations must be observed.  Only 8KB 

of shared memory was available on the GPU devices in this study.   

 5.2.5 Registers 

 

 Registers are also only accessible within their threadblocks.  These have similar 

latency to shared memory but are typically used for storing temporary values.  It is 

common for the compiler to determine the exact use of registers as needed in execution 

but they can also be specified by code.  Registers are relatively few in number and their 

use must be kept to a minimum.  If too many registers are demanded by a kernel it may 

force a reduction in warp size, the number of threads that can be executed in parallel.  

Overuse of registers can also force the compiler to use the slower global memory as a 

stand-in.  This causes a dramatic reduction in performance and should be avoided.   

5.3 Computational Units 

 

 The GPU devices used in this study were NVIDIA Tesla C1060s, each GPU 
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device used in this study was of compute capability 1.3.  This refers to the architectural 

version of the NVIDIA hardware.  This hardware includes special computational cores 

and functional units to carry out specific common tasks.  These units include 8 CUDA 

cores used for both integer and single-precision (SP) floating-point arithmetic along with 

one double-precision floating-point unit.  Two special floating-point units (SFUs) are 

present in the architecture and are useful for calculating the results of certain functions 

such as trigonometric or exponential operations.  A warp scheduler is available to control 

the execution of the warps across numerous multiprocessors.  Each of these devices 

contains 30 multiprocessors and 240 CUDA cores, (16). 

5.4 The Test System 

 

 All CPU tests were performed on a 2.66 GHz quad-core Intel Xeon machine with 

3GB of system RAM running the Mac OS X 10.6 operating system.  Experiments for 

performing reconstructions using  GPU device cards were performed on a Linux PC with 

a 2.66 GHz quad-core Xeon central processor with 32GB DRAM.  Through the PCI 

express 2.0 slots, the machine was installed with four NVIDIA Tesla C1060 GPU 

devices.  Each of the Tesla devices contains 240 CUDA cores, running on a 1.3 GHz 

clock with 4 GB of GDDR3 on-card memory with a memory bandwidth of 102 GB/sec.  

Both the Xeon CPU and Tesla C1060 graphics cards are capable of IEEE-754 Standard 

for single-precision (SP) floating point format.  The Tesla C1060 also includes capability 

for double-precision (DP) floating point format as well.   

  



33 

 

CHAPTER 6 

CGLS IMPLEMENTATION ON GPU 

6.1 Implementation Philosophy 

 6.1.1 Issues to be Addressed 

 

 A few guiding principles were established to ensure the fastest reconstruction and 

quality of results.  The matrix-vector multiplications are the most computationally 

intensive instructions in the CGLS algorithm.  This is especially true as k-space trajectory 

readouts become longer or a higher spatial resolution is required.  These two parameters 

dictate the size of the encoding matrix, K.  If we wish to reconstruct to an image matrix of 

size MxM (single slice) pixels with a readout length of T samples and employ N number 

of coils the resultant encoding matrix is of size 4xMxMxTxN elements.  The 4x multiplier 

is necessary because of the need to split the matrix into both real and imaginary parts in 

the following manner: 

 (
𝑲𝑅 −𝑲𝐼

𝑲𝑰 𝑲𝑹
) 

[4] 

Each of these elements is stored as a SP float and therefore occupies four times the 

number of bytes as elements.  Clearly for high resolution MRI scans with long readouts it 

is vitally important to calculate the elements of the encoding matrix in the most efficient 

manner possible.   

 Explicitly storing the K matrix is also out of the question.  MRI datasets of even 

modest resolutions and readouts quickly overwhelm the GPU's global memory space.  

Even if sufficient memory was available, the matrix is used twice per CGLS iteration, 

necessitating a great deal of fetching from global memory which introduces a very 
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constrictive bottleneck.  The solution to these issues is to avoid explicitly storing the 

encoding matrix itself but instead to calculate matrix elements on an as-needed basis.   

 The image quality that results from GPU computation must also be carefully 

tested against traditional reconstruction techniques.  Because of the asynchronous nature 

of threadblock scheduling in the GPU, long floating-point summations are not guaranteed 

to yield the same results as those performed in a deterministic order on a CPU.  It is 

possible to structure the algorithm such that threadblocks are executed in a consistent 

order on the GPU but this would be detrimental to the speed advantages from massive 

parallelism.  This issue is discussed in further detail in Section 5.2.1.   

 Another question that needs to be addressed is whether or not SP floating-point 

calculations are sufficient for the purpose of the algorithm.  While it's true the algorithm 

could simply be extended to operate with double-precision (DP) floating-point 

representation, the limited availability of DP calculation units present a bottleneck for 

execution.  As seen in section 5.3, the number of SP units available is 8 verses only 1 DP 

unit.  This introduces congestion for these resources when using DP.  It is shown in 

section 7.2.1 that with proper care potential limitations of SP can be avoided without 

resorting to DP and drastically slowing down reconstruction.  The latest generation of 

GPU devices with compute capability 2.0 has additional DP units which should help to 

alleviate this limitation.   

 6.1.2 Algorithm Design Requirements  

 

 MR image reconstruction often requires very large encoding matrices as well as 

transposed versions for each iteration of CGLS execution.  The matrix can quickly 

overwhelm all available device memory if stored explicitly.  It is therefore necessary to 



35 

 

calculate elements of the matrix on an as-needed basis.  It is very important that these 

values be calculated quickly so that the algorithm can finish in a reasonable amount of 

time.  As seen below, six principles were proposed as design goals in order to streamline 

the algorithm.   

1) Use fastest available memory 

2) Reuse calculations as much as possible 

3) Ensure all kernel inputs are cached 

4) Use fast Special Function Units 

5) Maximize parallelism and occupancy 

6) Optimize blocksize 

 The fastest available memory within the GPU is the shared memory, described in 

Section 5.2.4.  This memory was used to calculate and store the elements of the encoding 

matrix as needed in the CGLS algorithm.  Using this level of memory minimizes accesses 

to global memory which would cause a couple orders of magnitude slowdown in 

execution.  Since this memory is cleared when a threadblock has completed execution no 

extra code was needed to prepare the shared memory for use again.   

 Ideally one can reuse elements of the K matrix once they have been calculated in a 

particular sub-block.  It can be observed from Equation 4 that the upper left quadrant of 

the matrix and the lower right quadrant are identical.  Therefore the algorithm 

implements the calculation of only the upper left quadrant values but multiplies these 

values with both the real and imaginary parts of the data.  A similar observation is made 

for the lower left quadrant and the upper right quadrant, differing only by sign.  These 

symmetries allow us to only calculate half of the elements of the full matrix.  This 
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provides a very large advantage.   

 The third design principle is to cache all kernel inputs.  Size limitations in cached 

memories force careful use of these tools.  Vectors of long k-space trajectories or high 

spatial resolutions must be stored in the slower global memory.  When a CUDA kernel is 

about to execute the sections of the k-space trajectory and the spatial coordinates 

necessary for that particular section of the encoding matrix are cached into the texture 

memory, described in Section 5.2.3.  The memory reads within the kernel itself are all to 

the cached texture memory to feed the inputs to the encoding matrix element calculations.  

These accesses are quite fast and are in accordance with the strong spatial localities 

which the texture memory fetches are optimized for.  This type of memory is the fastest 

available which can accommodate the necessary data sizes.  Binding the texture cache to 

global memory locations just before kernel execution minimizes cache misses which 

would drastically hurt speed performance.   

 Part of the CUDA architecture is the SFU (Special Function Unit).  These are 

specialized ALUs with built-in SP floating-point functions such a trigonometric and 

exponential functions.  These units operate more quickly than the typical arithmetic 

functions by sacrificing some accuracy.  Truncated Taylor series are used in the case of 

sine and cosine functions used in the CGLS implementation.  These functions are well-

behaved and no limitations are necessary to restrict their outputs to acceptable ranges.  

The qualitative and quantitative effect the reduction in numerical accuracy has on the 

final image reconstruction requires careful analysis.   

 Parallelism is the most important advantage offered by a GPU implementation.  

Maximizing the amount of parallel execution can have a tremendous effect on 
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performance.  The GPUs used in this study are capable of executing 512 threads per 

multiprocessor simultaneously.  This number may be decreased by overuse of registers 

and shared memory.  A balance must be struck between using the ultra-fast shared 

memory and registers against maximizing the amount of parallelism.  The CUDA 

Occupancy Calculator (17) was used to assist in analyzing the appropriate allocation of 

these resources.  Ideally 100% occupancy can be achieved without reducing register or 

shared memory use to a detrimental level.   

 The dimensions of threadblocks in the kernel execution are also important to 

speed.  User code can vary the size of threadblocks while keeping the number of threads 

in a threadblock constant to maximize occupancy.  The optimal size of the blocks is 

algorithm dependent and must be experimentally determined.  The performance 

variations of different sizes are largely dictated by the spatial locality of the memory 

accesses in the kernel.  Memory collisions caused by non-optimal block sizes force 

serialized access and cause large delays.   

 Some of the simple matrix-vector operations necessary for the CGLS algorithm 

are already freely available in code libraries.  For this program the freely available 

CUBLAS (CUDA Basic Linear Algebra Subprograms) were used to implement vector-

vector dot product operations as well as vector copies from one variable to another for 

each iteration.   

 The GPU implementation of the CGLS algorithm presented here employs all of 

the techniques described above.  The performance impact of these optimization principles 

is analyzed in the Chapter 7.   

 6.1.3 The CPU Implementation 
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 Many of the optimizations described in Section 6.1.2 are not available in a CPU 

implementation of the same algorithm.  This is simply due to the serialized nature of the 

CPU execution pipeline.  The operational flow of the CPU code mirrors that of the GPU 

implementation as much as possible.  CUBLAS functions available to the GPU execution 

are replaced with CBLAS (Complex Basic Linear Algebra Subprograms) library.  All 

program inputs are read from command line parameters and data files in identical ways 

between the two versions.  Close similarity of the code adaptations is necessary to 

properly analyze advantages and disadvantages of GPU or CPU execution.    

6.2 Reading Inputs 

 6.2.1 The RAW file 

 

 Code to read in all data from disk drives was identical in both CPU and GPU 

implementations of the program.  Raw data files from the scanner were used as data input 

to the algorithm.  These files have no preprocessing and are exactly as copied from the 

scanner computer.  The first 48 bytes of the file are dedicated to scan parameter values 

which are used to parse the rest of the data.  This header is followed by the measured data 

from the MRI signal acquired during the scan in SP floating-point representation.   

 The header contains information about the arrangement of data in the file these 

include the number of receiver coils, slices, spiral interleaves, and k-space samples per 

interleave as well as gradient levels and slew rates.  Image domain parameters such as 

FOV and an appropriate image matrix size are given.  All of these values are read into 

variables with global scope to be used throughout the image reconstruction process.   

 The scan data must now be read in and careful parsing must take place to arrange 

the data into the most appropriate ordering to use in the CGLS algorithm.   
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 A rearrangement of the raw data as it is read in is motivated by a desire to 

simplify array indexing which would otherwise be quite complicated.  This is especially 

important within the kernel executions.  Thread IDs are used inside the CUDA kernels as 

indexes for k-space and spatial location arrays.  By arranging the raw data into a 

favorable organization up front the indexes can be more straightforward and prevent extra 

indexing calculations inside CUDA kernels which would need to execute for every 

thread.   

 6.2.2 The SENSE file 

 

 Coil sensitivities are also included in an input file given to the CGLS code.  The 

SENSE file contains image information to properly weight those parts of the image that 

were in closest proximity to that particular receiver coil during scan.  This file is also 

organized such that indexing is simplified within the CUDA kernel.  The SENSE 

coefficients from each coil are duplicated so that there are now both real and imaginary 

versions of the coil information.  This requires slightly more global memory to store the 

vector which is now twice as long but saves overly complicated array indexing when 

applying the coefficients to the encoding matrix.  This arrangement is performed only 

once rather than repeated index calculations for each thread during parallel execution.  

All data from the SENSE file are read in as SP floats.  Figure 18 displays the on-disk 

SENSE file data arrangement and the duplication that takes place.  The SENSE data can 

now be applied by point-wise multiplication when operating in the spatial image domain.   
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6.2.3 The field map file 

 

 The field map input file is simply a vector representation of the off-resonance 

frequencies calculated using the method described in Section 1.4.3.  These measurements 

are independent of the number of coils so the same correction values were applied to each 

coil.  These values are stored in global memory and then loaded into texture cache for fast 

retrieval.   

6.3 Generating K-space, spatial coordinates, and T2 Decay 

 6.3.1 Spatial coordinate calculations 

 

 The two domains needed for the population of the encoding matrix are the k-space 

trajectory and the image-domain coordinates to be reconstructed.  The image coordinates 

are derived directly from the desired reconstruction resolution and the FOV.  The x and y 

vectors to specify these locations will be identical and can be easily calculated by 

determining the image dimensions and equally dividing the FOV between these locations.   

 6.3.2 K-space trajectory calculations 

 

 The k-space sample locations are also calculated based on scan parameters which 

are read from the raw data file's header.  The spiral trajectory code in the reconstruction 

Figure 18: Illustration of SENSE input rearrangement for optimal implementation. 
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code matches code used in the MRI scan computer.  The code used in the GPU 

reconstruction algorithm is an adaptation of the spiral trajectory code from Douglas C. 

Noll of the University of Pittsburgh and John Pauly of Stanford University.  Calculations 

to create the kx and ky vectors are based on scan parameters such as the number of spiral 

interleaves, the desired FOV, the sampling frequency, and maximum gradient slew rates.  

These calculations are done only once during the algorithm and are completed very 

quickly.   

 6.3.3 T2* decay vector 

 

 A vector to quantify the T2* decay must be calculated for the encoding matrix as 

well.  This vector takes into account the relative amount of signal decay that has occurred 

throughout a single ADC readout.  The T2* decay effect is addressed in more detail in 

chapter 2.  Accounting for T2* attenuation properly weights the sampled data along a 

readout.  This becomes especially important with long readouts.  Knowing the k-space 

sampling period, the echo time (TE), and the number of samples in each readout the 

vector is calculated and plotted in Figure 19.   

 

6.4 CGLS Calculations  

 

 All of the steps described above occur identically in the CPU and GPU 

Figure 19: Plot of T2* decay vectors applied to encoding matrix 
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implementations of the reconstruction code.  At this point there is some divergence as the 

GPU version begins to take a multithreaded approach to the CGLS calculations.  Copies 

of the data described in Sections 6.2 and 6.3 are moved into global memory on the GPU 

device.  This is a straightforward memory copy and requires negligible time in the 

algorithm.   

 In accordance with the design principles laid out in Section 6.1.2, the vectors used 

to populate the elements of the encoding matrix are cached into texture memory.  Texture 

memory is the fastest available storage for data of this size.  The sizes of the thread- and 

gridblocks needed to perform the matrix-vector multiplication step, d = K
H
m, are now 

determined.  The Tesla C1060 GPU used in this study allows threadblocks of up to 512 

total threads.  Grid sizes are limited to 65,535 blocks in either the first or second grid 

dimension.  The grid limitation can present a problem when reconstructing very large 

datasets.   

 Two approaches can be taken when constrained by the grid size limitation.  First, 

the threadblock sizes can be increased in that dimension if doing so does not create a 

problem along the other dimension.  This solution, however, can have profound 

performance implications when the threadblock dimensions are not optimal.  The second 

approach is to simply divide the problem into manageable grid sizes and execute the 

kernel for as many grids are necessary.  In this case, two sets of grid dimensions are 

created.  One set will be maximized along the problematic dimension.  The other set will 

be scaled back along the same dimension to take care of any residual threads not 

calculated in the maximum sized grids.  This creates some additional overhead but is not 

as drastic a performance cost as altering the threadblock dimensions.   
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 Threadblock sizes were chosen to maximize multiprocessor occupancy and allow 

the calculations to be performed in shortest time possible.  All threadblocks were set to 

execute 512 threads.  This is a convenient value since data in the k-space spirals is 

acquired in 1024 sample interleaved chunks and makes sizing easy.  The dimensions of 

the blocks were determined experimentally.   

 6.4.1 Multiplying along k-space 

 

 The first matrix-vector operation to be performed for the CGLS solver requires 

the calculation of the inner product of the encoding matrix, K, against the raw k-space 

sampled scan data.  This is the first step of the algorithm which will make extensive use 

of parallel execution on the GPU.  A kernel is launched to perform the multiplication 

including the population of the elements of K.  The inputs of this kernel are the spatial 

and k-space trajectory vectors as well as the SENSE, field map, and T2 decay vectors all 

previously cached into the texture memory.   

 A block of shared memory identical to the size and dimensions of the threadblock 

is allocated to store the elements of K needed for that particular block, part of the overall 

matrix.  The corresponding section of raw scan data required is also copied into another 

portion of shared memory.  Shared memory is the fastest available and will be cleared 

when the block's execution is completed.   

 The elements of K are now calculated without the trigonometric functions 

required to split the values into real and imaginary parts.  This allows for the reuse of 

these elements for either situation.  Included in this calculation are the field map and T2 

decay terms.  The SENSE component has been factored out to be applied after the 

matrix-vector multiplication is complete.  A point-wise multiplication can quickly apply 
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the SENSE coefficients to the matrix-vector product.  This greatly reduces the number of 

floating-point operations necessary.  Figure 20 shows how the multiplication takes place.   

 

 

 In order to form the real and imaginary components of the matrix trigonometric 

functions are necessary.  For the real components a simple cosine function is needed.  In 

the imaginary components a sine function is required and the sign changes as well.  These 

functions are implemented in the SFUs of the GPU as truncated Taylor series.  A shorter 

truncation than normal allows for faster calculation at the expense of numerical accuracy.  

The limited availability of SFUs for DP floating point is a principle reason for remaining 

in SP floating-point representation.   

 The fast trigonometric functions are applied to the real and imaginary components 

then these two pieces and partial summations already computed across the row are added.  

This step requires a write to global memory.  This is performed for both real and 

imaginary portions of the product.  Several syncthreads() commands are needed in the 

kernel to keep threads synchronized for each step.  The kernel code described here is seen 

in Figure 21.   

Figure 20: Illustration of the matrix-vector multiplication along k-space with point-

wise multiplication with SENSE 
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 A separate kernel is used to perform the point-wise multiplication to apply the 

SENSE coefficients to the image-domain result.  The non-SENSE product is pre-cached 

into the texture memory for the multiplication to take place in the quickest way possible.   

 6.4.2 Multiplying along image space 

 

 The multiplication along image space is very similar to the multiplication that 

takes place along k-space.  The difference here is mainly how the SENSE information is 

incorporated into the encoding matrix.  Multiplying along the image-domain coordinates 

will yield a representation of the data in k-space.  The SENSE coefficients can no longer 

simply be point-wise multiplied to the result because they are an image-domain 

Figure 21: CUDA kernel code implemented to perform matrix-vector multiplication 

along k-space. 
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representation.  The values must now be incorporated directly into the matrix-vector 

multiplication.  As in Section 6.4.1, the k-space, image-domain coordinates, SENSE and 

field map values along with the now image-domain transformed scan data are cached into 

the texture memory.   

 The threadblock size is optimized again for best speed performance and the kernel 

is launched.  Here again it may be necessary to employ multiple grids if any grid 

dimensions are too large for the GPU.  A block of shared memory is allocated to the 

storage of the K matrix elements.  The transformed scan data is also read into shared 

memory.  As before, the K values are calculated with the exception of applying the 

trigonometric functions.  The fast trigonometric functions are again applied as needed to 

account for the real and imaginary components along with the appropriate sign changes.  

The sine and cosine are again implemented with the SFUs.  After the trigonometric 

functions are applied the SENSE coefficients are multiplied to the result.  Both the real 

and imaginary portions as well as any partial sums previously calculated are summed and 

written to global memory.  The layout of these operations is displayed in Figure 22.   

 
Figure 22: Illustration of the matrix-vector multiplication along the spatial domain 

with SENSE incorporated into the encoding matrix. 
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 Again syncthreads() commands are necessary to avoid creating memory race 

conditions.  The kernel code governing these calculations is given below in Figure 23.   

  

 

6.4.3 Miscellaneous calculations 

 

 Other than the major matrix-vector calculations there are several more steps to 

complete in the CGLS algorithm.  Several memory copies are required as well as 

calculating L2 norms.  These are implemented by using CUBLAS library tools.  The 

Figure 23: CUDA kernel code implementing matrix-vector multiplication along the 

spatial domain incorporating both SENSE and the field map. 
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CUBLAS library is freely available and gives the user access to common linear algebra 

functions in very streamlined implementations.   

 The steps described above are completed for each of the coils used in the scan.  

Originally, the attempt was made to implement a CGLS algorithm which would 

automatically combine the separate images from each coil into a single image within the 

conjugate-gradient itself.  This approach yielded poor results.  It was found that without 

phase unwrap filtering the images could not be easily combined.  Each coil detects a 

different phase image.  These images are similar but phase wrapping complicates their 

combination if no filtering is done.  If the coils are directly combined without 

unwrapping the phase images, phase cancellations occur and yield an image full of 

artifacts.  If the phase is unwrapped and then combined during the CGLS iterations, then 

the algorithm is attempting to converge to a wrapped version of the raw scan data.  

Incorporating the unwrap filter would require filtering of both the raw data itself before 

any other CGLS calculations are done.  This would be costly in time and more 

complicated than simply applying the filter afterward.  The two methods yield 

mathematically identical results.  Allowing each coil to be reconstructed separately then 

combined in the last step is more straightforward, faster to compute, and more easily 

debugged for errors in particular coils.   

 6.4.4 Output 

 

 At the completion of each iteration the current solution is copied from the GPU's 

global memory to the host system's central RAM, then to the hard drive.  This output file 

is in SP floating-point representation.  Each coil is represented separately with the first 

half of the values for that coil being the real component while the second half contains  
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the imaginary values.  The solutions for each coil are concatenated as seen in figure 24.   

In order to combine the coils into a single composite image the phase of each coil 

must be unwrapped.  The real and imaginary components are first combined into their  

 

 

Figure 26: Demonstration of phase wrapping and final phase image after high-pass 

filtering. 

Figure 24:  Flow of algorithm to combine data from multiple coils into a single 

output image. 
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magnitude/phase representation.  A high-pass filter is applied to each coil's phase image 

to remove the low frequency phase wraps which obscure the underlying tissue-contrasted  

phase.  A simple Fermi filter is employed to perform this operation.  Both the wrapped 

and unwrapped images are demonstrated in Figure 25.   
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CHAPTER 7 

RECONSTRUCTION RESULTS AND DISCUSSION 
 

7.1 Testing 

 

 Image reconstruction tests were performed from a variety of datasets to evaluate 

the GPU implementation of the CGLS reconstruction algorithm.  Simulated datasets were 

generated using MATLAB code to mimic scanner raw data output.  These were used to 

test the code under conditions which may have not been practical in the scanner.  The 

MATLAB code is capable of creating datasets of any number of coils with any image or 

k-space parameters desired.  Noise of different types and strengths can also be applied to 

the simulated datasets.  This allows us to evaluate the reconstruction under known 

conditions.   

 Actual scanner data was also reconstructed and analyzed.  These datasets were 

acquired by sequences currently used in the lab's other research protocols.  Brain scans 

were taken of human test subjects in accordance with IRB regulations.  These scans are 

real-world test conditions with all of the associated confounding factors including 

physiological differences increasing B0 field inhomogeneity, T2 decay, coil SENSE, and 

signal noise.  Parallel MRI scans were performed using 4 head coils.   

7.2 Quantitative Analysis 

 

 The Normalized Root Mean-Squared Error (NRMSE) was used as a quantitative 

measure for how well the reconstructions have performed.  Several simulated phantom 

objects were reconstructed with both the CPU and GPU implementations of the CGLS 

reconstruction algorithm.  Despite having identical algorithms, reconstructions resulting 
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from the two approaches are not identical.  The average NRMSE between CPU and GPU 

CGLS reconstructions on the same dataset was 0.07.  The source of these variations 

appears to be two fold.  First, the fast trigonometric functions used in the GPU algorithm 

sacrifice accuracy for speed.  In our tests, the effects of this tradeoff were negligible as 

the calculation of the trigonometric functions was not a major bottleneck for speed.  A 

slowdown of 2% was measured for the GPU algorithm when not using the fast 

trigonometric functions without improving the error observed earlier.   

 The second source of variation in reconstruction results arises from the nature of 

floating-point operations.  In a CPU serial-pipeline environment the addition of values 

represented as floats takes place in a deterministic order, yielding a consistent result.  The 

dynamic thread scheduling of the GPU architecture means that without explicit code to 

order the pairwise additions, which would incur additional latency, there is nothing 

guaranteeing that results from all threads are added in the same pairing.  It is important to 

note that while the CPU and GPU solutions may differ slightly, neither one can be said to 

be more correct than the other.  Additionally, the error bound of floating-point arithmetic 

on a set of values is independent of the data distribution (18) based on the assumptions of 

Wilkinson's standard model (19).  Therefore, results from both the CPU and GPU 

implementation, while different, agree very closely.  No visual distinction was observed.   

 7.2.1 Sufficiency of SP floating-point representation 

 

 As alluded to in section 6.1.1, it is appropriate to ask whether or not SP is 

sufficient for the needs of the CGLS algorithm.  SP was chosen over DP based on 

consideration for data sizes and availability of computational resources in the GPU.  Of 

particular concern are datasets with very long k-space trajectories or high-resolution 



53 

 

reconstructed images.  Either of these situations necessitates long reduction operations 

when performing matrix-vector calculations which could cause overflow problems when 

using SP.  This would occur when trying to represent a number whose value exceeds 10
38

.  

Assuming a k-space trajectory with 1 million points (about 1/3 more than our longest 

scans), we can calculate that the average value required in a sum, such as occurs in the 

dot-product operations, to cause an overflow exception is on the order of 10
32

.  This is 

many orders of magnitude beyond anything in our scans or the algorithm.  Therefore, 

single-precision floats are sufficient to avoid overflow issues and this issue has never 

been observed in actual scan data.   

 To test the algorithm to its fullest, a pathological simulated dataset was generated 

to force a SP overflow when performing the matrix-vector operations.  This introduced 

NaN values into calculated results in the recursion, rendering the output images useless.  

However, including a simple scaling factor on the raw data as soon as it is read from the 

file allows the values to be scaled to avoid an overflow occurrence while preserving 

reconstructed image quality and contrast.  SP is therefore sufficient for the algorithm.   

 This is advantageous as DP instructions in the GPU are significantly more 

computationally costly.  SP functions require 28 bytes of local memory, doubles require 

44 bytes (20).  Executing instructions for each thread using single-precision requires 4 

clock cycles, whereas double-precision requires 32.  Also, for CUDA-enabled 

architectures of compute capability less than 2.0, each multiprocessor contains 2 single-

precision functional units but only 1 DP functional unit.  SP representation is the best 

choice because it requires less memory, fewer clock cycles, and makes better use of 

available functional units.   
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7.3 Image Quality 

 

 Evaluating the quality of the image reconstructions is a subjective comparison and 

does not easily lend itself to a direct process.  Three criteria were established to judge the 

relative quality of the different reconstruction methods.  These are:  

 1) Contrast  

 2) Blur  

 3) Noise 

 Image contrast must be strong enough to enable the differentiation of tissue types 

and blood vessels and to be able to discern anatomical structures.  The resultant images 

must not be blurry but have sharply localized tissue boundaries and features.  Noise must 

be rejected sufficiently to allow for a clear view of the underlying image.   

 7.3.1 Effectiveness of SENSE 

 

 The inclusion of coil sensitivities into the reconstruction improves SNR and adds 

some regularization to the linear inverse problem.  This allows us to try to reconstruct 

images from undersampled k-space.  As discussed in Section 1.4.2, when we 

undersample k-space we are effectively reducing the FOV and therefore introducing 

aliasing artifacts into our image.  By including SENSE we are including additional 

weighting information in our calculations which can mitigate this aliasing.   

 To easily test the effectiveness of including the coil sensitivities we generated a k-

space trajectory in the normal fashion then ignored every other interleave.  This has the 

effect of undersampling k-space by a factor of 2.  It is important to note that this is not the 

typical undersampling scheme.  The usual approach to undersampling will still include a 

full or nearly full sampling of values near the k-space origin.  This gives the benefit of 
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eliminating aliasing artifacts stemming from the lower spatial frequencies where these 

components would be stronger than those from the higher spatial frequencies.  A 

comparison of reconstructions using no SENSE map and one employing the appropriate 

SENSE map are seen in Figure 26.    

  

 

  

Applying a SENSE map to the 2x undersampled case we can still see some 

degradation of the image but many of the aliasing effects have been reduced.  An 

example of a 2x undersampled image reconstruction using SENSE is seen in Figure 27.  

Notice that aliasing has been pushed mostly to the edges of the FOV.  These aliasing 

effects could be further reduced by fully sampling the area around the k-space origin 

while undersampling the more outlying spatial frequencies.   

Figure 27: a)  Comparison of fully sampled images reconstructed with SENSE and b) 

without SENSE.  Note better tissue contrast with SENSE.   
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By reducing the number of data samples by a 2x factor this also reduces the calculation 

time by a factor of 2x as well.   

 Further undersampling is possible but the amount of aliasing increases 

accordingly.  This diminishes the utility of the reconstructed images if the amount of 

undersampling is too great.  However, an accurate SENSE map with information from 

several coils this problem can be mitigated to some extent.  To test our implementation of 

the GPU-accelerated CGLS solver a fully sampled image was reconstructed using a four 

coil SENSE map.  This was considered as our benchmark image against which we 

compared various undersampling rates both with and without SENSE maps.  The 

NRMSE was calculated between our undersampled reconstructions and the fully sampled 

ideal.  The results of these measurements are displayed in Figure 28.  The tests show 

increasing NRMSE as the undersampling factor increases but the error is significantly 

less using an accurate multiple coil SENSE map.  This demonstrates the advantage of 

Figure 28: 2x undersampled reconstructing a) with SENSE and b) without SENSE.  

The undersampling scheme used here also undersampled the center of k-space 

introducing strong aliasing effects. 
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parallel MRI which can achieve higher SNR and allow undersampling.  This is also an 

advantage of the CGLS algorithm over gridding techniques which cannot perform 

SENSE reconstruction with undersampling.  

 

Figure 29: NRMSE measurements of 4 different undersampling rates with SENSE 

(blue) and without SENSE (orange). 

 

 7.3.2 Effectiveness of the field map 

 

 To accurately reconstruct an MRI image we must also take into account 

inhomogeneity in the B0 field.  These off-resonance effects occur near air/tissue 

boundaries.  This is most frequently seen in areas above the sinus cavities and around the 

ear canals in brain scans.  So far in the reconstructions we have assumed that the 

underlying B0 field is homogeneous.  Because of air/tissue boundary susceptibility off-

resonances this is a poor assumption.  If this effect is not taken into account areas with 

strong inhomogeneity are somewhat blurred in the image reconstructions.  We can see the 

effect of the field map represented as ω in Equation 1.   
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 A common method for measuring the field map is to take two scans with a small 

ΔTE between them.  This allows a phase difference to accrue between the scans.  In a 

completely homogeneous case with no off-resonance the difference should be the same 

everywhere.  In the presence of inhomogeneity the phase difference, ΔΦ, is increased.  

The images in Figure 29 show the reconstruction without a field map, the calculated field 

map itself, and the reconstruction applying that field map.   

 

 

 Notice the images are still very similar but some signal recovery has occurred in 

the frontal area above the sinus.   

 7.3.3 Noise rejection  

 

 With any real-world MRI scan noise is present.  The two CGLS algorithms were 

tested against each other to ensure the GPU version is as effective as the CPU approach 

in rejecting noise as well as to demonstrate the ability of the CGLS algorithm itself.  

Simulated phantom datasets were generated which allow us to control noise levels for 

testing.  Each dataset was tested on both the GPU and GPU implementations of the 

CGLS algorithm.  An ideal dataset with no noise was created with otherwise identical 

Figure 30: a) image reconstruction with field map applied b) calculated field map c) 

image reconstruction with no field map applied. 
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parameters for comparison.  The results of this comparison are seen in Figure 30.   

 

Figure 30: SNR of reconstructed images plotted against the SNR of the given input for 

CPU (blue squares) and GPU (red triangles) 

7.4 Speed 

 

 The reconstructed images from the CPU and GPU versions of the CGLS 

algorithm are intended to be identical.  This is not precisely the case for reasons outlined 

in Section 7.2.1 but the two images should be indistinguishable to the eye.  The 

advantage of employing the parallelism of the GPU is speed.  Many parallel threads 

calculating simultaneously should enjoy greater throughput than a CPU implementation 

executing one or a few threads at a time.   

To measure the algorithm's acceleration on the GPU several simulated phantom 

datasets were generated in MATLAB and reconstructed on both the CPU and GPU code 

versions.  The length of the k-space trajectories and final image resolution were varied to 

increase the size of the encoding matrix.  Times were measured by start/stop commands 

within the code to measure total execution times of the CGLS iterations.  Reading and 
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processing of program inputs were not included in these measurements because the two 

code versions are identical in this respect and doing these tasks requires negligible time in 

the overall execution.   

 The vast majority of execution time is spent performing the matrix-vector 

multiplications necessary for the CGLS solver.  This is also the easiest code to execute in 

parallel.  The acceleration afforded by the GPU is clearly demonstrated in Figure 31.  The 

GPU reconstruction shows acceleration factors ranging from 72-98x over the CPU 

implementation.   

 

 

7.5 CGLS Convergence 

 

 It is important to understand the convergence behavior of the CGLS algorithm to 

develop reasonable stopping criteria.  CGLS can be performed for an arbitrary number of 

iterations but we would like to know the point of diminishing returns where taking the 

time to calculate additional iterations will not yield any appreciable benefit.  To test this 

many experiments were performed on simulated images of various resolutions versus an 

Figure 31: Time comparison of CGLS algorithm implemented on a CPU (squares) and 

the Tesla C1060 GPU (triangles) for increasing encoding matrix sizes.   
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idealized version of these images.  This allows us to calculate the NRMSE of each 

iteration against the ideal.   The expected L-curve convergence behavior was observed 

and can be seen in Figure 32.  In repeated experiments of different scan parameters the 

lowest NRMSE consistently occurred on or just after iteration number corresponding to 

√𝑟𝑒𝑠.  This is advantageous since increasing the image resolution will more slowly 

increase the number of iteration required for convergence.   

  

 

It should be stressed that low NRMSE does not necessarily mean that the image is 

the best one.  An analysis of error does not necessarily correspond with human perception 

of the highest quality image.  A simple inspection of different iterations revealed good 

correlation between low NRMSE and image quality with no discernible difference in 

iterations beyond the lowest NRMSE.  For an idea of the improvement in image quality 

versus the number of iterations see Figure 33.   

Figure 32: plot of NRMSE at each iteration tested against an idealized reconstruction. 
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7.6 GPU Usage 

 

 Taking full advantage of the GPU's parallel architecture is paramount in the 

algorithm's performance.  In an ideal situation, maximum occupancy of the 

multiprocessors will give the greatest instruction throughput.  The CUDA Occupancy 

Calculator (17) was used to evaluate potential block sizes and register and shared 

memory usages.  The Occupancy Calculator is a spreadsheet-based tool provided by 

NVIDIA which allows the user to select a GPU compute capability along with block sizes 

along with shared memory and register requirements.  The user can see what effect 

changes in these parameters will have on multiprocessor occupancy and what may be 

causing any limitation.   

 An option is available with the CUDA nvcc compiler to display actual kernel 

usage of important computing resources.  These include usage of local, shared, and 

constant memories along with register and the overall occupancy achieved by each kernel 

in the code.  Results from these measurements were used to help analyze and reduce 

bottlenecks limiting occupancy of the multiprocessors.   

 Initially the CUDA kernels achieved 67% occupancy on the multiprocessors.  This 

was seen to be limited by the number of registers being used.  After some code 

Figure 33: demonstration of CGLS convergence at several iterations. 
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adjustments to reduce the register usage and increase use of shared memory occupancy 

now achieves 100% during all kernel executions.  The limitation is now simply due to the 

number of blocks per multiprocessor.  This number can vary depending on the compute 

capability of the GPU.  Testing the same design parameters on the latest GPU 

architecture, compute capability 2.0 the results still show 100% occupancy.  The code is 

well designed to reach maximum parallelism in all CUDA GPUs currently available and 

for the foreseeable future.   

7.7 Multiple GPUs  

 

 The ability to quickly and easily install multiple GPU devices in a single 

computer is another advantage of the GPU approach.  Several GPU cards may be 

installed and increase the parallelism available to the algorithm.  In contrast, CPU 

clusters are needed to extend their computational power but these are much more 

complicated to set up and maintain.  A 4 GPU Tesla C1060 system, such as used in this 

study, is capable of 4 tera-FLOPS (floating-point operations per second).  A CPU cluster 

of similar capability would cost roughly 20 times this configuration (14).   

 The multi-GPU environment can be easily programmed with the CUDA language 

extensions.  CPU clusters are not as easily programmable and their use has a much higher 

learning curve.  Any changes to the number or configuration of a CPU cluster may 

necessitate code changes to adjust to the new environment.  Meanwhile CUDA greatly 

simplifies the problem and very easily accommodates upgrades and changes.   

 The system in this study used 4 Tesla C1060 GPU devices.  There are many 

different ways the GPUs could be used together in the reconstruction problem.  It is 

desirable to maintain maximum occupancy across all of these devices and each of the 
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multiprocessors within them.  Minimizing data sharing between GPUs is important for 

performance reasons.  Interdependence between the devices could create a situation 

where one device is waiting on another for some result.  This would prolong latency and 

slow down the overall performance of the algorithm.  Also, data sharing between GPUs 

must be transferred on the host's data bus.  Such bus accesses are much slower than 

internal memory accesses within a single GPU.  An optimal solution maintains 

independence of the GPUs while using all of them to their fullest extent.   

 Dividing the reconstruction problem evenly across the GPU devices by scan slice 

is the most efficient and straightforward approach.  Slices are acquired independently in 

the MRI scan and can also be reconstructed separately.  It might seem ideal to divide the 

computation by coil.  This is possible but makes reaching the goal of reusing sections of 

the encoding matrix as much as possible more complicated.   For instance, the field map 

of each slice is unique.  If the problem is divided by coil field maps for every slice will 

need to be loaded into every device.  This takes additional time and memory.  Splitting 

the problem by reconstructing one whole slice per device ensures the independence of the 

GPUs, uses the minimum memory space, and requires the least control overhead by the 

host machine.   

 This solution was testing by reconstructing a volume of slices allocating each 

slice to a separate GPU.  This approach is illustrated in Figure 34.   
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 In reconstructing a large volume of many slices a new slice would begin 

reconstruction on a GPU as soon as the previously assigned one was done.  The time 

required to reconstruct the entire volume should be reduced by a factor of N number of 

GPUs used.  Figure 35 below shows very good results from this arrangement.  A multi-

slice dataset of a set size was reconstructed on a varying number of GPUs.  As the 

number of GPUs used in the test were increased, the total reconstruction time decreased 

in close agreement with the expected 1/N rate.  There is some cost associated with using 

multiple GPUs.  This is due to control overhead created by the host communicating with 

Figure 34: Illustration of CGLS implementation with multiple GPUs. 
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the GPUs.  Per slice this overhead never exceeded 13% in any of the tests.  This means 

that while using multiple GPUs each slice may take slightly longer to reconstruct than it 

would only using one GPU but the total throughput is roughly N times higher.   

 

  

Figure 35: graph of CGLS reconstruction time for a 10 slice volume using several 

GPUs in parallel. 
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CHAPTER 8 

SUSCEPTIBILITY MAPPING 
 

8.1 Introduction  

 

 As we have seen, analysis of iron concentration is of great importance in 

monitoring the progression of disease in the brain.  The ability to specifically quantify 

and analyze the distribution of ferromagnetic materials in human tissue could provide 

useful contrast and important metrics for the study of disease.  Of particular interest are 

artificial magnetic contrasts such as gadolinium.  Such paramagnetic contrasts are used to 

increase tissue contrast by changing a tissue's natural relaxation time.   

 Traditional methods relying predominantly on tissue contrast from image 

magnitude is limited when imaging ferromagnetic molecules due to strong T2* effects 

which cause rapid signal decay.  By creating a susceptibility map we can quantify how 

much iron may be present in a given voxel.   

8.2 Susceptibility Mapping 

 

 Susceptibility mapping can be done by considering a detailed fieldmap as the 

result of the sum of all dipole-dipole interactions within the FOV.  The interactions of the 

dipoles are governed by Maxwell's magnetostatic field equation (21) and the Lorentz 

sphere correction.  These principles are employed to calculate the localized magnetic 

fields created by dipole moments.  The dipole response is the spatial domain is described 

by Equation 5 below.   

 𝑑(𝑟) =  
3 𝑐𝑜𝑠2(𝜃) − 1

4𝜋𝑟3
 

[5] 
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 To calculate the field map based upon a susceptibility distribution this dipole 

response is convoluted with the susceptibility map.  This convolution is done in the 

spatial domain.  This formulation is seen in Equation 6 (22) where it can be seen that the 

change in the B0 field is a convolution of the dipole response with the distribution of 

susceptibility.  Alternately, this can be done by a point-wise multiplication of the Fourier 

transformed dipole response by the Fourier transformed susceptibility map.  This 

formulation is seen in Equation 7.  An example of the spatial dipole response is seen in 

Figure 36.   

 ∆𝐵(𝑟) =  
1

4𝜋
∫ 𝜒(𝑟′)

3 𝑐𝑜𝑠2(𝜃 ) − 1

|𝑟′ − 𝑟|3
𝑑3𝑟′

 

𝑟≠𝑟′

 
[6] 

 ∆𝐵(𝑟) =  𝐹−1 {(
1

3
− 

𝑘𝑧
2

𝑘2
)

−1

𝐹(𝜒)} 
[7] 
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 At first, this point-wise frequency multiplication relationship makes the inverse 

problem of solving for the susceptibility map from the field map appear to be a 

straightforward operation.  Unfortunately, the dipole response does not lend itself to easy 

inversion.  At points where k
2
 = 3kz

2 
the dipole response becomes zero.  In the spatial 

domain, this corresponds to the “magic” angle of 54.7
o
 between two dipoles and the B0 

applied field.  When performing the inverse of the frequency domain relationship these 

zeros cause the problem to be ill-posed.  It has been suggested that an appropriate 

discretization can avoid these zeros while substituting very small coefficients, (23).  This 

avoids some computational problems but further problems remain.  The small values near 

Figure 27: Surface plot of the dipole response through 5 slices. Figure 36: Surface plot of the dipole response through 5 slices. 
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the zeros cause strong noise amplification in the solution when the inversion is 

performed.  Another approach is necessary.   

 If we formulate the forward problem as a convolution in the spatial domain and 

express this relationship in a matrix-vector format we get eqn. 8.   

 Dχ = ψ [8] 

 Here, D, is the dipole response matrix.  Each column represents a different voxel 

location.  The same is true for each row.  At the matrix' intersection of a particular row 

and column is the dipole response between them based upon their Euclidean distance and 

the angle between them in relation to the external B0 applied field.  The variable, χ, is the 

susceptibility mapping to be solved for.  The measured field map is represented here by 

ψ.   

 Eqn. 8 is in the familiar system form for our CGLS linear system solver.  In this 

spatial formulation the “magic” angle zero values are still present but the problem is now 

analogous to an undersampled dataset.  We can now apply techniques from chapters 5-7 

to solve for the susceptibility map.  Since the problem is ill-conditioned additional 

constraints to regularize the system are required in our solver.   

 A method known as COSMOS (Calculation Of Susceptibility through Multiple 

Orientation Sampling) has been suggested to improve the condition number of the dipole 

response matrix.  By performing multiple scans of an object each with a different 

orientation to the B0 field the intersection of ill-posed magic angles in the linear system 

can be minimized.  Liu et al. (24) analyze optimal sampling orientations needed to 

stabilize this problem.  From this work at least three scans are needed at widely different 

angles, (0
0
, 60

0
, and 120

0
).  These angles are unrealistic for a human subject within the 
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MRI scanner.  Additionally, the multiple scans needed increase the time the subject is in 

the scanner.   

 A more practical approach is to use a typical regularization technique on the 

single-scan data.  Tikhonov regularization has been suggested in (22) to provide data-

driven stability to the inverse solver.  This approach was taken here to minimize the 

propagation of noise from the ill-posed magic angle components.  The minimization 

problem can now be formulated as seen in eqn. 9.   

  𝜒
𝑚𝑖𝑛 ‖𝐷𝜒 − 𝜓‖2

2 + 𝜆‖𝜒‖2 [9] 

 The regularization parameter is used to tune the strength of the penalty provided 

by χ itself.  The calculated susceptibility is useful for the penalty because noisier high 

frequency regions of the mapping will be more heavily penalized.  The familiar CGLS 

algorithm can now be implemented to solve this problem.   

8.3 Implementation of CGLS for Susceptibility Mapping 

 

 The form of eqn. 9 can be rewritten to a more direct form for implementation of 

the CGLS solver.  We will now work with the matrix vector relationship seen in eqn. 10.   

 
𝑚𝑖𝑛

𝜒
‖[

𝑫
𝜆

] 𝜒 − [
𝜓
0

]‖
2

2

 
[10] 

 Since χ is in the form of a diagonal matrix in toward left-hand side of the equation 

the implementation of the multiplication is a point-wise operation.  This keeps the 

regularization from significantly slowing our calculation time.  Another implementation 

of the CGLS algorithm was coded for the GPU with the same design goals as Section 

6.1.2.  The length of intermediate variable p in the CGLS algorithm was doubled to 

accommodate the regularization values.  This did not stress global memory resources on 
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the GPU.   

 Two major issues need to be addressed to accelerate calculation speed as much as 

possible.  First, the size of the dipole response matrix is extremely large and quite dense.  

This matrix contains the interaction coefficients for each dipole acting on every other 

dipole in the system.  For a volume of dimensions MxMxN the size of this matrix is 

(MxMxN)
2
.  The time needed to calculate such a large  matrix is exacerbated by the 

complexity of calculating each value.  This involves calculating both the Euclidean 

distance between the dipoles and the angle between them with respect to the B0 field.  

These values must then be combined into the dipole response equation seen in Equation 

5.  Also, calculation of the angle requires prior calculation of the distance this introduces 

some serialization.  Once these are calculated, the overall dipole response can be 

calculated.  While each dipole-dipole response can be calculated independently, the 

components of each calculation must be calculated in sequence.   

8.4 Susceptibility Results 

 

 The susceptibility linear solver was tested using phase maps from our SWI 

sequences.  The maps have an in-plane resolution of 1.4mm and a slice thickness of 

2mm.  A scaling z-ratio of slice thickness:in-plane resolution is used to calculate 

distances between voxels.  Phase maps were unwrapped using a high-pass Fermi filter.  

The phase maps were then scaled according to the proposed relation: ω = -ф/(γ*TE*B0).  

This provides an estimate from a single echo, (22).  The CGLS algorithm can now take 

this scaled phase map along with the z-ratio to calculate susceptibility maps.  An example 

of such a map is seen in Figure 37a).   
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Figure 37: a) Example of phase image input into susceptibility calculations.  b) 

Resultant susceptibility map calculated using 5 surrounding slices.  Brighter areas 

indicate stronger susceptibility. 

  It was observed in several of the subjects that susceptibility was highest in the 

putamen and pallidum of both hemispheres.  This is especially true in the left hemisphere, 

which is consistent with both our own findings as detailed in Section 2.4 and our review 

of the literature.  Our results also reveal higher susceptibility in the regions above the 

sinus where the air/tissue boundary increases the off-resonance.   

 With the calculated susceptibilities we can now make some differentiation of the 

overall magnetic properties of each voxel.  Diamagnetic materials account for 99% of 

human tissue, (25).  Our results concur that the majority of tissue in the brain is 

diamagnetic.  The ferromagnetic iron of interest exhibits positive susceptibility relative to 

the B0 field.  Visualizing only those measurements with positive susceptibility produces 

in the image seen in Figure 38.  The ferromagnetic effect of iron is very clearly seen in 

the putamen and pallidum with a preference for the left hemisphere.  This correlates with 

our T2/T2* relaxometry results from Section 2.4.   
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This method allows us to image only the ferromagnetic contributions to the 

resultant field map.  Partial volume effects are still present but the high image resolutions 

afforded by CGLS reconstruction helps to minimize this confounding factor.  Mapping 

the susceptibility in this way provides high spatial specificity and a more direct 

measurement of iron concentration.   

  

Figure 38: Mapping of regions with susceptibility calculated to be ferromagnetic. 
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CONCLUSION 
 

The relaxometry method implemented here does show utility as a tool to monitor 

the progression of neurodegenerative disease.  The T2* shortening effect associated with 

increased iron concentration was observed both as a function of the normal aging process 

and HIV.  The areas in which this effect was measured agree well with other clinical 

research results.  While this relaxometry approach was effective in observing statistically 

significant changes in populations with many subjects, it is only a surrogate measurement 

which remains sensitive to off-resonance and partial volume effects.   

High resolution, higher quality images were obtained by employing a GPU-

accelerated CGLS algorithm.  The algorithm was shown to be capable of producing good 

quality images by using SENSE undersampling and off-resonance field map correction.  

This GPU achieved a 72-98x speed advantage over a CPU implementation.  The resultant 

phase images are well-suited for susceptibility mapping.   

Using the new high-quality phase images, a GPU-accelerated susceptibility 

inverse calculator was implemented using another CGLS approach.  The GPU cuts 

iteration time considerably, making a previously intractable problem more practical for 

high resolution images over multiple slices.  The resultant susceptibility maps provide a 

more direct and quantitative measure of iron concentration with great spatial specificity.   



76 

 

APPENDIX A 

CONJUGATE-GRADIENT LEAST-SQUARES 

ALGORITHM 
 

In order to solve a system of linear equations of the form Equation 2, the CGLS 

algorithm uses the following iterative approach.   

Initialization: 

 d = A
H
*m       r = m,       ρ0=d

H
*d,       b = 0 

Iterations until convergence or maximum specified iterations reached: 

 p = A*d 

 α =  ρk / p
H
*p 

 b = b + α*d 

 r = r + α*p 

 s = A
H
*r 

 ρk-1 = ρk,       ρk = s
H
*s,       β = ρk / ρk-1 

 s = s + β*d 

 d = s  
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GLOSSARY 
 

CGLS: 

 Conjugate-Gradient Least Squares.  The conjugate-gradient least squares 

algorithm iteratively applies forward and backward matrix/vector operators along with 

error residuals to solve an optimization problem relating two transform domains.   

Flip angle:  

The angle between the axis of a magnetic moments precession and the main B0 

field.  This angle is induced by the application of the RF pulse to apply a torque around 

an axis parallel to the B0 field.   

Larmor frequency: 

 The angular frequency of a nuclear magnetic moment in an applied field.  The 

Larmor frequency of hydrogen nuclei is 42.58Mhz/T.   

MIP:  

Minimum Intensity Projection.  A MIP is created by retaining the value of 

minimum intensity along a given view, such as along the z-axis across multiple slices.  

Such images are often used to visualize vascular connectivity.   

MRI:   

Magnetic Resonance Imaging.  Magnetic Resonance Imaging makes use of an 

applied magnetic field, magnetic field gradients, and radio frequency excitation pulses to 

create and measure signals which can be transformed into an image of the scanned object.   

Precession: 

 The wobbling of an axis of rotation under the influence of an applied torque 

tracing a conical space, as in the action of a top.   
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SENSE:  

Sensitivity Encoding.  SENSE is used in parallel MRI to incorporate multiple coil 

sensitivity information to assist in image reconstruction.  This method allows for proper 

regularization of undersampled data and can decrease scan time.   

SWI:  

Susceptibility-Weighted Imaging.  This imaging modality makes use of T2*-

driven tissue contrast which is sensitive to localized magnetic susceptibility of tissues and 

blood.   

T2 :  

The exponential time constant for a 63% relaxation of transverse magnetization 

due to proton dephasing.   

T2*:  

The exponential time constant for spin-spin relaxation 63% of transverse 

magnetization.  T2* is sensitive to localized inhomogeneities in the magnetic field.  This 

is the principle contrast in susceptibility-weighted imaging.   
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