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Abstract

Current trends like the digital transformation and
Industry 4.0 are challenging logistics management:
flexible process development and optimization has
been a primary concern in research in the last two
decades. However, flexibility is limited by its underlying
distribution of action and task knowledge.

Thus, our objective is to develop an approach
to optimize performance of logistics processes by
dynamic (re-) configuration of knowledge in teams.
One of the key assumptions for that approach is,
that the distribution of knowledge has impact on
team‘s performance. Consequently, we propose a
formal specification for representing active resources
(humans or smart machines) and distribution of action
knowledge in multiagent-based simulation. In the
second part of this paper, we analyze process quality
in a psychologically validated laboratory case study.
Our simulation results support our assumption, i.e.,
the results show that there is significant influence of
knowledge distribution on process quality.

1. Introduction

Logistics and process optimization is an important
field of research in theory and practice. Various
approaches on coordination and implementation
of information exchange as well as process and
workflow execution by information systems have been
developed as part of enterprise resource planning and
logistics management systems. To increase efficiency
and effectivity of production in a globalized world,
innovative approaches propose decentralization and
autonomy [1, 2, 3]. Thus, information exchange,
workflow specification and implementation of
workflows by information systems has been in focus of
early approaches to enterprise resource planning and
logistics management systems.

However, these approaches mainly focus
on emergent coordination, organization, and

(decentralized) planning of logistics processes. In
practice flexible behavior of resources, e.g., workers
or smart machines, heavily depend on its skills
and capabilities. A resource can only be used in
process steps, if its skills and capabilities match the
requirements of the process. If resource capabilities are
only partially matching task requirements, there will be
reduced quality or efficiency of the process execution.
Skills and capabilities are part of the action and task
knowledge of the resources in logistics and are typically
heterogeneous between the individual resources within
in a system. Human resources improve their action and
task knowledge by application of the corresponding
action or task as well as by training and learning. If
task knowledge and action is not actively applied, it will
fade out, i.e., it will be forgotten, such that the level of
specialization of a resource decreases. In organizational
design, roles are defined for binding actions and tasks
to resources or groups of resources. Binding many roles
to one resource increases their general applicability but
restricts its ability to improve on the skill and task limits
due to (cognitive) capacity restrictions. Resources only
connected to a focused action and task area will increase
the specialization of this resource while flexibility, e.g.,
serving as a substitute for a different role, will be
restricted. From an organizational perspective the (re-)
allocation of roles to resources is a process where new
knowledge has to be learned, e.g., adding new roles, or
knowledge should be intentionally forgotten, e.g., when
roles are deleted from a resource.

Planning and adapting the role model, i.e., the
knowledge distribution of the organization, is part of
organizational development and evolution on basis of
psychological and economical considerations [4]. In
a digitalized world where environmental and internal
changes appear on short-term, adaptations to roles
at design time of the processes are not sufficient
to ensure reliable and flexible processes. So we
propose an interdisciplinary approach to dynamic role
assignment by intentional forgetting, such that the
configuration of knowledge in the organization, i.e.,
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the distribution of specialized and general purpose
resources is balanced. Based on theories and empirical
findings from psychology on human team cognition
as well as deliberative agent theories from distributed
artificial intelligence (DAI) [5], we are developing an
interdisciplinary model on intentional forgetting for
dynamic role allocation in teams. This research is
based on the key assumption, that the distribution of
knowledge has impact on team’s performance, i.e.,
that efficiency and quality of processes are depending
on the role configuration. In psychological theory,
the dimensions of knowledge distributions in teams
are shared and distributed knowledge among team
members. In a fully distributed, i.e., partitioned,
knowledge structure each team member is specialized
on a particular area of expertise and in a completely
shared knowledge structure each team member as a
generalist is able to processes every kind of tasks. The
probability of errors in the process increase, if certain
employees are overloaded by work or information, e.g.,
due to a too broad, reps. generalist knowledge structure.
To cope with overload in work scenarios, knowledge
structures can be reconfigured by intentional forgetting
and focusing on fewer amount of roles per resource.

As the decision on the optimal knowledge
distribution in teams is situation-dependent, there
is no silver bullet in design time of the processes.
Dynamic analysis of current situations are required,
such that simulation seems to be a promising approach
to support dynamic reallocation of roles. Simulation
as an instrument can be used to predict different
scenarios and analyze complex dependencies within
the teams. Therefore, we propose the application of
multiagent-based simulation (MABS) as it is capable
of representing human‘s and smart machine‘s decision
making as well as knowledge base. Within this paper,
we introduce a formal specification of the required
models for resources (agents) and teams (multiagent
system) allowing representation of action and task
knowledge distribution. We analyze our key assumption
- the influence of knowledge distribution to process
quality and efficiency - using this specification in
context of a psychological experiment.

The contribution of this paper is an interdisciplinary
concept for modeling knowledge distribution in teams
as well as measuring performance effects. In
order to simulate the effects, a rigorously formalized
specification of the model based on DAI theories is
used to represent human knowledge distribution and
decision-making in intelligent agents. The question of
performance advantages through different knowledge
structures is shown in context of a laboratory case study
which is conducted using a serious game (networked

fire chief). It allows for representing complex group
decisions in a controllable environment.

The remainder of this paper is structured as
follows. Section 2 provides insights of autonomous
and decentralized processes management in logistics
as well as theoretical foundations for the conceptual
model. Section 3 gives an overview of psychological
foundations of knowledge configurations in teams. The
interdisciplinary knowledge (re-)configuration model
for MABS is presented in Section 4. A case-study
to evaluate potential knowledge configuration in teams
and measure their effects is conducted and described in
Section 5.

2. Autonomous Logistics

In contrast to conventional approaches in logistics
planning and scheduling by means of operations
research, autonomous logistics focuses on the
representation of active elements in logistics processes
[6]. Doing so, decentralized decision-making is
implemented which on the one side seems to be an
adequate mean for modern production and logistics
infrastructure in context of mobile and ubitiquous
computing. On the other hand, by decentralization, the
computational complexity is decreased significantly
and realtime planning and reacting to changes is
enabled. For example, in logistics, such an approach
can decrease the computational effort for solving
a distributed vehicle routing problem [7]. In this
case, local groups of cooperating entities constrain
the number of parameters to take into account for
decomposing the overall task into computationally
tractable sub-problems.

From a conceptual perspective, there are two main
approaches to implementing autonomous logistics: as
a bottom-up approach using integrating techniques like
Internet-of-Things and service-oriented computing and
as a top-down approach using multiagent systems. For
our research, multiagent systems are of concern, as
the knowledge representation and flexible organization
is too limited in the other case. Software agents
as intelligent representatives of real-world objects and
facilities incorporate the state of their corresponding
physical entities. It is assumed, that these agents
take control of their functions and receptions, e.g., an
agent is aware of information available to the physical
entity and has knowledge on its capabilities of accepting
transport orders for its available services. Depending on
the software architecture of an agent, it has individual
objectives and explicit planning capabilities [8].

With respect to the horizontal and vertical integrative
function of logistics, agents have to coordinate their
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activities with each other or with external processes.
While, negotiation, e.g., on price or time, does
not necessarily require agent technology and could
also be implemented as web-services, flexibility can
significantly benefit from goal-driven coordination of
intelligent agent, e.g., [9]. Following such approaches,
multiagent systems are dynamically agree on their
dependencies, such that the organization of the
multiagent system emerges by their interaction behavior
[10]. In context of our research, these interaction
behavior is part of process execution and not changing
the organizational structure by re-allocating capabilities
or roles. Due to the self-similarity of logistics objects
from on to another level of abstraction, e.g., package,
shipment, container, there has been various approaches
to bind agents together as a result of coordination
and continue planing, coordination, and control by
one representative of the complete group of bounded
agents. These concepts refer to holons or holonic
systems, inspired by social theories [11]. For instance,
in manufacturing and production planning, so-called
holonic organizations have been used for the joint
planning and execution of tasks [12, 13, 14]. While
combining knowledge bases is discussed in context of
holon research, holons tend to be task oriented, so that
they come closer to short-term organization of process
execution rather than fundamental support of role
assignment. Additionally, the property of self-similarity
aims at integrating similar elements together rather
than constructing dynamic knowledge structure in an
organization.

Situation-dependent adaptation of groups or
organization is primarily a sociological phenomena
as well as handled by business administration.
Various approaches exist, transferring theories and
methodologies from those disciplines to multiagent
research, e.g., [15, 16]. Social mechanisms have
been researched for their application in logistics for
dynamic (re-) organization of interdependent actors,
eg., [17, 18, 19]. However, these approaches are rather
focused on interaction patterns than on knowledge
explicitly. Knowledge representation and processing
explicit knowledge are important aspects of multiagent
systems research. In logistics, the majority of the
approaches deal with interaction design as coordination
of activities is one of the main tasks, here. In the
beginning of multiagent systems, there have been
multiple approaches to adopting intelligent agents, e.g.,
[20, 21]. The practical reception of those approaches
is limited and Davidsson et al. propose that more
validation is required first [22]. Thus, these approaches
provide a formal basis for specification of multiagent
systems but the resulting models have to be validated.

Finally, learning is a strategy for adapting knowledge
within agents and, doing so, implicitly rearrange roles
and knowledge within the multiagent system. There
is a broad range of learning approaches reaching from
abstraction and aggregation of data, connectionists
approaches like Neural Networks, reinforcement
learning or inductive logic programming, e.g.,
[23, 24, 25, 19]. Approaches of agent-based learning in
logistics can be applied for implementing the adaptation
of agents to new situations or to acquire experience.
However, for the specification of our interdisciplinary
model, intentional forgetting as an inverse function to
learning as well as learning and intentional forgetting
on an organizational, i.e., team, layer is required.

3. Psychological Teamwork Foundations
on Roles and Processes

In order to analyze, model and design roles
and processes in organizations and measure their
performance, insights from psychology are helpful
to understand team functioning and cognition. In
psychological group-research, teams can be defined as
collective information-processing systems [26]. Team
members memorize knowledge required for their tasks,
they specialize on particular areas of expertise, or they
share knowledge and information with each other [27,
28]. These various approaches to the organization of
team knowledge are known as team cognitions [29].
Team cognitions describe the structure in which
knowledge important to team functioning is mentally
organized, represented, and distributed within the team
and allows team member to anticipate and execute
actions [30]. Therefore, they are particularly suitable
as a theoretical concept for describing, modeling, and
analyzing knowledge (re-)configuration approaches in
collaborative work processes. Team cognition, as an
emergent state, are conceptualized as (1) shared team
knowledge or (2) distributed team knowledge [30].

When working together, it is important for team
members to share their knowledge about task and team
relevant information with each other in the form of team
mental models to facilitate successful cooperation and
coordination [30]. On the one hand, this generates
trust and increases coordination and the robustness
of the work process against disturbances by means
of information exchange and the acquisition of group
knowledge [31, 32]. On the other hand, sharing of
the entire knowledge among all team members results
in an increased amount of information that needs to
be processed by each individual which can lead to
information overload [33, 34]. Information overload
endangers the effectiveness and efficiency of the team
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as its members struggle to focus on current tasks when
constantly switching between different contexts [30].

Contrastingly, specializing on particular areas of
competence reduces the cognitive load faced by
members of a team [35]. That is, each team
member can focus on her specific expertise which
reduces the load of information being processed. This
distribution of knowledge in specialized teams increases
the overall knowledge capacity of the whole team
since individual members only have to memorize and
process information which is relevant to their areas of
expertise [36]. However, this potentially makes the
team as a system more fragile as it lacks the required
redundancy of knowledge to avoid confusion, conflicts,
and failures [37].

In fact, a completely specialized team will be
dysfunctional. This is because effective coordination
between its members requires them to have some
meta-knowledge about their co-workers’ competencies
and the overall process of collaboration. Such a
transactive memory provides a shared context for
the performance of divided tasks [28]. It contains
knowledge about the location of expertise (knowing
who knows what) which facilitates cooperation,
coordination, and further specialization [36]. Moreover,
a transactive memory even increases both a team’s
performance in dynamic environments and its ability to
include new members [38, 39].

If certain information and knowledge is not equally
memorized by all team members then the overall system
capacity is increased [36]. Consequently, particular
information and knowledge can be ignored by other
team members. Therefore, we define intentional
forgetting as a deliberate reconfiguration of knowledge
distributions in teams and organizations to extend
their knowledge capacity. A MABS combining
psychological grounded representation of human
teamwork decision-making and performance with
formalization and modeling from distributed artificial
intelligence allows for comprehensive simulation,
analysis and understanding of modern production
processes. By means of an intentional forgetting
mechanism, roles and processes can be reconfigured
and optimized.

4. Modeling and Configuring Knowledge
Distribution in Multiagent-Teams

In order to apply the mechanism of intentional
forgetting to roles and processes in organizations,
this Section presents an interdisciplinary approach
of theories from psychology and formalization from
DAI. In Figure 1, the overall intentional forgetting

model of knowledge distribution, measuring effects
and performance of knowledge distributions and
reorganizing knowledge is shown. The next paragraphs
show a detailed formalization of the model components.
In Teams, each team member has specific capabilities

Figure 1. Modeling, Measuring and Adapting

Knowledge Distributions in Teams

which represent task related knowledge. According
to psychological group research, the dimensions of
capability distributions among team member can be
either totally distributed or completely shared and both
are coming with their advantages (see Section 3). In
order to apply a mechanism of intentional forgetting to
agents, the formalization of an agent and its capabilities
is needed. The following formalization of an agent
Ag is based on logics and concepts from [40, 41, 42].
Moreover, the actual definitions are derived from [20, 1].

The see and execute functions of an agent are
interfaces to its environment (see Definition 4.3). The
intentional forgetting mechanism, i.e., a shift in the
capability configuration of an agent, is implemented
in an agent’s reflect function. It allows for a
reconfiguration of an agents local state.
Definition 4.1. An agent is given by a 7-tuple: Ag =
⟨L,Act, see, reflect, decide, execute, l0⟩ where:

• L as a representation of the local state of the agent,
see Definition 4.2 for a detailed formalization

• Act is a set of Actions an agent can perform

• see is a perception function which maps an
environment to an agent’s perception see ∶
Env → Perc

• reflect is a function to update L; reflect ∶ L ×
Perc→ L∗

• decide is a function which transforms the local
state to action plan
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• execute is a function which selects a single action
from an action plan and executes it; execute ∶
L→ Act

• l0 ∈ L as initial internal agent state

Besides actions concerning environmental changes
of an agent, a communication interface is modeled.
Hence, the knowledge on actions of an agent is given
by Act and can be divided in Acte for actions in the
environment and Actc for communicative actions such
as message sending or receiving. In this approach,
the knowledge on action is considered as being static
during runtime of the system, i.e., the agent does not
include a function to reflect on isolated actions. The
role specification for an agent consists of knowledge
on the objectives (what it has to do in this role) and
on the procedures (how should a task be accomplished
following this rule). This knowledge is part of
the dynamic knowledge base of the agent, i.e., its
local state. The local state embraces the agent’s
beliefs about the perceived environmental information
as well as the reflection of its own condition. As
task knowledge, the desires are directing the agents
behavior as a representation of persistent goals. The
procedural knowledge for tasks is stored as plan
templates which can also include specific planning and
execution routines. The local state of an agent is defined
as follows:
Definition 4.2. An agent’s local state L is given by a
5-tuple: L = ⟨B,D, I,P ln, γ⟩ where:

• B ⊂ B∗ is the set of current beliefs

• D ⊂D∗ is the set of current desires

• I ⊂D × Pln is the set of active intentions,

• Plan ⊂ Pln is the set of available plans, and

• γ ∶ B ∗ ×D → R is a mapping computing the
relevance of a desire in the current situation.

To be more exact, the capabilities of an agent are
implicitly modeled in its plan base. In order to solve
particular tasks an agent can execute a given plan, i.e., a
chain of actions to process it. In order to visualize the
agent function and its dependencies, a schematic agent
architecture is shown in Figure 2. In order to allow
for a team-based intentional forgetting comprehension,
the definition of agent teams, i.e., multiagent system
is necessary. But beforehand a definition of an agent
environment is needed.
Definition 4.3. An agent environment is defined by:
Env = ⟨E,Act1, ...,Actn, τ, e0⟩ where:

Figure 2. Schematic Modular Agent Architecture

• E is the set of all possible environmental states,

• Acti is the set of actions for each Agent Agi with
i = 1, ..., n,

• τ ∶ E ×Act1 × ... ×Actn → E is defining a state
transformation function,

Consequently, with the use of an agent environment,
a MAS can be formalized as follows.
Definition 4.4. A Multiagent system, i.e., a Team is
defined as: MAS = ⟨Env,Ag1, ...,Agn⟩ where:

• Env is an agent environment as defined in
Definition 4.3

• and a sequence of agents Agi as defined in
Definition 4.1 with i = 1, ..., n

Having a formalized MAS it is feasible to define
capability configurations for agent teams.
Definition 4.5. The capabilities of a team TC is the
union of the capabilities, i.e., the plans of every agent:
TC = ⋃Ag∈MAS PlnAg The dimensions of generalist
and specialist knowledge distributions are defined as:

• Shared agent capabilities:
TC = PlnAg1 = ... = PlnAg1 . Every agent
has the same amount of capabilities and therefore
allowed to process all kind of tasks.

• Distributed agent capabilities: TC =
∃ ⋃̇Ag∈MASPlnAg For any kind of tasks,
there is a specialist who is only capable of
processing it.

In order to achieve effective and efficient teamwork,
a suitable capability structure is needed. Each team
configuration is accompanied by individual performance

Page 5480



and robustness properties. Regarding the hypothesis of
performance increase, specialist teams are processing
tasks more efficient than generalists due to a lower
cognitive load. To decide which capability configuration
is suitable for a specific situation, the definition of
performance indicators is necessary.

Definition 4.6. A performance indicator PI for MAS
in an organizational context can be defined as: PI ∶
E → R with an environmental state E mapped onto an
evaluation space of rational numbers.

In production processes, the effectiveness is mostly
measured by time-based key performance indicators
such as the troughput time [43]. Due to psychological
research, quality should be considered when evaluating
knowledge capacity. Therefore, we specify the error
frequency as an indicator for cognitive overload of team
members which indicates process quality (cf. six sigma
[44]). If team member have different competences
and responsibilities among various work contexts, it is
possible that they lead to a state of information overload.
This may cause higher error rates in work processes and
a lack of work quality. The next section provides an
exemplary model and PI implementation to test impacts
of capability distributions among human teams in a
controllable environment and transfer the observations
to agents.

5. Case-Study: Effects of Roles and
Process Configurations

In order to test the hypothesis of performance
advantages of specialist knowledge structures, i.e.,
specialized agent capabilities a case study is conducted.
The aim of this case study is to analyze a team’s
performance for different knowledge structures and their
ability to cope effects of increasing task complexity, e.g.,
information overload and to transfer results from human
teams to multiagent teams. In order to show these
effects a serious game, the networked fire chief (NFC) is
chosen. The NFC platform allows for data collection in
small group research as well as a structured environment
for agent interaction. NFC is designed for enabling
complex decision-making with controllable conditions
[45]. The combination of laboratory experiments and
MAS, is a promising approach to allow for human
decision-making in agents [46, 47]. By reallocation
and goal-directed usage of given resources, NFC
addresses core challenges of modern logistic processes
and is therefore appropriate environment for analyzing
performance effects of varying role configurations.

Figure 3. Networked Fire Chief Scenario Setup

5.1. Scenario Specification

In the specified scenario, a team of three (humans
as well as agents) is working together to extinguish fire.
This environment is structured in a 40 x 40 array which
consists of houses, grassland, firetrucks and lakes (see
Figure 3). The environment is controlled by three fire
stations which individually controlled by a participant.
Each station is responsible for a set of firetrucks. In
order to measure the effects of sharing and dividing
knowledge,i.e., capabilities, rules for extinguishing fire
as well as refilling firetrucks are defined using relations
between the entities firetruck FT , house H and lake
L. A rule R is a combination of valid usage of colored
entities. Hence, a rule for a participant with specialized
capabilities on red entities for extinguishing fire is a
mapping of: R1 ∶ FTred → Hred as well as for
refilling: R2 ∶ FTred → Lblue. These rules describe
that this station is allowed to control all red firetrucks, to
extinguish fire on red houses, and to refuel with water
from blue lakes. Other team member are specialized
on the remaining colors yellow and blue. Such a setup
represents a fully divided knowledge configuration. For
generalist knowledge structure, each station is allowed
to control one firetruck of each color with corresponding
coloring restrictions. This represents a maximum on
sharing knowledge.

In order to test the performance differences, the
scenario is divided into three different complexity
classes. In more complex scenarios the color
combinations of the entities are not harmonic, e.g.,
red firetrucks can extinguish fire in green houses and
refuel on purple lakes. In experiments is proven that,
for example, humans are less efficient naming colors
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of words when they are written in a different color
(Stroop Effect [48]). Hence, using multiple color
combinations to model task complexity is a suitable
approach. For each complexity class, the combination
of color matching entities is increasing. In order to
measure performance, failure indicators for using the
wrong kind of firetruck, refill at a wrong lake or
extinguish the wrong colored house.

5.2. Agent Behavior

Each agent represents a test subject in the simulation
which controls a fire station. Based on the agent
formalization model in Section 4, the agent is separated
in decision-making (controller) and executing decisions
(executor) to provide a fully modular and reusable agent
architecture (Figure 2). However, following the process
for the laboratory setup there is no communication
between the test subjects intended. Therefore the agent
interactions are limited to the environment.

In the implemented agent model, the executor
provides an interface for a simulation framework and
signals environmental changes as well as executes
actions. In this approach the Repast Simphony
simulation framework is used. The controller is
also fully modular and consists of four components:
Perception, Decision-Making, Knowledge-Base and
Action. Each component is event-driven, that is,
each component can fire and handle events which
allows for model extensions in future simulations.
The decision-making itself is rule-based,i.e., plan-based
according to the rules each fire station has. Therefore,
an agent can execute two different plan-categories,
extinguish fire and water refilling. That is, for each rule
in the scenario there is a separate and invariant plan.

An agent chooses refilling if there is not enough
water to extinguish a fire. It then selects the nearest
refilling opportunity. In order to choose a fire to
extinguish, each agent has a representation of fire
locations and selects the nearest one. It chooses burning
houses over burning landscapes. If there is another
firetruck which is also allowed to extinguish this kind
of fire and is actually nearer to the fire, then the agent
chooses the next fire.

Based on the plans given, an agent would not make
mistakes such as choosing the wrong kind of houses,
firetruck or lake. However, human test subjects in
the study do wrong choices. In order to transfer
human decision-making to the agent’s decision-making,
each time an agent chooses an action a deviation
parameter σ for each selection is used. It is modeled
as a threshold value to enable making wrong choices
with a certain probability. Therefore three different

deviation parameter σFT : Probability of selecting
correct Firetruck, σL: Probability of selecting correct
Lakes and σH : Probability of selecting correct Houses,
are used. The model is based on the assumption that the
main decision-making is dependent on which firetruck
is used. Each deviation parameter models the situation
awareness of an agent concerning different entities [49].
For example the parameter σFT , in complex scenarios
this parameter value can be lowered allowing more
mistakes, e.g., a specialist on red entities is using a blue
firetruck. The different σ parameter are used to calibrate
the simulation.

5.3. Simulation and Experiment Results

The result discussion is twofold, the first segments
are focusing on the results of the laboratory experiment
and the segments afterwards are showing the simulation
results as well as their comparison to the experiment. As
a performance indicator to evaluate a team’s efficiency,
the ratio of false actions to all actions is chosen. The
calculation is based on moving the wrong kind of
firetruck, extinguishing fire on a house with a wrong
color and refilling water from a wrong lake according to
the rules given. The main hypothesis for this experiment
is: In complex work environments specialist knowledge
structures will perform more efficiently than generalist
knowledge structure according to failure indicators.

In Table 1 the average failure measurements from
the experiment are shown. The experiment is conducted
with 12 participants resulting in 144 NFC runs.

Table 1. Laboratory Experiment Results: average

False Action Ratio
Complexity Low Medium High
Specialist 0,1544 0,1672 0,415
Generalist 0,23 0,315 0,442

In order to verify the hypothesis a two sided t-test
was performed. Each series of measurement contains
eight data points which represents the average of all
false actions of each three person team. Figure 4
shows the individual test results for specialist and
generalist knowledge structures in three different task
complexity classes. For experiments with low and high
complexity the results were not significantly distinct.
In case of the second complexity class the results are
significant with a p-value of 0.05. It can be assumed
that the scenarios with the highest complexity were too
demanding and caused a state of information overload
for both knowledge structures. Therefore hypothesis can
be assumed for complexity class two.

The calibration of the agent-based simulation model
is based on a sensitivity analysis of the parameter
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Figure 4. False Action Ratio from Laboratory

Experiment

σFT , σH and σS . Each parameter is varied in a
interval [0.0;1.0] in steps of 0.1, to get an overview of
the parameter space. This analysis is performed with
specialist and generalist knowledge structures and for
each scenario complexity. Based on the results captured
from the sensitivity analysis a simulation calibration is
conducted. The results are shown in Figure 5. For
each knowledge distribution and complexity degree the
simulation was conducted 100 times.

The results of the simulation runs show similar
characteristics concerning the failure behavior.
However, the failure values in the simulation are
more equally distributed among the complexity degrees.
The distribution of the standard deviation in experiment
and simulation is shown in Figure 6. The sample
abbreviations are meant to read as: E,S for experiment
or simulation; G,S for generalists or specialist and C1,
C2, C3 for different complexity classes.

To show a more detailed behavior comparison of the
simulation and experiment results, a single parameter
setting is discussed. For example with a parameter
setting of σH = 0,75, σL = 0,44, σFT = 0,745 in a
specialist knowledge structure and highest complexity
class, the output is also similar in the simulation and
the experiment (experiment: µFT =0,513, µL=0,44,
and µH=0,28 / simulation: µFT =0,54, µL=0,413, and
µH=0,264). Concerning the average failure ratios the
simulation produces similar outputs. However, the
standard deviation of the experiment results for each
single failure ratio parameter is very high (±0,65). This
may arise from the small sample size in the experiment.
In total, the MABS model is a suitable approach to
replicate failure behavior in the NFC environment.
According to average error parameter the laboratory
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Figure 5. False Action Ratio for Simulated
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experiment is being replicated by the simulation.

Figure 6. Standard Deviation Experiment and

Simulation

6. Conclusions

The configuration of roles and processes in
organization is a difficult task which needs a
comprehensive interdisciplinary view. We have
shown that the key assumption of our research,
the distribution of knowledge has impact on a
team‘s performance, can be verified. This paper
proposes a simulation-based approach combining
MABS and theories from psychology to configure
knowledge distributions in teams by providing a
formal agent model. The model allows for rigorous
formulation of explicit task processing capabilities.
From psychological theory it is known that specializing
on certain expertise can enhance the cognitive capability
which results in reducing errors in work processes. By
conducting a laboratory experiment could be shown

Page 5483



that specializing on particular areas of expertise team
member does enhance process quality by reducing
errors in process execution. Using a serious game
environment revealed that teams with specialized task
processing capabilities make significantly less errors
in solving distributed tasks than generalist teams.
Moreover, it could be shown that these results can
be transferred to the multiagent model which enables
realistic simulation of human knowledge capacity
concerning error replication in processes. Such an agent
model provides first insights in human cognition and can
be seen as basis for reconfiguration, i.e., optimization
roles and processes in organizational scenarios.

In future work this approach need to be extended
to allow for dynamic reorganization of capability
distributions among teams. This requires extensions
on the agents’ communication and reasoning abilities.
By proving positive effects of intentional forgetting,
dynamic capability management which allows for
coping external and internal disturbances can be
facilitated.
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