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Abstract 
Site-specific weed management is an important 

practice in precision agriculture. Current advances in 

artificial intelligence have resulted in the use of large 

deep convolutional neural networks for weed detection. 

In this paper, a transfer learning, model compression, 

and ensemble learning approach is introduced that is 

suitable for resource-limited hardware such as mobile 

and embedded devices. The resulting ensemble model 

achieves 91.2% classification accuracy which is 

comparable to the performance of state-of-the-art deep 

learning models (such as the vanilla VGG16, DenseNet, 

and ResNet) while being about 62.22% smaller in size 

than DenseNet (the smallest-sized full-sized model). The 

approach used in this study is beneficial for further 

development of deep convolutional neural networks on 

smaller resource-limited hardware typically used in 

agriculture, as well as other industries such as 

healthcare and telecommunication. 

 

1. Introduction  

 
Since its introduction in the 1980s, precision 

agriculture – defined as a practice that manages the 

spatial and temporal variability associated with 

agricultural soil, crops, and livestock for improved 

performance and sustainability with the aid of 

agricultural information technologies and smart farm 

technologies [1]–[4], and Green IS emphasizing the use 

of information systems to achieve environmental 

objectives [5] – has made significant progress towards 

improving the sustainability of agriculture [6]. In the last 

few decades, precision farming has made substantial 

advancements to cropping systems. Using methods such 

as site-specific weed management, the practice can 

reduce the environmental impact of weed management 

through precise weed treatments that follow a four-step 

cyclical process consisting of 1) weed monitoring or 

detection, 2) management planning for action on 

weeding, 3) execution of the weed control method and 

4) evaluation of performance [7]. 

The recent resurgence of artificial intelligence (AI) 

in the form of Deep Learning (DL) has resulted in 

phenomenal results in various problem domains. DL 

techniques known as deep Convolutional Neural 

Networks (DCNN) [8] have been successful because 

they learn to distinguish complex inherent patterns 

within images, often difficult to observe otherwise. The 

success of the AlexNet in the ImageNet Large Scale 

Visual Recognition Challenge 2012 – achieving a top-5 

test error rate of 15.3% as compared to 26.2% achieved 

by the second-best entry [9] –has resulted in a 

substantial increase in the body of research that employs 

DCNNs across several disciplines and industries. For 

site-specific weed management, past research [10]–[15] 

has successfully employed DCNNs to distinguish 

various crops in different growth stages using different 

DCNN models and methods. Consequently, the use of 

DCNNs could provide increased benefits to the practice 

of precision agriculture and site-specific weed 

management.  

However, DCNNs are known for their high 

computational and energy demands due to their 

complexity. This could be a significant barrier to the 

commercial adoption of DCNNs for weed management; 

the type of weed control systems used by these practices 

are often resource-constrained [16]. Increasingly 

powerful hardware systems are being developed to aid 

DCNN implementation but contribute to the cost of their 

commercial acceptance and use. Hence, the cost 

associated with such hardware could be a barrier to their 

adoption [17], [18]. This could have profound 

implications for practice. Although the acceptance of 

technology in farming has been promising, precision 

agriculture, on the whole, suffers from a slow adoption 

rate [19]. Failure to adopt agricultural technology has 

been attributed to concerns about complexity and high 

investment costs [2]. Especially for most rural dwellers 

and small-scale farmers, the cost of buying and 

servicing both hardware and software can be a 
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significant challenge that leads to non-adoption [20], 

[21]. Sustainable technology adoption should not affect 

farm profitability and efficiency [22], [23]. As such, 

there is a persistent need to pursue definitive ways to 

maintain or lower costs associated with maintaining or 

replacing current systems with new technology.  

Consequently, this study proposes an approach to 

reducing the complexity of DCNN models for increased 

efficiency in ground-based plant classification systems. 

To demonstrate the effectiveness, we have implemented 

this novel method using publicly available deep learning 

libraries and evaluated the proposed method using a 

plant seedling dataset. From a theoretical perspective, 

the research demonstrates the potential of leveraging 

transfer learning, model compression, and ensemble 

learning to reduce the complexity (and thus the resource 

demands) of the resultant model while still maintaining 

classification performance that is comparable to full-

size models. By reducing model complexity, the 

proposed method can also have implications for practice 

as it decreases the demands for computational resources 

and supporting technology infrastructure, thus 

contributing to the improved likelihood of adoption in 

resources-constrained environments such as precision 

agriculture. 

 

2. Background and Related Work 

 
Despite the successes that demonstrate the potential 

of DL for site-specific weed management, the producers 

of precision farming equipment have left DCNN 

systems relatively underutilized. A criticism of DL and 

DCNN models is primarily their complexity resulting in 

the constant need for computing power which requires 

them to be run on high-end computers or graphical 

processing units – CPUs and GPUs [17]. An added 

disadvantage to this high computing power requirement 

is that it results in high power consumption to make 

predictions – which is ineffective for sustainable 

farming [17], [24]. Various literature reviews on the 

subject of agricultural information technology adoption 

for PA [23], [25], [26] have demonstrated that farmers 

are often concerned with their bottom-line, which makes 

the cost of technology a key issue when developing 

equipment. Lowenberg-DeBoer et al. [27], in their 

analysis of the economics of robots and automation, 

found that although switching from conventional 

mechanization to automated systems could have 

positive ripple effects on the whole farm, such a shift in 

on-farm mechanics will only gain traction if new 

systems can prove their cost-effectiveness. Similarly, 

Ofori and El-Gayar [28], in their survey of social media 

posts, found that reducing the cost and complexity of 

agricultural information technologies could result in the 

uptake of technology and the adoption of precision 

agriculture. Hence, for commercial farm equipment 

producers (and ultimately farmers) to accept and adopt 

DL systems for precision agriculture, research that 

introduces less complex models to reduce the demand 

for computing resources is required.  

Model compression solves this problem by 

compacting models by about 35-50x the size of the base 

model [29]. Model compression involves network 

pruning, quantization, and Huffman coding. Model 

pruning, which goes back to the 1990s [30], refers to the 

biologically inspired algorithms that emphasize further 

changes to existing models to retain only the bare 

minimum information needed to achieve comparative 

accuracy to their base model [31]–[33]. Pruning aims to 

reduce DCNN models by eliminating the redundancy 

and number of operations required for prediction. 

Further, quantization and weight sharing compress the 

pruned network by reducing the number of bits required 

to represent each weight, and Huffman coding ensures 

additional data compression.  

Compressing a DCNN model leads to a decrease in 

the number and complexity computations, as well as the 

number of memory accesses for inference (the 

processing time for making a prediction)  [34]–[36]. The 

compressed model is more energy- and resource-

efficient due to its smaller size and faster inference 

speed [29]. Successfully fitting a compressed model on 

an embedded or mobile device and performing inference 

at the edge (without a need to transmit data to an 

intermediary server) has some additional advantages. 

For example, in most embedded systems where 

compressed models have been implemented, training is 

performed offline; and only inference is run on the 

embedded device. In this case, the compressed model 

preserves user privacy and reduces transmission cost 

[34], [35]. Further, the use of offline training (training 

once and deploying to several devices) reduces the 

resource requirement of the model as compared to 

continuous training [37].  

As demonstrated in Figure 1 from the work of Han 

et al. [29], all three compression techniques under the 

right conditions retain the prediction accuracy of the 

original model. Regardless, some studies have found 

that the pruning ratio affects the accuracy of the model 

[38], [39]. In effect, a slight reduction in accuracy is 

possible depending on the percentage of the model’s 

trainable weights that are pruned [38]–[40]. 
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Figure 1. The three-stage model compression pipeline: pruning, quantization, and Huffman coding [29] 

 

 

The current study makes the following 

contributions: theoretically, the study presents an 

approach that combines well-known DL techniques to 

reduce model complexity such that they require less 

expensive equipment to run without the performance 

degradation demonstrated in past studies; and 

practically, the proposed approach which solves some 

of the issues with DL at the edge could be employed in 

different contexts other than precision agriculture.  

 

3. The Approach  

 
The current study presents an approach for reducing 

DL model complexity for resource-constrained 

environments. The ensuing section discusses the 

proposed approach further and contains additional 

details on how these techniques were employed. 

 

3.1. Model Architectures 

 
As demonstrated in Figure 2, the models used in this 

research follow their architectural properties as well as 

performance in earlier research [41], [42]. A summary 

discussion on these models are presented below:  

Spatial Exploitation Based. These kinds of 

networks take advantage of spatial filters to improve the 

performance of the network. The VGG, a popular 

DCNN network that replaced previous large filters with 

a smaller set of 3x3 filters and pushing depth to 16 and 

19 layers, will be used [8]. The VGG won second place 

in the ImageNet Challenge 2014 classification track.  

Depth and Multi-Path Based. The ResNet won the 

ImageNet 2015 challenge in image classification, 

detection, and localization, as well as the Winner of MS 

COCO 2015 detection, and segmentation uses both 

depth and multiple connections [43]. It is a very deep 

network that learns the residual representation functions 

instead of learning the signal representations directly. 

Multi-Path Based. To reduce the problem of 

performance degradation, gradient vanishing, or 

explosion problems, these networks connect one layer 

to another by skipping some intermediate layers while 

still allowing the flow of information across the layers 

through multiple paths or shortcut connections. The 

DenseNet connects each layer to every other layer in a 

feed-forward fashion such that feature maps of all 

preceding layers are used as input to subsequent ones 

[44].  

 
3.2. Transfer Learning 

 
DCNN models often require several samples of 

training data to perform well on a classification task. In 

effect, deep models rely on a linearly related amount of 

data. Due to the dearth of high-quality labeled data 

containing several samples of plant seedlings, transfer 

learning is employed as the first stage of training. 

During transfer learning, a base model was trained on 

the dataset by freezing the first several layers of the base 

model (consisting of generic features), and then re-

trained the remaining layers with randomly initialized 

weights using the target dataset (to acquire the target-

specific features) [45]. In this case, about a third of each 

model was frozen. Intuitively, this works because DL 

models have generic features near the input while the 

domain-specific features lie much deeper in the model 

[45]. This step serves to establish a benchmark for the 

expected performance of state-of-the-art models on this 

dataset.  

 

Page 1117



 
Figure 2. Comparing the classic VGG architecture 

(right) to a residual network (left) [43].  

 
3.3. Model Compression 

 
Even though DL techniques such as TL often 

decrease training time and/or increase classification 

accuracy, DCNN models are known to be 

overparametrized; hence, require significant 

computational resources. Due to the resource limitation 

of most precision agriculture systems, this study 

followed the work of Zhu and Ghupta [33] to prune the 

model iteratively. This involved adding a binary mask 

variable, the same size, and shape as the layer’s weight 

tensor, to determine which weights participated in the 

model training. This process was used to mask out 

unnecessary weights. In this study, model training was 

started at 50% sparsity with a target of 80% sparsity by 

the end of training. After pruning, the model weights, 

represented as a sparse row, were easier to compress. 

Following this, post-training quantization and 

Huffman’s encoding to reduce CPU and hardware 

accelerator latency, processing, power, and model size 

were performed [46]. This was done by reducing the 

number of bits needed to store each weight and 

compressing the resulting model in a lossless format. 

 
3.4. Model Ensemble 

 
Model compression is known to result in some loss 

of accuracy in the model. This study posits that model 

ensemble could be a useful technique to obtain 

improved results over the single compressed models for 

predictions. Although several types of model ensembles 

exist, such as simple voting or equally averaging the 

model predictions, the current study used a weighted 

average of the model predictions based on their 

performance. The optimal weights of the models were 

obtained through the direct optimization process known 

as differential evolution [47] which finds the set of 

weights that deliver the highest performance gains. 

 

4. Methods  

 
4.1. Dataset 

Giselsson et al. [48] introduced the public image 

database for benchmarking plant seedling classification 

aimed at ground-based weeds or species spotting 

(https://vision.eng.au.dk/plant-seedlings-dataset/). The 

dataset is intended for researchers to perform object 

analysis, species recognition, or plant appearance 

analysis without the difficult and costly task of image 

acquisition, segmentation, and annotation. It consists of 

5,539 images of approximately 960 unique plants 

belonging to 12 species at several growth stages. The 

plants were grown indoors in Styrofoam boxes and 

images were captured over 20 days. As overlapping 

plant leaves are minimal at the onset of plant growth, 

where most weed control such as broadcast spraying is 

undertaken, the images were captured in non-

overlapping mode. Also, to avoid errors that may occur 

in pixel-based segmentation algorithms, plants were 

grown in soil that is covered in small stones. Figure 3 

demonstrates images from the dataset. 
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4.2. Data Preparation 

  
The following preprocessing techniques were 

applied: 

Image resizing. All images were resized to 200x200 

pixels to ensure the same aspect ratio. 

Normalization of pixel values. This was done to 

ensure that all the pixels had similar data distribution. 

Pixel normalization aids the convergence of neural 

networks.  

Data augmentation. Since plants do not grow in a 

single orientation and images could be captured from 

different angles, image augmentation was performed 

using horizontal and vertical flips, random rotations of 

up to 45 degrees, and zooms of up to 10 percent of the 

original image height and width. 

 
4.3. Evaluation 

  
The dataset was divided into two sets: 90% for 

training and 10% for tests. During training, a k-fold 

cross-validation approach was used where the training 

dataset D, was randomly divided into k number of 

mutually exclusive folds (subsets): S1, S2, S3,…, Sk. The 

model was trained k number of times where k-1 subsets 

are used in training and each k was used as a validation 

set iteratively. In this study, k=5 representing 5-fold 

cross-validation over 5 repetitions was performed. 

Model accuracy and size were then evaluated. 

 
4.4. Technical Implementation 

  
The experimentation carried out in this study was 

conducted using the Python programming language and 

libraries such as the TensorFlow and the Keras high-

level API [49], [50].  

The development environment was set up on the 

Google Colab Pro cloud, which assigns virtual machines 

equipped with either a Tesla T4 (5.5 Teraflops Single-

Precision Performance and 8GB GPU Memory) or P100 

GPU (4.7 Teraflops Double-Precision Performance and 

16GB GPU Memory) for model training. Both GPUs 

employ an NVIDIA Pascal Architecture. Models were 

trained for 20 epochs with mini-batch sizes of 32 image 

instances. The initial learning rate was set at 0.0001 and 

decreased by a factor of 0.5 after every 3 epochs where 

the validation accuracy did not improve. 

 

 
Figure 3. The plant seedling dataset. 

 

 
 

5. Results 

 
This section reports the results of the experiments 

conducted to compress DCNN models while 

maintaining accuracy on the plant seedling dataset 

through a novel combination of transfer learning; model 

compression; and weighted average model ensemble. 

Table 1 below summarizes the results. 

The results presented in Table1 depict the 

performance of the DCNN models in 3 stages: a) 

transfer learning with an approximate third of the 

network frozen, b) the iteratively pruned network, and 

c) an ensemble of the pruned networks with weights 

applied through optimization. 

 
5.1. Model Accuracy 

  
In the first stage where the vanilla versions of the 

state-of-the-art models were fine-tuned by training with 

TL, the models delivered a consistent performance 

baseline that averaged 91.5%±0.1. The DenseNet 
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delivered the best performance with an average of 

92.53%±0.1, followed by the VGG at 91.84%±0.1, and 

then the ResNet at 90.31%±0.4. This result was 

comparable to earlier research on this dataset albeit 

without the use of data augmentation [42].  

Pruning the models over 20 epochs resulted in about 

a 6% average degradation of the prediction accuracies at 

85.1%±0.08. In a similar fashion to the full-sized 

models, the best results were realized by the DenseNet 

at 86.02%±0.1, then the VGG with 84.71%±0.2, and last 

the ResNet at 84.52%±0.3. 

When the models were then ensembled for 

prediction, using a simple average where each model 

contributed equal weights to the prediction result 

improved accuracy by a factor of 5% to 90.1%±0.2. This 

result was further improved by using an optimization 

process to find the best combination of model weights. 

Thus, increasing the prediction accuracy to 91.2%±0.2, 

a 6% increase as compared to the average result of the 

compressed models without ensemble. Overall, the 

ensemble method resulted in a better performance than 

the full-sized ResNet model and a slightly lower result 

compared to the other full-sized models: VGG (-0.6%) 

and DenseNet (1.3%). 

 
5.2. Model Compression 

 

The raw model sizes of the vanilla models trained on 

the plant seedlings were recorded at 371.07MB for the 

ResNet, 105.09MB for the VGG, and 45.48MB for the 

DenseNet.  

By iteratively pruning the model weights during 

training, the models were reduced to an average of 

20%±4.75 of the original sizes – ResNet decreased to 

67.65MB, VGG16 to 16.76MB, and the DenseNet to 

11.4MB. Further, post-training quantization and 

compression resulted in models that were on average 

5%±1.62 of the original model sizes.  

Thus, an ensemble of all three models will still 

reflect as a simple sum of the three models at 95.81MB 

when pruned and 28.97MB after compression, which is 

about 62.22% lower than the size of the DenseNet (the 

smallest-sized model). 

 

 

Table 1. Results of experiments 

Model Accuracy Size* Compressed 

 Accuracy 

Size*: Pa Size*: P+Q+Ha 

VGG16 0.918±0.01 105.0908 0.847±0.02 16.7565 4.8554 

DenseNet121 0.925±0.01 45.4808 0.860±0.01 11.4070 3.5403 

ResNet152V2 0.903±0.04 371.0736 0.845±0.03 67.6545 20.5780 

Simple Average of Compressed Models 
  

0.901±0.02 
95.8180^ 28.9737^ 

Weighted Average of Compressed Modelsb 
  

0.912±0.02 

 

* Size in megabytes 
^ Calculated as sum of the model sizes 
a P = Pruning; Q = Quantization, H = Huffman’s encoding 
b Weights applied by optimization process = VGG16: 0.386; DenseNet: 0.358; ResNet: 0.256 
 

 

 
Figure 4. Model accuracies per each fold.  

 

 
Figure 5. Model sizes comparison before and after 

pruning and compression  
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6. Discussion  

 
The race for better chemical agents with higher 

biodegradability and lower environmental persistence 

continues unabated. This study complements prior 

research and ensures further digital transformation that 

leverages new technology capabilities to ensure 

sustainable development. For instance, computer 

vision equipment used for weed and pest management 

should be able to capture images and distinguish 

between food crops and weeds quickly and efficiently, 

especially at the onset of plant growth, where lax weed 

control could result in up to 100% yield loss. As such, 

and given the success of DCNNs, ensuring their 

applicability to farming scenarios will represent a huge 

milestone for Precision Agriculture and Green IS. 

However, the drawback of DL and other machine 

learning tasks is in their requirement for huge amounts 

of data for training which has a direct impact on both 

energy consumption and computing power of the 

infrastructure involved.  

In this study, several existing DL techniques are 

combined in an approach that can ensure sustainability 

in the face of resource-constrained precision farming 

hardware. Each technique – transfer learning; model 

compression; and ensemble learning – delivers 

benefits that can enhance and underpin the 

generalizability of DL to precision agriculture 

systems. Transfer learning, where a model trained on 

one task can be ported to another task, offers 

opportunities for reducing overfitting and ensuring 

robust results in the face of limited training data [51]. 

Model compression offers additional benefits for 

reducing the size of the DL models, which means an 

equivalent reduction in both energy consumption and 

inference time [33]. Last, ensemble learning improves 

classification performance by combining several 

architecturally different models into a single 

prediction.  As demonstrated in the current study, the 

proposed approach resulted in a considerable 

reduction in the model sizes while keeping prediction 

accuracies comparable to the full-sized state-of-the-art 

models.  

In the first stage of the proposed approach, state-

of-the-art models with pre-trained weights were 

trained on the plant seedling dataset. The result of this 

baseline (average 91.5% prediction accuracy) was 

comparable to the earlier result of prior studies that 

employed the same dataset [42], [51]–[53]. Further, 

the literature points to a relationship between model 

accuracy and model compression such that pruning 

models could result in decreased accuracy [38], [39]. 

This was seen in the current study as compressing the 

models to 80% sparsity resulted in about a 6% 

decrease in the accuracy of predictions. Fountsop et al. 

[38] demonstrated similar results in their study where 

the highest accuracy achieved by a VGG16 model 

(trained over 100 epochs on the plant seedling dataset 

at 90% pruning ratio and post-training quantization 

applied) was 89.84%. An ensemble approach using 

weighted model averages was introduced in the 

current study to resolve this drop in prediction 

accuracy. This approach which combined a hybrid 

ensemble DL technique with model compression to 

compensate for the performance degradation resulted 

in increased performance (average 91.2% prediction 

accuracy) comparable to state-of-the-art DCNN 

models at a fraction of the size.  

In summary, as demonstrated by past research 

[33]–[35], [54], model compression reduces the 

complexity and resource demands of the DCNN 

models to allow for faster real-time inference. The 

approach presented in this study reduced the 

complexity of DCNN models and presented 

benchmarks to demonstrate 1) the reduction in model 

size by pruning out unused weights and 2) accuracy 

retention through ensemble learning. This approach 

will be beneficial to ground-based weed detection 

systems and contribute to minimizing the 

environmental footprint of agricultural technology 

while maximizing production efficiency. Although the 

context for the research is limited to use cases in 

precision agriculture and green information systems, 

this proposed method could be applied to similar 

computer vision tasks in resource-constrained 

environments commonly encountered in other 

industries such as healthcare and telecommunication. 

 

7. Conclusion and Future Research  

 
This study proposes a DCNN approach for plant 

seedling classification and weed detection using a set 

of techniques for reducing the hardware requirements 

of resource-constrained systems while keeping 

accuracy at par with full-sized state-of-the-art 

DCNNs. The approach employed three stages to 

devise a sparse network: transfer learning, model 

compression via pruning, quantization, and Huffman’s 

encoding; and weighted average model ensemble to 

determine the appropriate combination of model 

weights that deliver the best accuracy.  

Transfer learning over 20 epochs using three state-

of-the-art models – VGG, DenseNet, and ResNet –

demonstrated a performance baseline of 91.5%, with 

the smallest model size being the DenseNet at 

45.48MB. Although model compression resulted in 

models that were up to 5% of the original sizes, this 

also resulted in a 6% loss in accuracy over the same 

training regime. Thus, model ensemble using an 

optimization technique to find the best weighted 
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average combination was introduced to counteract this 

effect. The ensemble approach achieved an average 

accuracy of 91.2%. 

Theoretically, the approach proposed by the 

current study demonstrates that combining transfer 

learning and ensemble learning can resolve the 

performance degradation associated with model 

compression. Practically, this approach could be 

beneficial for further development of DCNNs for 

inference on the edge in agriculture, as well as other 

industries such as healthcare and telecommunication.  

The limitations of the study that warrant further 

analysis include additional investigation with other 

datasets, training over longer time periods using 

different optimizers for the DCNNs, and exploring 

other ensemble approaches such as model stacking. 

The approach presented in the current study is meant 

to steer the conversation from the drawbacks of DL 

(such as the need for large amounts of data, longer 

training times, and expensive computers) to inference 

implemented directly on cheaper embedded and 

mobile devices. The lifetime cost/energy savings of 

employing this approach has not been measured and 

could warrant additional investigation. 
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