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ABSTRACT
A new and novel class of organouranium complexes containing

phosphorus ylides as ligands have been prepared and characterized.

The phosphorus ylides used in this study were of the general formula:

e CHz\

Li
CHy””

P(CSHS)(R) where R = C, K., CH3 or C.H,

Although the preparation of several of these lithiated phosphoylides
(R = CH3 or CgHg) had previously been reported, no data on their
characterization was available. Accordingly we have done so.

The addition of one equivalent of lithiated phosphoylide to one
equivalent of (CgHy)3UCL results in dark green complexes of the
formula: (CgHg)3UCHP(CHg) (CgHs) (R), where R = CyHg, CH3 or CgHs.
These triscyclopentadienyluraniumphosphoylide complexes rapidly react
with carbon monoxide at room temperature to give carbon monoxide
insertion products of the formula: (CSH5)3U(CO)CHP(CH3)(CGHS)(R),
where R = CpHg, CH3 or CgHs. On the basis of infrared data
(\’co = 1660 cm™!) a side-bonded or dihapto coordination of the acyl
group is assigned for these complexes. This is only the second example
of a triscyclopentadienyluranium complex expanding its coordination
number from ten to eleven.

When two equivalents of lithiated phosphorus ylide are added to
(CSH5)3UC1, dark red dimeric complexes of the formula
(u—(CH)(CHz)P(CGHS)(R)U(CSHS)Z)2 (where R = CH3 or CgHg) result.
Crystallization from diethyl ether produces deep red crystals of

(u=(CH) (CH,)P(CgH5) ,U(CsHg),),* (CoHg) ,0 belonging to the monoclinc
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space group P21/c containing four molecules per unit cell of dimensions
a = 12.675(8) A, b = 16.462(8) A, ¢ = 25.837(25) X-and 8 = 124.43(5)°.
Refinement converged'for 3993 reflections with I 2 3 (I) at Ry = 0.092
and R.W = 0.110. Sohxlet extraction of this compound with pentane
produces deep red crystals of (u-(CH) (CHy)P(CgHg),U(CgHg),)0°CgHysp
belonging to the orthorhombic space group P212121 with a = 16.026(12) 3,
b = 23.453(13) A, c = 12.679(3) A and four molecules per unit cell.
Refinement converged'at R; = 0.047 and R, = 0.052 for 1874 independent
reflections with I 2 3(I). The complex is a biscyclopentadienyluranium
dimer bridged by two phosphorus ylide ligands. 1In addition to being
the first nine-coordinate organouranium compound it is the first
example of a complex in which a phosphorus ylide both chelates a single
metal atom and bridges two metal atoms through a methine bridge.

The 'H nmr of (u-(CH)(CH,)P(CgHs),U(CsHs),), is temperature
dependent. At ambient temperature enantiomerization and interchange
of diastereotopic cyclopentadienyl groups occurs at a rapid rate on
the nmr time scale. At low temperature these processes slow and an
estimated AGys; = 10 * 1 keal/mole in toluene-dg and AGS,3 = 10 * 1
kcal/mole in THF-dg are obtained. At lower temperatures another
process begins to slow which is ascribed to the slowing of the
rotation of one-half of the cyclopentadienyl groups.

The addition of three equivalents of lithiated phosphoylide to
one equivalent of either (CgHg)3UCL or (CgHg)UCly-2THF produces gold
colored complexes of formula (CSHS)U((CHZ)ZP(CGHS)(R))3’ where
R = CHy or CgHg. These monomeric complexes consist of a uranium

bound to one cyclopentadienyl group and three chelating phosphorus
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ylides. These are the second example of nine-coordinated organouranium

compounds. In addition, they contain six U-C ¢ bonds which is the most

observed to date for any organouranium compound.
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I. INTRODUCTION

The actinides are the elements following actinium in the sixth
row of the periodic table, in which the 5f subshell is progressively
filled with electrons. Although some of the actinides were first
discovered almost 200 years ago,1 their chemistry has only been
investigated in depth in the 40 years since the discovery of the first
synthetic transuranium elements. The initial impetus for studying
f-electron systems was provided by the need to understand the products
of nuclear fission. This led to the developement of separation
techniques for actinides which provided an ample source of these
materials for military and industrial applications, and for further
chemical study.

The synthesisz’3

of dicyclopentadienyl iron (ferrocene, Fe(CgHg),)
in 1951 led to the opening of organometallic chemistry, a new and
exciting field of coordination chemistry for d- and f-transition
elements. The earliest attempts“ at preparing organoactinide complexes
occurred during the Manhattan Project when volatile uranium compounds
were sought for gaseous isotope separation. These attempts to produce
tetraalkyls such as tetramethyluranium were spectacularly unsuccessful.
Unfortunately, these disappointing results led to the assumption that
actinide~-carbon o-bonds were intrinsically unstable and efforts to
prepare compounds containing a two-electron metal-carbon bond were
abandoned.

The first successful synthesis of a 5f organometallic compound,

triscyclopentadienyluranium chloride, was announced by Reynolds and

Wilkinson® in 1956. During the decade following this discovery little
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other work was reported except the preparation of some cyclﬁpentadienyl
and allyl complexes of the early actinides.®"16 1 1968, Streitweiser
and Miller-Westerhoffl’ announced the synthesis of "uranocene",
dicyclooctatetraene uranium, which according to Hayes and Thomas
"stimulated a renaissance of rare earth organometallic chemistry."

For example, a variety of n-complexes19

containing the cyclooctatetraene
ligand and its derivatives, the indenyl ligand, the cyclopentadienyl
ligand and its derivatives, and most recently20 the carborane ligand,
C2B9H112', have been prepared with the early actinides (Th, U, Np and
Pu).

A simple molecular orbital calculation (Hiickel type) for uranocene,
showed that there were uranium f-orbitals of appropriate symmetry to
overlap with cyclooctatetraene orbitals. This indicated that a portion
of the bonding present in uranocene was possibly of a covalent nature.
Although suggestions had been made of significant f-orbital involvement

in actinide compounds,Z]'-23

until this time many workers involved in
this area considered that the bonding in actinide compounds was almost
exclusively ionic with limited f-orbital involvement.2% The realization
that covalency, to some degree, was present in organcactinide bonding
led new workers into the area.

Although considerable success was achieved with m-complexes, the
problem of preparing thermally stable actinide~carbon o-bonds remained.
This was overcome by several g]:oupszs"29 in late 1972 and early 1973
with the assumption that the "proper choice of supporting ligands

might stabilize such a two-electron linkage." Accordingly, with

triscyclopentadienyluranium chloride and Grignard or lithium alkyls, a



large number of complexes containing a thermally stable 0-bond were
prepared (eq. 1):
RLi
(CgHg) 3UCL —————> (CgHg) 3 UR (1)
or RMgX
R = CH3, n-C3H7, i-C3H7, n-CyHg, t-CyHg, neopentyl, allyl,
2-methylallyl, vinyl, CgHs, CgF5, ferrocenyl, CyCgHs,
p-tolyl, benzyl, 2-cis-2-butenyl, 2-trans-2-butenyl
It has proved possible to prepare30 thorium—carbon ¢-bonded
organometallics in an analogous fashion (eq. 2):
RLi
(C5H5) 3ThCl —————> (CgHs) 3 ThR (2)
or RMgX

R = n-C3H,, i-CsH,, n-C, Hy, neopentyl, cyclohexyl, allyl,
2-cis-2-butenyl, 2-trans-2-butenyl

In addition to the cyclopentadienyl ligand as a stabilizing group, the
indenyl ligand has also been used with success.>!»32

The !H nmr of the uranium systems has produced some valuable
insight into the bonding of these compounds. The U(IV) complexes are
paramagnetic 5£2 systems containing two unpaired electrons. This
paramagnetism produces large displacements in chemical shifts from
their usual diamagnetic positions. These paramagnetic chemical shifts
are comprised of contact and dipolar interactiomns. The contact

33

interaction”” arises from an electron-nucleus hyperfine interaction,

in this case the delocalization of the unpaired 5f electron demsity

34 is a result of

onto the ligands, and the dipolar interaction
anisotropy in the magnetic susceptibility of the complex. It is
possible to separate the observed chemical shifts into their dipolar

and contact shift contributions. This has been done by Marks and

co-workers for the triscyclopentadienyluranium alkyl complexes.28



They foun§ that the contact shifts were rather large indicating
significant 5f orbital covalent interaction involving polarization of
the ligand orbitals or donation of ligand electron density into empty
or partially filled uranium orbitals. No indication of back-donation
of uranium electron density onto empty ligand orbitals was observed.
Thus not only is it possible to prepare stable uranium-carbon O-bonds,
but the bonds also contain a significant amount of covalency.

Raymond and co-workers3® have noted that the molecular structures
observed for these and other actinide complexes seems to reflect a
compromise between non-bonded ligand-ligand repulsions and the tendency
to achieve a high coordination number, which for U(IV) generally

appears to be ten.38

This tendency toward ten coordination is vividly
demonstrated in the unusual structure found for the ring-bridged
biscyclopentadienyluranium halides which contain triply bridging
chlorides. 37
By using ligands with large steric requirements it is possible to
design complexes with a coordination number less than ten. Such
complexes which are coordinatively umnsaturated often exhibit catalytic
activity. Most recently, Marks and co-workers have used the
pentamethylcyclopentadienyl ligand to prepare eight-coordinate uranium
and thorium alkyl complexes (eq. 3).%® The dimethyl
((CH4) 5C5) ,MCL, + 2RLi —> ((CH3) 5C5) ,MR, + 2LiCl 3)
where R = CHy and M = U or Th
complexes react with hydrogen and carbon monoxide gas to produce the
39,40

first organoactinide hydrides and novel O-bonded insertion products.

While considerable success has been now achieved in the preparation



of organoactinides containing ome or two o-bonds, no neutral organo-
actinide complexes consisting solely of o-bonding ligands has been
prepared. The problem has been that the bonds formed by such ligands
have not been of sufficient thermal stability to allow the isolation
of their complexes at room temperature. One solution to this problem
would be the use of phosphorus ylides, which form o-bonds of high
thermal stability, as ligands.

The term "ylide" was first used to describe a class of compounds
studied by Staudinger and co-workers in the 1920's. "1 During the
early 1950's Wittig and co-workers*2:%3 developed these, principally
ylides of phosphorus and sulfur, into an important class of reagents,
for example, the Wittig olefin synthesis. The bonding in these

compounds can be represented by these two resonance forms:

- +
CH,=P(CH;) ; €«—> CH,~P(CH,),

ylene ylide

Of these two possible forms, modern techniques“ and theoretical
calculations*5 ™7 have shown tﬂat the ylide formulation predominates
in the ground state of these molecules.

While these compounds have been used for almost 30 years as
organic reagents, it was not until the mid 1960's that they attracted
the attention of inorganic and organometallic chemists as possible
ligand systems.““ However since that time chemists have been highly
successful in applying these compounds to transition organometallic
chemistry.

After some initial confusion, several ligand bonding modes of the



phosphorus ylides have emerged. They have been found principally as
terminal ligands (as in A), bridging ligands (as in B) and chelating

ligands (as in C).

CH, PCH CH
o FCHy 25
RqPCHy — M M ~un u PR,
~ ~
CH,
A B c

48,49

More recently a variation as a bridging ligand through only one

R\CH/PR3
M- M

D

carbon atom has been observed (as in D).

Although these compounds exhibit several interesting bonding
possibilities, their most remarkable feature is the unusual thermal
stability of the ylide-metal bond. While most transition metal-
carbon g-bonds are of sufficient thermal stability to allow their
isolation at room temperature, this is not the case for the group IB
metals (Cu, Ag and Au). They form metal-carbon o-bonds of only
marginal stability at best. However, with phosphorus ylides, the
organometallic coumplexes formed are of such high thermal stability
that many of them may be purified by sublimation.*"

Recently, there has appeared a short report50 on a series of
lanthanide phosphoylide complexes utilizing the CH,=P(CH3)3 ligand.
These trisphosphoylide complexes exhibit the chelating mode of bonding

(type B) and are thermally stable above room temperature.



The use of phosphorus ylides as ligands with actinides has been
ignored up until the present. It occurred to us that the o-bonding
stability afforded by phosphorus ylides toward transition and lanthanide
metal centers should work with the actinides as well. It is the
purpose of this dissertation to describe our preparation of
organouranium phosphoylide complexes, their properties and structures,

and the subsequent reactions of these complexes with Lewis bases.



II. DESCRIPTIVE CHEMISTRY AND SPECTRAL RESULTS

Triscyclopentadienyluranium chloride, (CgHg)3UCl, was prepared by
the method of Marks and co-workers.>! This method has the advantage of
using thallous cyclopentadienide which is much easier to handle than
sodium cyclopentadienide used in previous preparations.s The (CsHg)3UCL
we obtained gave an identical 4 nmr and infrared spectrum to that
reported by the above workers. We prepared the monocyclopentadienyl-
uraniumtrichloride material, (CgHg)UCl3°2THF, via the method of Bagnall
and Edwards.®? The !H nmr and infrared were in agreement with that
reported by the above workers. We found both of the above materials to
be of sufficient purity for use in our synthetic work without
recrystallization.

Several of the lithiated phosphorus ylides used in this study were
prepared by the method of Manzer®3? shown in equation 4:

//,CHZ\\
((CH4) ,P(CcHg) (R))I + 2LiCH; —> Li‘\\ //P(CGHS)(R)+ + Lil f2CH4+
A (CyHs5) 50 CHy
(4)
where R = CH; or CgHg
This method works only for these two phosphonium salts. In order to
prepare a lithiated phosphoylide where R = C,Hg it was necessary to
use the route shown in equations 5 - 7:
((CH3)2P(C2H5)(C6H5))I + LiCH3—————4>((CZHS)(CH3)(CGH5)PCH2Li)I + C%g;

((CZHS)(Cﬁa)(CGHS)PCHzLi)I-—————5 C,H =P(CZH5)(CH3)(C6H5) + LiI (6)
A

CH

2:

CH,=P(C,Hz) (CHj) (CeHs) + LiCHy ——> Li< ;P(CZHS) (CgHg) + + CH,4(7)
CH

2



This is a general method®* and should work well with any phosphonium
salt.

The lithiated phosphorus ylides are insoluble in diethyl ether and
Li(CHz)?_P(CGHS)2 and Li(CHz)ZP(CH3)(CGH5) can be separated from the
diethyl ether soluble LiI by washing with a large volume of this
solvent. All of the lithiated phosphorus ylides are very soluble in
THF or 1,2-dimethoxyethane.

Manzer reported no physical data for the lithiated phosphoylides
and we have been unable to find any characterization data in the
literature for these particular lithiated phosphoylides. Furthermore
we were unable to find any report in the literature of the
CH,=P(C,Hs) (CH3) (CgHg) phosphorane and its LiI salt. Accordingly we
have obtained !H and 3!P nmr and infrared data for these compounds
which are summarized in Tables 1 - 4.

The lH nmr spectrum of CH2=P(C2H5)(CH3)(C6H5) obtained at 100 MHz
in CgDg is shown in Figure 1. The methylene protons show up as a
doublet (J(H,CP) = 3 Hz) at -0.33 ppm. This coupling constant is
about half that reported for other methylene phosphoranes.55 The
methyl doublet (J(H3CP) = 13 Hz) occurs at -1.69 ppm and the methyl
of the ethyl group is seen as a doublet of triplets (J(H3CCH2) = 7 Hz,
J(H3CCP) = 17 Hz) centered at -1.08 ppm. The multiplet due to the
methylene portion of the ethyl group is centered at -2.15 ppm and two
multiplets due to the phenyl group occurs in the region -7.0 to
-7.6 ppm.

The 31P nmr of this compound obtained at 40.5 MHz in CgDg consists

of a broad multiplet at +13.37 ppm. No proton-phosphorus coupling
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TABLE 1

Nuclear Magnetic Resonance Parameters for a
Methylene Phosphorane and its Lithium Iodide Adduct

Compound Nucleus Chemical Shift (ppm)
(CgH ) (CH4) (C,H35)P=CH, b -7.75 (2H, multi)

-7.35 (3H, multi)

-2.15 (2H, multi)

-1.69 (3H, d, J(H3CP) = 13 Hz)

-1.08 (3H, dt, J(H3CCH;) = 7 Hz),
J(H4CCP) = 17 Hz)

-0.33 (28, d, J(H,CP) = 3 Hz)

31ipb +13.37 (multi)

(CgHs) (CH) (C,H ) P=CH,-LiI l!B? -7.74 (3H, multi)
-7.37 (4H, multi)
-3.32 (24, q, J(H,CCH3) = 7 Hz)
-2.05 (3H, multi)
-1.66 (3H, d, J(HCP) = 13 Hz)
-1.01 (3H, t, J(H3CCH?2) = 7 Hz)
-0.85 (3H, dt, J(H,CCH,) = 7 Hz)

J(H4CCP) = 16 Hz)

+0.54 (28, d, J(H,CP) = 3 Hz)

31pb +18.12 (multi)

d = doublet, t = triplet, q = quartet, multi = multiplet,
dt = doublet of triplets

a) chemical shifts measured relative to TMS

b) chemical shifts measured relative to external H3PO,
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a)
b)
c)
d)
e)

11
TABLE 2

Infrared Vibrational Frequencies for a Neat
Film of CH,=P(C,Hs) (CH;) (CgHg)

v(em™}) Possible Assignment
3070 m

3050 m v{(C-H aromatic)
2965 s

2930 m

2908 m v(C-H aliphatic)
2875 m

1973 w

1902 w (CgHg substitution
1835 w pattern)

1775 w

1590 w, br

1485 w v(C=C)

1457 m

1438 s §(CgHg)-a

1427 m 6(P—CH3)

1379 w

1360 m

1310 m

1291 m S(P—CH3)

1238 w

1100 s G(CGHS)—b

1071 m

1034 m

1009 s

998 s G(Cu-P)

985 s

950 vs § (P-CHj3)

902 s V(P=CH2)

887 s ) (P"CHa)“C

748 vs §(CgHg)-d

694 vs

640 m v(P-C)

477 s G(CSHS)—e

445 m

392 w

strong, m = medium, w = weak, v = very, br = broad

planar ring deformation of phenyl bonded to phosphorus
substituent sensitive C-H planar bending vibration
methyl rocking

substituent sensitive C-H out~of-plane bending vibration
substituent sensitive ring vibration
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TABLE 3

Nuclear Magnetic Resonance Spectral Parameters
Several Lithiated Phosphorus Ylides

Compound Nucleus Chemical Shift (ppm)
Li(CH,),P(CH,), g2 -7.66 (4H, multi)

-7.08 (6H, multi)
+0.32 (4H, d, J(H,CP) = 11 Hz)

31Pb +31.04 (quintet, J(PCH,) = 10 Hz)
Li(CH,),P(CH,) (C.H,) 1x2 -7.74 (2H, multi)
~7.13 (3H, multi)
-1.23 (3H, d, J(HCP) = 12 Hz)
+0.58 (4H, d, J(H,CP) = 10 Hz)
31pb +23.88 (octet, J(PCH) = 10 Hz)
Li(CH,) ,P(C,H,) (C-H,) it -7.75 (2H, multi)

-7.18 (3H, multi)

-1.49 (2H, multi)

-0.81 (3H, dt, J(H,CCH,) = 7 Hz,
J(H,CCP) = 15 Hz)

+0.61 (4H, d, J(H,CP) = 11 Hz)

31Pb +32.77 (broad multi)

d = doublet, dt = doublet of triplets, multi = multiplet
a) chemical shifts measured relative to TMS with THF—d8 as the solvent

b) chemical shifts measured relative to externmal H3PO,



Infrared Frequencies for Several
L1(CH;)4P(CgHs) (R) Complexes

TABLE &

v(en~l)
R= C33 R = Czas R= CGHS
3072 w 3068 w 3068 m
3066 w 3055 w 3059 m
3030 w 3042 m
1956 w 1955 w 1950 w
1894 w 1900 w 1899 w
: 1882 w
1818 w 1820 w 1819 w
1574 w 1560 w 1576 w
1482 m, sh 1480 =, sh 1482 m, sh
1438 s 1440 s 1438 vs
1415 m )
1330 w
1308 w 1308 w 1306 m
1285 =
1239 w
1179 w
1157 w 1155 w
1107 s 1109 s 1103 vs
1029 w 1036 o 1026 o
1018 w
1000 m 998 m
959 s
941 s
922 m 911 m 923 s
910 s 889 s 901 s
: 888 s
866 s :
833 s
805 s 806 s 804 s
768 s
720 vs, br 745 vs, br 731 vs, br
713 s
694 s - 695 s 688 s
672 m 651 m
517 w 512 w 523 m
480 s 489 m 494 vs
450 m 445 m 445 m
429 s
392 w 390 w 98 w
37 w 380 m
s =

a)
b)
c)
d)
e)

13

Possible
Assignment

v(C-8 aromatic)

v(C=C)
v(C=C)
§(CgHs) -a
§(P~-CH3)

§(P-CH,)
§(CgHg)-b

G(C“-P)
6(P9C33)
G(P-CH3)
“(P-CHZLI)
3 (P-CH3 ) -C
é (P‘CHa ) -C
V(P-CH,Li)
5(0535)‘d
v(P-C)
v(C-L1)
G(Csﬂs)-e

v(C-11)

strong, » = medium, w = weak, v = very, br = broad, sh = shoulder

planar ring deformation of phenyl boanded to phosphorus

substituent sensitive C-H planar bending vibration
methyl rocking

substituent sensitive C-H out-of-plane bending wvibration
substituent sensitive ring vibration
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Figure 1. !H nmr spectrum of CHp=P(C,Hg)(CH3) (CgHg) obtained in CgDg -
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information is readily available from this spectrum.

The infrared spectrum of CH,=P(C,Hj5) (CH3) (CgHg) recorded over the
range 4,000 - 300 cw™! as a neat film is shown in Figure 2 and the data
tabulated in Table 2. The most important feature of this spectrum is
the band at 902 cm !. This has previously been assigned56 in methylene
triphenylphosphoranes to a P=CH, stretching vibration. Absorptions due
to phosphorus-methyl vibrations are observed at 1427 em !, 1291 cm™!,
950 cm~ ! and 887 cm™!. Phosphorus-phenyl absorptions are seen at
1438 cm !, 1100 cm™!, 748 cm™! and 477 cm~!. Aromatic carbon-hydrogen
stretching is seen in the 3070 - 3050 cm ! region and aliphatic carbon-
hydrogen bands are observed in the 2970 - 2870 cm™! region.

When either one or two equivalents of LiCH3 is added to
((CH3) ,P(C,Hg) (CgH)) I one obtains the diethyl ether solvated lithium
halide adduct of a methylene phosphorane, ((C,H;)(CH,)(C,H;)PCH,Li)I-
(C,H5),0. The 1 nmr spectrum of this compound is shown in Figure 3.
The principle feature in the spectrum is the methylene doublet
(J(H,CP) = 3 Hz) at +0.54 ppm. This coupling constant is in the
range 1.5 - 3.0 Hz reported by Schmidbaur and co-workers>* for lithium
halide adducts of several methylene trialkyl phosphorames. They
concluded from their nmr measurements that the methylene carbon atom
is in an sp3? tetrahedral arrangement with the lithium atom and that a
high ﬁortion of covalency is present in the Li-C bond.

The remainder of the spectrum is consistent with the above
formulation. A methyl doublet (J(H3CP) = 13 Hz) is observed at
-1.66 ppm and the methyl portion of the ethyl group is seen as a

doublet of triplets (J(H3CCH,) = 7 Hz and J(H3CCP) = 16 Hz) centered
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Figure 2. Infrared Spectrum of CH2=P(C2H5)(CH3)(CGH5) obtained as neat film.
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at -0.85 ppm. A portion of it is obscured by the triplet (J(H3CCH,) =

7 Hz) of the methyl group at -1.01 ppm of the ethyl group in the

diethyl ether solvate. The methylene portion of the ethyl group onm the
phosphorane occurs at -2.05 ppm as a complex multiplet and the methylene
portion of the diethyl ether solvate is a quartet (J(H,CCH3) = 7 Hz) at
-3.32 ppm. The phenyl group is seen as two complex multiplets in the
-7.3 to -7.8 ppm region. From the relative intensities of the
phosphorane and the diethyl ether resonances there is one diethyl

ether solvate per lithium iodide phosphorane complex.

A comparison of the relative peak heights of the phenyl multiplets
with the remainder of the spectrum indicates that secondary reaction
products are present. This is more apparent in the 31p nmr spectrum
obtained at 40.5 MHz in THF/CGDG shown in Figure 4. This spectrum
shows three different phosphorus resonances, all of which are complex
multiplets. The largest resonance at +18.12 ppm is due to the lithium
iodide phosphorane complex and comprises 767% of the reaction mixture.
The remaining two peaks are observed at +7.41 ppm (16%) and at +69.55
ppm (8%). We have not identified the materials which produce these
two peaks.

The lH nmr of the lithiated phosphorus ylides, Li(CHz)zP(CGHs)(R)
(where R = CHy, C,Hg or CgHg), obtained at 100 MHz in THF-dg are shown
in Figures 5 - 7. 1In the spectrum of Li(CH,),P(CgHs), the methylene
portion shows up as a doublet (J(H,CP) = 11 Hz) at +0.32 ppm. The
doublet (J(H,CP) = 10 Hz) in the spectrum of Li(CH,),P(CH3) (CgHg) is
upfield at +0.58 ppm and a methyl doublet (J(H3CP) = 13 Hz) is present

at -1.23 ppm. The spectrum of Li(CH,),P(C,Hg) (CiHy) contains a
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methylene doublet (J(H,CP) = 11 Hz) at +0.61 ppm. The methyl portion
of the ethyl group is seen as an overlapping doublet of triplets
(J(H4CCH,) = 7 Hz and J(H,CCP) = 15 Hz) at -0.81 ppm and the methylene
portion is a multiplet at -1.49 ppm. The coupling constants observed
for the methylene resonances are in the same range (10 - 11 Hz)
reported by Schmidbaur and co-workers>" for Li(CHZ)ZP(CH3)2 and
Li(CH,),P(C,Hg),. They concluded from their 19 nmr investigation

that a strong bonding interaction between the ylide carbon and lithium

atom exists as in A or B:

CH CH,—Li—CH
~ 2 2~
11l PR, S 1l PR,

1
~~cHy” ™SCH, —Li— CHy”

A B

Furthermore they have found that lithiated ylides react with

7

trimethylchlorosilane5 to yield 8A rather than 8B:

-GN
(CH3)2P\CH Li + (CHy)38iCL ——> (CHj) 3SiCHP(CH;) 4 (84)
2
CH,

A similiar reaction has been observed with dimethylchloroantimony58,
M(CO) sBr (where M = Mn or Re) 32 and, as will be shown later, also occurs
with (C5H5)3UC1. These results tend to eliminate a structure like C
for'the lithiated phosphoylides.

/,CHzLi

-

R,P
\‘~CH2_

c
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The 31P nmr of the lithiated phosphorus ylides is shown in
Figures 8 -~ 9. The spectrum of Li(CHp),P(CgHs), exhibits a quintet
(J(PCH,) = 10 Hz) at +31.04 ppm. Each peak of the quintet appears to
be further split into a poorly resolved quintet resulting from coupling
of the four ortho phenyl protons with the phosphorus. The
Li(CHz)ZP(CH3)(C6H5) spectrum shows an octet (J(PCH) = 10 Hz) at
+23.88 ppm with each peak showing no resolved coupling with the ortho
phenyl protoms. This apparent coupling of seven equivalent protons
with the phosphorus is a result of the overlapped quintet of quartets
due to coupling of the four methylene and three methyl protons to
phosphorus. The 14 nor in Figure 6 clearly shows a distinct methyl
resonance eliminating the possibility of a fast exchange process which
averages the methyl and methylene protons. The Li(CHZ)zP(CZHS)(CGHS)
spectrum shows a complex multiplet at +32.77 ppm.

The 31P chemical shifts are 10 - 20 ppm upfield of the range

reported for the alkylidenetrialkylphosphoranes.55

A plausable
explanation is that in going from an alkylidenetrialkylphosphorane, a
formally neutral molecule, to the lithiated phosphoylide with the less
electronegative lithium atom replacing a proton, an increase in
electron density near the phosphorus occurs. This results in an
increase in the shielding of the phosphorus and produces a larger
upfield chemical shift. A similiar effect is observed for the
((CZHS)(CH3)(CGH5)PCH2Li)I complex, although its magnitude is smaller.
The infrared spectral data for the lithiated phosphoylides is

collected in Table 4 and a spectrum of the Li(CHZ)zP(CGHS)2 complex is

shown in Figure 10. The spectra are similar with the exception of the
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Figure 8. 3P nmr spectrum of Li(CH,) ,P(C/H,), obtained in THF/C D, .
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bands®? due to a phosphorus-methyl linkage in Li(CHz)zP(CH3)(CGH5).
Vibrations due to phenyl groups attached to phosphorus are seen in the
regions 1440 - 1435 em ! (a planar ring deformation), 1110 - 1100 cm !
(a substituent sensitive C-H planar bending vibration), 745 - 720 em !
(a substituent sensitive ring vibration). The phosphorus-methyl group
in Li(CHz)zP(CHa)(CGHS) shows bands at 1415 cm™! (asymmetric bending),
1285 cm ! (symmetric bending), 959 cm !, 941 cm !, 866 cm”! (methyl
rocking) and 833 cm™! (methyl rocking).

Several bands are observed for aromatic hydrogens in the 3100 -
3000 cm ! region. Some or all of the bands characteristic of mono-
substituted benzene are seen in the 2000 -~ 1667 cm ! region.

In the carbon-carbon double bond region are vibrations at 1590 -
1560 cm~! and 1482 cm™!. Phosphorus-carbon single bond vibrations are
partly responsible for the broad absorptions seen about 725 em ! and
685 cm~!. Bands due to the C,-P group are observed at 1000 - 995 em L.

In addition several new strong bands have appeared that are not
present in the phosphonium salt starting material. These occur in the
910 - 890 cm™! and 810 - 800 cm™! region and are tentatively assigned
to P-CHZLi vibrations. In addition weak to medium intensity bands are
observed in the 525 - 510 cm ! region and are due to carbon-lithium
vibrations. This is in the region where the highest frequency vibra-

tion is seen for organolithium compounds.61

In the spectra of the
starting phosphonium salts no bands are observed near this region.
Another band which may be due to a carbon-lithium vibration is observed

in the 400 - 390 cm~! region. However bands in the starting phosphonium

salts are also seen near this region.
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A. THE TRISCYLCOPENTADIENYLURANIUMPHOSPHOYLIDE SYSTEM

When a lithiated phosphorus ylide is allowed to react with
(CgHg) 3UCL in a 1:1 molar ratio, dark green complexes result according

to equation 9:

CHx THF
(CHs)gUCL + 1i 7 ° TP(Clls) (R) ————> (GgHs) jUCHR (CgHs) (CHz) (R)
CH2 “‘500 C- (9)

where R = CHy, C,Hg or CgHg

The reaction of these lithiated phosphoylides with the organouranium
moiety is analogous to that when lithiated phosphoylides react with
M(CO)SBr59 (where M = Mn or Re), trimethylchlorosilane57 or
dimethylchloroantimony. S8

We have found that optimium yields are obtained in strongly
coordinating ethereal solvents (THF or 1,2-dimethoxyethane) cooled to
-50° C. or lower. This is presumably due to the greater solubility of
the starting materials in these solvents. If the reaction is rum at
room temperature or in a weakly coordinating solvent, such as diethyl
ether, then an appreciable amount of the biscyclopentadienyluranium-
phosphoylide dimer is formed as a side-product. Since standing for
several hours at room temperature also produces some of the
biscyclopentadienyluraniumphosphoylide dimer, it is necessary to
immediately remove the solvent from the reaction mixture when the
reaction is judged to be complete.

The triscyclopentadienyluraniumphosphoylide complexes are very
soluble in diethyl ether, THF, 1,2~dimethoxyethane, benzene and

toluene. They are sparingly soluble in aliphatic hydrocarbon solvents
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with the solubility decreasing for the longer hydrocarbon chains. The
best solvent combination we found for recrystallization is toluene-
heptane.

These materials are very air and moisture sensitive. Upon exposure
to the atmosphere they ignite and burn with considerable smoke. They
are also susceptible to attack by solvents with acidic protouns,
carbonyl or nitrile functional groups.

The use of H nmr spectroscopy has been of great value in the
elucidation of the structure of the triscyclopentadienyluranium-
phosphoylide complexes. The 14 and 3P nmr data for these complexes
is summarized in Table 5 and their H nmr spectra are shown in
Figures 11 -~ 13. Since the U(IV) complexes are paramagnetic the
ligands exhibit large displacements in the chemical shifts relative
to those in a non-paramagnetic enviromment. The most important
feature of these spectra is the relative intensities of the methine
and methyl resonances. The (CgHg)3UCHP(CH3) (CgHg), complex exhibits a
methyl doublet (J (H3CP) = 12 Hz) at +20.92 ppm with an intensity of
3 H's and the methine doublet (J(HCP) = 16 Hz) at +137.8 ppm with an
intensity corresponding to 1 H. In the (CgHg),UCHP(CH;),(C.Hsg)
complex the methyl doublet (J(H3CP) = 13 Hz) is observed at +15.52
ppm with an intensity corresponding to 6 H's and the methine doublet

(J(HCP) = 16 Hz) at +123.7 ppm with an intensity of 1 H. The

(CgHg) JUCHP (C,Hg) (CHy) (CgHg) complex shows a methyl doublet (J(H;CP)
12 Hz) at +21.23 ppn with an intensity of 3 H's and the methine
doublet (J(HCP) = 16 Hz) at +123.4 ppm with an intensity of 1 H. 1In

addition this complex shows a multiplet consisting of the methylene
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Nuclear Magnetic Resonance Spectral Parameters for Several

Triscyclopentadienyluraniumphosphoylide Complexes

Compound Nucleus
1yb
(CsH;) JUCHP (CH3) (CeHs) H
31pc
14D
(C5H5)3UCHP(CH3)2(C6H5) H
31pC

b
(CcH() JUCHP (C,H,) (CH,) (CH) 'H

31p¢

a

Chemical Shift (ppm)

-3.69 (4H, dd4, J(HCP) = 12 Hz,
J(HCCH) = 7 Hz)

-1.30 (4H, t, J(HCCH) = 7 Hz)

-0.35 (24, t, J(HCCH) = 7 Hz)

+19.28 (15 H, s)

+20.92 (3H, d, J(HsCP = 12 Hz)

+137.8 (1H, d, J(HCP) = 16 Hz)

+177.54 (broad multiplet)

-10.69 (2H, dd, J(HCP) = 12 Hz,
J(HCCH) = 7 Hz)

-3.95 (2H, t, J(HCCH) = 7 Hz)

-1.96 (1H, t, J(HCCH) = 7 Hz)

+15.52 (6H, d, J(H3CP) = 13 Hz)

+19.74 (15H, s)

+123.7 (1H, d, J(HCP) = 16 Hz)

tou

+213.65 (broad multiplet)

-10.23 (24, t, J(HCCH) = 7 Hz)
-3.80 (24, t, J(HCCH) 7 Hz)
-1.93 (1B, t, J(HCCH) 7 Hz)
+6.85 (5H, multi)

+19.80 (15H, s)

+21.23 (3H, d, J(H3CP) = 12 Hz)
+123.4 (1H, d, J(HCP) = 16 Hz)

+173.10 (broad multiplet)

s = singlet, 4 = doublet, t = triplet, dd = doublet of doublets,

multi = multiplet

a) spectra recorded at +25° C.

b) chemical shifts referenced relative to internal benzene

¢) chemical shifts measured relative to external H3P0u
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and methyl resonances of the ethyl group centered at +6.85 ppm with
an intensity of 5 H's.
This clearly indicates that the structure of the complexes is

that shown in equation 9 rather than as indicated below.

(csus)3ucuzﬁ (CHg) (R)

CE,

With the methine resonance exhibiting such a large upfield shift it
was necessary to observe it via the CW mode of the nmr spectrometer.
As a result it is not to scale with the remaining portion of the
spectra shown in Figures 11 - 13. Marks and co-workers?® have noted
similiar large upfield displacements in the !H nmr of the triscyclo-
pentadienyluranium(IV) alkyl complexes.

The cyclopentadienyl resonances in these complexes are located
at ~+20 ppm which is about 10 ppm upfield of the positions observed

in the triscyclopentadienyl(IV) alkyl complexes. Apparently in the

triscyclopentadienyluraniumphosphoylide complexes the cyclopentadienyl

ligands are bound tighter to the uranium atom or there is more spin

delocalization present, or a combination of both.

35

In the 3!P nmr spectra of these complexes all coupling information

is lost due to paramagnetic broadening of the multiplet. Nevertheless

the spectra show very large upfield displacements in the chemical
shifts. The (Csﬁs)aUCHP(CH3) (CGHS)Z complex exhibits a resonance at
+177.54 ppm, the (CgHg) 3UCHP(CH3)2(C6H5) complex shows a resonance at
+213.65 ppm and the (CgHg) 3UCHP(C2H5) (CH3) (CSHS) complex has a

resonance at +173.10 ppm. These chemical shifts are on the order of
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150 - 200 ppm upfield of the resonances seen in the lithiated
phosphoylide starting materials.
The infrared spectral data for the organouraniumphosphoylide

! is summarized in

complexes recorded over the range 4000 - 300 cm™
Table 6 and a representative spectrum of (C5H5)3UCHP(CH3)(C6H5)2 is
shown in Figure 14. The spectra of these three complexes are very
similiar. The bands characteristic of a phosphorus-methyl group are
seen in the regions 1295 - 1285 cm™!, 960 - 930 cm~! and 880 - 850 cm™!.
Absorptions arising from the phosphorus-phenyl group are observed in
the regions of 1440 - 1435 cm™!, 1100 - 1095 em™!, 740 - 730 cm™! and-
485 - 480 cm~!. An additional band due to C-H out-of-plane bending

on the phenyl group is observed in the 700 - 685 cm™! region.

Aromatic C-H are seen in the region 3080 - 3055 em~!. The phenyl

substitution pattern occurring in the 2000 - 1667 em™!

region is too
weak in these complexes to be observed.

A carbon-carbon double bond stretching vibration is observed as
a shoulder at 1480 cm ! on the nujol mull abosrption. A phosphorus-
carbon single bond stretching vibration is seen at 710 - 695 cm L.

In the 780 - 740 cm™! region are two new bands of strong to very
strong intensity not observed in the starting materials. It is
believed that these are vibrations due to a phosphorus-carbon double
bond. 1In the methylene triphenylphosphoraness6 a band due to P=CH,
stretching is observed at 900 cm~!. Replacing one hydrogen atom with

a uranium-carbon bond should lower this stretching wvibration by at

least 100 to 150 cm™!l.
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TABLE 6

Infrared Frequencies for Several
(CSH5)3UCHP(CH3)(C6H5)(R) Complexes

Wem )
Possible
R = CH3 R = 02H5 R = CGH5 Assignment
3070 w 3055 w 3080 w v(C-H aromatic)
1480 m, sh 1480 m, sh 1480 m, sh v(C=C)
1438 s 1439 s 1440 s G(CGHS)—a
1418 w 1418 w 1419 w 8 (P-CHs)
1310 w 1312 m 1314 m
1299 n
1290 w 1294 m 1288 m 8 (P-CHy)
1262 w 1261l m 1252 w
1231 w
1159 w
1100 s 1100 s 1098 m 6(C6H5)—b
1069 m 1071 m 1070 m
1030 n, sh
1005 vs 1010 vs 1011 vs G(CSHS)
1001 vs
994 s 989 vs 997 s 8(C,-P)
950 s 930 s 959 vs 6(P—CH3)
' 920 m
878 w 875 m 852 w § (P-CH,)-c
791 vs 791 s, sh 794 s G(CSH5§
772 vs 769 vs, br 770 vs
742 s 750 vs 750 vs v{(P=C)
731 s 740 s, sh 738 s S(CGHS)—d
708 m
695 m 698 m 699 m v (P-C)
690 m :
649 m
590 w
500 w v{(U-C)
480 m 484 m 480 w G(CSHS)—e
415 w 418 m 427 m v(U-C)

s = strong, m = medium, w = weak, v = very, br = broad, sh = shoulder
a) planar ring deformation of phenyl Bonded to phosphorus

b) substituent sensitive C-H planar bending vibration

c) methyl rocking

d) substituent sensitive C-H out-of-plane bending vibration

e) substituent sensitive ring vibration
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The bands seen at 500 cm~! in Figure 14 and in the 430 - 415 cm-!
region are assigned to uranium-carbon stretching vibrations. Heavy
metal-carbon stretching vibrations have previously been assigned®? to
absorptions in these regions (v (Hg-C) 577 - 515 cm !; v (Pb-C) 496 -
420 em™l; v (Pd-C) 534 - 435 cm™l; v (Pt-C) 576 - 508 cm™!). In
addition metal-carbon stretching vibrations have been assigned for
tetrabenzylthorium.®2 The \gs(Th-C) stretch occurs at 539 cm™! and
516 cm~! and a very weak \;(Th-c) stretch is observed at 463 cm™l.

The spectral data for the visible region (25.0 - 13.0 kK) of the
complexes is summarized in Table 7. A representative spectrum of the
(C5H5)3UCHP(CH3)(CBH5)2 complex is shown in Figure 15. The three
complexes give very similiar spectra. The bands observed in the
visible region lie on the shoulder of a very intense band located in
the ultraviolet region, due to either an electron-transfer band or a
5f-6d transition.

The near-infrared spectral data for the complexes recorded over
the range 13.0 - 4.0 kK is tabulated in Table 8 and the spectrum of
(CSHS)3UCHP(CH3)(CGHS)2 is presented in Figure 16. As expected the
spectra are very similiar since the ligand environment about the
uranium atom is almost identical. The observed bands are due to

63 and exhibit weak intensities

La Porte forbidden f-f transitions
(most €250 liters/mole-cm).

The reaction of ((C,Hs) (CH3) (CgHg)PCHoLi)I in a 1:1 or 2:1 molar
ratio with (CSH553UC1 was attempted. In each case a lime-green

product was obtained, but it invariably decomposed during extractive

work-up or upon standing for more than a day. 15 nmr spectra showed

39



TABLE 7

Visible Spectral Parameters for Several
Triscyclopentadienyluraniumphosphoylide Complexes

vmax?(e)P
(CgHg) sUCHP(CHy4) (CgHs) » (CgHg) 3UCHP(CH3) 5 (CeHs) (CgHg) 3UCH(C,H5) (CHy) (CgHg)
19.8 (890) 19.9 (1150) 19.9 (1010)
17.2 (760) 17.3 (980) 17.3 (840)
16.7 (770) 16.6 (1000) 16.7 (880)
14.9 (460) 14.9 (660) 14.8 (590)
14.0 (255) 14.2 (390) 14.1 (340)
13.4 (160) 13.5 (200) 13.5 (190)

a) kK

b) € = liter/mole-cm

oY
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TABLE 8

Near-Infrared Spectral Parameters for Several
Triscyclopentadienyluraniumphosphoylide Complexes

\)maxa(e)b

(CgHg) JUCHP(CH,) (CgHg) 5 (CgHg) JUCHP (CH,4) ,(CgH) (C5Hg) gUCHP(C,Hg) (CHy) (CgHg)
12.6 (52) 12.5 (52) 12.7 (61)
12.3 (40) 12.3 (38) 12.3 (44)
12.1 (30) 12.2 (30) 12.1 (33)
11.0 (22) 10.9 (16) 11.0 (18)
10.7 (18) 10.7 (19)
9.87 (43) 9.91 (43) 9.92 (48)
9.02 (34) 8.90 (45) 8.91 (51)
8.48 (55) 8.38 (59) 8.48 (62)
8.28 (68) 8.37 (81)

7.59 (44) 7.60 (47)

7.43 (53) 7.30 (44) 7.33 (47)

7.01 (43)

6.67 (27) 6.71 (31)

6.58 (26) 6.59 (33)

6.33 (21)

6.07 (13) 6.07 (16) 6.08 (18)
5.98 (16)

5.66 (21) 5.68 (25) 5.66 (25)

5.38 (12) 5.38 (12) 5.38 (15)

a) kK

b) € = liter/mole-cm
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it to be heavily solvated with THF but did not resemble spectra
obtained for the other uranium phosphoylide complexes described below.

At present this lime-green product is still uncharacterized.

B. THE BISCYCLOPENTADIENYLURANIUMPHOSPHOYLIDE SYSTEM
When two equivalents of lithiated phosphoylide are added to 1
equivalent of (C5H5)3UCl, dark red complexes result according to

equation 10:

//,CHQ\\
CHs” THF
2
+ LiCl + Li(CgHg) + CH,=P(CHy) (CcHy) (R)
where R = CH, or C.H, (10)

With Li(CHZ)zP(CGHs)2 we are able to separate the dimeric product from
the other side-products. when Li(CHz)zP(CH3)(C6H5) is used a dark red
product is obtained which decomposes upon extractive work-up. However
as long as it is kept in a coordinating solvent such as THF or
1,2-dimethoxyethane it remains stable. The reasons for this behavior
will be explored in a later section.

As for the 1:1 complexes the best yields are obtained in a
strongly coordinating solvent such as THF or 1,2-dimethoxyethane.
The formation of the dimeric product is greatly enhanced if the
reaction is run at an elevated temperature, such as boiling THF. 1If
the reaction is run at -50° C. the products consist of a mixture of
the green 1:1 complex and the 1:2 red dimeric complex.

The (“_(CH)(CHZ)P(CGHS)ZU(CSHS)Z)z complex is very soluble in THF,

1,2-dimethoxyethane and benzene. It is slightly soluble in toluene,
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diethyl ether and pentane and totally insoluble in hexane or heptane.
The best solvent combination for recrystallization is THF-heptane.

In addition to its preparation via equation 10, the red dimeric
complex can also be prepared from (CgHg) JUCHP(CHj) (CgHg), via

equation 11:

_CH,
(C5Hg) JUCHP (CH,) (CeHy) , + Lil_ ° P(CgHg) y —>
CHy THF

(u-(CH) (CH,)P (CgHy) ,U(CHL) ,) , + Li(CHg) + CH,=P(CHy) (CcHe),

(11)

This method is not as efficient as equation 10 since an appreciable
amount of (CgHg) ;UCHP(CH,)(CiHg), remains unreacted. A 4 amr of the
mixture shows it consists of 39% (u'(CH)(CHZ)P(CGHS)ZU(CSHS)Z)Z and
61% (CSH5)3UCHP(CH3)(CGH5)2. In terms of the red dimeric material
this is only a 20% yield. But, this reaction demonstrates that the
formation of the red dimer may go through (CgHg),UCHP(CH;)(CHg), as
an intermediate.

When Li(CH,),P(CH3) (CgHs) is used in place of Li(CH,),P(CgHg),
in equation 11 a different reaction is seen to occur. The 19 nmr
indicates that a mixture comsisting of 717% (CSHs)aUCHP(CHa)(CGHS)Z
and 29% (C5H5)3UCHP(CH3)2(C6H5) is formed. No indication of
(u-(CH) (CH,)P(C.H,) ,U(C.H,),), or a mixed dimer is seen in the 4 nmr
of this mixture. Rather than acting as a base and deprotonating a
methyl group, as Li(CHz)zP(CGHs)2 did in equation 11, the
Li(CHZ)ZP(CH3)(C6H5) undergoes ligand exchange with the
(C5H5)3UCHP(CH3)(C6H5)2 complex. The reason for this is not readily

apparent to us.
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We attempted the deprotonation reaction (equation 11) with
LiCH3. Upon addition of ome equivalent of LiCH3 to one equivalent of
(CgHg) JUCHP (CH3) (CgHg)p the 4 nmr indicated onlf regonances for the
sfarting materials. This same reaction was attempted again but with
two equivalents of LiCH; to one equivalent of (CgHg)3UCHP(CH3) (CgHg),.
This time the color of the reaction mixture turned a dark red.

However a !H nmr of this material showed nd soluble paramagnetic
species were present. It aiso showed no starting materials were
present either, only an unidentified material which was not further
characterized.

Of the three bases tried as deprotonating agents only
Li(CHZ)ZP(CGHS)2 proved to be successful in producing a biscyclopenta-
dienyluraniumphosphoylide dimer.

An x-ray crystallographic study has been completed for
(u-(CH)(CHZ)P(CGHS)ZU(CSHS)Z)2 and the structure of the complex is
shown in Figure 37. (See Page 135) A complete analysis of the
structure is presented in a later section.

The 'H nmr of (u-(CH)(CH,)P(C.H,) U(CH,),), obtained at 100 Mz
in CgDg is presented in Figure 17 and the data tabulated in Table 9.
The spectrum is in complete accordance with the x<ray structure in
Figure 37. The methine and methylene protons exhibit large para-
magnetically induced chemical shifts. The broadened methylene
resonance is seen at -95.5 ppm and a broadened methine resonance is
observed at +108.1 ppm. Resonaﬁces due to the phenyl protons are seen
at -8.05 ppm (ortho), ~3.07 ppm (meta) and -2.44 ppm (para). The

cyclopentadienyl resonance is found upfield at +33.92 ppm. This is
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TABLE 9

Nuclear Magnetic Resonance Parameters for a

Biscyclopentadienyluraniumphosphoylide Dimer?

Compound Nucleus Chemical Shift (ppm)
(1= (CH) (CH,) P (CgHg) ,U(CsHs) 5) 5 1P -95.5 (2H, broad)

-8.05 (4H, broad)

-3.07 (4H, t, J(HCCH) = 7 Hz)
-2.44 (2H, t, J(HCCH) = 7 Hz)
+33.92 (10H, s)
+108.1 (1H, broad)

31p¢ +140.44 (broad multiplet)

$ = singlet, t = triplet
a) spectra recorded at +25° C.
b) chemical shifts referenced relative to internal benzene

¢) chemical shifts measured relative to external HaPO,



greater than 10 ppm further upfield than the resonance observed for
the cyclopentadienyl groups in the triscyclopentadienyluranium-
phosphoylide complexes. Presumably this is due to a change in the
orientation of the cyclopentadienyl groups relative to the dipolar
field generated by the uranium atom, or to greater spin delocalization
resulting from strong uranium cyclopentadienyl bonding, or both.

The 'H nmr of this complex was found to be temperature dependent.
The temperature dependence was studied in both a coordinating solvent
(THF-dg) and a noncoordinating solvent (toluene-dg/CgDg). The
spectrum over a +60° to -90° C. temperature range in toluene-dg/CgDg
is shown in Figure 18. Upon cooling from +60° C. the cyclopentadienyl
singlet begins to broaden and coalesces at ~-20° C. With further
cooling to -45° C. two broad peaks emerge from the baseline and begin
to sharpen at -60° C. However by -75° C. the downfield peak begins
to broaden while the upfield peak continues to sharpen. This
continues to -90° C. which is the lowest temperature we could achieve
before solvent broadening and freezing of the sample occurrgd. A
mechanism responsible for this latter broadening of the downfield
resonance will be put forth in the discussion section.

The same temperature dependent behavior as seen in Figure 18 is
also observed in THF-dg between +30° to -70° C. However we don't see
broadening of the downfield resonance because we can't go to quite as
low a temperature as with the toluene-dB/CGD6 solvent mixture. The
coalescence temperature in this spectrum is estimated to be at ~-30° C.

The loss of the broad peak at coalescence into the baseline

makes it difficult to determine the coalescence temperature and we

49
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estimate that it is accurate to no more than #5° C., Since the two
coalescence temperatures are within one standard deviation of each
other, the 10° C. difference between the two estimated coalescence
temperatures may not be significant.

A second problem associated with this broadening is that we lose
the intermediate exchange information which precludes the use of lime
shape analysis by computer simulation to obtain thefmodynamic para-
meters for the observed process. Although we can't determine
AHc or ASC, we can still get an estimate of AGc from equations 12

and 13:

TAv/V2 (12)

=
]

k
T

KT/h exp(-AGc/RT) (13)
where kr is the rate constant for the observed process,

Av is the chemical shift separation in hertz at the

coalescence temperature and the other symbols have their

usual meaning

The chemical shift separation is determined by extrapolating the
observed slow exchange peak positions back to the coalescence tempera-
ture and taking their difference. In toluene-dB/CGD6 the chemical
shift separation at 253° K. is 1,950 hertz which yields a AGyg3 =
+10 £ 1 kcal/mole. In THF-dg the chemical shift separation is 1,920
hertz at 243° K. and this also gives a AG,,; = +10 * 1 kcal/mole.

The 3P mmr spectrum of (u-(CH)(CH,)P(C4H),U(CcHc),), exhibits
a resonance at +140.44 ppm. Like the triscyclopentadienyluranium-

phosphoylide complexes the coupling information is lost due to
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paramagnetic broadening. The 31p nmr was also studied as a function
of temperature over the range +30° to -60° C. in THF/toluene-dg. It
was hoped that at a lower temperature the coupling constants would be
observed and information pertaining to the rearrangement process
would be obtained. Unfortunately the peak remains too broad, even at
-60°C. to allow phosphorus-proton coupling to be resolved.

The infrared spectrum of (u-(CH)(CH,)P(CgH;),U(C5Hs),), recorded
over the range 4,000 - 300 cm ! is shown in Figure 19 and the data
summarized in Table 10. The bands characteristic of phenyl groups
attached to phosphorus are seen at 1439 cml, 1097 cm'l, 735 cm !
and 492 cm~!. The weak but characteristic pattern of bands for mono-

1

substituted benzene are observed in the 2000 -~ 1667 cm * region.

Aromatic hydrogens are seen at 3070 cm ! and 3050 cm”!. The vibrational
modes of m-bonded cyclopentadienyl groups are observed at 1010 cm !
(C~H in-plane wagging) and at 791 cm ! (out-of-plane wagging).

A carbon-carbon double bond stretching vibration is seen at
1480 cm™! as a shoulder on the nujol peak. A band apparently due to
phosphorus~carbon double bond stretching is seen at 776 e . The
crystal structure of this complex indicates that an appreciable amount
of double bond character is present in the phosphorus-methine and
phosphorus-methylene bonds. Phosphorus—carbon single bond stretching
is observed at 744 cm™!l.

The two absorptions occurring at 518 cm ! and 467 em”! are
assigned to uranium-carbon stretching vibrations for the reasons

previously mentioned.

The visible spectrum of (u-(CH)(CH,)P(CgHs),U(C5Hs),), recorded
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TABLE 10

Infrared Frequencies for
(u—(CH)(CHz)P(CGHs)ZU(CsHS)z)Z

Possible
v(em~1) Assignment
3070 w
3050 w v(C-H aromatic)
1965 w
1894 w
1806 w
1760 w
1480 m. sh v(C=C)
1439 s, sh 8(CgHg)-a
1304 w
1262 w
1157 w
1112 m
1097 m 6(C6H5)-b
1010 s §(CsHg)
985 m G(CH-P)
898 s v(P-CH2)
822 w
791 s, sh §(CsHsg)
776 vs v(P=C)
744 s 5(C6H5)—C
735 m
689 s v(P-C)
518 s v(U-C)
492 s 5(CGH5)-d
467 m v(U-C)

s = strong, m = medium, w = weak, v = very, sh = shoulder

a) pianar ring deformation of phenyl bonded to phosphorus
b) substituent sensitive C-~H planar bending vibration

c) substituent semnsitive C-H out-of-plane bending vibration

d) substituent sensitive ring vibration
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over the 25.0 - 13.0 kK region is shown in Figure 20 and the data
summarized in Table 11l. This spectrum is qualitatively very similiar
to those observed for the triscyclopentadienyluraniumphosphoylide
complexes. It consists of essentially one shoulder on an intense
electron~transfer band or 5f-6d tramsition band present in the
ultraviolet region. The main difference is a hypsochromic shift
(blue shifted) of ~2,700 cm™! of this feature for the

(u~(CH) (CH,)P(CgHg) ,U(C5Hg) ), complex.

The near-infrared spectral data of (“'(CH)(CHZ)P(CGHS)ZU(CSHS)z)z
recorded over the 13.0 - 4.0 kK region is summarized in Table 11 and
the spectrum shown in Figure 21. The most interesting feature of the
spectrum are the two intense peaks at 8.81 kK (¢ = 200 liter/mole-cm
per molecule) and 6.57 kK (e = 110 liter/mole-cm per molecule). This
region is usually characterized by La Porte forbidden f-+f transitions
which are generally weak (¢ < 50 liter/mole-cm), but occur because of
vibronic coupling. The symmetry of the dimer is lower than the
triscyclopentadienyluraniumphosphoylide complexes and this may allow
greater intensity for these forbidden tramsitions. There may also
exist a weak interaction between the two metal centers.

Other than these two relatively intense peaks the remainder of
the spectrum is similiar to the near-infrared spectra of the triscyclo-
pentadienyluraniumphosphoylide complexes. Here the peak positions
have undergone a blue shift of ~500 cm™! relative to those observed

for the triscyclopentadienyluraniumphosphoylide complexes.
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TABLE 11

Electronic Spectral Parameters for
(u-(CH) (CH,) P(C¢HS) ,U(CLHS) ),

vmaxa(e)b

Visible Region Near-Infrared Region

19.3 (1430)
15.7 (240)
15.0 (210)
14.4 (190)
13.8 (120)

(36)
(33)
(35)
(40)
(62)
(55)
(190)
(200)
(190)
(42)
(40)
(55)
(110)
(62)
(27)
(18)
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a) kK

b) € = liter/mole-cm per complex
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C. THE MONOCYCLOPENTADIENYLURANIUMIRISPHOSPHOYLIDE SYSTEM

The addition of three equivalents of lithiated phosphoylide to
one equivalent of triscyclopentadienyluranium chloride results in
bright gold colored complexes according to equation 14:

CHa
(CsEg)3uCL + 3127 P(GeHg) (R) ——> (CyHis)U((CH, )P (Colis) (R))3
THF

CH;

+ LiCl + 2Li(CgH;) (14)

where R = CHy or CSHS

These complexes can also be prepared from (CSHS)UC13°2THF via

equation 15:

CHy
P (CeHs) (R) ——> (CsHs)UC(CH,),P (Cels) (R)) 3
CH, THF
+ 3LiCl (15)

(CsH5)UCl3« 2THF + 3Li””

where R = CH3 or CgHg

In addition the triscyclopentadienyluraniumphosphoylide complexes can
also serve as starting materials for the monocyclopentadienyluranium-
trisphosphoylide complexes via equation 16:

CH,

~~
P (CH;) (CgHs)
CHz

.~

——> (C,H.)U((CH,) ,P(CH,) (CH,)) 3 + 2Li(CyH,)
THF
(16)
Reactions 14 - 16 give essentially quantitative yield of crude

gold colored product when THF is used as the solvent. The crude

product prepared in this manner has repeatedly failed to recrystallize
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using mixed solvent systems. However, substitution of diethyl ether
for THF as the solvent produces, after filtering and standing for
several hours, bright gold colored crystalline (CSHS)U((CHQ)ZP(C6H5)2)3.
Unfortunately, this method fails in the case of
(C5H5)U((CH, ),P(CH3) (CgHg) )3 which is very soluble in diethyl ether.

Both complexes are very soluble in THF, 1,2-~dimethoxyethane,
benzene, and toluene. They are soluble in pentane and somewhat less
soluble in heptane. These complexes can tolerate exposure to the air
for several minutes before they begin to darken and catch fire.
Exposure to water produces an immediate blackening. As with .the
previously discussed complexes these materials are also sensitive to
solvents containing acidic protons.

One of the products we obtain in reactiomns 14 and 16 is lithium
cyclopentadienide which was identified from its infrared spectrum.
This was also seen as a side-product in the preparation of the
biscyclopentadienyluraniumphosphoylide dimer complexes. The cyclo-~
pentadienyl ligands of the starting materials (except
(CgHg)UCLl3+2THF) react in an jonic fashion and are simply displaced
by the ylide.

The H nmr of (CgHg)U((CH,),P(CgHs),) 5 and
(CSHS)U((CHZ)zP(Cﬂa)(CSHS))B obtained at 100 MHz in toluene-dg is
shown in Figures 22 and 23 and the data tabulated in Table 12. The
spectra shown were obtained at +95° C. since the methylene groups are
in the intermediate exchange region at room temperature and are not
observed. The principle features of interest in these spectra are

the methylene and cyclopentadienyl resonances and in the case of
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TABLE 12

Nuclear Magnetic Resonance Parameters for Several
Monocyclopentadienyluraniumtrisphosphoylide Complexes

(C5H5)UC(CH,) ,P(C4Hy) ), (CsHg) U((CH,) ,P(CHy) (CgHg)) 5

4 omr at 495° ¢.2

+0.62 (9H, multi, J(HCCH) = 7 Hz) +0.10 (6H, s)
+20.59 (5H, s) +0.57 (94, d, J(HCCH) = 7 Hz)
+40.54 (12H, broad s) +8.31 (94, d, J(H,CP) = 10 Hz)

+23.47 (5H, s)

+33.19 (2H, broad s)

+37.20 (10H, broad s)

14 omr at +25° c.2

+0.42 (6H, s) +0.15 (6H, s)
+1.28 (9H, multi, J(HCCH) = 7 Hz) .+0.90 (94, multi, J(HCCH) = 7 Hz)
;27.29 (54, s) +10.27 (94, d, J(H3CP) = 10 Hz)

+30.91 (5H, s)

31p nmr at +25° C.©

-11.02 (broad multi) -14.42 (broad multi)

s = singlet, d = doublet, multi = multiplet

a) chemical shifts (ppm) measured relative to the methyl signal in
toluene-dg and corrected to CgHg via: &(obs) + 4.93 ppm

b)  a portion of the signal is obscured by the solvent signal

c¢) chemical shifts measured relative to external H3P04
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(C5H5)U((CHy) oP(CH3) (CgHs)) 3 the additional methyl resonance. The
spectrum of the (CgHg)U((CH,),P(CgHs),) 3 complex shows a cyclopenta-
dienyl resonance at +20.59 ppm with an intensity corresponding to

5 H's and a broad methylene resonance at +40.54 ppm with an intensity
of 12 H's. The spectrum of (CSHS)U((CHZ)ZP(CH3)(CGH5))3 exhibits a
methyl doublet (J(H3P) = 10 Hz) at +8.31 ppm with an intensity of

9 H's, a cyclopentadienyl singlet at +23.47 ppm with an intensity of
5 H's and two broad peaks upfield. Tﬁe downfield peak is at +33.19
ppm with an intensity of 2 H's and the upfield peak is at +37.20 ppm
with an intensity corresponding to 10 H's. Apparently in this complex
the process responsible for averaging the methylene protons still
leaves one set of methylene protons different from the other five.
The temperature dependence of these complexes will not be further
discussed in this dissertation.

The 31P nmr of these complexes is reported in Table 12. Instead
of large upfield shifts, as seen for the other complexes, these show
small downfield shifts relative to external H3PO,. The
(CSHS)U((CHZ)ZP(CGH5)2)3 complex shows a broad multiplet at -11.02 ppm
and the (CSHS)U((CHZ)ZP(CHS)(CGHS))s complex exhibits a broad multiplet
at -14.42 ppm.

The infrared spectrum of (CgHg)U((CH,),P(CgHs),), recorded over
the range 4000 - 300 cﬁfl is shown in Figure 24 and tabulated in
Table 13. Bands characteristic of a m-bonded cyclopentadienyl group
are seen at 1010 cm™! (C-H in-plane wagging) and 805 cm™} (C-H
out-of-plane wagging). Absorptions due to phenyl groups attached to

phosphorus are seen at 1437 cm’l, 1096 cmfl, 733 em”! and 470 em”l.
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TABLE 13

Infrared Frequencies for
(CsH5)U((CHy) 5P (Cgls) 2) 4

Possible
Assignment

v(C-H aromatic)

v(C=C)
v(C=C)
G(CGHS)-a

§(CgHg)-b

§(CsHs)
8(C,~P)

v (P-CHy)
§ (CsHs)

v(P=C)
5(C6H5)-C
v(P-C)
v(U-C)
v(U-C)

strong, m = medium, w = weak, v = very, sh = shoulder

planar ring deformation of phenyl bonded to phosphorus

substituent sensitive C-H planar bending vibration

substituent sensitive C-H out-of-plane bending vibration

substituent sensitive ring vibration
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Aromatic hydrogens are seen at 3049 em™t

and a partial mono-substituted
benzene pattern is seen at 1956 cm™!, 1888 cm ! and 1802 cm”!.

In the carbon-carbon double bond region are stretching vibratioms
at 1575 cm ! and 1479 cm !. Bands arising from phosphorus-carbon
double bond stretching are tentatively assigned to absorptions appearing
in the 790 - 770 cm™~! region. In the 875 - 855 cm™' region are two
bands due to P-CH, stretching vibrations. Phosphorus—carbon single
bond vibrations are also partly responsible for the broad absorptions
at 733 co”! and 685 cm”!.

The two bands occurring at 500 cm~! and 439 cm™! are assigned to
uranium-carbon stretching for the reasons mentioned earlier.

The visible spectrum of (CSHS)U((CH

P(CSH recorded over

2)2 5)2)3

the range 25.0 - 13.0 kK is shown in Figure 25 and the data tabulated
in Table 14. The spectrum of this complex is different from those seen
for the previous complexes. Its most interesting feature is the
multiplet of peaks in the 15.4 -~ 13.9 kK region shown in Figure 26.
These may be due to f>f transitions which have been blue shifted out of
the near-infrared and into the visible region. As seen for the other
complexes an intense band in the ultraviolet region tails off into the
visible region with several shoulders.

The near-infrared spectra of (CSHS)U((CHZ)ZP(C6H5)2)3 recorded
over the range 13.0 - 4.0 kK is shown in Figure 27 and summarized in
Table 14. The most prominent feature in the spectrum is an intense
peak located at 8.07 kK (g = 195 liter/mole-cm) with an intense
shoulder at 8.30 kK (e = 160 liter/mole-cm). This peak is located in

the same region as one of the two intense bands observed in the
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TABLE 14

Electronic Spectral Parameters for
(CSHS)U((CHz)zP(CSHS)z)a

vmaxa(s)b
Visible Region Near-Infrared Region

24.5 (1720) 10.5 (24)
20.8 (230) 9.59 (25)
19.3 (120) 9.22 (41)
17.9 (60) 9.05 (42)
16.6 (65) 8.70 (56)
15.4 (100) 8.30 (160)
15.0 (100) 8.07 (180)
14.7 (120) 7.04 (19)
14.3 (120) 6.62 (25)
14.0 (100) 6.16 (34)

5.97 (38)

5.70 (24)

7.62 (23)
a) kK

b)

€ = liter/mole-cm
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near-infrared spectrum of (u—(CH)(CHZ)P(CGHS)ZU(CSHS)Z)Z. Lowering of
the symmetry of the complex may allow one of the f+f transitioms to
become more allowed. Also seen in the spectrum are La Porte forbidden

f->f transitions of much weaker intensity.

D. REACTIONS OF ORGANOURANIUMPHOSPHOYLIDE COMPLEXES WITH CARBON MONOXIDE
When carbon monoxide is passed over either a benzene or toluene

solution of a triscyclopentadienyluraniumphosphoylide complex at room

temperature the color of the solution changes from dark green to dark

reddish-orange and a reaction according to equation 17 occurs:

(CsHg) 3UCHP(CH,) (CgHs) (R) + CO ———> (CgHg) 3U(CO) CHP(CHy) (CgHg) (R)

where R = CH3, CpHg, or CgHs a7

We have found that the rate of this reaction is highly dependent upon
temperature. At room temperature it is complete in 30 - 60 minutes,
while at -50° C. no color change is apparent after several hours.

The reaction gives essentially quantitative yield of crude product
that is easily recrystallized in 85 - 90% yields. The products in
which R = C3H5 or CgHs are soluble in THF, benzene and toluene, and
insoluble in saturated hydrocarbon solvents. The complexes are easily
recrystallized from a toluene-heptane solvent mixture. The complex
obtained when R = CHy is soluble in THF and benzene, but only slightly
soluble in toluene. It is totally insoluble in saturated hydrocarbon
solvents and conveniently recrystallized from THF-heptane. The
complexes are pyrophoric when exposed to air and decompose in the
presence of acidiec solvents.

A molecular weight determination by osmometry was carried out for
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the (CSHS)3U(C0)CHP(CH3)(CGH5)2 complex. The data (calc: 675, found:

719 * 10%) strongly indicates that the complex is a monomer, at least
in benzene. Presumably the same holds true for the other two complexes
as well.

The !H nmr of the complexes obtained in CgDg at 100 MHz are shown
in Figures 28 - 30 and summarized in Table 15. The complexes give very
similiar spectra and are in accord with the tentatively formulated
product. The methine proton in (C5H5)3U(CO)CHP(CH3)(CBHS)2 is observed
as a doublet (J(HCP) = 35 Hz) at -53.64 ppm, in the
(C5Hg) 3U(CO)CHP(CH) ,(CgHs) complex as a doublet (J(HCP) = 36 Hz) at
-56.30 ppm and in (CgHg);U(CO)CHP(C,H:) (CH3) (CgHg) as a doublet
(J(HCP) = 33 Hz) at -54.47 ppm. This is quite a different chemical
shift compared'to the methine proton in the starting material which was
found upfield in the range +120 - 140 ppm. Quite clearly a drastic
relocation of this proton with respect to the uranium atom has occurred.
In addition, the coupling constant is more than twice that found in the
starting material (J(HCP) = 16 Hz).

In (CgHg) ;U(CO)CHP(CH;) (CHg) ; a methyl doublet (J(H,CP) = 14 Hz)
with an intensity of 3 H's is located at +6.88 ppm. The
(CsHs) 3U(CO)CHP(CH3) 5, (CgHg) complex shows a methyl doublet (J(H4CP) =
14 Hz) at +6.07 ppm corresponding in intensity to 6 H's. In the
(C5Hg) sU(CO)CHP(C,Hg) (CH3) (CgHs) complex a methyl doublet (J(H3CP) =
13 Hz) is seen at +5.58 ppm with an intensity of 3 H's. 1In addition
the methyl doublet of triplets of the ethyl group (J(H,CCP) = 19 Hz,
J(HCCH) = 7 Hz) is observed at +8.20 ppm. The methylene portion of the

ethyl group lies beneath the methyl doublet at +5.58 ppm. The
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Nuclear Magnetic Resonance Parameters for the Reaction
Product of Several Triscyclopentadienyluraniumphosphoylide
Complexes with Carbon Monoxide

Compound Nucleus
(C5Hg ) 3U(CO) CHP(CH,) (CgHs), 1gP
31pC
1y
(C4H) ;U(CO) CHP (CH,) , (C4Hy) H
31p

b
(CHg) 4U(CO)CHP (C,H,) (CH, ) (C H) ly

31Pc

Chemical Shift (ppm)

-53.64 (1H, d, J(HCP) = 35 Hz)

+0.40 (4H, dd, J(HCP) = 12 Hz,
J(HCCH) = 7 Hz)

+1.09 (2H, t, J(HCCH) = 7 Hz)

+1.51 (4H, t, J(HCCH) = 7 Hz)

+6.88 (3H, d, J(H3CP) = 14 Hz)

+18.61 (15H, s)

+126.30 (broad multiplet)

-56.30 (1H, 4, J(HCP) = 36 Hz)

+0.80 (2H, dd, J(HCP) = 12 Hz,
J(HCCH) = 7 Hz)

+1.31 (1H, t, J(HCCH) = 7 Hz)

+1.85 (2H, t, J(HCCH) = 7 Hz)

+6.07 (6H, d, J(H3CP) = 14 Hz)

+18.58 (15H, s)

+133.04 (broad multiplet)

-54.47 (1H, d, J(HCP) = 33 Hz)

+0.20 (2H, dd, J(HCP) = 12 Hz,
J(HCCH) = 7 Hz)

+1.02 (1H, t, J(HCCH) = 7 Hz)

+1.51 (2H, t, J(HCCH) = 7 Hz)

+5.58 (3H, d, J(H4CP) = 13 Hz)

+5.58 (2H, multiplet)-d

+8.20 (3H, dt, J(H,CCP) = 19 Hz,
J(HCCH) = 7 Hz)

+18.12 (153, s)

+123.62 (broad multiplet)

s = singlet, d = doublet, t = triplet, dd = doublet of doublets

a) spectra recorded at +25° C,

b) chemical shifts referenced relative to internal benzene

c) chemical shifts measured relative to external H4PO,,

d) methine multiplet is under the methyl doublet



cyclopentadienyl resonances for the complexes are located in the range
+18.1 - 18.6 ppm with an intensity corresponding to three cyclopenta-
dienyl groups. This is close to the position observed for the starting
triscyclopentadienyluraniumphosphoylide complexes (~+20 ppm).

The 31p spectra obtained at 40.5 MHz in THF/CgDg also supports
this view and is presented in Table 15. Although the coupling informa-
tion is lost due to the paramagnetism of the uranium, the spectra
exhibit large upfield chemical shifts compared to the starting
lithiated phosphorus ylides. The (CsHg)3U(CO)CHP(CH3) (CgHg)o complex
shows a broad multiplet at +126.30 ppm, the (CgHg)3U(CO)(CH;y), (C4Hg)
complex has a broad multiplet +133.04 ppm and in the
(CsHs)aU(CO)CHP(CZHS)(CH3)(CGH5) complex the broad multiplet is seen
at +123.62 ppm. These chemical shifts are about 60 ppm downfield of
the resonances observed in the triscyclopentadienyluraniumphosphoylide
complexes,

The spectra of the complexes indicates that the environment about
the phosphorus atom is the same as it was in the starting complexes.
The major difference is the smaller chemical shifts presumably due to
the ylide moiety being located further from the paramagnetic influence
of the uranium atom than it was in the starting complex.

The infrared spectral data for these complexes recorded over the
range 4000 - 300 em™! is summarized in Table 16 and a representative
spectrum of (C5H5)3U(C0)CHP(CH3)(C6H5)2 is shown in Figure 31. The
infrared spectra reveal several important features concerning the
insertion of the carbon monoxide into the complex. In the 1660 - 1640
-1

cm - region is a weak band due to an oxygen~carbon double bond. These

78



TABLE 16

Infrared Frequencies for the Reaction

Product of Several (CgHg)3UCHP(CH;3) (CgHg) (R)

Complexes with Carbon Monoxide

Possible
Assignment

v(C-H aromatic)

v(C=0)
v(C=C)

v(C=C)
8 (CSHS) -a

§(P~CH,)

§ (P-CHa)

v(c-0)

§(C.H.) b
v(E-0)
s§(C

He)
§(p2chy)
§ (P—CHa)-c
§(CsHs)
v(P=C)
§(C535)-d

v(P-C)

v(U-C)

v(U-C)
v(U-0)
(U-0)

v(em™})
R = CH, R = CyH, R = CgHg
3090 w 3090 w
3042 w 3050 w 3048 w
1765 w 1772 w 1770 w
1655 w 1660 w 1770 w
1642 w
1590 w 1590 w 1591 w
1555 w 1551 w 1578 w
1480 m, sh 1480 m, sh 1480 n, sh
1434 w3 1441 vs 1437 vs
1411 s
1397 s 1399 s 1399 s
1328 m
1312 » 1319 m 1317 m
1305 1305 o '
1292 o 1290 w 1291 w
1263 m 1260 w
1255 m 1257 w
1190 m 1190 w
1160 w 1160 w
1119 m
1103 s 1104 s 1110 s
1068 s 1070 m 1070 m
1009 s 1011 s 1009 .s
957 s
927. s 918 s
884 o 890 s 897 s
868 m . 846 m
839 m 832 m
797 vs, sh 790 s, sh 791 s, sh
768 vs 765 vs, br 770 vs
746 vs 742 vs 741 vs -
715 = 707 s
690 s 692 s 689 s
658 m 651l m 663 m
643 m 623 w
501l m 506 m 503 m
) 479 m
471 m 473 m 471 m
401 s 433 m 438 m
391 s 395 s 390 s
372 m 37 s 378 s
s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad
a) planar ring deformation of phenyl bonded to phosphorus
b) subsgtituent sensitive C-H planar bending vibration
¢) methyl rocking
d) substituent sensitive C-H out-of-plane bending vibration

e)

substituent sensitive ring vibration
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are generally quite strong in intensity. However this double bond may
have been weakened because of bonding of the oxygen atom to the uranium.
Absorptions due to uranium-oxygen stretching have been assigned to the
bands in the 395 - 370 cm™! region. These are in the range of metal-
oxygen stretching frequencies observed®>® for heavy metal alkoxide
complexes. Also seen are bands due to carbon-oxygen single bond
stretching in the 1265 -~ 1250 cm™! and 1070 - 1065 cm~! regions. The
;bsorptions seen for uranium—-carbon stretching seen in the starting
complexes are seen in these complexes at 510 - 500 cm™! and 440 - 400

1

cm . These data appear to indicate that the carbon-oxygen group is

side-bonded in a dihapto fashion to the uranium atom as shown below:

Recently Marks and co-workers®®:67 have reported a bispentamethylcyclo-
pentadienyl uranium complex which contains a side-bonded carbon-
oxygen group (1620 cm™!).

The remaining absorptions in the infrared are consistent with our
formulation of these complexes. The bands characteristic of w-bonded
cyclopentadienyl groups are seen at 1015 - 1005 cm™! and 800 - 790 cm™!.
Absorptions due to a phenyl group attached to phosphorus are observed
at 1445 - 1430 em~!, 1110 - 1100 cm™!, 750 - 740 cm™! and 475 - 470
em 1. Methyl-phosphorus stretching and bending vibrations are seen at
1400 - 1395 cm™!, 1296 - 1290 cm !, 957 cm™! cand 870 - 845 cm !.

The carbon-carbon double bond stretching of the aromatic groups

are observed at 1595 - 1590 cm™! and 1480 cm™!. A phosphorus-carbon
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double bond stretch occurs at 770 - 765 cm '. The broad absorptions at
750 - 740 cm”! and 690 - 680 cm™! are in part caused by phosphorus-
carbon single bond stretching.

The visible spectral data is tabulated in Table 17 and a represen-
tative spectrum of (C5H5)3U(CO)CHP(CH3)(C6H5)2 is shown in Figure 32.
The complexes give qualitatively similiar spectra with the bands
somewhat less intense for the (C5H5)3U(CO)CHP(CH3)2(C6H5) complex. As
for the starting triscyclopentadienyluraniumphosphoylide complexes the
spectra consist of several shoulders on an intense band located in the
ultraviolet region. The main difference between these two classes of
compounds is the blue shift of ~2.5 kK that has occurred in the visible
spectra of the (CgHg)3U(CO)CHP(CH;) (CgHs) (R) complexes and the
disappearance of the band at about 17 kK. This is about the same
amount of hypsochromic shift that occurred for the
(u-(CH)(CH?_)P(CSHS)?_U(CSHS)Z)2 complexes. This results in the reddish-
orange color seen for dilute solutions of the
(C5H5)3U(CO)CHP(CH3)(CGHS)(R) complexes.

The near-infrared spectral data of these complexes recorded over
the range 13.0 - 4.0 kK is summarized in Table 18 and the spectrum of
(CgHg) 3U(CO)CHP(CH;) (CgHg) , is shown in Figure 33. As for the visible
spectra the complexes give very similiar near-infrared spectra.
Qualitatively they are similiar to the starting triscyclopentadienyl-
uraniumphosphoylide complexes with one exception. 1In the starting
complexes the 5.2 - 4.0 kK region is clear of any bands. However the
product complexes contain an intense band at ~5.0 kK (¢ = 150 liter/

mole~cm) with several shoulders of lesser intensity out to 4.6 kK.



TABLE 17

Visible Spectral Parameters for the Reaction
Product of Several Triscyclopentadienyluraniumphosphoylide
Complexes with Carbon Monoxide

vmax3(e)P
(CgHg) 3U(CO)CHP (CH,4) (CgHg), (C5Hg) JU(CO)CHP(CH,) , (CHg) (CgHg) 3U(CO) (C,H,) (CHy) (CeHg)

21.4 (540) 21.7 (430) 21.7 (510)
19.2 (360) 19.2 (310) 19.5 (350)
18.0 (230)
17.5 (230) 17.3 (150) 17.3 (170)
16.0 (110) 16.1 (95) : 16.1 (110)
14.9 (36) 14.8 (50)

14.4 (31) 14.4 (27)

13.8 (22)
13.2 (21) 13.2 (24) 13.2 (32)

a) kK

b) € = liter/mole-cm

€8
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Figure 32.

Visible spectrum of (CsHs)3U(CO)CHP(CH3) (CgHs) 2
obtained as a 7.1 x 10~% M solution in THF.
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TABLE 18

Near-Infrared Spectral Parameters for the Reaction
Product of Several Triscyclopentadienyluraniumphosphoylide

Complexes with Carbon Monoxide

vmax?(e)P

(CsHs) 3U(CO) CHP (CH3) (CgHs) o

10.7
44
.02
v
.97
.40
.98
.02
.67
.04
.88
77
.69
.61

SO0 NN 00 WD

a) kK

b)

g = liter/mole~cm

(30)
(38)
(43)
(37)
(24)
(38)
(27)
(24)
(28)
(150)
(65)
(50)
(46)
(36)

(CsHs5)3U(CO) (CH3) 5 (CgHs)

10.7
.43
.93
Ny
.07
41
.98
.02
.65
.03
.94
.81

AUV 000

Eal

.65

(23)
(39)
(48)
(44)
(26)
(36)
(21)
(20)
(21)
(150)
(83)
(46)

(34)

(CsHs) 3U(CO) CHP (CHz ) (CH3) (CgHs)

1
9
9
8
8
7

[S2 IR, )}

0.7
.56
.01
46
.06
.43

.21
.66
.05
.89

.68

(27)
(35)
(38)
(37)
(26)
(37)

(21)
(25)
(130)
(49)

(34)

1
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Figure 33.
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Near-infrared spectrum of (CgHg)4U(CO)CHP(CH;) (CgHg), obtained as a
9.8 x 1073 M solution in THF.
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This may be due to a lowering of the symmetry in these complexes about
the uranium atom which results in a La Porte forbidden f+f transition
becoming allowed.

The red dimeric (U-(CH)(CH2)P(CGH5)2U(05H5)2)2 compleg was
refluxed under a carbon monoxide atmosphere for ten hours. At the end
of this time a light brown material had precipitated. This compound's
infrared spectrum is shown in Figure 34. The insolubility of this
material in all common solvents prevented further characterization and
it was not studied any further.

Allowing the gold colored (CgHg)U((CH,),P(CgHs) (R)); complexes to
stir under carbon monoxide gave a light greenish-yellow material.

A H nmr of this material showed only resonances characteristic of a
methylene phosphorane. No evidence of paramagnetically shifted
species was seen. No further characterization of this material was

attempted.
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III. GENERAL DISCUSSION

The principle accomplishment of this work was the synthesis and
characterization of a new and novel class of organouranium complexes
containing phosphorus ylides as ligands. 1In addition the reaction of
these organouraniumphosphoylide complexes with carbon monoxide has
been studied.

Several of the lithiated phosphorus ylides, Li(CH,),P(CgHs), and
Li(CH,),P(CH3) (CgHs) , have been previously prepared, but no data
concerning their characterization was reported. Manzer's paper53
describing his preparation of lithiated phosphoylides led us to believe
that the method was a general one. However we found this not to be
the case. While the addition of two equivalents of LiCH3 to either
((CH3)2P(CGH5)2)I or ((CH3)3P(C6H5))I does yield the corresponding
diethyl ether insoluble lithiated phosphorus ylide, this is not what
is obtained if other phosphonium salts are used. Rather one obtains
the diethyl ether soluble iodide salt of the corresponding lithiated
phosphorane. In Manzer's paper he describes the preparation of
diethyl ether soluble "Li(CH,) (CH,CH)P(C,H;)," from the addition of
two equivalents of lithium alkyl to one equivalent of ((CH3)P(CZHS)3)I.
We believe that instead of preparing Li(CH,)(CH,CH)P(C,H;),, he
prepared ((CZH5)3PCH2Li)I which would be diethyl ether soluble. 1In
addition, the yields for the metal phosphoylide complexes he prepared
from Li(CHz)zP(CGHS)2 and Li(CHz)zP(Cﬂg)(CGHS) are on the order of
80 - 95%. With his "Li(CHz)(CH3CH)P(C2H5)2" starting material a yield
of only 41% was realized. A reduction in yield of about one half is

expected if ((Czﬂs)sPCHzLi)I is the starting material, since a second
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equivalent of this base is needed to deprotonate the coordinated first
equivalent to yield the reported complex as shown in equations 18 and

19:
(CsHg ), TiCl + ((CyHg)3PCHyLi)I ——> ((C5Hs)o TiCH,P(CyH5)3) I + LiCl  (18)

((CSHS)ZTiCHzP(C2H5)3)I + ((CZH5)3PCH2Li)I _

CH:
e 2
~

Sca”
CH,

(CsH5)p T P(CyHg)y + Lil + (CH3P(CpHs)3)I (19)

From the stoichiometry of the overall reaction, the maximum yield of
desired product is 50%.

Our attempts to react a similiar compound,
((CZHS)(CH3)(CSH5)PCH2Li)I, with (C5H5)3UC1 were unsuccessful.
Apparently reaction (18) occurs, but for reasons not apparent to us the
second reaction (19) does not occur, even with an excess of
((CZHS)(CH3)(06H5)PCH2L1)I. Since the product we obtained defied our
attempts to isolate it we subsequently did nothing more with it.

We did find that we could thermolyze ((CZHS)(CHS)(CGHS)PCHZLi)I
and obtain the salt-free compound, CH2=P(C2H5)(CH3)(C6HS). These salt-
free phosphoranes have been previously shown®* to react with lithium
alkyls to produce the corresponding lithiated phosphorus ylide. This
method allows preparation of the authentic Li(CHz)zP(CZHS)(CsHS), and
should allow one to prepare any lithiated phosphorus ylide.

The reactions between (C5H5)3UC1 and (CSHS)UCls-ZTHF and varying
equivalents of lithiated phosphorus ylide, Li(CHZ)zP(CGHS)(R), are

evidenced by changes in the color of the reaction mixtures. The
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reactions and products obtained are summarized below:

//,CHZ\\ THF
(CgHg) 3UCL + Li\\\ //P(CSHS)(R)———:—a (CgHg) 3UCHP (CH;) (CgHg) (R) + LiCl
CHy -50° C.
green colored complexes (20)
where R = CZHS’ CH3 or CGHS
_///CHZ\\
(C;H ) UCL + 2L17 P(CgHg) (R) — *5(u-(CH) (CH,) P (CgHs) (R)U(CsHs)5)
CHy THF
red colored complexes
+ LiCl + Li(CgHs) + CH,=P(CH,) (C¢Hs) (R) (21)

where R = CH; or CgHjg

_ CHa
(CsHs) 3UCL + 3Li P(CgHs) (R) —> (CsHg)U((CHy) P (CgHg) (R)) 5
~cuy” THF

gold colored complexes
where R = CH3 or CgHjg

+ LiCl + 2Li(C5H5) (22)

CH

P
(C5Hg)UCL5+2THF + 3L1\\ ‘::P(CGHS)(R)————é.(C5H5)U((CH2)2P(C6H5)(R))3
CH5 THF
gold colored complexes

where R = CHy or Cgls + 3LiCl (23)
1

In addition the triscyclopentadienyluraniumphosphoylide complexes
can be used to prepared the other cyclopentadienyluraniumphosphoylide

complexes as shown in equations 24 and 25:

_-CHy
(CSH5)3UCHP(CH3)(CGH + Li P(CGHS)Z————é

)
572
CHZ/ THE

% (u~(CH) (CH,)P(CgHs) oU(CsHg) 5) , + Li(CgHg) + CH,=P(CH3) (CgHg), (24)
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_CHp_
(CsHs) 3UCHP(CH3) 2 (CeHs) + 2Li P(CH3) (Ce¢Hs) —>

(CsHs)U((CHy)»P(CHy) (CgHs))3 + 2Li(CsHs)  (25)

From the above reactions we envisage the general scheme shown in
Figure 37 for the reaction pathway of the formation of our cyclopenta-
dienyluraniumphosphoylide complexes. Central to this scheme is the
intermediate biscyclopentadienyluraniumbisphosphoylide complex. Its
existence seems tenuous at best since even the ‘H nmr spectra of crude
(u-(CH)(CH2)P(C6H5)2U(C5H5)2)2 shows little if any indication of its
presence. Its instability is rather remarkable considering it would
be ten coordinate and presumably coordinatively saturated. However
this may not be too surprising considering that the
(u-(CH) (CH,)P(CgHg) ,U(C5H5) ), complex is one of 6nly a few examples
of a biscyclopentadienyluranium complex containing simple cyclopenta-
dienyl groups.

A novel feature of these reactions is the ease with which
cyclopentadienyl groups are displaced by the phosphorus ylides in the
preparation of the bis or monocyclopentadienyluraniumphosphoylide
complexes. Normally the cyclopentadienyl groups in uranium (IV)
complexes are highly resistant to displacement even when reactiomns at
the C-H portion of the ring.occur.68 The only other ligand shown to
displace cyclopentadienyl groupszq is the cyclooctatetraene dianion,
CSHSZ', which forms the very stable uranocene complex, U(C8H8)2.17
It would be interesting to see if a phosphorus ylide could displace
one of the cyclooctatetraene ligands in uranocene to form a mixed

ligand complex. At the present time only one, the recently prepared



(CsHs)U[ (CHy) 5P

CH,
where Y =
CH,

Figure 35.

+LiY

+L1Y, -Li(CgHg)
[(CgHg) ,UL(CH,) ,P(CEH) (R)1,]

+LiY, —Li(CsHs) -YH

(CgHs) (R) 13 < ! [u-(CH) (CH,)P(CgH5) (R)U(CsH5) 515

~
//.P(CGHS)(R) e with R = alkyl or aryl

Proposed general reaction scheme for the cyclopentadienyluraniumphosphoylide system.
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(CgHg )UCL,* 2THF,®? is known.

The series of organcuraniumphosphoylide complexes obtained with
varying equivalents of lithiated phosphorus ylides has unique features
which set them apart from previously studied organouranium compounds.

In the dark green triscyclopentadienyluraniumphosphoylide
complexes, obtained from the reaction of one equivalent of lithiated
phosphoylide with one equivalent of (C5H5)3UCl, a proton transfer
occurs from one methylene group to the other to give a methyl group
and the coordinated methine group. Apparently because of the size
of the ligands involved, a reorganization of the ligands about the
uranium atom is not possible to form an eleven coordinate complex.
Instead a proton transfer occurs and in this way a coordination number
of ten is preserved. To a first approximation these complexes might
be viewed as analogs of the triscyclopentadienyluranium alkyl
com.plexes.zs"28 However, as will be shown later, the triscyclopenta-
dienyluraniumphosphoylide complexes possess a much greater reactivity
toward small molecules such as carbon monqxide than the triscyclopenta-
dienyluranium alkyl complexes and have the potential for a large
derivative chemistry.

The reaction of two equivalents of lithiated phosphorus ylide
with one equivalent of (CSH5)3UCl produces unique and quite unexpected
complexes. These red biscyclopentadienyluraniumphosphoylide dimeric
complexes have several novel features. They are the first examples of
nine-coordinate organouranium (IV) species and as such could be
considered to be coordinatively unsaturated. While we have not

extensively studied their chemistry with Lewis bases, limited
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experiments which we have tried indicate they may possess interesting
catalytic or reagent properties.

As previously mentioned these are one of only a few examples of
biscyclopentadienyluranium complexes in which the cyclopentadienyl
groups have not been manipulated in some fashion, such as replacing

the hydrogens with bulkier methyl groups38'“°

or bridging the two
cyclopentadienyl groups together,37 to increase the stability of the
complex. However we have found that the steric bulk of the groups
attached to the phosphorus is important to the stability of the dimer.
When two phenyl groups are attached to each phosphorus the dimer is
stable for weeks in an inert atmosphere. But when one phenyl group
is replaced by a methyl group the dimer is stable only in the presence
of a strongly coordinating ether solvent. Apparently when the steric
bulk of the ligating phosphoylide is reduced, a strongly coordinating
solvent molecule is necessary to increase the congestion about the
uranium atom and enhance the stability of the dimer. The solvent
molecule may coordinate in a bridging fashion between the two uranium
atoms. Although this complex is of limited stability, it may be
possible to photochemically substitute the coordinating solvent
molecule (THF) with a more strongly bonding ligand and consequently
enhance the stability of the dimer or resulting complex.

The novel fashion in which the ylide moiety bonds to the uranium
atoms is also of interest. This is the first example where a
phosphorus ylide both chelates to one metal center and at the same
time bridges two metal centers through a methine carbon. A bridging

methine group is also unique to actinide chemistry. The closest analog
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to this is the ((C5H5)2Th(n5, nl—(Cng))g complex®® where one
cyclopentadienyl group is pentahapto to one thorium atom and O-bonded
through one carbon of the ring to the other thorium atom.

The 'H nmr of the (u-(CH) (CH,)P(C4H,),U(C.H,),), complex is
temperature dependent and its behavior as a function of temperature in
toluene-dSICSD6 is shown in Figure 18. (See Page 50) Unfortunately,
this system has éeveral problems which limit the amount of useful
information concerning the observed process. As seen in Figure 18
the intermediate exchange information is lost into the baseline due to
paramagnetic broadening and thus precludes computer simulation to
obtain AHT and aAst parameters. The phenyl, méthylene and methine
protons also undergo severe paramagnefic broadening at low temperature
and are lost into the baséline. In addition the solubility of the
(v-(CH) (CH,)P(C4Hg) ;U(C5Hs) 5) , complex drastically decreases with
temperature even in THFQdB.

However even with these problems some information and conclusions
can be drawn concerning the observed process. 1In the fast—exchange
region single resonances for ortho, meta, and para phenyl protons and
cyclopentadienyl protons are observed. When the slow exchange region
is reached and dynamic processes have slowed, the spectrum is consistent
with the static structure of the complex shown in Figure 36. (See
Page 123) The dynamic process involved consists of the averaging of
the diastereotopic cyclopentadienyl groups and inversion of configura-
tion at the methine carbons. Both of these processes appear to have
the same activation energy and we estimate®" AGy53 = 10 £ 1 kcal/mole

in toluene-dg and AGyu3 = 10 % 1 kcal/mole in THF-dg.
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The mechanism responsible for the observed dynamic process could
be either an intra- or intermolecular process. An intramolecular
process would probably involve the averaging of the methylene and
methine protons in the fast exchange region. However the elevated
temperature 1y nmr spectrum of the dimer clearly shows distinct
methylene and methine resonances. Thus it would appear that perhaps
an intermolecular process is more likely.

At present dissociation of the dimer (26) seems to best

— 2 (C_H,)

(u-(CH) (CH,)P(CGHL) UCHS) ), T= 2 (C,H,),U(CH)(CH,)P(C,H),  (26)

describe the observed behavior. The thermodynamic parameters involv—
ing an intermolecular process should be dependent upon and reflect the
coordinating ability (solvation) of the solvent. Unfortunately
because of the accuracy involved and the inability to determine AS
parameters, we cannot draw a valid conclusion from our estimated AGc
parameters determined in a coordinating and non-coordinating solvent.
Fof this system it may be better to study the diamagnetic thorium
analog which would not suffer from the severe broadening present in
the uranium complex. With the thorium analog it may also prove
possible to resolve proton-phosphorus coupling to provide additiomal
evidence for the nature of the observed process.

As the temperature is lowered from -60° to -90° C. it becomes
apparent from the spectrum that another process responsible for
averaging cyclopentadienyl proton resonances is beginning to slow.
This occurs for the downfield cyclopentadienyl groups whose resonance

begins to broaden, while the resonance of the other continues to
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sharpen. The only process of which we are aware which adequately
describes this behavior is the slowing of the rotation of one-half of
the cyclopentadienyl groups. Such rotational barriers are low

and for ferrocene are on the order of 1 - 2 kcal/mole. However with
bulkier substituents on the cyclopentadienyl groups of substituted
ferrocenes this barrier has been observed as high as ~5 kcal/mole.
This is the first .example of such a process obsérved for actinide or
lanthanide complexes containing cyclopentadienyl groups.

We believe a steric interaction between one of the cyclopenta-
dienyl groups and a phenyl group of the phosphoylide is respomnsible
for raising the rotational barrier enough to allow it to be partially
observed. An examination of the crystal structure of the complex
reveals such an interaction as seen in Figure 37. (See Page 135)
Several of the carbon to carbon contacts between these groups are in
the range 3.66 - 3.74 K which is at the limit of van der Waals contact
(3.7 K). In addition a close contact of the two cyclopentadienyl
rings occurs at 3.22 Z

" The addition of three equivalents of lithiated phosphorus ylide
to one equivalent of either (CgHg)3UCL or (CgHg)UCl,*2THF results in
golden-brown colored monocyclopentadienyluraniumtrisphosphoylide
complexes. These complexes can also be prepared from the triscyclo-
pentadienyluraniumphoéphoyli_cle complexes by the addition of two
equivalents of lithiated phosphorus ylide. These are the first
examples of monocyclopentadienyl organouranium complexes other than
the (CSHS)UCl3-2THF starting material. From the spectroscopic and

analytical data the three phosphorus ylide ligands are bonding through



99

methylene groups in a chelating fashion which is a common mode of
bonding observed in transition metal complexes containing phosphorus
ylide ligands.

These monocyclopentadienyluraniumtrisphosphoylide complexes could
be considered analogous72 to the group IVB monocyclopentadienyltris(N,N-
dialkyldithiocarbamato) metal complexes, (CgH5)M(SpCNRp)3 (M =T, Zr,
Hf), which have attracted interest as seven-coordinate chelates that
are stereochemically rigid on the nmr time scale. The monocyclopenta-
dienyluraniumtrisphosphoylide complexes also exhibit temperature
dependent nmr behavior. However in order to adequately describe the
mechanism responsible, the static structure of one of these complexes
must be determined. It is for this reason that the discussion of the
temperature dependence of the 1% nmr spectra must await a further date.

If we consider the cyclopentadienyl group to occupy three
coordination sites and each chelating ylide ligand to occupy two
sites, then these complexes represent the second example of a class of
nine~coordinate organouranium (IV) complexes. Being nine-coordinate,
they might be considered to be coordinatively unsaturated and may
possess interesting catalytic or reagent properties. They are
observed to react with carbon monoxide. However the only presently
identifiable product is methylene phosphorane. The fate of the
organouranium moiety is unknown at the present time.

The six uranium-carbon o bonds of the monocyclopentadienyluranium-
trisphosphoylide complexes are the most observed at the present time for
any organouranium complex. These complexes are the nearest example of an

organouranium complex composed solely of U-C ¢ bonds. Indeed, evidence
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exists’3 that with phosphorus ylides as ligands it may not be easy to
prepare a uraniumphosphoylide complex composed solely of ¢ bonding
phosphorus ylide ligands. Manzer has noted’" that paramagnetic
organometallic complexes of the early transition metals are generally
less stable than their diamagnetic counterparts except in those
instances where a ligand such as a cyclopentadienyl group or a
B-diketone are present to delocalize some of the electrom density

away from the metal center. Nevertheless, it may be possible to

prepare stable uraniumphosphoylide complexes by using bulkier phosphorus

ylides such as Li(CHZ)ZP(t-C4H9)2 or by using double ylides’® such as

&) rX where X = N, CH or BH,

which could also delocalize electron density away from the uranium
center.

As mentioned previously organouranium complexes with a coordina-
tion number of ten have been considered to be coordinatively saturated.
Since the triscyclopentadienyluraniumphosphoylide complexes are ten
coordinate they would not be expected, from this point of view, to
further react with substrate molecules and perhaps, even increase their
coordination number. We have found quite the opposite to be true.

The triscyclopentadienyluraniumphosphoylide complexes readily react
with carbon monoxide at room temperature to yield reddish-orange

complexes according to equatiom 27:



101

co
(CgHg) 3 UCHP (CHy) (CgHg) (R) —> (CgHg) 3U(CO)CHP (CH,) (C Hy) (R) 27

where R = C,Hg, CH; or CgHe

The spectroscopic and analytical data suggests that the carbon
monoxide has undergone an insertion reaction between the U-C bond to
form an acyl complex. However, from the infrared data the acyl portion

appears to be side-bonded to the uranium as shown below:

\R

The "side-on" coordination of an acyl group had been postulated’®
as early as 1971 for several ruthenium(II) complexes of general
formula RCO-RuCl(CO) (P(CgH5)3), mainly based on infrared results.

Other than several dinuclear manganese com.plexes77’78

containing a
side-bonded bridging carbonyl group, the only other metal complexes to
contain side-bonding acyl groups are the group IVB metals (Ti, Zr and
Hfj. Several groupsw‘:’“82 have found that a great variety of biscyclo-
pentadienyl or bispentamethylcyclopentadienyl titaﬁium and zirconium
complexes contain side-bonded or dihapto acyl groups. It has even
been suggested’?282 that this form of acyl coordination to a metal atom
may be more widespread than suspected and may account for the very low
CO stretching frequencies seen for acyl complexes of early transition
metals.

Marks and co-workers have postulated39 side~bonded acyl interme-
diates in the carbonylation reactions of bispentamethylcyclopentadienyl-
d66,67

thorium and uranium complexes. Recently they have succeede in
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isolating and structurally characterizing a side-bonded acyl group

in the ((CH3)SC)ZThCl(CO)neopentyl complex. Undoubtably one of the
important factors in the formation of Th(IV) or U(IV) side-bonded acyl
complexes is the high affinity of these metals for oxygen-containing
ligands. As such, when carbon monoxide insertion reactions occur in
organoactinide complexes the side-bonded acyl product or intermediate
may well be a general and often observed feature of these systems.

Aside from the novel product obtained in reaction 27, the really
unique feature is the expansion of the coordination number of this
complex from ten to eleven. It is the second example36 of a triscyclo-
pentadienyluranium complex increasing its coordination number above
ten by reacting with a coordinatively unsaturated small molecule,
Apparently with the right choice of ligand a triscyclopentadienyluranium
complex can react in the manner of a coordinatively unsaturated complex.
Perhaps, the time has come to reevaluate the notion of a tem-coordinate
uranium(IV) complex as being coordinatively saturated.

The ability of a metal complex to increase its coordination number
is important if that complex is to exhibit catalytic activity. While
the complexes already discussed show this ability or have the potential
for it, their actual use in a catalytic cycle may be hampered or
severely limited because of their sensitivity to oxygen and water.

For this reason they may find wider use as reagents for organic
synthesis.

Transition metal complexes containing phosphorus ylide ligands
have already been shown®3 to react in the manner of Wittig reagents in

the transformation of carbonyl functional groups to olefins. The
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novel mode of coordination exhibited by some of the organouranium-
phosphoylide complexes and the high affinity of uranium for oxygen may
well produce some novel and unique organic transformations, both in

the substrate molecule and the organouranium moiety.
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IV. EXPERIMENTAL

A. CHEMICALS AND EXPERIMENTAL CONDITIONS

All reactions involving organometallics were carried out under a
dry dinitrogen atmosphere using Schlenk techniques, a Vacuum Atmospheres
glove box equipped with a HE-493 Dri-train or a high vacuum line.
Elemental analysis were performed by Schwarzkopf Microanalytical
Laboratories, Woodside, New York.

Uranium tetrachloride, 1.7M LiCH3, phenyldichlorophosphine and
diphenylchlorophosphine were obtained from Research Organic/Inorganic
Corporation. Thallous cyclopentadienide was obtained from Aldrich
Chemical Company. Ethyl and methyl iodide were cbtained from Eastman
Kodak. All of the above materials were used as received.

Diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, benzene and
toluene were dried and deoxygenated by distillation under high purity
dinitrogen from blue sodium benzophenone ketyl. Saturated hydrocarbons
were refluxed over calcium hydride for several hours and distilled
under high purity dinitrogen.

The organouranium reagents, (CSH5)3UC1 and (CSHS)UC13°2THF were
prepared by literature procedures.SI’52

The necessary phosphines were prepared from the appropriate
halophosphines via the method used in the preparation of (n—Cqu)aP.83
They were then placed in diethyl ether and stirred with an excess of
the appropriate aklyl iodide until no further precipitation of
phospﬁonium salt was observed. The phosphonium salts were recrystallized
from either methanol or ethanol. A second batch of crystalline

phosphonium salt could be obtained by reducing the solvent in volume
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and adding diethyl ether. These were then used in the preparation of
the lithiated phosphorus ylides.

The reagents, Li(CHz)zP(CGHS)2 and Li(CHz)ZP(CHs)(CeHs)’ were

prepared by literature methods. >3

The preparation of

Li(CH,),P(CyHs) (CgHg) was also attempted by this same method. However,
the product obtained was LiI-CH,=P(C,Hg) (CH3) (CgHg)* (C,H5),0 rather
than Li(CH,),P(C,Hs) (CgHs) . An alternate route was used to prepare

Li(CH,),P(C,H:) (CgHg) and is described on Page 108.

B. INSTRUMENTATION

' A1l H (100.1 MHz) and 3P (40.5 MHz) spectra were obtained on a
Varian XL-100~15 spectrometer with variable temperature accessory
interfaced to a Digilab Nova 1200 mini-computer operating in Fourier
transform mode, except where noted. Temperatures were measured with
a thermocouple in an nmr tube that was placed into the probe. They
are considered to be accurate to *2° C.

The lithiated phosphorus ylide H spectra were recorded in THF-dg
with TMS as the internal reference. The 3!p spectra were obtained in
~75% THF and 25% toluene-dg as the internal look. The samples were
referenced to external H3PO,.

The ambient temperature organouranium g spectra were obtained in
benzene-dg or toluene~dg which also served as the internal reference.
Toluene-dg and THF-dg were used as the solvents for variable temperature
1§ studies. The CH; resonance in toluene—d8 was used as an intermal
reference. Benzene or TMS was used as the internal reference when THF-dg4
was the solvent. The 3lP spectra of the organouranium complexes were

obtained in the same manner as that used for the lithiated phosphorus
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ylides.

Samples that were to be run at ambient temperature were prepared
in the dry box and sealed with Para~Film. Variable temperature samples
were prepared in the dry box in nmr tubes fitted with a standard taper
ground glass joint and a vacuum stop-cock. These were frozem in liquid
dinitrogen, evacuated and sealed.

Infrared spectra were recorded on a Perkin—-Elmer 467 grating
spectrometer. The samples were prepared as nujol mulls between KBr
plates that were sealed with stopcock grease. The spectra were
calibrated with the 1601 cm™! absorption of polystyrene film.

A Cary 14 recording spectrophotometer was used to obtain the near-
infrared spectra. The visible spectra were recorded on a Beckman Acta
CIII spectrophotometer. The samples were run in matched 1.000 cm
quartz cells with greased teflon stoppers. The solvent used for all

1

electronic spectra was THF.
C. SYNTHESIS AND REACTION CHEMISTRY

Preparation of tris(pentahaptocyclopentadienyl) (methinidylphosphoniumdi-

methylphenyl) uranium, (CgHg)aUCHP(CH;),(C H;)

A 30 ml THF solution containing 0.321 g (2.03 mole)
Li(CH2)2P(CH3)(C6H5) was added to 0.950 g (2.03 mmole) (C5H5)3UCl in
50 ml of THF cooled to -50° C. over a period of one hour. After the
addition was complete the dark green solution was stirred for several
hours at -50° C., allowed to warm to -10° C. and the solvent immediately
removed in vacuo. The dark green residue was extracted with 40 ml of

benzene, filtered and the solvent removed in vacuo. The material was
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recrystallized from a 1:1 solution of toluene:heptane to yield 0.729 g
(62%) of dark-green long needles of (CgHg)3UCHP(CH3)(CgHs). The
needles are pyrophoric in the presence of air or water. Anal. Calc. for
U;PyCoyHy7s C, 49.31; H, 4.67; P, 5.30. Found: C, 49.53; H, 4.91;

P, 5.22.

Reaction of tris(pentahaptocyclopentadienyl) (methinidylphosphoniumdi-

methylphenyl)uranium with carbon monoxide

A solution of 0.888g (1.52 mmole) of (CgHg),UCHP(CH3),(CgHg) in
30 ml of toluene was placed in a 300 ml reaction vessel equipped with
a gas inlet tube. A slow steam of carbon monoxide, passed through a
-78° C. trap, was passed over the solution for 30 minutes with stirring
at room temperature. A dark red precipitate gradually formed and the
solution became a very pale red color. The mixture was filtered and
washed with 10 ml1 of toluene. The dark red material was washed through
the filter with 30 ml of THF. The THF solution was reduced in volume
to ca. 10 ml and heptane was added until the solution became slightly
cloudy. This solution was cooled overnight at -15°C. to give 0.707 g
(85% based on starting material) of dark red air and moisture sensitive
needles. Anal. Calc. for U,P;0,C,gH,,: C, 49.02; H, 4.45; P, 5.06.

Found: C, 48.90; H, 4.47; P, 5.05.

Attempted preparation of tris(pentahaptocyclopentadienyl) (methinidyl-

phosphoniumethylmethylphenyl)uranium from Lil+CH,=P(C,Hs) (CH,) (C.H.)

A solution of 0.942 g (2.01 mmole) of (CgHg)3UCL in 40 ml of THF
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was placed into a 300 ml reaction vessel. The solution was cooled to
-50° C. and a 20 ml THF solution containing 4.02 mmole of
LiI*CH,=P(C,Hs) (CH3) (CgHs) was slowly added. After completion of the
addition, the solution was maintained at -50° C. for 1 hour, allowed
to warm to ~10° C. and the solvent was immediately removed in vacuo to
give a lime-green gummy product. Upon extraction of this material
with benzene or allowing it to stand for more than 1 day it turned
brown. This material was insoluble in ethers and aromatic and saturated
hydrocarbons. Several attempts were made using THF or diethyl ether as

the solvent with the product decompsoing each time.

Preparation of Li(CHz)zP(CZHS)(CGHS) from LiI'CH2=P(C2H5)(CH3)(C6H5)

A 5.04 g (16.8 mmole) sample of Lil-CH,=P(CyH5)(CH3) (CgHg) was
placed in a short-path molecular still and thermolyzed. At ~180°C./
0.5 Torr a dark orange liquid was collected. From 14 nmr and infrared
spectra this material was identified as CHp=P(CyHg) (CH3) (CgHg). This
liquid is air and moisture sensitive. We obtained 1.56 g (56%) of this
material.

The entire amount of CH2=P(CZHS)(CH3)(C6H5) collected was placed
in 20 ml of diethyl ether and a 15 ml diethyl ether solution containing
5.6 ml of 1.7M LiCH; was slowly added. After cessation of CH, productionm,
the white solid was filtered, washed with 10 ml of diethyl ether and

dried in vacuo for 2 hours to give 1.21 g (75%) of Li(CH,),P(C,Hg) (CgH;).
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Preparation of tris(pentahaptocyclopentadienyl) (methinidylphosphonium

ethylmethylphenyl)uranium, (CgHg)3UCHP(C,Hg) (CHg) (CgHg)

A 10 ml THF solution containing 0.414 g (2.40 mmole) of
Li(CHz)zP(CZHS)(CGHS) was slowly added to 1.127 g (2.40 mmole) of
(CsH5)3UCL in 25 ml of THF cooled to -30° C. When the addition was
complete, the solution was maintained at -50° C. for 1 hour, allowed
to warm to -10° C. and the THF immediately removed in vacuo. The dark
green residue was extracted with 40 ml of benzene, filtered and the
solvent removed in vacuo. The material was recrystallized from a 1:1
solution of toluene:heptane to give 0.982 g (68%) of dark green
crystalline material. The product is pyrophoric in the presence of
air or moisture. Amal. Calc. for U;P;CygHpg: C, 50.15; H, 4.89;

P, 5.17. Found: C, 50.25; H, 4.92; P, 5.10.

Reaction of tris(pentahaptocyclopentadienyl)(methinidvlphosphonium—

ethylmethylphenyl)uranium with carbon monoxide

A solution of 0.732 g (1.22 mmole) of (CSHS)sUCHP(CZHS)(CH3)(CGH5)
in 30 ml of benzene was placed in a 50 ml reaction vessel equipped
with a gas inlet tube. A slow stream of carbon monoxide, passed
through a -78° C. trap, was passed over the solution with stirring at
room temperature for about 1 hour. The solution slowly turned from
dark green to dark reddish-orange. The benzene was removed in vacuo
and the dark colored residue dissolved in a minimum volume of toluene.

Heptane was layered on top of the solution until it became cloudy. It
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was placed in a freezer (-15° C). overnight to give 0.687 g (90%) of

red feathery material.

Preparation of tris(pentahaptocyclopentadienyl) (methinidylphosphonium-

diphenylmethyl)uranium, (CgHg)3UCHP(CH3) (CgHs)o

A 30 ml THF solution containing 0.528 g (2.40 mmole) of
Li(CH,),P(C4Hg), was slowly added to 1.123 g (2.40 mmole) of (CsHs)3UCL
in 40 ml of THF cooled to -50° C. Upon completion of the addition, the
solution was stirred at -50° C. for several hours, allowed to warm to
-10° C. and the solvent immediately removed in vacuo. The dark green
solid was extracted with 50 ml of benzene, filtered and the solvent
removed in vacuo. The material was recrystallized from a 1:2 toluene:
heptane solution to give 0.885 g (57%) of dark green microcrystalline
material which decomposes immediately upon exposure to the atmosphere.
Anal. Calc. for U;P;C,gH,q: C, 53.87; H, 4.53; P, 4.79. Found:

C, 51.03, H, 4.94; P, 4.87.

Reaction of tris(pentahaptocyclopentadienyl) (methinidylphosphonium—

diphenylmethyl)uranium with Li(CHz)zP(CGHS)2

A 20 ml THF solution containing 0.225 g (1.16 mmole) of
Li(CH,),P(CgHg), was rapidly added to 0.748 g (1.16 mmole) of
(CgHg) sUCHP(CH3) (CgHg), in 30 ml of THF. The dark colored solution
was refluxed for 4 hours and the THF removed in vacuo. The dark
colored material was extracted with 40 ml of benzene, filtered and the

solvent removed in vacuo. A lH-nmr of this material showed a mixture
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consisting of 39% (u-(CH)(CH,)P(CgHs),U(C5Hg),), and 617

(CgHg) JUCHP(CH,) (CHg), from relative 'H-nmr peak heights.

Reaction of tris(pentahaptocyclopentadienyl) (methinidylphosphonium=-

diphenylmethyl)uranium with Li(CH,),P(CH,;) (C H)

This reaction was performed in a manner analogous to that described
above with Li(CHz)zP(Cﬂs)(CGHS) used in place of Li(CHZ)ZP(CGHS)Z' The
darkly colored reaction product was analyzed by H-nmr. The mixture
consisted of 71% (CgHg);UCHP(CH3) (CgHg), and 29% (CgHg) ;UCHP(CH4), (CgHg)

from relative peak height ratios.

Reaction of tris(pentahaptocyclopentadienyl) (methinidylphosphonium-

diphenylmethyl)uranium with LiCH,

A solution of 0.413 g (0.64 mmole) of (CgHg)3UCHP(CHj) (CgHg), in
20 ml of THF was placed in a 50 ml reaction vessel. To this was slowly
added a 10 ml THF solution containing 0.37 ml of 1.7M LiCHz. This
was refluxed for several hours whereupon it turned a dark color. The
THF was then removed in vacuo. A lH-nmr of this material showed it to
consist essentially of starting material. No peaks due to
(u=-(CH) (CH,)P(C¢Hs) ,U(CiHe) ,) , were seen.

A second reaction similiar to the first was performed in which 2
equivalents of LiCH; was used. This produced a dark red material whose
lf-pmr showed no paramagnetically displaced resonances. The remaining

product was not identified.
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Reaction of tris(pentahaptocyclopentadienyl) (methinidylpho iyum~

diphenylmethyl)uranium with carbon monoxide

A solution of 0.692 g (1.07 mmole) of (C5H5)3UCHP(CH3)(C6H5)2 in
30 ml of toluene was placed in a 300 ml reaction vessel equipped with
a gas inlet tube. A slow stream of carbon monoxide, passed through a
-78° C. trap, was passed over the solution with stirring at room
temperature for 30 minutes. The solution slowly turned from dark
green to dark red. It was filtered and the filtrate reduced in volume
to ca. 10 ml. Heptane was layered on top of the solution until it
became cloudy. It was placed in a freezer (-15° C.) overnight to
give 0.635 g (88% based on starting material) of red prisms. Anal.
Calc. forAUlPlolcsoﬁzg: C, 53.41; H, 4.34; P, 4.59; mol wt, 675 g/mol.

Found: C, 53.65; H, 4.45; P, 4.60; mol wt, 719 10% g/mol.

Preparation of bis(pentahaptocyclopentadienyl) (y-—methinidylmethylene—

phosphoniumdiphenyl)uranium dimer, [p-(CH)(CH,)P(C.H.),U(C.H.),],

A solution containing 1.339 g (6.08 mmole) of Li(CHz)ZP(CGHS)z in
50 ml of THF was added to 1.422 g (3.03 mmole) of (CgHg)3UCLl in 50 ml
of THF at room temperature. After addition, the reddish-brown
solution was heated to near THF reflux for 2 hours. The dark red
solution was allowed to cool to room temperature and the solvent was
removed in vacuo. The material was recrystallized from a 1l:1 solution
of THF:hexane and dried overnight under vacuo to give 0.775 g (44%)
based on starting (CgHg)3UCl) of red microcrystalline



113
Cc, 50.65; C, 4.42; P, 5.02. Found: C, 48.02; H, 4.36; P, 4.76.

Reaction of bis(pentahaptocyclopentadienyl) (y-methinidylmethylene—

phosphonjumdiphenyl)uranium dimer with carbon monoxide

A solution of 0.317 g (0.27 mmole) of (“'(CH)(CHZ)P(CGHS)ZU(CSHS)Z)z
in 20 ml of THF was placed into a 50 ml reaction vessel equipped with
a gas inlet tube. A slow stream of carbon monoxide, passed through
a -78° C. trap, was passed over the solution with stirring overnight.
A light brown precipitate formed which was insoluble in ethers and
aromatic and saturated hydrocarbon solvents. This product has not

been further characterized.

Attempted preparation of bis(pentahaptocyclopentadienyl) (u-methinidyl-

methylenephosphoniummethylphenyl)uranium dimer,

[U"(CH) (CH2)P(CH3) (C5H5)U(CSH5) 2] 2

A 35 ml THF solution containing 0.621 g (3.93 mmole) of
Li(CH,) ,P(CH;) (CcHs) was added to 0.919 g (1.96 mmole) of (CgHg),UCL
in 40 ml of THF cooled to -50° C. When the addition was complete, the
mixture was maintained at -50° C. for an additional hour and warmed
to reflux for 1 hour. The solution was now a deep red color and the
THF was removed in vacuo. It was extracted with 10 ml of toluene,
filtered and 10 ml of heptane layered on top. The solution tvrned a
brown color and the material was found to be decomposed.

This reaction was attempted several times in THF including the

addition of the Li(CH,),P(CH;)(C4Hs) at room temperature. Substituting
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1,2-dimethoxyethane for THF produced the same results.

Preparation of mono(pentahaptocyclopentadienyl)tris(dimethylene-

phosphoniumdiphenyl)uranium, (CgHg)U[(CH,),P(CcHg),15

A) From (CSH5)3UC1:

A 30 ml THF solution containing 0.760 g (3.45 mmole) of
Li(CHz)zP'(CSHS)2 was slowly added to 0.538 g (1.15 mmole) of (C5H5)3UC1
in 40 ml of THF at -50° C. When the addition was complete the solution
was allowed to warm to room temperature and stirred for several hours.
The THF was removed in vacuo leaving a dark orange-red material. This
was extracted with 40 ml of benzene, filtered and the solvent removed
in vacuo to give a gold colored material.

All attempts at crystallization from various solvents failed.
However the following modification of the procedure did produce a
crystalline product.

A 100 ml schlenk flask was charged with 0.576 g (2.62 mmole) of
Li(CHz)ZP(CGHS)2 and 0.407 2z (0.89 mmole) of (CSH5)3UCl and 50 ml of
diethyl ether cooled to -50° C. was added. This was stirred for
several hours and then warmed to room temperature. The mixture was
filtered and the golden-brown solution reduced in volume to ca. 20 ml.
It was cooled to -15° C. overnight whereupon gold rod-like crystals
formed. These were collected and washed with 5 ml of diethyl ether
and dried under vacuo for 30 minutes to give 0.774 g (58%) of product.
Anal. Calc. for U P3Cy,H,,: C, 59.87; H, 5.03; P, 9.85. Found:

C, 59.97; H, 5.06; P, 9.80.

The !H nmr of the material from both of the above methods was
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virtually identical except for some small impurity peaks and stopcock

grease in the material prepared from THF.

B) From (CSHS)UC13-2THF:

A 25 ml THF solution containing 0.983 g (4.46 mmole) of
Li(CHz)ZP(CGHS)2 was added to 0.825 g (1.49 mmole) of (CSHS)UCl3-2THF
in 40 ml of THF at -50° C. This mixture was stirred at -50° C. for
30 minutes and color changed from green to orange to dark red. After

warming to room temperature, the THF was removed in vacuo. The material

was extracted with 40 ml of benzene, filtered and the solvent removed
in vacuo to give a quantitative yield of golden-brown solid. The g
nmr of this material showed it to be identical to that prepared from

(C5H5)3UC1.

Reaction of mono(pentahaptocyclopentadienyl)tris(dimethylenephosphonium-

diphenyl)uranium with carbon monoxide

A 300 ml reaction vessel equipped with a gas inlet tube was charged
with 0.937 g (0.99 mmole) of (CSHS)U((CHZ)ZP(CSH5)2)3 in 40 ml of
benzene. This was stirred for 5 hours under a slow stream of carbon
monoxide passed through a -78° C. trap. The solvent was removed in
vacuo to give a light brown colored solid. The !H nmr of this material
showed it to be a methylene phosphorane with no indication of any

paramagnetic material.
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Preparation of mono(pentahaptocyclopentadienyl)tris{(dimethylene-

phosphoniummethylphenyl)uranium, (C5Hg)U[(CH,),P(CH;z) (CgHs) 13

A 20 ml THF solution containing 0.646 g (4.09 mmole) of
Li(CHz)ZP(CH3)(CGH5) was added to 0.637 g (1.36 mmole) of (CgHg)3UCL
in 40 ml1 of THF at -50° C. When the addition was complete the solution
was maintained at -50° C. for 30 minutes and allowed to warm to room
temperature. After stirring at room temperature for several hours the
solvent was removed in vacuo. The material was extracted with 35 ml
of benzene, filtered and the solvent removed in vacuo to give a
quantitative yield of golden~brown material.

All attempts at crystallization of this material, including the
modification of using diethyl ether as the reaction medium failed. The
14 nmr of this material showed it to be almost free of any impurities

except for stopcock grease and a small amount of starting ylide.

B) From (CgHg)UCl,+2THF:

A 20 ml THF solution containing 6.86 g (4.34 mmole) of
Li(CHZ)ZP(CH3)(C6H5) was added to 0.797 g (1.44 mmole) of (CSHS)UCla'ZTHF
in 40 m1 of THF cooled to -50°C. After the addition was complete the
solution was allowed to warm to room temperature and stirred there
for several hours whereupon the THF was removed in vacuo. The solid
was extracted with 40 ml of benzene, filtered and the solvent removed
in vacuo to give a quantitative yield of golden-brown material.

A 'H nmr of this material showed it to be identical to that
prepared from (C5H5)3UCl. However this material was not as clean of

impurities as that prepared from (CSH5)3UC1.
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c) From (C5H5)3UCHP(CH3)2(CGH5):
A 10 ml THF solution containing 0.233 g (1.47 mmole) of
Li(CH»)2P(CH3) (CsH5) was added in one addition to 0.432 g (0.74 mmole)
of (CsHg) 3UCHP(CH3),(CgHs) at room temperature. After stirring for
several hours the THF was removed in vacuo. The golden-brown solid was
extracted with 30 ml of benzene, filtered and the benzene removed

in vacuo to give an essentially quantitative yield of golden-brown

material.
A lH nnr of the material confirmed its identity as

(CsHs)U((CH,) »P (CH3) (CeHe)) 3
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V. X-RAY CRYSTALLOGRAPHY

During our attempt to characterize the product of the addition of
two equivalents of Li(CHz)ZP(CSHS)2 to one equivalent of (C5H5)3UCl it
became clear that the available physical data would not allow us to
assign a reasonable structure for the red product. Thus it was necessary
to undertake an x-ray crystallographic study to determine the structure
of the complex. In addition, no previous structural data existed for

lanthanide or actinide complexes with phosphorus ylides.

A, Experimentai

X-ray diffraction quality crystals were obtained by preparing
(u—(CH)(CHZ)P(CGHS)ZU(CSHS)Z)2 in an analogous fashion to that mentioned
in the Experimental section except diethyl ether was used in place of
THF. Allowing the dark red diethyl ether solution to stand for
several days produced deep red crystals of
(u-(CH)(CHZ)P(CéHS)ZU(C5H5)2)2°(CZHS)ZO (I). Shoxlet extraction of crude
(“-(CH)(CHZ)P(C6H5>2U(CSHS)2)2 with pentane for 24 hours produced very
deep red crystals of (“-(CH)(CHZ)P(CGHS)ZU(CSHS)Z)Z'CSHIZ (ID).

A high resolution mass spectrum run on a Varian MAT-31l mass
spectrometer using crystals of I which had been washed with a large
amount of hexane and dried under vacuum for 12 hours at 30° C. did not
show a parent ion but contained fragments resulting from the loss of one
or more cyclopentadienyl groups. The formulation of the compound as an
ether solvate was indicated by the presence of CuH106+ (m/e: 74.0732
(calc.); 74.0728 (obs.)) and C,H,0" (m/e: 59.0497 (cale.); 59.0497

(obs.)). NMR spectra obtained by dissolving crystals of I in CeDg also
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indicated the presence of diethyl ether.

Crystals of I and II were mounted with Corning high-vacuum stopcock
grease in thin-walled glass capillaries under nitrogen. A plate-like
crystal of I measuring 0.39 mm x 0.06 mm x 0.29 mm and a crystal of II
with 0.26 mm x 0.22 mm x 0.15 mm dimensions were selected by microscopic
examination and found to be suitable for x-ray diffraction.

A Syntex four-circle computer-controlled diffractometer with
graphite monochromatized Mo Ka‘radiation (Kal’ A= 0.70930 K;

K A = 0.71359 E) and a scintillation detector with pulse height

a2?
analyzer was used for preliminary experiments and the measurement of
diffraction intensities. Except as otherwise noted, the procedure
used has been described. 843285 The cell constants were determined by
least-squares methods from the centered angular coordinates of 15
intense reflections with 26 values between 4° and 17° for I and between
4° and 19° for II. Crystal data, data collection and refinement
parameters are listed in Table 19. Atomic scattering factors for U°,
P° and C° were used.®® Anomalous dispersion corrections®’ to the
scattering factors were made for all non-hydrogen atoms except in
structure I where only the real part of anomalous dispersion was
applied.

A three-dimensional Patterson map yielded the coordinates for the
uranium atoms in structure I. Subsequent Fourier maps and full-
matrix8® least squares refinement with anisotropic thermal parameters for-
uranium and phosphorus and isotropic thermal parameters for the carbon

atoms converged at Ry = 0.095 and R, = 0.115. Although absorption is

undoubtedly important for this crystal, orientation of the crystal was
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TABLE 19

Suymmary of Crystal Data, Daca Collection and Refinement

Structure I

1235.01 g/mole
wonoclinic
P2;/c (No. 14)
12.676(3) A
16.462(8) A
25.837(25) A
126.43(5%)
4447(6) &

.

1.84 g/em’ (caled)
4$x6x10
70.37 ca’!

0.181-0.629
variable/5° min"l-24° min~!
3°-50°

8126

3993

0.05

.092

2.44
296

13.5

Structure IX

1233.11 g/mole
orthorhowbic
P2,2,2, (No. 19)
16.026(12) A
23.453(13) A
12.679(3) 4

4799(4) 4

&

1.71 g/cm® (caled)
6x10x4

66.83 e}

0.428-0,527
variable/5° min~1-24° min~!
3°-40°

2584

1874
0.05
.047
052
1.29
326

5.8
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M-[u-(5-CH) (CH,)P(CgHs),U(CsHs) 2]2°CsHy»
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lost and an absorption correction was not possible.

At this point a difference Fourier map revealed the positions of 3
atoms of a diethyl ether solvate. Several cycles of refinement with each
of these assigned as oxygen or carbon all produced similiar R values and
occupancy factors. As a result it was not possible to identify the
oxygen atom and in the final model all three were refined as carbon
atoms. Since the other two atoms of the solvate could not be located,
it is not possible to establish that the solvate is (CyHs)20 from
crystallographic evidence, but the high resolution mass spectrum
confirms its identity. These three solvate atoms lowered the error
indices to R; = 0.092 and R.W = 0.110. No attempt was made to locate
hydrogen atoms.

Examination of the final difference Fourier map with an estimated
standard deviation =0.4 e/?&3 revealed that the largest peak has a
height of 1.0 e/l3 and is associated with one of the solvate atoms.

All others with the exception of ripples around the uranium atoms are
less than 0.9 e/&s. In the final cycle of least squares refinement no
parameter shifted by more than 30% of its estimated standard deviation.

Structure II was routinely solved by heavy atom methods. However
since P2,2,2, is a noncentric space group it was necessary to determine
the correct enantiomer for the crystal examined. Refinement with
anisotropic thermal parameters for uranium and phosphorus and isotropic

thermal parameters for the carbon atoms of the original, arbitrarily

0.056. Refinement

chosen, enantiomer converged at R; 0.049 and RW

of the other enantiomer yielded R, = 0.055 and R 0.063. The R

factor ratio is 1.12 and is greater than the limiting value of 1.07
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89 Thus the initial enantiomer

calculated for a 997 confidence level.
chosen was judged to be correct.
Finally, the four carbon atoms bound to both uranium and phosphorus
were given anisotropic thermal parameters and all atoms were allowed to
refine for three more cycles, producing final values of Ry = 0.047 and
R.W = 0.052. No attempt was made to locate hydrogen atoms. A final
difference Fourier with an estimated standard deviation of =0.2 e/g3
showed no peaks greater than 0.5 e/R3, roughly 257 of a carbon atom,
other than noise peaks in the region of the uranium atoms. In the
final cycle of least squares refinement no parameter shifted more than
10% of its estimated standard deviation, except for the pentane carbons
where shifts were less than 50% of their estimated standard deviation.
The final positional and thermal parameters for structures I and
IT are listed in Tables 20 and 21. The bond lengths and bond angles
are shown in Tables 22-26. A listing of observed and calculated

structure factors for I and II are found in Appendices A and B

respectively.

B. RESULTS AND DISCUSSION

Since the molecular structures of I and II are almost identical,
the bond distances and angles to be discussed here were obtained by
averaging corresponding parameters in the two structures as well as
those which are made equivalent by the approximate C, site symmetry of
the molecule.

A perspective drawing of (u—(CH)(CHZ)P(CGHS)ZU(CSHS)Z)2 is showm
in Figure 36. The structure contains several interesting features,

the most obvious being the manner in which the ylide is incorporated



Figure 36.
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TABLE 20

Positional and Thermal Parameters® with Standard Deviations
for [u-(CH)(CH,)P(CGHS) U(C5Hg) ), (CoH5) 20

ATOM X Y Z g11 822 £33 g12 813

Ul 0.03845(12) 0.33792(7) 0.39289(6) 723(13) 191(5) 218(3) ~-181(15) 598(12)
u2 -0,20680(12) 0,24506(8) 0.23327(6) 684(13) | 236(5) 219(3) 16(16) 537(11)
P1l 0.1692(8) 0.2752(5) 0.3259(4) 76(9) 25(4) 23(2) -6(9) 60(8)
P2 ~-0.3143(8) 0.2634(5) 0,3178(4) 68(9) 27(4) 28(2) -2(9) 65(8)

a) The form of the anisotropic thermal parameter is exp[-(Bllhz + B k? + Bygl? + Byahk + B;3hl + Bygkl)].

Uranium thermal parameters x10% are given and phosphorus thermal parameters x 10" are given.

$23
-55(8)
-37(8)

-4(5)-

0(5)
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X

-0.394( 3)
0.198( 3)
~0.158( 3)
0.021( 3)
0.232( 4)
0.122( 4)
0.090( 4)
0.181( 3)
0.265( 4)
0.054( 3)
0.036( 4)
~0.102( 3)
-0.150( 3)
-0.050( 3)
-0.345( 4)
<0.304( 4)
-0.168( 4)
=0.135( 4)
=0.247( 4)
-0.154( 4)
-0.228( 4)
=0.349( 4)
=0.363( 4)

~0.245.( 4)

0.179( 3)
0.141( 3)
0.145( 4)
0.200( 4)
0.233( 3)
0.229( 3)
0.296( 3)
0.2638( 3)
0.364( 4)
0.492( 4
0.522( 4)
0.425( 3)
-0.379( 3)
-0.514( 3)
-0.568( 4)
=0.491( 4)
-0.356( 4)
-0.304( 3)
=0.339( 3)
=-0.259( 3)
=0.275( 4)
-0.364( 4)
=0.438( 4)
=0.428( 3)
=-0.006( 7)
-0.052(13)

-0.092(17)

Table 20 continued

Y

0.301( 2)
0.370( 2)
0.257( 2)
0.243( 2)
0.345( 3)
0.323( 3)
0.242( 3)
0.214( 2)
0.287( 3)
0.506( 2)
0.493( 3)
0.465( 2)
0.458( 2)
0.488( 2)
0.352( 2)
0.296( 3)
-0.306( 3)
0.374( 3)
0.398( 2)
0.083( 3)
0.076( 3)
0.100( 2)
0.125( 3)
0.115( 3)
0.284(¢ 2)
‘0.208( 2)
0.213( 2)
0.281( 3)
0.347( 2)
0.352( 2)
0.199( 2)
0.123( 2)
0.065( 3)
0.093( 3)
0.167( 2)
0.222( 2)
0.167( 2)
0.158( 2)
0.081( 3)
0.022( 2)
0.028¢ 2)
0.106( 2)
0.321( 2)
0.311( 2)
0.355( 2)
0.417( 3)
0.432( 2)
0.388( 2)
0.029( 4)
0.034(10)

0.037(13)

Z

0.242(1)
0.359(2)
0.340(1)
0.310(1)
0.517(2)
0.515(2)
0.492(2)
0.478(2)
0.494(2)
0.390(1)
0.440(2)
0.400(2)
0.335(1)
0.330(1)
0.135(2)
0.105(2)
0.146(2)
0.190(2)
0.184(2)
0.219(2)
0.249(2)
0.207(2)
0.152(2)
0.160(2)
0.258(1)
0.219(2)
0.163(2)

- 0.157(2)

0.196(2)
0.248(2)
0.375¢(1)
0.3382(1)
0.417(2)
0.450(2)
0.443(2)
0.405(2)
0.325(1)
0.288(2)
0.289(2)
0.324(2)
0.362(2)
0.360(2)
0.368(2)
0.438(2)
0.480(2)
0.453(2)
0.391(2)
0.344(2)
0.487(3)

0.535(6)
0.559(8)
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11.1(19)

21.6(50)
34.1(90)
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ATOM X
U1l '0.13013(8)
u 0.29331(8)
P1 0.0912(6)
P2 0.3529(6)
c1l 0.358(2)
c2 0.016(1)
c3 0.280(1)
c4 0.190(2)

Positional and Thermal Parameters® with Standard Deviations

Y
0.15453(4)
0.16871(5)
0.0722(4)
0.2263(3)
0.262(1)
0.115(1)
0.174(1)

0.102(1)

TABLE 21

for [u-(CH) (CH,)P(CN,) ,U(CHL), ), CoH ),

z
0.23341(9)
0.45035(10)
0.4223(8)
0,2377(8)
0.360(3)
0.365(2)
0.250(2)

0.389(2)

811
398(6)
506(7)

43(5)

50(5)

9(3)
1Q1)
4Q1)
4(2)

822
120(2)
120(2)

19(2)

22(2)

1(1)
3(1)
1(0)

i)

833
635(11)
598(10)

76(8)

69(8)

10(3)

7(3)
8(3)
3(2)

812
68(7)
~53(7)
-6(5)
~17(5)
-3(2)
-2(2)
=-2(2)

0(2)

813
=-49(15)
-85(15)

6(10)

-30(12)
4(5)
-2(4)
1(4)
-7(3)

a) The form of the anisotropic thermal parameter is expl-(8;,h? + B,,k? + B;,12 + g,,hk + g, hl + B,5k1)].

23
~49(8)
-91(9)

-71(7)

i)
0(2)
3(3)
3(2)

-2(2)

Uranium thermal parameters x105, phosphorus thermal parameters x10% and carbon thermal parameters x103 are given.
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X

0.196(2)
0.158(2)
0.071(2)
0.048(2)
0.131(2)
0.132(2)
0.112(2)
0.030(2)
0.000(2)
0.059(2)
0.290(2)
0.211(2)
0.158(2)
0.196(2)
0.276(2)
0.422(2)
0.462(2)
0.439(2)
0.386(2)
0.373(2)

0.074(2)-

0.135(2)
0.130(3)
0.060(3)
=0.004(3)
0.004(2)
0.081(2)
0.149(2)
0.142(2)
0.060(2)
-0.011(2)
-0.007(2)
0.333(2)
0.327(2)
0.321(2)
0.321(2)
0.325(2)
0.331(2)
0.455(2)
0.528(2)
0.606(3)
0.611(2)
0.537(3)
0.459(2)
0.746(9)
0.674(8)
0.729(8)
0.644(6)
0.711(8)

Y

0.092(1)
0.052(1)
0.061(1)
0.106(1)
0.127(1)
0.272(1)
0.265(1)
0.237(1)
0.230(1)
0.252(1)
0.214(1)
0.180(1)
0.206(1)
0.258(1)
0.260(1)
0.096(1)
0.144(1)
0.144(1)
0.094(1)
0.067(1)
0.063(1)
0.035(1)
0.026(1)
0.045(2)
0.074(2)
0.085(1)
-0.004(1)
-0.036(1)
-0.098(1)
-0.118(1)
-0.087(1)
-0.025(1)
0.276(1)
0.249(1)
0.294(1)
0.347(2)
0.369(1)
0.334(2)
0.200(1)
0.238(1)
0.213(2)
0.157(2)
0.127(1)
0.146(1)
0.065(6)
0.054(5)
0.076(5)
0.056(5)
0.043(4)

Table 21 coatinued

Z

0.070( 2)
©0.133( 3)
0.124( 2)
0.062( 3)
0.025( 3)
0.255( 2)
0.146( 2)
0.136( 2)
0.237( 3
0.310( 2)
0.657( 2)
0.640( 2)
0.566( 3)
0.538( 3)
0.590( 2)
0.395( 2)
- 0.448( 3)
0.559( 3)
0.568( 3)
0.476( 3)
-0.565( 3)
0.624( 3)
0.735( 3)
0.782( 4)
0.723( 4)
0.6156( 3)
0.385( 2)
0.378( 3)
0.358( 2)
0.342¢ 3)
0.345( 3)
0.373( 3)
0.131( 3)
0.029¢ 3)
=0.062( 3)
-0.039¢ 3)
0.056( 3)
0.152( 3)
0.197( 2)
0.213( 3)
0.184( 4)
0.133( 3)
0.117( 3)
0.149( 3)
0.370(12)
0.394(11)
0.510(10)
0.557( 9
0.648( 9)

L]

[+ 2]
~
0
~

»
BERNPUNOAYIH VYN O OO 0L o
NN ON NN NN NN NN PN PN TN PN PN N
00 00 00 00 4 00 00 00 00 00 I 00 ~J 60 ~J \O 00 00
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9.3(13)

5
4
5
6
5
5
4
5
5
5
5
5
5
5
3
5
6.
5
]
5
6
8
9
11
7
4
5
5
5
6
7
5

24.2(39)
28.5(47)
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Atons

U(1)-C(2)
B(1)-c(3)
o(1)-C(4)
8(2)-C(1)
(2)-c(3)
0(2)-C(4)
0(1)-c(5)
T(1)-C(6)
B(1)-C(7)
7(1)-C(8)
0(1)-c(9)
U(1)-C(10)
0(1)-c(11)
0(1)-c(12)
0(1)-c(13)
U(1)-C(14)
B(2)-C(15)
U(2)-C(16)
0(2)-c(17)
0(2)-c(18)

TABLE 22

Distance, 3

Structure I
2.66(4)
2.45(4)
2.55(4)
2.67(4)
2.48(4)
2.41(4)
2.73(5)
2.72(5)
2.74(3)
2.79(4)
2.70(5)
2.78(3)
2.84(4)
2.82(4)
2.79(4)
2.82¢(4)
2.76(4)
2.92(35)
2.76(5)
2.79(5)

Structure II
2.65(3)
2.45(2)
2.53(3)
2.67(3)
2.57(3)
2.40(3)
2.77(3)
2.77(3)
2.78(3)
2.80(3)
2.74(4)
2.77(¢2)
2.83(3)
2.80(3)
2.73(3)
2.73(3)
2.84(3)
2.77(3)
2.76(3)
2.84(3)

Atoms

U(2)-C(19)

U(C)-C(20)
U(2)-C(21)
U(2)-C(22)
T(2)-C(23)
U(2)-C(24)
P(1)-C(2)
P(1)-C(4)
P(1)-C(25)
P(1)-C(31)
P(2)-C(1)
P(2)-C(3)
P(D-C(37)
P(2)-C(43)
groups>
U(1)-11
u(1)-12
T(2)-21
0(2)-22

128

Distance, A
Structure I  Structure II

2.73(4) 2.79(3)
2.81(4) 2.77(3)
2.86(4) 2.77(3)
2.84(4) 2.78(3)
2.76(5) 2.74(3)
2.71(5) 2.74(3)
1.72(4) 1.74(3)
1.76(4) 1.79(3)
1.83(4) 1.86(3)
1.85(3) 1.85(3)
1.73(4) 1.78(3)
1.72(%) 1.70(2)
1.84(4) 1.82(3)
1.78(%) 1.83(3)
2.53 2.49

2.46 2.49

2.51 2.52

2.52 2.47

a. Group 11 = cp ring C(5)-C(9), group 12 = cp ring C(10)-C(14), group 21 = ¢p ring
C(15)~C(19) and group 22 = ¢p ring C(20)-C(24).



TABLE 23

Selected Bond Angles for [u-(CH)(CH;)P(Cgli5),U(CsHs),],

Atoms Angles, deg. Angles, deg. G;oups' Angles, deg.
Structure I Structure'll Structure I Structure II Structure I Structure II
c(2)-u(1)-c(3) 130(1) 133.4(9) €(2)-r(1)-c(4) 106(12) 107Q1) 11-u(1)-12 119 119
C(4)-0(2)-G(1) 130(1) 131(1) - C€(3)-P(2)-C(1) 103(12) 106(1) 11-u(1)-Cc(2) 104 103
G(2)-u(1)-c(4) 65(1) 66.4(9) €(2)-r(1)~c(31) 114(2) © 0 113(1) 11-u(1)-c(3) 106 104
c(1)-u(2)-c(3) 63(1) 64.2(8) c(1)-P(2)~-C(43) 114(2) 112(2) 11-u(1)-c(4) 112 109
c(4)-u(1)-c(3) 68(1) 69.4(9) C(4)-p(1)-c(25) 116(2) 114(1) 12-u(1)-c(2) 95 95
c(4)~u(2)~-c(3) 70(1) 69.5(8) c(3)-P(2)-Cc(37) 114(2) 114(1) 12-u(1)-c(3) 103 104
u(2)-c(3)-u(1) 101(1) 99.2(9) €(25)-r(1)~-C(31) - 101(2) 98(1) 12-u(1)-c(4) 128 131
U(2)-c(4)-u(1) 100Q1) 102(1) €(37)-p(2)-C(43) 97(2) 99(1) 21-u(2)-22 116 119
P(1)-C(4)-u(1) 93(1) 92(1) €(2)-p(1)-C(25) 108(2) 112(1) 21-u(2)-c(1) 96 94
P(2)-C(3)-u(2) 97(2) 94(1) c(1)-rP(2)-c(37) 114(2) 112(1) 21-u(2)-c(3) 134 133
P(1)~-C(4)-u(2) 144(2) 142(1) c(4)~-P(1)~C(31) 111(2) 113(1) 21-u(2)-c(4) 104 106
P(2)-c(3)-u(1) 140(2) 143(1) €(3)-P(2)~C(43) 116(2) 114Q1) -~ 22-u(2)-c(1) 105 104
P(1)-c(2)-u(1) 90(2) 89(1) 22-u(2)~-c(3) 108 107

P(2)-c(1)-u(2) 90(1) 89(1) 22-u(2)-c(4) 105 104

a) See footnote in Table 22
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TABLE 24

Cyclopentadienyl and Phenyl C-C Bond Distances(z)
and Standard Deviations

Atoms Structure T Structure II
C 5-C 6 1.42 (7) 1.38 (4)
C 6-C 7 1.42 (6) 1.43 (5)
Cc 7-C 8 1.45 (6) 1.38 (4)
C 8-C 9 1.51 (7) 1.49 (5)
C9-C5 1.32 (7) 1.45 (4)
C10-Cll 1.45 (6) 1.43 (4)
Ccli-Cc12 1.51 (6) 1.48 (4)
Cl2-C13 1.44 (6) 1.39 (5)
Cl13-C14 1.44 (6) 1.42 (5)
C14-C10 1.40 (6) 1.44 (5)
Cl5-Cl6 1.46 (7) 1.51 (5)
Cl6-Cc17 1.43 (7) 1.42 (4)
Cl17-C18 1.49 (7) 1.40 (4)
C18-C19 1.40 (1) 1.44 (5)
C19-C15 1.40 (6) 1.40 (&)
C20-C21 1.52 (7) 1.46 (&)
C21-Cc22 1.35 (7) 1.46 (5)
C22-C23 1.39 (7) 1.44 (4)
C23-C24 1.40 (8) 1.35 (5)
C24-C20 1.40 (7) 1.47 (4)
C25-C26 1.50 (5) 1.40 (5)
€26-C27 1.47 (6) 1.44 (6)
C27-C28 1.37 (6) 1.36 (6)
€28-C29 1.37 (6) 1.44 (7)
€29-C30 1.39 (6) 1.40 (7))
€30-C25 1.38 (5) 1.39 (5)
€31-C32 1.34 (5) 1.33 (4)
C32-C33 1.40 (6) 1.49 (4)
C33-C34 1.42 (7) 1.40 (5
C34-C35 1.31 (6) 1.36 (5)
C35-C36 1.39 (6) 1.50 (5)
C36-C31 1.40 (6) 1.51 (5)
C37-C38 1.42 (6) 1.46 (5)
C38-C39 1.45 (6) 1.58 (5)
C39-C40 1.30 (7) 1.29 (5)
C40-C41 1.42 (7) 1.31 (6)
C41-C42 1.47 (6) 1.48 (5)
C42~-C37 1.33 (5) 1.38 (5)
C43-C44 1.49 (6) 1.45 (5)
C44-C45 1.42 (6) 1.42 (6)
C45-C46 1.38 (6) 1.46 (6)
C46-C47 1.35 (7) 1.39 (6)
C47-C48 1.47 (6) 1.40 (6)
C48-C43 1.44 (6) 1.41 (4)
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Cl4-C10-Cl1
Cl2-C11-C10
C13-C12-C11
Cl4-C13-C12
C13-Cl4-Cl0
C19-C15-C16
C17-C16~C15
€18-C17-Cl16
C19-C18-C17
C18-C19-C15
C24~-C20-C21
C22-C21-C20
C23-C22-C21
C24-C23-C22
C23-C24-C20
C30-C25-C26
C27-C26-C25
C28-C27~-C26
C29-C28-C27
C30-C29-C28
€29-C30-C25
C36-C31-C32
C33-C32-C31
C34-C33-C32
C35-C34-C33
C36-C35-C34
C35-C36-C31
C42-C37-C38
C39-C38-C37
C40-C39-C38
C41-C40-C39
C42-C41-C40
C41-C42-C37
C48~C43-Ch4
C45~C44-C43
C46-C45-C44
C47-C46-C45
C48-C47-C46
C47-C48-C43

TABLE 25

Structure 1

111 (4)
107 (4)
110 (4)
102 (4)
110 (4
116 (4)

98 (4)
113 (4)
106 (3)
107 (&)
114 (&)
101 (4)
110 (4)
108 (4)
106 (4)
103 (4)
108 (4)
110 (4)
108 (5)
111 (5)
123 (3)
116 (3)
117 (4)
122 (4)
126 (4)
114 (4)
119 (3)
121 (4)
117 (&)
122 (4)
120 (4)
120 (4)
120 (4)
119 (4)
119 (4)
125 (4)
115 (4)
122 (4)
116 (4)
125 (4)
115 (4)
124 (4)
124 (4)
115 (4)

Cyclopentadienyl and Phenyl C-C Bond Angles(Deg.)
and Standard Deviations
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Structure II

107
107
115
101
110
105
110
106
1190
110
101
111
106
108
113
106
109
104
114
107
119
124
116
121
122
118
125
120
116
126
120
113
127
111
119
126
124
113
124
117
120
118
124
116

(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(2)
(3)
(3)
(3)
(2)
(2)
(3)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
(4)
(3)
(3)

(3)

(3)
(3)
(3)
(3)
(3)
(4)
(4)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
(3)



Atoms
c(1)-Cc(2)
Cc(2)-C(3)
C(3)-C(4)
c(4)-C(5)

c(1)-Cc(2)

€c(2)-C(3)

TABLE 26

Bond Lengths and Angles for the Solvate Molecules

Distance, &
1.2(2)
1.8(2)
1.6(2)

1.6(2)

1.7(2)

1.0(3)

Pentane
Atoms
C(1)~-C(2)~-C(3)
C(2)-C(3)-C(4)

C(3)-C(4)-C(5)

Diethyl Ether

C(1)-C(2)-C(3)

Angle, deg.
70(11)
78(8)

76(8)

172(20)
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into the molecule. Each ylide is bonded to both uranium atoms,
chelating one and bridging to the second with a single carbon. This
mode of ylide attachment is unique in phosphorus ylide chemistry but

might be considered as a hybrid of A and B

PR, CH,
/N
M-—CH—M M PR,
Na?
A B

which are bonding schemes seen in other metal-ylide complexes.

The U-C bonds in the M-C-M bridge, 2.43(1) A and 2.53(2) 3, are
both within the range found for U-C o bonds in several triscyclopenta-
dienyluranium alkyl complexes: (CSH5)3U((CH2)ZCH3),90 2.48(3) K;
(CsHg) 3U-CyHg, %! 2.43(2) &; and (CgHg)3U-CH,(p-CH3CeH,) 92  2.54(2) &.
Thus the bridging carbon can be considered to be ¢ bonded to both
uranium atoms. Such an arrangement is unique in organoactinide
chemistry. The most similiar case is (n®-(CsHs),Th(n%, nl—CSHq)z68
where a cyclopentadienyl group bridges between two thorium. atoms,
being bonded to one via a Th~C ¢ bond, but in a pentahapto fashion to
the second. 1In contrast to the uranium-methine bonds, the uranium
bond to the non-bridging methylene group is somewhat longer, 2.662(5) A
and, in fact, is closer to the bond length observed between uranium
and pentahaptocyclopentadienyl groups (range 2.68 to 2.74 3, Table 27).

The conformation of the U-C~P-~C ring is also significant with
respect to the nature of the uranium-methylene bond. As shown in

Figure 37, the C-U-C plane is folded by about 27° (Table 28) with
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TABLE 27

Average Bond Distances (K) in
Organouranium (IV) Complexes

Compound U-C(CgHs ring) Ref.
structure I 2.78(1) This work
structure II ) 2.776(7) This work
(CsHg) jU[CH4C(CH,),] 2.74(1) 90
(CSH5)3U(n—butyl) 2.736(8) 91
(CsHg) JULCH, (p-CH,CH,) ] 2.722(4) 91
(CsHyCH,CgHg) 3UC1 2.733(1) 92
(C5Hg) sU(CyCgH5) 2.68 93
(CgHg) jUF 2.74 94
(C5H5)3UCl 2.74 95
LiU,Cls[CH, (CgH,) ,1,  2THF 2.72 37

(CHy) U 2.81 96
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Figure 37. A view showing the fold angle about the C-U~C and C-P-C
planes. A portion of the molecule has been removed for
clarity. Ellipsoids of 207 probability are showm.
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TABLE 28

Fold Angle about the U-C-P-C Ring

Atoms Atoms
Defining plane (I) Defining plane (II) Fold angle, deg.
Structure I Structure TI
Cc(2),P(1),C(4) €(2),0(1),c(4) 27 25

c(1),P(2),C(3) €(1),u(2),c(3) 28 27
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respect to the C-P-C plane. This has been observed before in a nickel
complex97 where the fold angle is 44° and the ylide was described as
bonding in a "pseudo-phosphaallyl' fashion. The P-C methine and P-C
methylene bonds are both 1.74(1) R, typical for such groups in other
ylides, and are shorter than the typical 1.87 A P-C single bond length
in phosphorus alkyls,38 and the 1.83(1) A P-C bonds to the phenyl
rings. Thus it is likely that the U~C methylene bond should not be
considered as a ¢ bond, but rather to have formed via interaction of
metal orbitals with a m system on the ylide. The disparity in fold
angles between I and II and the nickel complex mentioned above are
probably the result of steric interactions between CsHg and phenyl
groups which preclude the formation of a more acute angle in I and II.

Within the uranium ylide chelate ring most of the bond angles and
distances are similiar to those found in transition metal phosphoylide““
structures. The main exception is the C-U-C angle (64.6(6)°) which is
about 15° less than typical values in other chelating structures. This
probably is the result of the larger size of the actinide and, perhaps,
to steric interactions between cyclopentadienyl and phenyl moieties
which prevent a closer approach of the ylide. The C(phenyl)-P-C(phenyl)
angle (98.8(1)°) is somewhat collapsed?® and may indicate such a steric
interaction. It is also noteworthy that the U-C(methine)-P angle is
highly distorted from tetrahedral to an average bond angle of 142.5(8)°
which is indicative of the strains introduced upon complexation of the
ylide.

The average U-C(cyclopentadienyl) distance is 2.78(1) 2 in I and

2.776(7) & in II. These are somewhat longer than the average U~C bond



138
in the triscyclopentadienyluranium complexes (Table 27) and may also
reflect large steric interactions within the molecule. However, they
are shorter than the 2.81 A U-C bond length in U(C5H5)4,96 a severely
crowded molecule. The average ring centroid-U-ring centroid angle of
118° is essentially the same as that found in the triscyclopentadienyl-

90 and indicates that steric strains are not relieved

uranium complexes
by compression of these groups.

The overzll geometry about each uranium is approximately tetra-
hedral if the two ns—CsHs groups, the chelating ylide, and the bridging
methine carbon atom on the remaining ylide are considered to define the
vertices of a polyhedron. The U-U separation (3.810(2) Ain I and
3.824(2) A in IT) is at the limit of van der Waals' interactions for
neutral uranium atoms, 3.8 K, indicating that a U-U bond is highly
unlikely. Thus if each cyclopentadienyl group is considered to occupy
three coordination sites, the chelating'phosphoylide to occupy two
sites and the bridging methine carbon to occupy one site, then each
uranium is nine coordinate. This is the first example of a nine
coordinate U(IV) organometallic compound.” This is noteworthy because
organoactinides tend to be ten coordinate.39>100

The complex is chiral. The space group of I, however, is achiral
and the crystal is thus racemic. On the other hand, crystals of II
contain only a single enantiomer, and the one present in the crystal
studied here is shown in Figure 36. Both methine carbon atoms are
centers of chirality and are of the same absolute configuration. Using

101,102

standard sequence-rule procedures we have been unable to assign

priorities to the two uranium containing substituents, even though
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relative to an individual methine carbon atom, they are clearly distinct
in a topological sense. We have therefore assigned the uranium atom
which is not chelated by the ylide containing the carbon atom whose
configuration is being sought a higher priority than the one which is
chelated by this ylide. Making this assignment gives both methine
carbons the S configuration. There is also a helical axis of chirality
colinear with the molecular twofold axis. The helix is left-handed

and therefore M.

The solvate molecule in both structures does not associate with
the uranium dimer. This can be seen in the stereoviews of the two
structures in Figure 38 and 39. 1In structure I the closest interatomic
contact of the partial diethyl ether solvate within the asymmetric
unit is 4.45 A distance to a phenyl carbon. The closest contact to
the dimmer in an adjacent cell is 3.55 Atoa cyclopentadienyl carbon.
In structure II the pentane molecule would not be expected to interact
with the dimer and is not found to do so. The closest contact is
3.88 A with a cyclopentadienyl carbon. Both of the solvate molecules
are poorly determined with high thermal parameters. As a result
their structural parameters are characterized by large errors and are

of little merit.
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Figure 39.

A stereoview (ORTEP-II) of the contents of a unit cell of
[u-(CH)(CH2)P(CGH5)2U(C5H5)2]2‘CSH12- The a axis is
horizontal, the b axis is vertical and the view is along
the ¢ axis. Ellipsoids of 20% probability are used.

71
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VI. FUTURE WORK

This investigation has shown that phosphorus ylides can serve as
suitable ligands for the snythesis of stable organouranium complexes
containing ¢ bonds. Since this study was the first of its kind it is
by no means comprehensive. Rather it should be considered as a source
of motivation for further developement of this new and novel class of
organoactinide compounds.

Several of the complexes already prepared bear further study.

For example, a structural determination via x-ray crystallography should
be done on at least one of the triscyclopentadienyluraniumphosphoylide
complexes. We previously attempted a structural determination on
(CgHg) 3UCHP(CH3) (CgHg) 53 unfortunately, these crystals were plagued

by twinning and a structural determination was not possible. Recently
we have prepared and mounted crystals of (CgHg)3UCHP(CH3),(CgHg) and
hopefully these will prove to be of x-ray diffraction quality. It
would be interesting to compare the structure of this complex to that
of the triscyclopentadienyluranium alkyl complexes. Perhaps this may
give an indication of the greater reactivity of the triscyclopenta-
dienyluraniumphosphoylide complexes toward coordinatively unsaturated
molecules such as carbon monoxide.

In this regard, a structural determination of the carbon monoxide
insertion product of these complexes would be illuminating. This
would establish the manner of coordination of the insertion product
which we have assigned as a side-bonded acyl group. In addition if our
assignment is correct it would be interesting to see how the cyclopenta-

dienyl groups have reoriented themselves to allow an eleventh



coordination site to become available for bonding. We have prepared
crystalline material of (C5H5)3U(CO)CHP(CH3)(CGHS)2 and
(CSHS)3U(CO)CHP(CH3)2(C6HS) and expect a structure determination to
begin in the near future. h

During this study we limited ourselves to using only several
phosphorus ylides. However, there are several different types of
phosphorus ylides which could be used as ligands. In addition to the
double ylides mentioned previously, heterocyclic ylides (A) or

bisphosphinomethanide ylides (B) could be used.”>

CHj PRy
(i) p7 Y O
201 & S
N CH, PR,
n=5o0reoe
A B

ylides containing the bulkier tert-butyl group in place of the phenyl
groups should allow the preparation of more complexes similiar to
(u-(CH)(CHZ)P(C6H5)2U(C5H5)2)2-

The ylides thus far described all contain phosphorus as the
heteroatom. However ylides coﬁtaining othe; heteroatoms such as
arsenic, sulfur or selenium are also known. It should prove to be a
straightforward extension of our previous work to use these ylides as
ligands.

Besides using different ylides one could also use different
organouranium starting materials. Several attractive compounds are
(C,BgH; 1) ,UCL, 2™ 2%, (CH, (CgH,) ,)U,CLls1™ 37 or ((CHy)C),UCL, 38,

Extension of this work to thorium would provide diamagnetic compounds

143

The use of lithiated
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of similiar chemical properties which would alleviate some of the

problems associated with paramagnetic broadening in the uranium system.
Aside from preparing new organoactinidephosphoylide complexes

the chemistry of those already prepared should be studied further.

In particular, the reactivity toward small molecules such as hydrogen,

silanes or olefins should be investigated. The high affinity of uranium

for oxygen would make molecules such as carbon dioxide and sulfur and

nitrogen oxides attractive candidates for insertion reactions of the

type already seen for carbon monoxide. In addition their interaction

with carbonyl functional groups of organic compounds in a Wittig type

manner also bears investigatiom.



APPENDIX A

Listing of the Observed and Calculated Structure Factors
for (u-(CH) (CH,)P(CgHg),U(CgHg) )5 (CoHs) 50

After Full Matrix Least Squares Refinement

Data is given in four columns per page in groupings of common
h and k Miller indices for running values of the 1 Miller
indices. For each h, k, 1 datum the input structure factor
10(F,) is given first followed by the calculated structure

factor lO(Fc).
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APPENDIX B

Listing of the Observed and Calculated Structure Factors
for (u-(CH)(CH,)P(CgHg),U(CgHg),),CeHyy

After Full Matrix Least Squares Refinement

Data is given in four columns per page in groupings of common
h and k Miller indices for running values of the 1 Miller
indices. For each h, k, 1 datum the input structure factor
10(Fo) is given first followed by the calculated structure

factor 10(Fc).
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764 775 1 667 641 17 1568 1533
2288 2277 H= S. L= 1 3 699 67S 18 78S 768
1570 1S5S0 Q0 756 780 4 655 638 21 1124 1151
1655 1695 1 1194 1220 7 739 747
1412 1406 2 1443 1502 8 537 467 H= 3, L= 2
889 798 3 767 808 g 507 535S
1569 1596 4 1031 1080 H= 1Se L= 1 1 1762 1815
680 713 S 1173 1208 0o 795 650 2 2491 2719
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2398 2617 12 482 379 S 1388 114S3 7 658 687
2080 2133 13 985S 967 6 1117 10Ss 8 1838 1741
1786 1909 14 484 S21 7 948 963 9 1509 1380
1812 1739 1S 1320 1342 8 778 763 10 2200 2114
2766 2633 16 899 920 9 903 923 12 1185 1146
3454 3283 18 526 703 10 707 787 13 1253 1252
2208 213S 19 1172 1203 11 1395 1376 14 1083 1039
2277 2142 12 1093 1104 1S 1322 1321
910 858 H= 7e L= 2 1S 887 863 16 1218 1278
868 807 1 7a2 767 16 559 554 19 1262 1224
1390 1348 2 399 S10 20 794 8s8
1318 1762 3 1362 1410 H= 1l1. L= 2 21 728 917
1433 1396 4 799 710 Q 648 503 : .
660 774 S 1104 1122 1 a7l 388 H= 24 L= 3
609 605 6 880 937 2 1345 1258 1 816 848
1068 1033 7 1472 1479 3 S65 $20 2 1169 1206
931 968 8 647 616 4 733 661 3 3267 3428
1070 1036 9 1094 1140 6 770 813 4 1670 1560
10 416 332 8 1332 1414 S 1710 1611
4, L= 2 12 98S 1030 10 603 695 6 6138 584
2982 3102 13 9S3 10a1 11 659 624 7 2923 2839
1694 1634 1S 818 798 12 766 674 8 976 961
2179 2280 16 1083 1063 14 682 712 9 3032 2911
1121 1191 17 Ss0 499 10 1337 1261
2042 . 2092 18 894 997 H= 12, L= 2 11 992 944
1853 2062 19 900 907 10 512 S64 13 1913 1883
3045 31al 14 1023 1084
2077 1996 H= 8, L= 2 H= 13, L3 2 15 1124 1123
1290 1238 g 3117 3111 1 S23 360 16 944 946
873 S07 1 783 835 2 695 . 634 17 933 958
2607 2SS4 2 1354 1332 4 504 410 19 1402 1443
1268 1312 3 1000 1052 8 Ss8o Si8 20 S88 654
1554 1599 4 1601 1653 .
1056 1026 S 615 S71 H= 14, L= 2 H= 3¢ L= 3
739 801 6 1954 2028 1 1009 1003 0 3011 2991
S24 607 7 796 814 2 523 43S 1 2087 2162
1807 1831 8 659 600 S 1076 935S 2 1569 1636
773 722 9 619 708 7 671 702 3 350 341
927 795 10 1739 1771 4 1806 1932
869 904 12 1400 1429 H= 1S, L= 2 S 296S 3010
743 65S 13 747 779 1 701 58S 6 3091 3111
14 631 S39 2 1114 1011 7 1789 1709
Se L= 2 1S 693 656 8 652 693
746 804 16 1392 1461 H= 0Oy L= 3 9 953 931
1786 1747 18 6436 630 1 2954 3009 10 1929 1990
215S 2187 3 375 - 32S 11 158S 1578
752 750 H= 9, L= 2 4 1047 1020 12 187S 1893
795 821 0 1273 1244 S 1677 1701 13 a8s9 850
1082 1072 1 1582 . 1S43 & S52 SS4 15 951 984
2062 2090 2 1471 1495 7 2178 1921 16 1200 1260
1575 1648 3 2213 2168 8 688 674 17 1384 1412
1110 1083 4 1220 1268 S 456 . 379 18 777 884
972 961 S 940 971 10 1636 1556 21 S39 528
69S 743 6 860 886 11 1779 1802
1868 1866 7 1280 1357 12 1662 1663 H= &4, L= 3
8sa 818 8 1113 1124 13 836 799 0 1060, 994
1197 1199 9 1680 17S0 14 S73 S43 1 1119 1149
1074 1072 10 712 692 16 1264 1232 2 2990 3017
989 1042 11 536 s00 17 1023 1068 3 1909 1955
12 877 874 18 1S23 1536 4 2413 2478
6o L= 2 13 1478 1477 19 S73 649 S 1089 1059
S86 624 14 782 799 6 1328 1367
617 S75 1S5 1123 104S H= 1. L= 3 7 835 ara
804 798 Q0 1149 1200 8 2419 2422
700 784 H= 10. L= 2 1 1342 1276 9 1774 1775
-1-3 603 0 1743 1744 2 2546 2640 10 845 765
478 453 1 1679 1622 3 1074 968 11 877 923
941 960 2 1016 892 4 1931 1987 12 1542 1516
asQ 919 3 865 828 S 365 206 13 732 714
441 412 4 687 703 6 2523 2367 14 1817 1794
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14, L= 3
760 668
1154 957
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1409 1567
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2316 2243
3291 3280
1502 1484
2206 2006
3065 2831
1323 .1296
2839 2653
2331 2247
536 623
1401 1440
1631. 1642
664 674
1573 1563
1526 1492
662 564
694 694
939 1003
le L= 4
2934 2926.
1111 1196
1845 1887
2919 2834
1695 1653
1062 1054
3407 3228
1749 1666
2336 2327
1612 1610
1228 1172
2096 2068
1634 1641
802 817
19093 1109
1033 942
1617 1593
740 794
704 648
S58 383
2¢ L= &
1315 1277
1578 1583
1866 1919
825 89S
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S27 873
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1147
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511
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1238
1844

S24
1127
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S47

S97
1579
1461
1406

1095
1185

1978
1160

558

-3
497
2076
2594
730
1792
2405
1276
1843
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9 arvs 892 9 786 asv S 1170 1079
10 1658 1723 10 680 615 6 1052 1031 H= 6, L= S
.11 151S 1S44% 12 936 893 7 1472 1453 0 1162 1149
13 658 673 8 1488 1457 1 1681 1676
14 1392 1431 H= 12, L= & 9 578 543 2 603 613
15 949 942 0 1394 1330 10 1692 1641 3 3094 3238
16 804 853 1 737 €10 11 6403 619 4 758 734
17 813 943 3 1403 1361 13 9860 913 S 986 1014
4 938 853 14 1257 1250 6 561 sal
Hz 7, L= & S 798 838 1S S76 452 7 1943 1968
1 1869 1944 6 1045 1004 16 1349 1317 9 2407 2511
2 1832 1864 7 7233 669 17 1263 1299 10 676 707
3 869 849 9 1041 1026 19 SS52 SS1 11 492 4838
A4 1164 1186 10 803 789 20 675 669 13 1400 1407
S 1651 1612 12 647 642 14 567 607
& 876 93S H= 3. Lx S 1S 1370 1359
7 1S7Y 1634 H= 13¢ L= & 1 620 660
8 181S 1940 0 1046 849 21171 1211 H= 7¢ L= S
9 477 348 1 816 662 3 1040 1029 0 2442 2480
10 1076 1110 2 771 647 4 759 739 1 657 631
11 1336 1399 3 961 989 7 1050 107S 2 1266 1366
12 634 556 6 1063 1066 8 8%1 886 3 692 741
13 1320 11371 ?7 691 718 S 1012 1046 4 1416 1467
14 1103 1113 9 772 716 10 620 60S 6 2472 2548
17 1036 1062 . 12 Sa44 579 T 606 669
18 7SS4 734 H= 14, L= 4 13 11S9 1216 8 734 752
g 685 499 14 1155 1177 g 566 607
Hz 8¢ L= & 3 754 63S 15 1022 998 10 1448 1484
0 145S 1449 S 632 622 49S S18 12 1740 1732
1 620 615 18 782 817 14 S22 468
2 970 1013 H= 0s L= S 19 921 959 1$ 52S 596
4 1507 158S 1 1567 15648 20 1046 1051 16 843. 886
S 8Ss9 918 2 4460 4339
6 846 900 4 3824 3641 H2 4¢ L= S H= 8, L= 5
7 828 a20 S 932 8s3 1 1251 1324 t 382 826
8 1085 1110 7 370 235 2 887 923 2 436 S24
10 1273 1272 8 2838 2730 3 1820 1916 3 1298 1309
11 961 9SS 10 2100 1967 4 481 409 5 a%92 a7a
13 521 49S 11 736 798 5 1462 1527 & 508 483
14 10S7 1103 12 1056 S94 6 863 893 7 1009 1065
16 1204 1201 14 2647 2700 7 4398 486 8 4S6 837
17 6&0S 623 16 1204 1227 8 618 &7sS 9 1442 1483
20 1126 1082 9 1233 1304 11 1013 932
H= 9¢ L= & 11 1062 1061 12 877 970
1 733 732 H= 1s L= § 12 1407 1404 15 839 900
3 898 92S 1 3421 3541 14 584 S94 16 620 682
S S§30 603 2 1177 1123 15 1293 1334 17 573 361
T 838 873 3 667 717 16 743 724
8 626 633 4 1326 1321 17 764 780 H= 9, L= S
11 543 370 S 3339 3147 L -1-¥4 916 2 479 493
12 813 864 6 889 884 . 4 617 650
13 1061 1008 7 2566 2508 H= Se L= S 6 S02 S43
14 S92 648 8 617 497 0 3171 3209 8 748 a34
H= 10, L= 4 9 827 755 1 1014 1048 9 753 755
1 965 909 10 786 798 2 1386 1437 12 559 534
3 958 867 11 2268 2261 4 1820 1897 13 624 760
S 936 947 12 497 464 S 587 593 14 774 754
6 484 29S 13 1594 1572 6 2249 2331 1S S53 722
9 1092 1084 14 971 924 8 866 945
11 1041 $93 1S 723 639 9 1092 1143 H= 10y L= S
1S 909 898 16 656 708 10 1348 1382 0 609 S32
17 1477 1464 11 957 889 2 721 63S
H= 11, L= 4 19 927 ' 894 12 1899 1853 3 493 520
C 1334 1243 20 675 726 13 568 553 4 803 766
2 1033 1089 14 723 729 6 647 631
3 654 607 H= 2, L= S 1S 1012 972 7 683 723
& 728 684 0 1272 1280 16 929 907 8 613 S36
6 1247 1324 2 2135 2108 18 902 99S 10 1017 1021
7 690 682 3 as2 562 11 SS1 S29
8 1025 1008 4 2297 2337 13 673 630
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1le L= S 4 1650 1659 17 657 713 T 623 559
SS5 S38 S 1474 1424 8 920 896
1198 1169 6 979 938 H= 6+ L= &6 9 1089 1100
S66 531 7 727 769 1 1312 1410 11 748 637
598 639 8 1632 1636 2 769 784 13 667 345
1284 1269 9 1357 1330S 3 434 348
770 709 10 947 99S 4 S22 539 H= 11e L= 6
1273 1342 11 1372 1402 S 1436 1517 o 807 688
763 716 12 689 650 6 482 456 1 S93 S09
1061 990 14 1224 1151 7 1061 112S 2 742 697
1S 1478 1416 9 677 645 4 602 Ss53
12« L= S 17 620 743 10 839 876 S 660 677
1478 1446 18 Sa0 470 11 1298 1381 6 754 756
619 400 12 796 817 7 S22 619
1277 1257 H= 34 L= 6 16 1056 o7l 8 1008 907
717 656 ¢ 2088 2097 11 S39 8556
1323 1350 1 1977 2061 H= 7Te¢ L=" 6 )
538 486 21093 1112 0 874 900 H= 12 L= 6
717 833 3 460 Sa2 1 784 730 0 797 700
4 1308 1369 2 1199 11381 4 657 620
13. L= S S 1824 1863 3 S65 493 S S76 569
1360 1307 6 2134 2141 4 1156 1132 6 887 884
1293 1212 7 1513 1592 6 1075 1076
1000 asi 8 938 963 7 710 710 H3 13 L= 6
10 S00 569 8 1422 11421 1 S32 458
14, L= S 11 1832 1584 9 So08 S44 3 70S 789
646 707 12 1328 - 1319 10 847 s91 S 8§6s 398
13 1384 1355 12 651 598
0. L= 6 14 571 439 13 9s2 1012 Hx O L= 7
304S 3012 16 909 931 14 757 723 5 549 S12
738 740 17 1043 1084 16 S17 s12 6 698 732
$36 S64 18 1119 1141 9 640 700
1287 1304 19 757 6156 H= 8., L= 6 10 800 790
780 741 0 866 783 12 1179 10540
1464 1461 H= 4o L= 6 1 8s5S 905 13 67S 690
413 358 0 148l 1567 2 847 741 15 809 797
1703 1580 1 1047 1062 3 1354 1370 16 939 830
1328 1288 2 18477 1558 4 796 804 13 768 726
1041 991 3 191S 2026 S 861 899
1344 127S 4 1413 1492 6 739 769 H3 1s L= 7
700 6436 § 762 772 7 987 980 0 1226 1291
1097 1070 6 852 809 8 633 S73 1 670 T\7
1186 1240 7 1St 1207 9 1055 1091 2 466 497
S1S 361 8 1156 1152 10 1132 1070 3 1167 1212
9 1097 1169 11 491 281 4 637 667
ly L= 6 10 1622 1618 13 815 873 6 120S 127S
807 853 12 4990 484 14 655 662 7 1504 1514
1529 1626 13 857 983 15 742 684 9 650 692
1430 1471 14 1144 1142 10 31088 1116
1719 1801 1S5 937 946 H= 9, L= 6 12 1001 947
2037 2028 16 1271 1211 0 1567 1463 13 1143 1057
1233 1194 1 879 876 15 1016 sal
1129 1111 H= S, L= 6 2 788 834 16 7S2 712
1583 1519 0 1389 1423 3 503 617 18 664 719
1259 1264 1 1272 1376 4 869 873
494 414 2 1443 1460 S 872 767 H= 24 L= 7
888 842 3 1194 1213 5 1345 1421 0 1418 1348
1265 117S 4 1030 1039 7 1032 993 1 1295 1319
1177 1180 S 807 814 8 512 566 2 1016 1043
1108 10635 6 841 849 10 833 761 31731 1713
81sS 868 7 1073 1097 i1 901 901 4 1615 1610
523 $98 8 1214 1266 12 1003 :007 S 773 697
1080 1021 9 745 652 13 776 670 6 1694 1759
600 478 10 1231 1227 7 1483 1540
11 764 719 = 10s L= 6 8 864 781
2y L= 6 12 883 904 t 788 682 9 1834 1764
S84S5 604 13 1329 1329 2 999 997 10 1203 1206
1261 1265 14 601 574 3 1259 1211 12 976 940
1631 1682 15 670 611 4 808 685 13 1237 1269
1735 1815 16 Se6e2 S$73 S 1059 1027 14 791 665
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S36
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834 S90S
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S87 816
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8y L= 7
1068 1082
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1169 1220
1029 1088
819 a7
667 718
1165 1184
610 616
930 1030
604 643
901 929
9s L= 7
1122 102
1179 1134
1330 1264
837 649
872 853
1084 t176
830 744
836 839
830 832
628 643
909 867
103S 964
671 682
10 L= 7
98S 889
934 776
774 747
1082 1040
999 1033
901 933
632 662
710 772
67S 723
S50 $383
11 L= 7
579 531
662 S78
548 615
698 659
549 566
687 627
12 L= 7
S23 324
Cs L= 8
1004 1062
2096 2099
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1126 11901
1023 1021
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1247 1143
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1078 1080
S12 554
le L= 8

1497 11588

1062 1160

1333 1330
793 809

1658 1589
960 977
714 694

1043 1037

1083 -2:-¥4

1142 1109
673 633
as2 849
732 781
2, L= 8
889 889

1227 1284
501 $S80
818 782
623 620

1795 1821

1019 992

1222 1206
832 806

10587 10SS

1059 1078
916 914
576 544
616 647
695 696
3. L= 8
$87 sS96

1161 1196

1042 1128

1080 1039
6593 720
872 860

1574 1529

1071 101S
914 921
612 643
857 874
902 852
S78 519
4 L= 8

1S36 1515
807 B85S
654 873
679 687
691 789
794 822

1250 124S

1120 1051

1131 1091
966 907
S76 688
889 976
502 392
841 850
S, L= 8
830 789

1196 1311
492 S44
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825

1233
1047
687
903
1015
S71
8SS

O
499
1203
1504
70S
821
767
941

g
1174
663
S48
1304
619
1080
1131
S74
61S

8e
1554

L=

L=

968

10
927
679
686
694
554

11l
604
S8l
625

O
2106
1038
107a
1369

S79
1736

L=

L=

L=

859
600
1300
1075
75S
951
970
517
1?7

474
1223
is12

948
8

943

519

596
S36
SS57

9
2121
1046
1022
1750

1716

170
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1233 1193 4 1221 t241 6 838 896
S60 545 6 1618 1681 H= 4, L= 10 7 650 679
1789 171a 7 881 928 1 1047 10S3 :
679 695 8 561 518 3 8as7 870 H= 5. L= 11
781 734 9 835 877 7 874 972 Q sSé6l 546
696 649 10 854 884 8 595 490 2 370 7SS
12 1172 1263 9 734 692 3 5SSO 412
le L= 9 4 715 691
1020 104S H= 7. L= 9 H= S, L= 10 S 542 480
1736 1822 0 898 944 0 882 834
1805 1764 1 759 716 2 1093 1146 H= 0. L= 12
755 786 3 1601 1584 4 1095 1043 Q 523 467
534 490 4 724 623 6 622 618
1512 1528 S 701 692 8 96S 945 H= 1, L= 12
604 599 & 779 726 10 970 1000 1 619 989
1195 1126 7 836 S36 : .
909 82S 9 1144 1167 H= 6+ L= 10 H= 2, L= 12
S10 441 10 523 600 1 1214 1187 1 614 447
s77 471 2 8ss8 836 2 788 as9
1098 1098 H= 8y L= S S 1201 1267 4 803 730
0 914 828 7 992 10135
2+ L= 9 2 692 645 8 726 686 H= 3. L= 12
1032 9S4 4 S69 S23 : g 890 800
551 S40 6 949 946 H= 7o L= 10 -y 782 734
708 650 2 1019 994 2 648 608
932 900 H= 0, L= 10 4 1002 1050
1091 1086 0 2132 2202 S 620 596
832 791 L 639 S51 8 964 97T
790 694 2 1017 1098
903 8s2 3 9S4 936 Ha 8., L= 10
667 711 4 966 S03 1 722 656
6 1550 1499 3 594 651
3s L= 9 7 &78 S49 S S30 584
662 604 8 S82 423
474 412 9 635 741 H2 9, L= 10
S39 410 10 977 944 0 62S S55
S24 S65S 12 963 1067
7z 681 13 847 800 H2 Qe L= 11
2 S44s 468
4, L= 9 H= 1, L= 10 8 S8S5 S60
953 1047 ¢ 755 730 9 S63 845
543 418 1 1030 968
S4S5 570 2 5a7 370 H= 1. L= 11
661 481 3 1665 1592 1 648 661
488 472 5 678 767 3 724 787
687 658 & 576 S31 S S30 436
680 755 7 798 762 9 738 711
618 484 9 12786 1226
91S 810 10 S8é6 612 H= 2., L= 11
602 SS8 11 722 788 0 1239 1221
13 6SS Sé8 1 866 691
Se L= S 2 560 479
705 714 H= 2, L= 10 4 982 898
1150 1137 0 1013 1072 S 781 600
707 793 2 1214 119S 6 1116 1088
1562 1S94 & 1000 998 7 686 649
704 641 8 1217 1113
57S S13 12 900 983 H= 3o L= 11
842 831 1 725 684
682 711 H= 3+ L= 190 2 1040 1099
1303 1273 Qo 872 746 2 1238 1202
s21 S01 1 577 s18 4 732 782
686 675 3 St} 599 7 830 803
670 687 4 S13 631 8 6382 776
S 939 890 9 1096 1056
6s L= 9 9 674 657
1783 1732 10 723 670 H= 4. L= 11
548 549 11 746 831 0 Sé64 S66
740 777 T 1172 1090
1097 1058 S 1097 1044
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