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Abstract

Understanding human mobility patterns in urban
areas is key to solving a wide range of socio-technical
problems at the human-infrastructure interface.
Extending the intervening opportunities concept, we
showcase a data-driven, network-based model that
reproduces aggregate mobility patterns in cities. Using
this model, we create a digital replication of daily travel
across different trip purposes in 5 U.S. metropolitan
areas and compare results against publicly available
reference data. We find that our proposed model
explains a large fraction of the variation in mean
and median travel distance across the 5 cities. In
particular, it accurately captures the effect of density
on aggregate travel patterns. These findings add to
evidence that human mobility patterns are strongly
governed by the structure of the built environment. We
discuss implications for the ongoing transformation of
cities and for developing more sophisticated models
that replicate human behavior based on crowd-sourced,
spatio-temporal data streams.

1. Introduction

Understanding human mobility patterns in urban
areas is key to solving a wide range of socio-technical
problems at the human-infrastructure interface.
Applications of mobility models include the analysis
of urban planning policies [1], trends in transportation
technology [2], the simulation of epidemics [3],
improving predictions of building energy consumption
[4], and the general digital replication of human
behavior [5, 6].

While individual mobility choices can be influenced
by a large number of factors, aggregate mobility patterns
have been found to correlate strongly with properties
of the built environment, especially land use [7, 8, 9].
In particular, density, the degree of co-location between
possible origins and destinations (through, for instance,
mixed-use zoning), and the supply of and access to

different modes of transport influence travel demand and
mobility patterns [10, 11]. These findings suggest that
human activity is closely linked to properties of the built
environment around them, and that modifications to that
environment can affect travel activity. They also lead to
the notion that travel is mostly a derived demand [9].

To model human mobility as a function of the built
environment, many traditional travel demand models
rely on four steps [12, 13]. The first two steps are
used to estimate origin-destination matrices containing
the number of trips or ‘flows’ from one place to
another. Steps three and four are used to estimate
the specific mode and route for each of those trips.
While these four-step models are efficient to set up and
run, their aggregate nature makes it difficult to forecast
travel choices of individuals in relation to demographic
properties.

More recently, activity-based models have been
developed to model travel at the individual level by
fitting utility functions to travel survey data [7, 14,
15]. While very powerful for certain applications,
these bottom-up models require a substantial amount of
location-specific data and effort to be set up, calibrated,
and run [16, 17]. Enabled by the rise of information and
communication technologies, data-driven approaches to
travel activity modeling have therefore gained traction
[13, 6]. These models tend to exhibit high spatial
and temporal resolution and do not rely on expensive
travel survey data and detailed information on the built
infrastructure. However, they often lack the contextual
information that would allow to explain, rather than just
observe, human mobility patterns.

Here, we take an approach to replicate mobility
patterns in metropolitan areas that combines advantages
of the traditional models with opportunities to use
novel, crowd-sourced datasets. Specifically, we focus
on capturing human-infrastructure interactions and
inter-dependencies by reproducing the generation and
distribution of trips in the form of an origin-destination
flow matrix. We design an algorithm that integrates
aspects from the gravity model [18, 19], commonly

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 1819
URI: https://hdl.handle.net/10125/70833
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



used in the four-step approach, with the intervening
opportunities concept [20, 21] and the related radiation
model [22, 23]. This algorithm allows us to reproduce
flow matrices within a metropolitan area from pedestrian
trips to long commutes and across different trip
purposes. As inputs, it only relies on the features of
local infrastructure (i.e., the location and approximate
size of homes, jobs, and points of interest, as well as
the travel distance between them) and a set of simple
coefficients that are independent of the metropolitan
area. We calibrate and validate the model using publicly
available data, enabling our model to easily scale to a
large number of cities across the United States and the
world.

We apply this model to create mobility models for 5
U.S. cities across 5 different trip purposes. We analyze
how closely the model is able to replicate real aggregate
mobility patterns without knowing about congestion,
travel times, demographic properties, and other aspects
that are commonly included in activity-based travel
demand models. Within a given metropolitan area, we
evaluate how well the model is able to capture the impact
of trip purpose and of key infrastructure features (i.e.,
density of the built environment) on aggregate travel
behavior. We discuss implications of our findings for
the ongoing transformation of cities and for building
more sophisticated models that replicate behavior at the
human-infrastructure interface, including those based on
crowd-sourced, spatio-temporal data streams aiming to
create ‘digital twins’ of mobility systems.

2. Methods

2.1. Modeling urban mobility patterns

We model the flows (or frequencies) of travel
between each available origin and destination using
an extended version of the intervening opportunities
model [20]. This model is related to the recently
introduced radiation model, both of which have been
found to outperform the more common gravity model
while requiring less location-specific parametrization
[21, 22, 24].

In the original intervening opportunities model,
given a set of locations U , the flow F of travel from
origin i ∈ U to j ∈ U (or the probability of a trip taking
place between i and j) is expressed as [21]:

ri,j =

 ∑
u:d(i,u)≤d(i,j)

1

−α

Fi,j ∝
ri,j∑
j∈U ri,j

(1)

where the ri,j reflects the number of possible
destinations u ∈ U that are at least as close to origin i as
destination j, and α is a coefficient. The higher α, the
higher the preference for closer destinations compared
to those further away.

We model matrix F for each possible
origin-destination pair at the census block group
(CBG) level, meaning that origins and destination
correspond to CBGs. Operating at the CBG level allows
us to keep the number of possible origin-destination
pairs under 20 million, and works well with our input
data, much of which is also available at the CBG level.
Contrary to previous implementations and to more
accurately reflect short trips, we do include trips where
i = j to allow for within-CBG travel.

Grouping origins and destinations by CBG also
means that destinations can have vastly different levels
of ‘significance’: a large shopping mall located in a
given CBG will likely attract much more people than
a single, small shop. Therefore, inspired by the gravity
model [18, 19], we introduce weights w that reflect the
significance of origins and destinations (see Figure 1 and
Equation 2).

Figure 1. Schematic of the extended intervening

opportunities concept. The daily number of trips from

origin i to destination j depends on the number of

possible destinations u that are at least as close to i

as j is and their significance w (illustrated here by the

size of the circle). The distance between two nodes is

measured as travel distance on the road network.
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Table 1. Share of different types of trips in the 2017

National Household Travel Survey (NHTS, [25]). The

first five types (with a combined share of 75%) are

included, modeled separately. POI = point of interest

(retail, services, errands, recreational locations, health

and child care, religious locations).

Trip purpose Share Modeled

Home to work (and reverse) 13% Yes
Home to POI (and reverse) 38% Yes
Work to POI (and reverse) 5% Yes
Home to another home 6% Yes
POI to another POI 13% Yes
Work to another work location 2% No
Other trips 23% No

ri,j =

 ∑
u:d(i,u)≤d(i,j)

wu

−α

Fi,j ∝
ri,j∑
j∈U ri,j

× wi

(2)

As another extension to previous implementations
of the intervening opportunities model, we consider 5
different types of trips separately: home to work, home
to shops and other points of interest, work to points of
interest, home to other homes, and points of interest to
other points of interest. Points of interest include retail,
services, errands, recreational locations, health and child
care, and religious locations. Implicitly, these 5 types of
trips also reflect the corresponding return trips (such as
work to home), and collectively cover 75% of all types
of trips taking place within a metropolitan area (Table
1).

Because our model operates on an aggregate level,
reproducing the total number of trips for a given purpose
between a specific origin-destination pair, we do not
need to ensure that a given individual returns to the same
home location that they left at before heading to work.
We also do not explicitly model tours (that is, a chain of
trips containing more than 2 individual destinations).

A fourth and final change to the original equation
is that we allow α to change with the distance
between origin i and possible destination u, di,u. This
modification allows the model to remain accurate for
very short and very long trips simultaneously. Equation
2 therefore becomes:

Table 2. Characteristics of the five metropolitan

areas that are being modeled based on their

Core-Based Statistical Areas (CBSAs, [26]). San

Diego and Rochester have been expanded to allow for

longer trips. Cty = County, CBG = Census Block

Group; n = average number of trips per day and

person as measured by the National Household Travel

Survey (NHTS, [25]).

Ctys CBGs Population n

San Francisco Bay 7 4013 6,654,837 4.27
Houston 10 3033 6,806,923 4.03
Sacramento 5 1655 2,730,268 4.07
San Diego 3 2920 5,866,335 4.24
Rochester NY 7 927 1,148,335 4.17

ri,j,k =

 ∑
u:d(i,u)≤d(i,j)

wu,k

−αk(di,u)

Fi,j,k =
ri,j,k∑
j∈U ri,j,k

× wi,k × γk

(3)

where k is one of the five modeled trip purposes (see
Table 1), and γk is a scaling factor that is a function of
the trip purpose. Specifically, we set γk such that the
fraction of trips allocated to a given purposes matches
the same fraction as measured in the NHTS, and the total
number of trips per person (across all purposes) matches
the corresponding number in NHTS as well:

∑
i,j Fi,j,k∑
i,j,k Fi,j,k

= fk

∑
i,j,k

Fi,j,k = n× population
(4)

where fk is the share of trip purpose k (see Table
1), and n is the number of trips per person and day (see
Table 2).

We apply Equations 3 and 4 to the processed input
data for the five metropolitan areas shown in Table 2 to
predict daily mobility flows for each of the five different
trip purposes shown in Table 1. We then aggregate
the five flow matrices for the different trip purposes to
produce a flow matrix for each city that is intended to
reflect the overall daily travel patterns across all types
of trips. For each of the 5 metropolitan areas, we
select all CBGs containing at least 1 resident, job, or
point of interest that belongs to any of the counties
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officially associated with the corresponding Core-Based
Statistical Area (CBSA, [26]).

For an area with 4,000 CBGs, this results in 40002×
5 = 8 × 107 flows that need to be calculated. We
do not model trips that exceed a distance of 100
km, as these rarely occur as regular trips, and could
not be properly modeled using the boundaries of the
metropolitan areas. The equations are implemented in
Python 3.7 using Numpy arrays and the Numba LLVM
just-in-time compiler [27]. This implementation allows
us to calculate 8 × 107 values in under 5 seconds on a
conventional computer. The short calculation time and
efficient nature of the algorithm reflects an advantage of
this modeling approach compared to bottom-up travel
demand models.

2.2. Input data

Equation 3 requires four sets of input data on local
infrastructure: (1) the number of people living in each
node or CBG (weight w if the origin or destination is
home), (2) the number of jobs located (weight w if the
origin or destination is work), (3) the significance of
points of interest (weight w if the origin or destination is
a point of interest), and (4) the travel distance between
each origin-destination pair (di,j).

We obtain the number of people per CBG from
the 2018 American Community Survey [28], and the
number of jobs from the LEHD Origin-Destination
Employment Statistics (LODES 7), which is based on
the 2010 census [29]. For the significance of points
of interest in each CBG, we aggregate the number of
visitors per day from each point of interest contained
in a CBG using a proprietary dataset called SafeGraph
[30].

To calculate the distance between a given origin
node and a given destination node, we use an Open
Source Routing Machine (OSRM) server [31], fed with
OpenStreetMap data [32]. For each origin-destination
pair, we calculate the road travel distance using the
corresponding CBG’s center coordinates.

For CBGs that are far away from each other, this
is likely accurate. For nodes that are close to each
other, however, some trips between the those CBGs will
be much shorter (with origins and destinations close to
the border that’s adjacent to the respective other CBG),
and some trips with be longer. Therefore, using the
distance between the centers to calculate the distance
matrix may bias the resulting trip distance distribution.
To circumvent this issue, we add or remove a random
amount of distance from each origin-destination pair
that is equivalent to the square root of the land area of the
corresponding origin block group and destination block

group:

di,j,adj = di,j +
√
Ai × ri +

√
Aj × rj (5)

where di,j is the road travel distance between the
center of CBG i and the center of CBG j, Ai / Aj
are the land areas of the corresponding CBG, and ri
/ rj are independent random samples from a uniform
distribution in the interval [−0.5, 0.5).

Notably, this adjustment is only being done once
for each origin-destination pair. At the level of an
individual pair, the travel distance will therefore not
reflect the average distance travel between the two CBG.
On aggregate across a large number of pairs, however,
the randomization of short trip distances is designed
to reflect the real probability distribution of short trips
across all of these pairs.

To model trips that take place within a given CBG
(i = j), we take a similar approach, setting d(i, i) to a
random number that is proportional to the square root of
the area of that CBG:

di,i =
√
Ai × qi (6)

where qi is a random sample from a uniform
distribution in the interval [0.0, 1.0).

2.3. Calibration of α

We use two sets of metrics to calibrate the model
coefficients, αk(d). The first set of metrics consists
of aggregate trip distance metrics compared against
conventional travel survey data. The second set
measures the similarity of the calculated flow matrices
F for home to work trips against reference data
from LODES. Rather than numerically fitting αk(d)
to minimize the error compared to reference data, we
calibrate the coefficients manually until a good fit
across all metrics, cities, and trip purposes is achieved.
Numerically fitting αk(d) could lead to over-fitting,
and would still require subjective judgement about the
weight of different metrics.

For the aggregate metrics, we compare aggregate
statistics of the calculated flow matrix F to
corresponding metrics in the NHTS. We compare
the median trip distance, the mean trip distance, and
the probability density function of trip distances for
each trip purpose and for all trips combined. We
predominantly use this method to calibrate α as a
function of trip purpose and trip distance, as NHTS is
the more representative of the two reference data sets,
and available for all trip purposes.

For comparing raw flow data, we compare the
calculated flow matrix for commuter trips (home to work
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Figure 2. Modeled daily mobility flows between

census block groups (CBGs) across the San Francisco

Bay Area.

trips) to the corresponding matrix in LODES, which
is also collected at the CBG level. In addition to
comparing flows at a CBG level, we aggregate them to
the zipcode level, summing over all trips that originate
in any CBG belonging to a given origin zipcode and
end in any CBG belonging to a given destination
zipcode. This aggregation circumvents issues with the
relatively sparse nature of the LODES flow matrix,
and allows us to identify whether the accuracy of
our model is increased at a lower spatial resolution.
To calculate the similarity between the modeled flow
matrix and the reference matrix either at the CBG
or at the zipcode level, we use the common parts
per commuter (CPC) metric, indicating the similarity
between two origin-destination matrices F and G as a
number between 0 and 1 [23]:

CPCF,G =
2×

∑
i,j min (Fi,j , Gi,j)∑

i,j Fi,j +
∑
i,j Gi,j

(7)

Before applying Equation 7, we normalize both
matrices F and G to each sum to the same amount.
We predominantly use this metric to validate our model,
rather than for calibration purposes, meaning that we
calibrate α using aggregate metrics as described above,
and then test its performance against disaggregate flow
data.

3. Results
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Figure 3. Calibrated α as a function of trip purpose

and trip distance. The higher the value of α, the

higher the preference for destinations that are closer

as opposed to destinations that are further away. POI

= point of interest (retail, services, errands,

recreational locations, health and child care, religious

locations).

We apply Equations 3 and 4 to the five selected
metropolitan areas (Table 2) to reproduce daily mobility
flows for the five different trip purposes (Table 1) after
calibrating α. A visual example of the resulting daily
mobility flows is shown in Figure 2.

The calibrated α for home to work trips is the lowest,
meaning that people are willing to travel further (exhibit
a lower preference for closeness of the destination) for
trips to work than for the other trip types (Figure 3).
For trips from home to points of interest such as retail,
services, and recreational activities, the opposite is true.
α starts to increase for trips longer than 7.5 km across all
types of trips. This indicates that above that threshold,
the fixed relationship between the number of destination
opportunities and the probability of traveling to a
given destination suggested by the original intervening
opportunities model starts to deviate.

With the calibrated α, our model reproduces
aggregate travel patterns in the 5 metropolitan areas to
a high degree of accuracy (Figure 4). Across all trip
purposes, the model is able to explain a substantial
amount of the variance in median and average trip
distance between the five cities. The explanatory power
is highest for trips from home to points of interest
(POIs), which represent the most common trip purpose
(see Table 1) and exhibit the highest amount of variation
between the five cities. The model can only explain little
of the variation in mean distance from POI to POI and
from homes to another home. Notably, however, those
means exhibit less variation than for other trip types,
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Figure 4. Columns 1-5: Trip distance probability density functions (PDFs) across the five trip purposes (see

Table 1) and five metropolitan areas (see Table 2). 95% confidence intervals for the reference data (2017

National Household Travel Survey [25], blue) are calculated using the bootstrap, resampling 200 new datasets of

the same length from the original data. The dotted black line in the 4th row reflects the PDFs as inferred from

the LEHD Origin-Destination Employment Statistics (LODES 7 [29]). Column 6: Predicted (y-axis) and

measured (x-axis) mean and median trip distance for each of the 5 metropolitan areas.

and are subject to larger confidence intervals due to the
smaller amount of corresponding available data.

The detailed trip distance probability density
functions (PDFs) generated by the model match the
corresponding distributions as measured in the NHTS
well, generally falling within the range of the 95%
confidence intervals of the latter. The largest deviations
can be observed at the extreme ends of the distribution,
for very short trips (less than 1 km) and very long trips
longer than 40 km). We also compare the PDF for
home to work trips to the distribution in trip distances
as predicted by LODES (Figure 5, 4th row). Compared
to LODES, our model predicts more frequent short
trips, and less frequent longer trips. Notably, however,
LODES does not measure the trips that people actually

make; rather, LODES indicates the relationship between
where people live and where people work, regardless
of how often people actually travel between their work
location and their home location, and whether they do
so directly.

When comparing the disaggregate flow matrix for
home to work trips predicted by the model to the
same matrix from LODES, we observe a high level of
similarity at the CBG level (0.52–0.59), and a very high
level of similarity at the zipcode level (0.77–0.83, Table
3). The CPC value is similar for all five cities, indicating
that the model–despite not having any city-specific
calibration parameters–performs almost equally well
for all modeled locations. The CPC could be further
increased if α was calibrated to maximize it. As noted
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Figure 5. Columns 1-3: Trip distance probability density functions (PDFs) for all trips as well as trips from home

to points of interest (see Table 1) that take place within, leave from, or arrive at CBGs whose average population

density falls into one of three specific brackets. Confidence intervals are calculated using the same approach as in

Figure 4.

previously, however, LODES does not measure the trips
that people actually make, implying that calibrating α
to fit LODES data may not accurately reflect the daily
travel choices that people make.

Finally, we classify all CBGs of the San Francisco
Bay and Houston metropolitan areas into brackets
of low (<2,000 people/mi2), medium (2,000–10,000
people/mi2), and high (>10,000 people/mi2) population

Table 3. Similarity of the origin-destination flow

matrix for home to work trips between our model and

the LEHD Origin-Destination Employment Statistics

(LODES 7 [29]). CPC = Common Part Per

Commuter (see Equation 7); 0 = no similarity; 1 =

perfect correlation.

CPC by spatial resolution

Census block group Zipcode

San Francisco Bay 0.53 0.80
Houston 0.52 0.77
Sacramento 0.53 0.80
San Diego 0.54 0.77
Rochester 0.59 0.83

density. We then calculate aggregate trip statistics for
each of the three population density brackets, including
only trips whose origin and/or destination lies within
the corresponding bracket. We compare those statistics
to trips in NHTS where the household of the person
making the trip is located in a CBG that falls within the
same population density bracket. We compare statistics
for all trips combined, as well as home to work trips,
which represent the most common trip type (Table 1)
and show the highest amount of variation between areas
(see also Figure 4). For other trip types, the coefficient
of variation of average travel distance relative to the
number of available data points was too small to reliably
assess the performance of our model.

Our model reproduces the impact of population
density on travel behavior to a high degree of accuracy
(Figure 5). As before, the predicted PDFs fall within the
range of the confidence intervals generated from NHTS
data. Deviations occur only for short trips (<1 km) and
long trips (>40 km). In particular, our model is able to
explain almost all of the variation in average and median
trip distance between low, medium, and high density
areas in both cities, for all trips combined as well as for
home to point of interest trips specifically.
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4. Discussion and Implications

We find that a large part of the heterogeneity in
human mobility patterns between different metropolitan
areas can be explained solely based on information
regarding the local infrastructure (i.e., the location
of different origins and destinations, and the travel
distance between them). These findings add to
evidence that human mobility patterns are strongly
governed by the location of origins and destinations,
and illustrates the inter-dependency between human
behavior and infrastructure development. Our findings
reaffirm that the overall demand for mobility can
be lowered by increasing density and by fostering
mixed-use zoning and development. They also confirm
earlier findings [21] that suggest that models of the
intervening opportunities class work across different
metropolitan areas without the need for recalibration,
implying that there is a certain universality to human
mobility patterns.

We observe that our model is particularly accurate
at reproducing the impact of population density on
travel behavior. In the model, density is encoded as
the general urban structure around the locations and
between them. As result, our approach has advantages
over previously proposed regression-type models that
include one or more metrics for density and/or diversity
in each location as predictors (e.g. [10, 33, 11]). These
models are often not able to distinguish between a
case where the density right around the origin is high,
but falls off quickly, and a case where the density
around the origin is generally high. Some statistical
models use more sophisticated predictors representing
urban form to mitigate this issue (e.g., [34]), but
such predictors still reflect a substantially more indirect
way of measuring the relationship between density
or diversity and mobility patterns. In addition, the
mechanistic nature of our model may make it less prone
to self-selection effects (see e.g. [33]).

As such, our findings reiterate the need to capture
interactions and inter-dependencies between human
mobility and physical infrastructure. They may imply,
for instance, that increasing density substantially in
a small area of a city is less effective at reducing
travel demand than increasing it less substantially, but
across a larger area. The specific relationships between
urban form and travel demand as implied by the model
presented here, however, require further investigation
and verification across more cities both in the United
States and across the world.

The overall accuracy with which our model is
able to reproduce aggregate travel patterns illustrates
how little information is needed to explain a large

amount of the variation in different travel patterns
across different types of trips, cities, and areas within
these cities. Congestion, travel times, travel costs,
access to different modes of transport, and demographic
properties are important for the precise route or modal
split in relation to demographic properties, but may
only play a subordinate role in shaping aggregate travel
patterns, where they can largely be captured by simple
coefficients (α in our case). While there is evidence
that the intervening opportunities concept works well
in different cities across the planet [21], the accuracy
of our model may fall off if it was applied to other
countries without re-calibrating α. We expect this
to be particularly true in places where the average
travel speed for trips of a given distance and/or the
(financial or geographical) access to different modes
of transportation is substantially different from U.S.
locations.

The increasing amount of available crowd-sourced
data may further expand the potential of high-level,
infrastructure-based travel models such as the one
proposed here. These types of data could serve both
to increase the model sophistication without sacrificing
its key advantages and to allow for more refined and
accurate calibration and validation. Such efforts may be
able to complement or even partially replace detailed,
complex, and expensive utility-based bottom-up travel
models to assess the impact of infrastructure and
technology transformations on mobility behavior, from
the city to the local street level.

While travel times and congestion levels may not
have be necessary to reproduce aggregate travel patterns
shown here, such information could be used to add
a temporal dimension to the model. As one possible
application, this would allow for the combination with
building models to add to a growing body of literature
that investigated the relationship between building
energy use and mobility patterns [4, 35].

A spatio-temporal map of mobility patterns,
generated by a version of our model that has been
expanded by a temporal dimension, could be compared
to and updated by real-time travel information. This
would enable us to detect deviations from the typical
travel demand and could allow for proactive rather than
reactive traffic management and congestion pricing.
More generally, through the integration with other urban
models and novel data streams, frameworks such as the
one proposed here could form a comprehensive ‘digital
twin’ of human mobility, capable of evaluating various
urban development and emission reduction scenarios
across different scales and sectors in cities around the
globe.
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