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Very Large Floating Structures (VLFSs) have been proposed for a number of
applications. However, significant amounts of experimental and analytical work are still
required before reliable designs of VLESs can be made. The theme of this study is the
development of analytical techniques for hydroelastic analysis of VLFSs in regular
waves. Three efficient methods are developed and presented herein.

First, an improved method for two-dimensional hydroelastic analysis is developed by
using a formulation consistent with the finite element method. Strip theory is used to
calculate the hydrodynamic coefficients and wave exciting forces. The structure below -
the still water plane is modeled, by the finite element method, as a nonuniform beam
subjected to hydrodynamic forces. Above the water surface, a three-dimensional model
of the structure is possible.

Second, an efficient method for three-dimensional “hydroelastic” analysis
incorporating frame elements with Morison’s equation is developed. This approach is
applicable to structures which consist of tubular members below the still water line,
although there is no restriction on the upper part of the structure. This method is an
efficient method for VLFSs which use columns and pontoons below the still water line.

Third, a composite 2D/3D method of hydroelastic analysis is developed for slender
VLFSs. The method combines an accurate description of the structure by a three-
dimensional structural model and the computational efficiency of a two-dimensional
fluid model. The three-dimensional responses can be obtained by this method. In

addition, the three-dimensional incident wave exciting force and more accurate

vi



definition of normal vectors are used to improve the results calculated by using two-
dimensional potential theory. This method is very useful for analysis of some twin-hull
VLEFSs with respect to their lower structure. Furthermore, this method is useful for
SWATH ship design.

The methods discussed have been implemented in the HYDRAS series of computer
programs and applied to three floating structures (a multi-module VLFS; a simple, twin-
hull structure; and a SWATH ship). The comparisons of the results between the present
methods and three-dimensional hydroelasticity are encouraging and show a significant
reductior. in computations compared with a complete three-dimensional analysis.

Therefore, these methods are believed to be useful analytical tools for VLFS design.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Numerous proposals have been made for very large floating structures (VLFSs) for
ocean space utilization and ocean resource development. Proposed uses include floating
airports and runways (Takarada, 1984; Lemke, 1987; Baschieri and Bellincioni, 1991;
Chow et al., 1991); wave power generation (Katory, 1977); deep ocean miming (Winkler
etal., 1990; Cruickshank, 1991); ocean thermal energy conversion (OTEC) (Nihous and
Vega, 1993); and floating ‘cities’ (St. Denis, 1974; Yoshida et al., 1991). The largest of
all VLES applications would likely be a floating airport, which might have plan
dimensions or the order of 1,000 m x 3,000 m. By comparison, the plan dimensions
of the largest floating platforms used in the offshore oil industry are approximately
100 m x 100 m.

VLESs, whether for public use (for example, airport or floating city) or for industrial
facilities (for example, OTEC or deep ocean miming), will have a long service life, and
their safety, reliability, and survivability are vital for their economic feasibility. Both
experimental data and analytical methods will be very important for the design of a
VLEFS. The development of analytical tools and experimental methods which are reliable
and robust is likely to require a considerable amount of time (Wilkins et al., 1992). The
work described here concentrates on the development of analytical methodologies for
the hydroelastic analysis of VLFSs.

The analysis of VLESs differs substantially from that of a conventional structure
because the motion of the latter is usually determined based on rigid body dynamics.

This approach is insufficient for the much larger VLFS. Hence, much of the




methodology has either not been developed, needs further development, or is not
oriented toward large scale systems (Riggs, 1991).

The size of a VLES requires an alternative analysis methodology than that used for
conventional floaters. Two basic characteristics of a VLFS must be considered in the
methodologies for VLFSs: the flexibility and the huge dimensions. VLESs, whether
constructed from a series of modules hinged together or rigidly connected together, will
pehave in the open ocean as a flexible body, and the structural displacements as a result
of the deformational response will generate significant hydrodynamic forces on the
structure. Hence, traditional hydrodynamic theory based on rigid body motion is no
longer sufficient for dynamic analysis of VLFSs. Instead, hydroelasticity theory must be
used to determine the structural displacements and forces induced by wave action. Since
a VLFS must be modeled as a flexible structure, the number of degrees of freedom will
become huge. A very large computational problem for the fluid dynamics also results
from the large dimensions. Therefore, efficient methodologies for hydroelastic analysis
of VLFESs need to be developed.

The techniques developed in this work will reflect the above two basic
characteristics. All the techniques treat the structure as a flexible body and
hydroelasticity theory is involved. Efficiency is the basic feature of the methods
developed in this work. While all techniques are oriented toward VLFSs, they are also

applicable to general floating structures and other offshore structures.
1.2 Very large floating structures

VLFSs, when constructed, will be the largest and most expensive structures ever
built. Physically, a VLFS will have large dimensions to accommodate significant human
activity. A proposed floating city, shown in Figs. 1.1 and 1.2, requires 1,100,000 m’ to

allow 30,000 people to work and live on it (Yoshida et al., 1991). Proposed floating

2



airports, such as in Fig. 1.3, have varied from a few hundred meters in length to several

thousand meters.

Figure 1.1 Business floating city complex by using ring-like semisubmersible

(Yoshida et al., 1991)
=
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Figure 1.2 Section of ring-like semisubmersible (Yoshida et al., 1991)




Figure 1.3 Floating airfield (Bretz et al., 1991)

The huge size is one of the significant characteristics of VLFSs. Based cn data for
existing semisubmersibles, a ‘module’ of 100 m x 100 m plan dimensions may be
considered within the capability of existing floating structure technology, exemplified by
modem floating drilling units. They usually use a semisubmersible hul) design, which
have two or more pontoons to provide buoyancy and columns to provide stability and
support the superstructure. These shapes have smaller wave forces and motions than
ships have because of their transparency and the relatively small hull area near the water
surface. The successes of semisubmersibles make them candidates for constructing
VLESs. To provide a large space, a VLFS may be built-up from multiple modules
connected side by side. Winkler et al. (1990) developed a basic module design (Fig. 1.4),
100 m x 100 m, which could be used to assemble alternative VLFSs, depending on

the application.




Figure 1.4 Schematic of a basic module design

The large size of a VLFS means the flexibility will be increased as compared to
smaller, more ‘rigid’ structures. Hence, as mentioned before, the flexibility is another
significant characteristic of a VLFS.

There is not a well-accepted definition of what constitutes a very large floating
structure. Since this work focuses on development of methodologies, the definition
proposed by Riggs (1991) is adopted: A VLFS is a floating structure whose
characteristics, especially iis size and flexibility, require for its design, construction, and
operation special consideration not required by conventional-size floating structures.
The techniques of analysis of VLFS developed in this work will be based on this
definition.

1.3 Previous work on hydroelastic analysis of VLFS

Conventional hydrodynamics theory assumes that the structural motion as a result of
deformational response does not affect hydrodynamic forces. While this assumption is

most likely appropriate for many ‘small size’ structures, it will tend to breakdown as
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structures increase in size and flexibility. Therefore, the formulation of hydrodynamics
based on rigid-body motion is unsuitable for VLFSs. The size and flexibility of VLESs
require an alternative analysis methodology than that used for conventional floating
structures.

Substantial work has been carried out in the last twenty years on the development of
two-dimensional and three-dimensional hydroelasticity theories. Two-dimensional
hydroelasticity is primarily applied to ship structures (Bishop and Price, 1979). Due to
the huge dimensions, efficient two-dimensional hydroelasticity is attractive for the
dynamic analysis of VLES. Early application of two-dimensional hydroelasticity theory
to large floating structures can be found in Okamoto et al. (1985) and Masuda et al.
(1987).

The first application of strip theory to a multi-hull and multi-module VLFS appears
to be by Che et al. (1990), and Ertekin et al. (1990). In their work, the rigid module,
flexible connector model (RMFC) is proposed for the case in which the module is much
stiffer than the connector. Application of using two-dimensional strip theory to VLESs
are then reported by Ertekin et al. (1991), Hamida and Webster (1991), Riggs et al.
(1991), Wang et al. (1991), and Riggs and Ertekin (1993). A deficiency in this method is
that because two-dimensional flow is assumed, the out-of-plane fluid forces, which may
be particularly important for semisubmersible hulls, are not modeled, which can result in
substantial error. Riggs and Ertekin (1993) used Morison’s equation to represent the out-
of-plane fluid forces to improve significantly the results. Another method to improve
two-dimensional hydroelasticity considers the transverse deformation of the cross-
section by a hybrid approach (Wang, 1991).

Three-dimensional hydroelasticity theory has alsc been applied to VLFSs. Che et al.
(1996G) and Eriekin et al. (1950) used the RMFC model and the three-dimensional




hydrodynamic coefficients and wave exciting forces for a single module, ignoring the
fluid interaction between modules. Du and Ertekin (1991), Wang et al. (1991), and
Ertekin et al. (1993) extended this approach to include the hydrodynamic interaction
between modules. This approach was used for the hydroelastic analysis of a
100m x 1600m airfield by Ertekin et al. (1993), which appears to be the largest floating
structure considered in a three-dimensional analysis. To reduce the computational
requirements, the single-symmetry and double-symmetry of the structure were exploited
by using the single-plane and double-plane composite source distribution method (Wu et
al., 1993). In the single-plane composite source distribution method, the calculation
domain of the fluid problem only involves one-half of the wetted surface (Wu, 1984),
while in the double-plane composite source distribution method, only one-quarter of the
wetted surface is considered.

Using single or double symmetry source distribution methods can reduce
significantly the computational effort. Another efficient method to improve the three-
dimensional source distribution method, called iterative source distribution technique,
was proposed by Seidl (1991). The method allows, in principle, any number of surface
facets to be employed in the analysis. Initially a coarse grid is employed. Consecutive
iterations are performed (automatically) by subdividing a certain number of facets with
each iteration.

A useful resource for detailed information on recent developments in VLFS-related
work can be found in the Proceedings of the First International Workshop on Very Large
Floating Structures (Ertekin and Riggs, 1991).

1.4 Objective and scope of work

The objective of this research is io develop efficient techniques for hydroelastic

analysis of very large floating structures. Several different structural and fluid models
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are involved for the different types of VLFSs. Based on the above definition of a VLFS,
these techniques will specially consider the size and flexibility.

The well-developed hydrodynamic theory is the fundamental theory for solving the
hydrodynamic fluid problems. Existing two-dimensional and three-dimensional
hydroelasticity theories provide a basis for the hydroelastic analysis of flexible floating
structures. Therefore, they are reviewed in Chapter 2.

The fundamental formulations of structural mechanics, fluid dynamics and their
coupling, the key to hydroelasticity, are reviewed in Chapter 3.

The basic concept and formulation for three-dimensional hydroelasticity and the
general formulation for three-dimensional hydrostatic restoring coefficients are given in
Chapter 4. As mentioned previously, three-dimensional hydroelasticity theory is the
most general and accurate theory to date. Therefore, this theory is also described in this
work for completeness, specially for the coupling problem between structure and fluid.
As an example, quadrilateral fluid panels are coupled with quadrilateral thin shell
elements for the structure. The computer program HYDRAS3D-I, which performs the
coupling between structure and fluid, has been developed. The brief description of this
program can be found in Section B.5.

In Chapter 5, an alternative analysis method for two-dimensional hydroelasticity is
developed by using a consistent formulation for both hydrodynamic forces and
hydrostatic restoring coefficients. Strip theory is used to calculate the hydrodynamic
coefficients and wave exciting forces. The structure below the still water plane is
modeled, by the finite element method, as a nonuniform beam subjected to
hydrodynamic forces. Above the water surface, a three-dimensional model of the
structure is possible. Hydrodynamic matrices for added mass and damping, and wave

exciting force vectors are formed directly in the same manner as the structural mass



matrix and structural force vector. The resulting coupled equations of motion are solved
directly. The method is applicable to slender VLFSs with any stiffness distribution. This
method is applicable to several different structural models, such as a fully elastic model;
a rigid module, flexible connector model (RMFC); or elastic module, flexible connector
model (EMFEC). In addition, the hydrostatic restoring stiffness for the beam element is
also derived. The method has been implemented in the computer program HYDRAS-
2D. The brief description of this program can be found in Section B.1. The method is
applied to a multi-module VLFS model.

In Chapter 6, a three-dimensional frame model to incorporate the elasticity of the
structure is introduced. Morison’s equation (Morison et al., 1950) is used to determine
the fluid loading. This approach is applicable to structures which consist of tubular
members below the still water line. There is no restriction on the upper part of the
structure. Morison’s equation includes the effects of fluid acceleration and viscous form
drag in terms of empirically determined coefficients. Since the three-dimensional
potential problem is avoided, Morison’s equation is an efficient method for VLFSs
which use tubular columns and pontoons below the still water line. In addition, the
hydrostatic restoring stiffness matrix for a frame element is also derived. The method
has been implemented in the computer program HYDRAS-MORISON. The brief
description of this program can be found in Section B.2. The method is applied to a
multi-module VLFS model.

In Chapter 7, a composite 2-D/3-D hydroelasticity approach is developed for slender
VLESs. A three-dimensional structural model and a two-dimensional fluid model are
combined to obtain a new, efficient method. The method includes an accurate
description of the structure by a three-dimensional structural model and the

computational efficiency of a two-dimensional fluid model. Therefore, the responses are



not limited to the beam-like response of traditional two-dimensional hydroelasticity. In
addition, since a three-dimensional structural model is used, some modifications to the
two-dimensional flow problem can be made. For example, the three-dimensional
incident wave exciting force can be obtained based on the three-dimensional structural
model. This new method is very useful for the analysis of some twin-hull VLFSs.
Furthermore, this method is also useful for SWATH (Small Water plane Area Twin-Hull)
ship design. The method has been implemented in the computer program HYDRAS-
COMPOSITE. The brief description of this program can be found in Section B.3. The
method is applied to a simple, twin-hull structure and a SWATH ship.

Chapter 8 discusses three VLES models for which the methods developed herein are
applied. These structural models include a multi-module VLFS; an idealized twin-hull
structure used to verify the composite 2-D/3-D method; and a SWATH ship model. The
results obtained with the methods developed in this work, together with a comparison
with the results from general three-dimensional hydroelasticity, can be found in Chapter

9. Conclusions and recommendations for future work are made in Chapter 10.
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CHAPTER 2
BASIC CONCEPTS IN HYDROELASTICITY

2.1 Hydroelasticity

A formal definition of hydroelasticity was proposed by Heller and Abramson (1959):
“hydroelasticity is concerned with the phenomena involving mutual interaction among
inertial, hydrodynamic, and elastic forces.” The difference between this definition and
the traditional hydrodynamics is that hydroelasticity theory includes the elasticity of the
structure in the fluid-structure interaction problem. Therefore, two advantages can be
found in hydroelasticity theory. First, additional to the rigid body motion, the elastic
deformation of the structure is also considered in the wave generation. This reflects the
real situation so that more accurate results can be expected. Second, the coupled
structural dynamics and hydrodynamics problems are solved simultaneously. This
overcomes the disadvantage of the traditional two-step solution process (Ogilvie, 1971).
Hence, even for stiffer structures, hydroelasticity theory provides a general and unified
approach for dynamic analysis of ocean structures.

Briefly, the basic approach of hydroelasticity is to model the structure as an elastic
body (e.g., with the finite element method). The linear potential theory is used to obtain
the dynamic fluid pressure caused by waves and structural motion and deformation. The
structural and fluid problems are interfaced by the kinematic continuity condition on the
structural wetted surface. The hydrodynamic and hydrostatic pressures can be used to
form the fluid loads. The structural responses can then be obtained by solving the
coupled equations of motion.

Two solution techniques are used to determine hydroelastic response. One technique

is based on modal superposition. In this approach, the structural motion is represented
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by a linear combination of the normal modes of vibration of the structure in air (‘dry
modes’). The radiation potential is cbtained as a linear combination of the radiation
potentials for each mode. Modal structural properties and fluid properties are used to
form the modal equations. The second approach may be called a direct approach. In this
approach, the distribution of fluid forces are defined. Similar to that in the finite element
method, these distribution of fluid forces can be used to form consistent fluid coefficient
matrices and force vectors. The equations of motion are directly solved to obtain the
physical responses.

Although hydroelasticity theory has many advantages over conventional
hydrodynamics, this theory has not been widely applied in the design of floating
structures. In addition, for a VLFS, numerically efficient techniques for hydroelastic

analysis need to be developed.
2.2 Basic assumptions

In this work, linear structural dynamics theory is used for the structure. Methods
based on both the linear potential theory (ideal fluid) and Morison’s equation method are
developed. The following assumptions are made.

The structure is assumed to respond linearly, which implies that the stiffness matrix
and the load vector are independent of the displacements. This assumption requires both
linear, elastic material and (infinitesimally) small displacements. Linear structural
dynamics is applicable.

The structure is assumed to be freely floating and stationary (that is, with zero
forward speed). A global coordinate system (x-y-z), with the z-axis directed upward, is
used to describe the geometry and position. The hydrodynamic forces result from a train
of regular waves with a crest at x=0 (at time t=0), an incidence angle of § about the x-

axis, and propagating in the +x-direction, and also from the resultant motion of the
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structure. For linear potential theory, the structure is partially submerged in an
incompressible and inviscid fluid undergoing irrotational flow in infinitely deep water.
For Morison’s equation, the viscous form drag in terms of empirically determined

coefficients is considered.
2.3 Hydrodynamics

Hydrodynamics provides a basis for hydroelasticity. Hydrodynamics originated in the
fields of ship design and marine technology. An in depth discussion of hydrodynamics in
marine technology can be found in Marine Hydrodynamics by Newman (1977). Ship
hydrodynamics has been extended to apply to offshore structures. Representative topics
in this area can be found in Hydrodynamics of Offshore Structures by Chakrabarti
(1987), which has an extensive list of references on the subject.

Hydrodynamics based on linear potential theory has been developed to a high level.
In this area, two-dimensional hydrodynamics (strip theory) has been especially well-
developed. Significant work includes the ordinary strip theory (Korvin-Kroukovsky and
Jacobs, 1957; Jacobs, 1958), the rational strip theory (Ogilvie and Tuck, 1969), and the
revised ordinary strip theory (Salvesen, Tuck and Faltinsen, 1970). Strip theory is widely
accepted in naval architecture and offshore engineering because of its computational
efficiency and satisfactory agreement with experiments for rigid-body motions, and it is
still used to predict ship motions. However, since two-dimensional flow is assumed in
strip theory, no interaction is considered in the longitudinal direction. Therefore, strip
theory is only applicable to slender structures.

Three-dimensional linear potential theory has been developed and used in three-
dimensional hydrodynamics. Three-dimensional linear potential theory is applicable to
an arbitrary shaped body. The interactions between various parts of the whole structure

are rigorously treated. That is, the diffraction and radiation fluid motions are based on
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the entire structural body boundary. This leads to more accurate predictions of the
hydrodynamic pressure distribution and the estimations of wave exciting forces and
moments. Three-dimensional potential theory for rigid body motion has been discussed
in detail by Newman (1978) and Wu (1984), for example.

An essential feature of all two-dimensional and three-dimensional hydrodynamics
based on potential theory is that the structure is assumed to be rigid. Hence, only rigid
body motions can be predicted by conventional hydrodynamics. The internal forces and
stresses are determined by applying to the structure the fluid pressures and inertial forces
calculated in the hydrodynamic analysis for rigid-body motion. Therefore, this theory is

most likely appropriate for conventional structures but not for large, flexible structures.
2.4 Existing hydroelasticity theories

The concept of hydroelasticity, which was introduced in the late 1950°s by analogy to
aeroelasticity, has been discussed in several excellent monographs (Flax, 1960; Heller,
1964; Kito, 1970). The application of hydroelasticity in marine hydrodynamics has
received more attention after Bishop and Price’s work (1979). An extensive list of
references on hydroelasticity theory may be found in Wu (1984).

A significant contribution to two-dimensional hydroelasticity was made by the
research group of Bishop and Price. Two-dimensional hydroelasticity, based on strip
theory, is first introduced by Betts, Bishop, and Price (1977) to represent the generalized
hydrodynamic forces as an essential step in a unified dynamic analysis of ship response
to waves. A relatively complete presentation of two-dimensional hydroelasticity is found
in Hydroelasticity of Ships by Bishop and Price (1979).

Mode superposition is usually used in two-dimensional hydroelastic analysis. Before
1974, the ‘wet modes’ were employed. The calculation of ‘wet modes’ involves not only

the mechanical properties of the structure but also the fluid actions which makes the
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calculations more complicated. Later, Bishop and Price (1974) pointed out that by
employing the structural mode shapes in air (‘dry modes’), the calculations are
simplified. In addition, the orthogonality of the ‘dry modes’ can be used to simplify the
mode superposition procedure. In 1976, Bishop and Price (1976) examined the
relationship between employing dry modes and wet modes.

Briefly, in two-dimensional hydroelasticity, as formulated by Bishop and Price
(1979), the structure is modeled as a nonuniform Timoshenko beam, while the
hydrodynamic forces are calculated from strip theory. The continuous beam structural
displacement is represented by a set of mode shapes to reduce the degrees of freedom.
The modal fluid forces are calculated for each mode and then applied to the structure to
obtain the principal coordinates. Symmetric structural motions are excited by the
vertical (heave) hydrodynamic forces and antisymmetric motions are excited by the
horizontal (sway and roll) hydrodynamic forces.

An essential feature of two-dimensional hydroelasticity is that the structure is
assumed to be ‘beam-like’. Only beam-like motion, deformation, and corresponding
forces and moments can be predicted by this theory. Another limitation is that the
structure must be slender, because the hydrodynamic forces are calculated by two-
dimensional strip theory. Therefore, this theory can not be applied to an arbitrary
structure.

A general linear hydroelasticity theory was developed by Wu (1984). This theory is
based on conventional three-dimensional hydrodynamic theory. Therefore, it is
applicable to any arbitrary-shaped structure. An elastic structural model is used to
represent the structural motion and deformation, for which the finite element method is
used. Mode superposition is used, and the external fluid forces are expressed in terms of

the generalized forces corresponding to a set of principal modes. The radiation
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potentials resulting from structural deformation are first directly calculated in this
theory. Three-dimensional hydroelasticity theory is the most general and accurate theory
to date.

Although two-dimensional hydroelasticity has limitations, it is a very efficient
method, especially for large structures. Therefore, at the early design stage, this theory
can be used to provide basic data for design of slender structures. On the other hand, the
calculation of the three-dimensional velocity potential is computationally very time
consuming. It requires significant computer memory and CPU time. As such, it is

probably most useful as a final design tool.
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CHAPTER 3
FUNDAMENTAL FORMULATIONS FOR HYDROELASTICITY

3.1 Overview

It is well known that the interaction between the structure and the fluid may be very
significant. The fluid forces come not only from waves and currents, but also from
structural motions, and the behavior of the structure in water is much different from that
in air. This interaction complicates the dynamic analysis of offshore structures.

Structural dynamics has been studied extensively as evidenced by the large number of
textbooks and papers on the subject. The finite element method, which has been used in
structural mechanics and structural dynamics for several decades, provides a powerful
tool to establish the structural model in offshore structural analysis. The well-known
structural mode-superposition method has been applied to simplify the analysis of large
structural systems. These developments in structural dynamics provide the fundamental
theory for hydroelastic analysis of offshore structures.

Hydrodynamics has also been well developed. The linear potential theory has been
used in the motion response of offshore structures for many years. In addition, the
principle of superposition has also been applied to the ship-motion problem (St. Denis
and Pierson, 1953). The most difficult aspect of hydroelasticity is to determine the
coupling of the fluid and structural problems.

The general formulations for hydroelasticity are given in this chapter. The pertinent
aspects of structural mechanics are reviewed first. The fluid dynamics, in particular
linear potential theory and Green function method, are then discussed for the purpose of
determining the fluid loads for hydroelastic analysis. Finally, the coupling of structural

dynamics and hydrodynamics is introduced.
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3.2 Structural mechanics

The study of hydroelasticity of offshore structures is primarily for structural analysis
and design. The goal of this study is to provide structural responses, such as structural
motions and deformations, internal forces, and strains and stresses under the fluid
actions, for engineering design. Therefore, the equations of structural mechanics are
used to form the foundation, and the hydrodynamic forces are expressed such that they
can be easily fitted into the formulations for structural analysis. In fact, very little work
in hydrodynamics has been done from a structural design viewpoint. For this reason, the
linear theory of structural dynamics, finite element formulations, and mode

superposition method are discussed in this section.
3.2.1 Dynamic equations of motion

The finite element method is used for structural dynamic analysis. In this case, the

equations of motion for the linear dynamic response of a structure can be written as

[M,] {D(®)} + [Cl{D®}+ K] {D()}
= {F M} +{FO}+ {F®}

3.1)

in which [M.], [C,], and [K] are the ndof x ndof structural mass, damping, and
stiffness matrices, respectively; ndof is the number of displacement degrees-of-freedom;

{D (1)}, {D(t)},and {D(t)} are the ndof x 1 vectors of nodal accelerations, nodal
velocities, and nodal displacements, respectively; {F,(t)} is the ndofx 1 vector of
hydrodynamic forces; {F.(t)} is the ndof x 1 vector of hydrostatic restoring forces;
and {F, (t) } is the structural load vector (i.e., loads which are not fluid related, such as
from machinery vibration). Structural weight and buoyancy forces, in equilibrium, are

excluded from Eq. 3.1. That is, the displacements are measured from the static
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equilibrium position.

Eq. 3.1 represents a system of linear, second order, ordinary differential equations
which govern the motion in the time domain. Superposition can be used to decompose
Eq. 3.1 into two equations: one related to structural loads, and the other to the fluid
loads. In this study, only the equations which are related to the fluid loads are considered

here

[M] {D,(®)} + [C] {D(®} + [K] {D:()} + [K] {D,(D} = {F (D} G2

where {D;(t)} is the vector of nodal displacement vector caused by fluid loads. The
restoring forces have been expressed by {F.} = —[K{] {D(t) }, where [K/] is the
hydrostatic restoring stiffness matrix which will be discussed later. For convenience,
{D,(t) } isreplaced by {D (t) } in the following.
The structure is assumed to be excited by a train of regular, long-crested waves with
frequency @ and a crest at x=0 (at time t=0). The resulting linear fluid forces, {F;(t)},
are most conveniently determined in the frequency domain. The response of a structure

to regular, harmonic excitation of the form

{F,(0} = {F}e ™ (33)

in which i = J—_l , can be represented as

{D()} = {D}e™ 3.4)

{D} and {F;} are time independent, and, in general, they are complex quantities.

Substitution of Egs. 3.3 and 3.4 into 3.2 results in

(-0’ [M] -io [C] + [K] + [K]) {D} = {F} @3.5)
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Eq. 3.5 will be considered first from a structural dynamics viewpoint and then from a

hydrodynamics viewpoint.
3.2.2 Finite element formulation

The finite element method is firmly established as a powerful and popular analysis
tool, especially for structural mechanics. Since the floating structure will be modeled by
the finite element method for hydroelastic analysis, the basic concept and procedure of
this method are reviewed here. The Euler-Bernoulli beam element is used as an example.

The most popular finiie element approach is based on an assumed displacement field
(see Cook et al., 1989). The most straightforward formulation of the equations is at the
element level. As such, it is convenient to define a local (element) coordinate system

, Y, z), as distinguished from the global (structural) coordinate system (x,y,z). The
displacement vector {u}, which usually contains the three translational displacement
components, is written in the local coordinate system as {u} = {u,v,w} T It is
assumed that the displacements {u} can be adequately interpolated from {d}, the vector

of the element nodal displacements in the local coordinate system:

{u} = [N] {d} (3.6)

where [N] is the matrix of interpolation functions. It should be pointed out here that Eq.
3.6 can be used to calculate the displacements at any point (i, §, Z) within the element
provided that the nodal displacements {d} have been obtained. (The displacements
within the element will be required later to form the body boundary conditions for the
fluid problem.) The interpolation functions depend on the element type, as does the
dimension of the nodal displacement vector. At this point, the formulation is general and

the particular element type nieed not be specified.
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The velocity vector {u} can be written, noting that the interpolation functions are

independent of time, as

{u} = [N] {d} 3.7

and the acceleration vector {ii} can be written as

{a} = [N] {d} (3:8)

The element strain vector {€} is obtained from displacements by differentiation:

{e} = [0] {u} 3.9)

where [0] is a differential operator matrix obtained from the strain-displacement

relations. With Eq. 3.6, Eq. 3.9 yields

{e} = [B] {d} (3.10)

where [B] is the strain-displacement matrix:
[B] = [4] [N] (.11)

The constitutive relations are represented by

{e} = [C]{c} or as {o} = [E] {e} (3.12)

where {c} is the element stress vector; [C] is a matrix of material compliances; [E] is a
matrix of material stiffnesses, and [E] = [C] .

Equations that govern the dynamic response of a structure or medium will be derived
by using the principle of virtual displacements (see for example, Bathe and Wilson,
1976). This principle staies that the equilibrium of the body requires that for any

compatible, small virtual displacements, {du}, imposed onto the body, the total
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internal virtual work is equal to the total external virtual work.

To use the principle of virtual displacements, the inertial force and damping force
need to be defined. If the diagonal matrix [IE] is defined such that the three
translational mass densities are on the diagonal, then the inertial force (per unit volume)
can be written as [m] {i}. The energy-loss mechanisms are not well understood and
the actual damping mechanism is usually approximated by viscous damping. Thus, it is
assumed that the structural damping forces are proportional to the relative structural
velocities. If [x,] is used as a material-damping parameter matrix analogous to
viscosity, the structural linear damping forces (per unit volume) can be written as
[x.] {u}.

The principle of virtual displacements, for a single element, requires

[ (ouy" (F3av+ [ (su}"(F}dS+3 {6u}" {p;} + {84} {F..}
A S, i=1 (3.13)

= [ ({8e}" {o} + {Bu}" [m] (i} + {Bu}"[x,] {i})dV

where {6u}, {0e} and {dd} are small, arbitrary, compatible virtual displacement,
strain and nodal displacement vectors, respectively; {F,} are the body forces; {F_ }
are the surface tractions; {p,} are concentrated loads that act at a total of n points on the
element; {8u,} is the virtual displacement vector of the point at which load {p,} is
applied; {F, } is the internal forces at the nodes; the volume integration is carried out
over the element volume V_; and the surface integral is carried out on the element
surface S,.

Substitution of Egs. 3.6, 3.7, 3.8, 3.10, and 3.12 into Eq. 3.13 results in
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{6d}"[ [ [BI"[E] [B]dV {d} + [ [N]"[m] [N]dV {d}

+ | [NI" [x,] [N]dV {d} ]
v

(3.14)

= {sd}T[ [INI"¢F,3aV + [ [N]"{F.}dS+ Y [N]" {p} + {Fm}}

i=1

in which [N;] is the interpolation function matrix evaluated at the coordinates of the

point at which load {p,} is applied. Since {dd} is arbitrary, Eq. 3.14 can be written as

[m] {d} + [c] {d} + [K] {d} = {r™} + {r"} (3.15)

where the element mass matrix [m], damping matrix [c], and stiffness matrix [k], in the

local coordinate system, are defined as

[m] = [ [N]"[m] [N]dV 316
v

el = [INI"[x] [N]dV 317
ve

[k] = [ [BI"[E] [B]dV (.18)

eXt

the external load vector {r""} is defined as

™} = [INI"{F,}dV + [ [N]"{F.}dS+ 3 [N]" {p;} 3.19)

i=1

and the internal force vector {r™} is equal to {F.}, which will be canceled when
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elements are assembled.

The element mass matrix [m] and damping matrix [c] in Eqs. 3.16 and 3.17 are called
the consistent mass and consistent damping matrices. These matrices are symmetric, as
is the element stiffness matrix. Generally, the consistent matrices [m] and [c] are positive
definite. That is, using the mass matrix as an example, the kinetic energy
% {d} T [m] {d} is positive for any nonzero velocity vector {d} .

Often, the element matrices are formed in element local coordinates. Hence, the
assembly of the element matrices to form the structural matrices includes the coordinate

transformation from local coordinate (x,y,z) to the global structural coordinates

x,y.2):

[m] = [T1"[m] [T]  [c] = [TI"[c][T]1 [k] = [TI"KI[T] G20

where [T] is a transformation matrix. [T] is a block diagonal matrix with matrix [T,]

on the diagonal. [T,] is defined such that

(A} = [T,] {A} (321

in which {K} and {A} are, respectively, the vectors of components in the local and
global coordinate system of an arbitrary vector. [m.], [c.], and [k ] are element
mass, damping and stiffness matrices, but in the global coordinate system. The local

element load vectors can be transformed to the global element load vectors as

[ = [T]" {r™} (3.22)

The structural matrices [M], [C], and [K] are constructed by the conceptual expansion
of element matrices [m_.], [c.], and [k.] to ‘structural size’ followed by addition,

which can be written symbolically as
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nelm nelm nelm

IM] =% [m] [C]=73I[c] I[K]-=73} I[k] (3.23)
e=1 e=] e=1

The global structural load vector {F} can be assembled in the same manner from the

element load vectors {ri™}.

nelm

{F} = > {r} (3.24)

where nelm is the number of elements.
3.2.3 Three-dimensional frame element- an example

Since the three-dimensional frame element, shown in Fig. 3.1, is frequently used in
the following chapters, it is discussed in detail here. ()—t, §, :;,) is the element local
coordinate system, in which the X axis is directed from node i to node j;and ; and z are
principal axes of the beam cross section. Each node has 6 displacement degrees of

freedom. The nodal displacement vector {d} can be written as

{d} = [db dzs ds, d4, ds’ de’ d7, ds’ dg, d109 dw d12] ' (3.25)

in which the components d,, d,,d, and d,, d,, d, are the translational displacements at
nodes i and j, respectively; while d, d,, d, and d,,d,;,d,, are the rotational
displacements at nodes i and j, respectively.

The displacement field vector {u}, in local coordinates, contains six components:
{u} = [u: vV, W, e;a e;,a 9;] T (3.26)

where u, v, and w are, again, the three translational displacement components in the
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X, ¥, Z directions, respectively, and 6, 9;, and O; are the corresponding three rotational

displacement components. The interpolation function [N] can be written as
[N] = [N,]+[Ny] (327

where [N_] isa 6 x 12 matrix of interpolation functions for axial and torsional degrees
of freedom; and N, is a 6 x12 matrix of interpolation functions for transverse

displacements. These interpolation functions are given in Eq. A2 and Eq. A4 in

Appendix A.
pA 12
0 *dfi _ dp, d,
y *d/y &) ¢ yd
X 3 9 8
Lo 4 Z_.. .

/gi j(17 do %
ds//

Figure 3.1 A frame element with 12 degrees-of-freedom

N

The mass density matrix [IE] is usually defined as

m, 0 0 0 0 0]
Omy 0 0 0 0
= [0 00 00
0 0 0m, 0 0
0 0 0 0 mg O
(0 0 0 0 0 m

where m,,, m,,, and m,, are translational mass densities in x, y, and z axis direction,

respectively; and m,, m,and m,, are roiational mass densities about x,y,and z
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axes, respectively. The mass densities are measured per unit length for the frame

element. In this case, Eq. 3.16 for the element mass matrix [m] becomes
[m] = [[N]"[m] [N]dL (329
LG

where L, is the element length. The 12 x 12 frame element mass matrix can be found in
Eq. A.10 in Appendix A.

The element damping matrix can be obtained in a similar manner to the element mass
matrix. However structural damping is often expressed in terms of damping ratios for
each mode shape. Therefore, if the response is sought using the mode-superposition
method, these damping ratios are introduced directly in the modal equations.

The element stiffness matrix [k] can be obtained by

[k] = | [B]"[E] [B]dL (3.30)
L,
The 12 x 12 element stiffness matrix can be found in Eq. A.11 in Appendix A.

When a beam element is subjected to an axial force in addition to a flexural load, the
stiffness coefficients k;; are modified by the presence of the axial force. The
modification is known as the beam geometric stiffness kg;;. The physical meaning of
ks; can be explained as the force corresponding to degree of freedom i and caused by a
change in orientation of the axial forces in the structure induced by a displacement at
degree of freedom j. These coefficients can be evaluated by application of the principle

of virtual displacements. The geometric stiffness coefficients may be expressed as

kej = [LLGON'NYL  for i,j = 2,3,5,6,8,9,11,12 331)
L

(3
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in which f, (x) is the axial force, which may vary along the element length; and N'; and
N'; are the derivatives of the corresponding interpolation functions defined in Eq. 3.27.
By using these interpolation functions to calculate the geometric stiffness coefficients,
the result is the consistent geometric stiffness matrix. The beam element geometric
stiffness matrix for the case where the axial force is constant can be found in Eq. A.14 in
Appendix A.

The assembly of the system geometric stiffness matrix can be carried out exactly in
the same manner as for assembly of the stiffness matrix. However a more efficient
approach is to add the element stiffness matrix and element geometric stiffness matrix to

form a combined stiffness matrix [k_] :
(k] = [k] + [kg] (3.32)

[k.] is then transformed to the global coordinate system before adding the element

combined stiffness matrix into the global stiffness matrix.
3.2.4 Mode-superposition method

In structural analysis, mode superposition is often used for dynamic analysis of large
structural systems. If the structural motion can be approximately represented by g mode
shapes, a large ndof-dimensional linear space of the displacements is reduced to a g-
dimensional (g « ndof) space of modal displacements. Such an approach is also useful
for hydroelastic analysis. Only a few structural mode shapes corresponding to the lower
natural frequencies need to be considered in hydroelasticity, because most of the wave
energy is concentrated at relatively low frequencies compared to the structural natural
frequencies. This reduction in dimensionality is especially important in the solution of

the radiation problem. A radiation potential can be obtained for each mode shape, and
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the total radiation potential can be obtained by superposing all radiation potentials for
the reduced set of mode shapes.

As is common in hydroelasticity (Bishop and Price, 1976; Wu, 1984), the so-called
‘dry’ undamped structural normal modes are used to perform the mode superposition.

The dry modes are obtained by solving the homogeneous, undamped form of Eq. 3.5:

MI{D®} +IKI{D®} =0 (3.33)
The solution to Eq. 3.33 has the form

—iwt

{D} = {wvi}e (3.34)
and
(D} = o’ {y}e " (3.35)

where @ is the angular frequency (radians per second), {y} is the vector of maximum

values, or amplitudes, and it is time independent. With Egs. 3.34 and 3.35, Eq. 3.33

becomes

(K] -w [M]) {y} =0 (3.36)
or

K] {w} =AIMI{w} or ([KI-AIMD) {y} =0 (3.37)

where A = @ and ([K] -A[M]) is the characteristic matrix of the structure. Eq.
3.37 is the so-called generalized eigenvalue problem. By solving Eq. 3.37, the
eigenvalues A, and corresponding eigenvector {w;} can be obtained. Correspondingly,

@, is called the ith natural frequency. For the first g eigenvalues, the generalized
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eigenvalue problem can be written as

[K][¥] = [M] [¥] [A] (3.38)

in which [¥] is the ndof x g mode-shape matrix with column i equal to {w,}, and
[A] represents a g x g diagonal matrix with values of A, on the diagonal.

The eigenvector {y,} defines only the ‘direction’ of the mode shape in an n-
dimensional space. That is, if o is a nonzero constant, then a {y;} is also an
eigenvector which corresponds to the same eigenvalue. Hence, for any ith mode shape

{u_/i} , where

{v;} [M] {y;} =m;>0 (3.39)

it is possible to define a corresponding eigenvector {y,} as

1 _—
3 = — {v, (3.40)
{w:} J;ﬁ{w}
such that
{w.} IM] {y;} =1 (3.41)

The process in Eqgs. 3.39 and 3.40 is called mass-normalization of the eigenvectors. If
not specially mentioned, the mass-normalized eigenvectors are used in the following.

For mass-normalized eigenvectors, there are the following relationships:
(v Ml {y} =8; (Li=12..9 (3.42)

(i} K1 {w} =A8, (Lj=12..9) (343)
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where 3, is the Kronecker delta. Eq. 3.43 means that the eigenvectors are also [K]-
orthogonal.

For a structure ‘in-air’, the first six zero frequency modes are defined here to be the
usual rigid body modes in ship-motion theory, that is, surge, sway, heave, roll, pitch, and
yaw, respectively. The corresponding rigid modal displacements [¥] at any point

(x,y,2) are given by

100

0 (z-25) —(¥-Yo)
010-(z-2zp) 0 (x—xg)
[F] = 001 (y-yo) —(x—xg) 0 (3.44)
000 1 0 0
000 0 1 0
000 0 0 1]

where (Xg, Yo, Zg) is the coordinates of the center of gravity.
The actual nodal displacements {D} can be expressed in terms of the mode shapes

[¥] as

ib} = [¥] {p} (3.45)
where {p} is the g x 1 vector of principle coordinates. Given the modal displacements at
the element nodes, the modal internal ‘force’ (forces and moments) matrix [F,] and
modal ‘stress’ matrix, [Z,], at a point within the element can be calculated. Therefore,

the corresponding internal forces and stresses within the element can be calculated,

respectively, by

{F} = [Fy] {p} (3.46)
and

{o} = [Z,] {p} (3.47)
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in which {F} is the internal forces and {c} is the stresses at any point within the

element.

When Eq. 3.5 is premultiplied by [¥] " and Eq. 3.45 is substituted into Eq. 3.5, the

result is

[0’ M1 ~io [C]] + K11 + [KF1] {p} = {F) 349
where

M*] = (%1 [M][¥] = [1] (3.49)
[C1 = [¥1'[C] [¥] (3.50)
[K'] = (21" [K][¥] = [M,*][A] = [A] (35D
(K] = [¥] [K][¥] (3.5
(£} = (21" (F} 353

where [I] is an identity matrix. Eq. 3.48 represents the g modal equations of motion,
while Egs. 3.49-3.53 define the structural modal mass, damping, and stiffness matrices,

modal hydrostatic restoring stiffness matrix, and modal hydrodynamic forces.
3.3 Fluid dynamics
3.3.1 Fluid forces

When a structure is floating in an ideal fluid, the fluid pressure acting normal to the
structural wetted surface will affect the motion. Therefore, to calculate the structural
loads caused by fluid forces, the fluid pressure must be calculated first.

It is well known that for irrotational flow the total velocity field can be represented

simply by the gradient of the total velocity potential ®,. In linear wave theory, the total
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velocity potential is the summation of the incident wave potential ¢;, the diffraction
wave potential ¢, and radiation wave potentials ¢;. The total velocity potential satisfies

Laplace’s equation, which can be written as

2 2 2
ob, 0D, 0@
VO=—"+— +— =0 (3.54)
0x Oy oz

For irrotational, unsteady flow, the fluid pressure p; can be calculated from Euler’s
integral, which can be written as

= - (gﬁlvq) I+ z') (3.55)
Pr P a2 ¥ T8 -

where p is the water density; g is the gravitational acceleration; z' = z—z_; z is the
vertical coordinate of the position at which the pressure is measured; and z, is the
vertical coordinate of the still-water plane. In Eq. 3.55, the first term is the
hydrodynamic pressure, which comes from time-dependent flow; the second, nonlinear
term is also hydrodynamic pressure, which is due to the flow velocity; and the third term
is the hydrostatic pressure. In the linear theory, the higher-order nonlinear term is
dropped.

The distributed pressure force {F_} normal to the wetted element surface in local

coordinates can be calculated from the pressure distribution as

{F,} = py{n} (3.:56)

where {ﬁ} is the normal vector of the wetted surface at the point (§, ;, ;,) in the
element local coordinate system. The vector {ﬁ} is directed out of the fluid, and it can

be written as
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T
{n} = [n; n, nz] (3.57)
The calculation of the normal vector in the local coordinate system will be discussed in
Chapter 4.
Eq. 3.56 can be substituted in Eq. 3.19 to form the local external load vector for each

element:

{*} = [[INIT¢E,}dS (3.58)
Sﬂ
Eq. 3.58 will be used often. In the linear theory, for the sinusoidal wave the time-

independent part of hydrodynamic forces can be written as

{*} = iop[[[N]" {n} ®dS (3.59)

cXt

The local external element load vector {r,”} must be transformed to the global

coordinate system and then added to the global external load vector.
3.3.2 Linear Potential Theory

Based on the assumptions of an incompressible, inviscid fluid and irrotational flow,
there exists a velocity potential & (%, y, z, t) which is a complex function of position
and time. This potential function satisfies Laplace’s equation in the fluid domain. In the

three-dimensional case, it is written as
AD,(x,y,2,t) =0 (3.60)

The fluid velocity vector, {V (x,y, z,t) }, is given by the gradient of the potential

function
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{V&x,y,2,0)} = VO (x,y,%1) (3.61)
where V is the vector gradient operator:

T

v=|80238 (3.62)
Ox Oy 0z

If the wave height is very small compared with the wave length, the linear potential
theory is applicable. The total potential ®; can be decomposed, if monochromatic
waves are assumed, as

q
@, = (¢1+¢D+ ZPA),-J e =@ (3.63)
ji=1
where ¢, is the incident wave potential; ¢,, is the diffraction wave potential; ¢; is the
radiation potential for the jth mode; p; is the principal coordinate for mode j; and @ is
the time-independent part of the total velocity potential. ¢, is the potential for the case
when there is no structure; ¢, is the modification to the potential due to a fixed
structure. ¢; is the potential which results from the structure vibrating in the jth mode
shape in an otherwise calm fluid. All the potentials must satisfy Laplace’s equation in

the fluid domain. In addition, they must satisfy the linear boundary conditions:

I. Linear free surface condition:

od od.
—2T+g—T=O or @—kd):O on z =12, (3.69
ot oz oz

where k = 0°/ g is the wave number in infinitely deep fluid and ¢ = ¢; or &, or ¢,

. Sea-floor condition:
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| &

lim

i =0 3.65)
z2->-00) (

N

OI. Radiation conditions (for the diffraction and radiation potentials):

Sommerfeld condition in three-dimensional problems:

] v2(g . _

where R = Jx®+y” and k is the wave number, and for y-z plane two-dimensional flow

tim {ZFik}¢ = 0 3.67)
Yy —ico ay

IV. No-flux condition on the body wetted surface

ob

5 = () () (3.68)

where {u} is the velocity vector of the body wetted surface, which excludes e and
{n} is the normal vector of the fluid domain which is shown in Fig.3.2. Eq. 3.68

becomes for the diffraction potential

5 &y Oy

o + =0 —_— = ——— 3.69
o (1 9p) or = 2 (3.69)
and for the jth radiation potential

&, .7

o = {4} {n} (3.70)

The incident wave potential can be easily solved by using the method of separation of

variables, and can be expressed for deep water as
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120, ik(xcosP+ysinp) kz'
(0]

¢, = — (3.71)

The diffraction and radiation potentials may be solved by using the Green function

method.
3.3.3 Green Function Method

The diffraction and radiation potentials can be solved by different methods. One of
the most convenient methods is the Green function method (see for example, Frank,
1967; Yeung, 1973; Faltinsen and Michelsen, 1974; Garrison, 1977; and Garrison,
1984), which is based on Green’s second identity.

In a three-dimensional fluid domain V, bounded by a closed surface S, if there are two
scalar functions ¢ and G, which are second differentiable in V, and first differentiable on

S, then Green’s second identity states

[[(62-6R)as = [[f@v'c-cv'p)av am
% on on ’
where % is the normal derivative, and the normal vector of the surface S is pointing out

of the fluid domain. In this case, let ¢ be the velocity potential that satisfies Laplace’s
equation, and the second term on the right hand side of Eq. 3.72 will disappear.
If a suitable function G(P, Q) can be found, the right hand side of Eq. 3.72 can be

expressed as
[[fe@ VG, 0 av = ap(P) 373

where P=P(x,y,z) is the field point in the domain V or on the surface S, =0 (€, 1, {) is

the source point (which will be explained later) in the domain V or on the surface S, and
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o is a constant. If such a G(P, Q) can be found, Eq. 3.72 becomes

[6@F L2 6@, 2] - app) 679

This means that the potential ¢ (P) at any point P in V or on S can be determined by the
function and its normal derivative.

From Eq. 3.73, the function G(x,y,z) satisfies the following Poisson equation

V'G(P,Q) = ad(P-Q) (3.75)

in which & (P — Q) is the Dirac delta function. This function has the following property

for a well-behaved function f(P)

[[[tms@-0)av =£Q) (3.76)

One of the particular solutions of Eq. 3.75 is a Rankine source given by

oy 1
G (P, = - 3.7
R T ¥ G0
where r(P, Q) is the distance between point P and point O:
r(RQ = /(-8 + (-m)’+ (-0’ = R a7

From Egq. 3.77, G (P, Q) will be singular when point Q approaches point P. Therefore,
the Green function method is also called the singularity distribution method. It is also
known that by definition of Eq. 3.77, G (P, Q) is a potential at any point P due to a unit

oG (P, Q)

source located at point @, and is also a potential at any point P due to a unit
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dipole located at point Q and having its axis in the normal direction {n}.
It should be noted that if there is another function H(P, Q) which satisfies Laplace’s

equation in the fluid domain V, then

1
(P, Q)

G@®,Q =- +H(P, Q) (3.79)

is also a solution of Eq. 3.75. G(P, Q) defined in Eq. 3.79 is the Green function. The
reason for adding this additional harmonic function is that if a suitable function H(P, Q)
can be found such that the Green function satisfies all other boundary conditions except
the body boundary condition, the surface integration in Eq. 3.72 need only be evaluated

on the body surface.

Figure 3.2 Three-dimensional fluid domain for velocity potential

Substitution of Eq. 3.79 into Eq. 3.73, if the singular point P(x,y,z) is isolated by
enclosing it with a sphere of small radius € (when P is in V) or a hemisphere of small

radius € (when P is on S), as shown in Fig. 3.2, then G(P, Q) will be harmonic outside
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this isolated region and the volume integral, by knowing

. 1 _ 0 P-‘#Q
VG_Vr(P,Q) = {oo P=0 (3.80)
becomes
-4nd (P) PeV
[{[jov'Gav = { 2np(P) PeS (3.81)

0 PeVus

Eq. 3.72, then can be written as

jj(d»(Q)aG‘P 2 6,022 )

—4nd (P) PeV (3.82)
= { -2t (P) PeS
0 PegVous

Eq. 3.82 is a general Green’s third identity. Now, the potential at any field point can be

written in a general form as

o (P) = aII(MQ)aG(P D _6p,0 29D

(3.83)
where o is a constant, which is equal to —11; when Pisin 'y, _517—5 when P is on S, and
0 when P is outside the domain V UL §. From Eq. 3.83 and the definition of the Green
function G(&, Q), it can be seen that the velocity potential ¢ (P) at any field point P
inside the fluid domain V or on the surface S can be expressed by the sum of a

% (Q)
on

distribution of sources on the surface § with the density - and a distribution of

dipoles on the surface S with the density ¢ (Q) . For this reason, Q (&, 1, {) is called the
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source point.

To obtain the fluid pressure forces, only the values of the potential located on the
structural wetted surface need to be calculated. This means that the field point P will be
limited to the wetted surface. For source point Q, if they are distributed on all surfaces,
which include free surface S, sea bed surface S, infinite surface S, and wetted
structural surface S,, it may be impossible to calculate velocity potential by using Eq.
3.83. If the additional term H(P, Q) is chosen such that the Green function G(P, Q) also
can satisfy the free surface condition, sea bed boundary condition, and the radiation
condition, then the velocity potential ¢ (P) must be calculated only on the structural

body surface. To demonstrate this, Eq. 3.83 can be written as

b (P) = aﬂ(tb(Q)aG(P 26,02 9)as

=°‘|:I +I +_[ +I:|(¢(Q) %G9 ~G(P, Q)%(Q))

(3.84)

Consider each boundary separately:
G D _ o e

1. When Q is on the sea bed, if the Green function satisfies ———— ,
integral on the sea bed surface will be zero since Q;HQ—) = 0.

2. When Q is on the control boundary at infinity, from Eq. 3.66, the velocity potential
satisfies liim {Rl/2 % - ik)d)} . When R — o,

0@ LD g, 022

12, #0G (P, 0)
on

_ RV (aG_g:,@ +ikG (P, Q)) R -

3

-G (P,Q)R"%e "‘R( %R’l - ik) (3.85)
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If the Green function satisfies the radiation condition

limR"” (9(}(%9—) +ikG (P, Q)) =0 (3.86)

Row

then the integral on the infinite boundary will disappear.
3. When Q is on the free surface, from Eq. 3.64

4@ L LD _6r,0RD 4TI 5,2
G (P, Q) (3.87
= (B892 w6 r0)e@

If G(P, Q) also satisfies the free surface boundary condition, the integral on free surface
will disappear too. Therefore, if the Green function G(£, Q) has been chosen such that it

satisfies

V'G(P,Q) = 8(P-Q) inV

——aG(;z’Q) -kG(P,Q) =0 on z=z,
lim oG (P, Q) _ 0 (3.88)
Z—>-0 an
. R2(GA,0) . _
lim R (——an—— +ikG (P, Q)) =

then the velocity potential ¢ (P) at any field point can be obtained by integration only

on the wetted surface S,, leading to a Fredholm integral equation of the second kind:

5G(P Q)

-G(P,0) % (Q)) (3.89)

o (P) = aﬂ(¢(Q)

In Eq. 3.89, the unknowns are the field velocity potential ¢ (P), the source density
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¢ (Q) , and dipole density ———=- 6¢ (9

. All of them are distributed on the wetted surface.
Fortunately, the Green funcuons have been studied quite well; some are found in

Weihausen and Laitone (1960).
3.3.4 Solution of the integral equation

In Eq. 3.89, the two ‘densities’ ¢ (@) and must be determined. The

% (Q)
on
unknowns can be reduced to one by constructing the interior problem (Newman, 1978).
The interior domain V, is the domain inside the structural body, Fig. 3.2.

Mathematically, there exists a Green’s third identity in the interior domain V; and on the

wetted surface S. It can be written as

[0 082 qe, Q)a"’(Q))

l l
b

—4nd, (P) PeV, (3.90)
= -2nd, (P) PeS
0 PegV.n§

where the normal vector {n,} is pointing out of the interior domain, and ¢; (P) is the
field velocity potential in the interior domain. By definition, {n;} = —{n,}, where

{n.} is the normal vector for the exterior domain, which is equal to the normal vector,
{n}, defined before.

Eq. 3.82 can be rewritten for the exterior problem as

[[(6.@ZLD g0 ® D)5

-4n¢, (P) PeV, (3.91)
= -2nd, (P) PeS
0 PeV.nS
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Eq. 3.90 and Eq. 3.91 are called interior and exterior problems, respectively. Subtracting
Eq. 3.90 from Eq. 3.91, by knowing that the normal vectors {n.} and {n;} are equal

but of opposite sign, results in

o @) =af[(@0.@ -0.0) TLLD _gp,0) (F2) ‘3“’°af1Q)))ds(3 .
b PeS,

1
2n($; (P) +9.(P))

in which o =

The basic two solution methods used to solve the potential from Eq. 3.92 are the
source distribution method and the dipole distribution method, which are briefly

discussed below.
3.3.4.1 Source distribution method

If the exterior and interior velocity potentials are set equal to each other, that is

$.(Q) = ¢,(Q@), and the source density o (Q) is defined such that

c(Q) = 5¢;a(nQ) - ad);flg) , then Eq. 3.92 becomes
1

b (P) = ;‘—”G (P,O)o(Q)dS Pes, (3.93)
T s,

Eq. 3.93 means that the field velocity potential ¢ (P) can be expressed by the sum of the
distribution of sources on the wetted surface S, with the density o (Q). To obtain
G (Q), the structural body boundary condition can be used. The normal derivative of
Eq. 3.93, together with Eq. 3.70 and ¢ (P) = % 4. (P) +¢,(P)) , results in



o@) + o j Jo@X8Das - D) 3" (ny 69

Eq. 3.93 and Eq. 3.94 are the two basic equations used in the source distribution method.
3.3.4.2 Dipole distribution method

If the normal derivatives of the exterior and interior velocity potentials are set equal

to each other, that is %.(9) = %:(Q) , and the density m(Q) is defined such that

on on
m(Q) = ¢,(Q) - ¢.(Q), then Eq. 3.92 becomes

_ 1 G2 Q)
b(P) = Sj | ——m(Qds  Pes, (3.95)
Eq. 3.95 means that the field velocity potential ¢ (P) can be expressed by the sum of the

distribution of dipoles on the wetted surface S, with the density m (Q) .
3.4 Coupling of structural dynamics and hydrodynamics

From the above discussion, the coupling of structural dynamics and hydrodynamics
for hydroelastic analysis of floating structures includes two key phases. First, the
radiation wave potentials are obtained independently for each of the structural dry mode
shapes required to represent the structural motion. The wetted surface boundary
conditions for solving the radiation potentials are defined in terms of the modal normal
velocity. Second, the hydrodynamic pressure from the incident, diffraction and radiation

waves are calculated to determine the fluid loads acting on the structure.
3.4.1 Struciurai body boundary condition

The modal normal velocity at a point on the wetted surface is the velocity in the
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normal direction for a particular mode shape. The modal velocity will be used in the
wetted surface boundary condition to solve the radiation potential. To calculate the
modal normal velocity, the structural normal vector, shown in Fig. 3.2, needs to be
calculated first.

The structural normal vector {n} = {n,, n, n3}T can be calculated in the global
coordinate system. The normal vector is a free vector for the plane, which means the
vector can be located at any position within the plane. For the numerical calculation, the
structural wetted surface is discretized by quadrilateral panels. The normal vector can be
calculated by the vector cross product of the diagonal vectors, which can be formed from
the coordinates of the four nodes. The vector cross product can then be normalized to

obtain the unit normal vector. From Fig. 3.3, the diagonal vectors can be written as

(x;-x))

{rs} = {(v,—-y) (3.96)
(z;-2)

and
(x,-%,)

{r2} = | (v,-Y,) (3.97
(2,-2y)

The unit normal vector of the quadrilateral plane can be written as

{rp} x {1y}
{15} x {1}

(3.98)

{n}=’
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(X3, Y3 23)
(Xg Ya» 24)

(X3 Y25 2,)
(X5, ¥1,2,)

Figure 3.3 Normal vector of quadrilateral panel

For a curved panel, as long as the size of the panel is small enough, the method to
calculate the unit normal vector for a plane panel can be used.

For each motion mode shape {w,} , the normal component of the displacement is

n* = {y} {n} (3.99)

where {y;} is a mode shape vector containing the three translational displacements at
the point (x,y,z) on the panel. Vector {n*}, whose jth component is n;l= , is defined as
the generalized normal vector. The panel mode shape vector {y;} can be obtained from
the global mode shape ['V]. For a sinusoidal wave, the modal normal velocity can be

written as

(i} {n} = —io {y;}" {n} = —ion* (3.100)

Eqg. 3.100 can be used in Eq. 3.94 to determine the source densities for the jth radiation

potential.

The generalized normal for the first six rigid body modes is obtained by substitution
of Eq. 3.44 into Eq. 3.99:
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- *—1 — —_
l'll nl
*
n * 1
| = } (3.101)
n, -n,(z2—-2g) +0;(y - ¥o)
Il;l= 1, (2 — zg) -3 (X — Xg)
_116*_ -1, (Y —¥g) +10,(X - Xg) |

3.4.2 General formulation for modal hydrodynamic forces

The hydrodynamic forces result from the hydrodynamic pressures, and hence, only
normal forces act on a structure in an ideal fluid. For the finite element method, the
normal pressure force is treated as any other distributed force acting on the element.
From Euler’s integral, the linear time-independent part of the hydrodynamic distributed

normal force at a point (x,y,z) on the wetted surface is, for a sinusoidal wave,
p{n} = iop®{n} (3.102)
and the corresponding ‘distributed’ modal force becomes

(£} = iop®[y]’ {n} (3.103

where [y] is the 3 x g modal shape matrix at (x,y,z) with column j equal to {v;} . The

total modal hydrodynamic force {Ff}* is obtained by integration over the wetted

surface:
npanel npanel

{Ff}* = Z ﬂimpd)[\y]T{n} dS = Z imp”tb {n}*dS (3.104)
e=1 5, e=1 5,
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The 3 x g modal shape matrix [y] are modal displacements in global coordinates.
In the finite element method, the displacements within the element are first calculated in
the local coordinate system and then transformed to global coordinates as follows. First,
the nodal mode shape matrix [y,] for an element can be extracted from the global
mode shape [Y¥] in the global coordinate system. The nodal mode shape matrix in the

local coordinate system, [\Tln] , can be obtained by the transformation

[v.] = [T] [w.] (3.105)

The mode shape matrix [G] at the point (x,y,z) within an element in the local

coordinate system can be obtain by interpolation as

[yl = [NI[v,] (3.106)
[w] can be obtained by transforming [\_y] in the local coordinate system to the global
coordinate system

-
[vl = [T\] [v] (3.107)

If the pressure p is used in Eq. 3.104, one has
npanel

(F3* = 3 [ {n}*pds (3.108)

e=18,

Eq. 3.108 is the general formulation for the modal fluid force given the fluid pressure. It
is also valid for the hydrostatic force calculation. The calculation of the generalized

normals will be discussed in Chapter 4.
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CHAPTER 4
THREE-DIMENSIONAL HYDROELASTICITY

4.1 Basic concept

Three-dimensional hydroelasticity theory (Wu, 1984; Price and Wu, 1985; Lee and
Lou, 1989) uses a three-dimensional finite element structural model and a three-
dimensional fluid model to describe the wave-induced motion problem, and mode
superposition is used in coupling the interaction of structural and fluid motions. This
method avoids the limitations of traditional three-dimensional hydrodynamics, which
provides only rigid body motions, and two-dimensional hydroelasticity (Bishop and
Price, 1979), which evaluates only beam-like motions and force resultants along the
longitudinal axis of the structure. To date, three-dimensional hydroelasticity represents
the most general and accurate theory for the hydroelastic analysis of very large floating
structures.

Since three-dimensional hydroelasticity theory is the most general linear theory in
hydroelasticity, the details of it will be discussed in this chapter with an example by
using three-dimensional quadrilateral thin shell elements to model the structure and four
node quadrilateral panels to model the fluid. The structural responses, such as motions
and deformations, internal forces and moments, and strains and stresses, are of most
interest to structural engineers for design. Therefore, this chapter explains three-
dimensional hydroelasticity theory from a structural viewpoint and considers the
hydrodynamic theory as a tool to obtain the fluid loads. In addition, the general

formulations for the hydrostatic restoring coefficients are discussed.
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4.1.1 Linear quadrilateral thin shell element

A finite element model is used to describe the structure for hydroelastic analysis of
floating structures. Various types of elements, such as, beam, plate, shell, truss and solid
elements, may be used to model the complex structure. The number of elements used to
model the wetted structure depend on the accuracy of the structural motions and
deformations required for the fluid-structure interaction problem.

To provide sufficient buoyancy for the structure, a large volume with relatively low
weight is required for the part below the still-water plane. Such structures typically are
‘shell-like’. Hence, one of the most useful finite elements used to model floating
structures is the linear quadrilateral thin shell element. The formulation of a basic
quadrilateral thin shell element is described in this section; many other formulations are
possible.

A quadrilateral thin shell element is shown in Fig. 4.1 in the global coordinate system
x-y-z. The element local coordinate system is denoted X - ; —z. The local z is directed
in the same direction as the normal vector defined by the fluid panels, that is, it points

into the structure.
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Figure 4.1 Quadrilateral thin shell element

The element has the capability to resist both membrane and bending loads. The

24 x 1 vector of element nodal displacements {d} in the local coordinate system is

T
{d} = [u,v,w,,0,, eyl’ 0,1, Uy, Vg, o0y Uy Vi W, O, ey4’ 0,.] 4.1
and the corresponding nodal force vector is

-ext

(T} = [FpFFyy My, M, M, F i Fopy o B B Flu M M M1 42)

x1> = yl> x1» yi> z1> © x2

u;, v; i=1,2,3,4 refer to the in-plane displacements and F , F ; i=1,2,3,4 refer to the

xi? * yi
membrane forces. w,, 0

M

0, i=1,2,3,4 refer to the transverse displacements, and

xi?

F. M, M, M,; i=1,2,3,4 refer to transverse shear and bending moments. 0,; i=1,2,3,4

do not contribute to the element forces and displacements. The element displacement

field {u} are interpolated from the nodal displacements by

fu} = [N] {d} 4.3)
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where [N] is a 3 x 24 matrix of interpolation functions.

To formulate a general quadrilateral thin shell element, it is convenient to define a
natural coordinate system in the element plane, as shown in Fig. 4.2. For the local &, 1
(natural) coordinate system, the origin is taken as the intersection of lines joining the

mid-points of the opposite sides, and the sides are defined by € = *1 and n = *1.

(;{2: §2)
(xl’ YI) (1’ —1)

Figure 4.2 Natural coordinates for a quadrilateral element

The natural and cartesian coordinates are related by the interpolation function as:
]
X
i
X,
%=N‘ON20N3ON“OX2 4.4)
0N, ON, 0 N; 6 NJfzx,
s
X,

¥

where ()_ci, ;i) are the (X, ;) coordinates of node i (i=1,2,3,4), and each interpolation
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function is defined as (Rao, 1989)

N, = i(1+CC;) (1+nm)  i=1,234 4.5)

(€, m;) are the (&, ) coordinates of node i (i=1,2,3,4) and they are given by

(Cl’ Th) = (—1’ "'1) (Czs 112) = (1, _1)

4.6
(Caa Tls) = (ls 1) (Cl: nl) = (_19 1)

The same interpolation matrix is used to transform the nodal displacements to the

displacement field in the element. For example, the in-plane displacements {u, v} are

u |N,ON,ON, ON, 0l||v, “n
v/ |ON,ON,O0N,O0 N, '

Much work has been done on quadrilateral bending elements (e.g., Cook et al., 1989;
Rao, 1989) and there are many possible formulations available. The vertical
displacement field w can be interpolated by the nodal vertical displacements and

rotations. Together with Eq. 4.7, the displacement field can be written as

u
{u} = {V} = [N] {d} “4.8)
w
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where [N] is a 3 x 24 interpolation function matrix:

00N00000N400000

NjO 0O 0 0ON,0 0 © 3
[N] = ON 06 0 000N, 0 0 000N, O O 0O0ON, 0 O 0 0] (4.9)

0 0 Ny NyNj;300 0N,y NpyNy0 0 0 Ny Nyy Ny

00 O N41 N42 N430

where N,, N,, N;, N, are given by Eq. 4.5. The other interpolation functions, which

involve the vertical displacements, can be written, respectively, as (Rao, 1989)

Ny = =2 (140 (- 14m) 24C+& +n+1)

Ny =3 (140) C14m) (-2-L+C +n+1)
“4.10)

Ny =3 (140 (140 <246+ -n+1)

Ny =3 (140 (L+m) (-2+L+C -n+1)

Np=—2 (140 (140 (- 1+m)

Np=-3 (140 (140" (- 1+m)
@.11)

Ny =2 (140 (1+0)° (1 +m)

No=(-1+0°1+0 (1+n)
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Ny ==2 (- 140) (- 1+m)’ (L +m)

Ny=2(1+0) (-1+m) (14m)

i 4.12)
Nyy=2 (140 (- 1+m) (1+m)’
No=-2(-1+0) (- 1+m) (1+m)’

The element mass and stiffness matrices can be formed based on this interpolation
function matrix by using Egs.3.16 and 3.18. The distributed element force can be
transferred to the equivalent nodal force vector in element local coordinate system by
using Eq. 3.19.

A mapping between the shell elements and the fluid panels is required to couple the
structural and fluid models. The principle of the mapping between a structural element
and fluid panel is that the structural motion must be related to the fluid motion through
the boundary conditions. A one-to-one mapping between structural elements and panels

is used herein, as it is the simplest approach and requires the least approximation.
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4.1.2 The coordinate systems for quadrilateral element

Figure 4.3 Global, local and natural coordinates for quadrilateral element

The definition of the global coordinate system x-y-z, the local element coordinate
system X —; —z, and the element natural coordinate system € —m are illustrated in
Fig. 4.3. If a triangle element is necessary to fit the structural surface, the numbering of
the four nodes are also shown in Fig. 4.3. The X axis is directed from node 1 to node 2,
and the z axis is parallel to the normal vector of the quadrilateral element. The local §
axis is then determined by the right hand rule.

The general vector { A}, with the components in the global coordinate system x-y-z,
can be transferred to the same vector {K} , with the components in the local coordinate

system x — § ~z, by the transformation

{X-} = [T,] {A} 4.13)

or
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COSXX COSXY COSXZ||x
= [cosyx cosyy cosyz| |y 4.14)

NI | A

COSZX COSZy COSZZ||Z

where [T,] is the transformation matrix which contains the direction cosines. From the
properties of the direction cosines, it can be easily shown that [TI]T[TI] = [1],
where [I] is an identity matrix. The procedure to calculate the direction cosines can be
found in many references (for example, Paz, 1985, pp. 364-368). The transformation of
the nodal displacement vectors involves the transformation of linear and angular
displacement vectors at each node of the element. Therefore, a 4-node quadrilateral
element requires the transformation of a total of eight displacement vectors. The
transformation of 24 x 1 nodal displacement vector {d } in the global coordinates to

the displacement vector {d} in local coordinates may be written in abbreviated form as

{d} = [T] {4,} 4.15)
in which

[T,] |

[T.]
[T,]
[T] = [T.] . 4.16)
[T,]
[T,]
B [T]]

Analogously, the transformation from nodal forces {r:“} in global coordinates to
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nodal forces {r } in local coordinates is given by

'y = [TI4{r)} @.17)
4.2 Three-dimiensional fluid model!

The three-dimensional velocity-potential problem has been described in Section
3.3.2. The incident wave potential in the fluid without a structure can be obtained easily
by solving the Laplace equation subject to linear boundary conditions. The Green
function method is introduced to solve the diffraction and radiation potentials, for which
the structure is present. The volume integral in the three-dimensional domain is
transferred to the two-dimensional surface integral by Green’s identity. A Green
function is selected which satisfies all boundary conditions, except on the structure, so
that the integration is limited to the structural wetted surface under the still-water plane.
The prescribed body motions, represented by the structural ‘dry’ mode shapes, are used
to define the boundary conditions for the radiation potentials.

The Green function integral on the structural mean-wetted surface is calculated
numerically. The structural wetted surface is discretized by a number of fluid panels.
The structural and fluid motions are coupled by mapping the structural mode shapes for
the structural elements onto the fluid panels. For simplicity, a constant velocity potential
is assumed at each fluid panel. Therefore, the boundary condition is evaluated at the

center of each fluid panel.
4.2.1 Fluid panels

The fluid panel method is used to solve numerically the velocity potentials by the
source distribution method. Because a constant source distribution is assumed on each

fluid panel, the panel size cannot be very large in general.
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Four node quadrilateral panels are adopted as the fluid panels to describe the
geometry of the structural wetted surface. If a triangular panel is necessary to fit the
structural surface, a four node triangle element can be used as shown in Fig. 4.3. A one-
to-one mapping between structural elements and fluid panels is used to couple the
structural and fluid motions, that is the fluid panels exactly correspond to the structural
shell elements on the wetted surface. Fig. 4.4 schematically shows the fluid panel

distribution on a single module.

Figure 4.4 Quadrilateral panel distribution on a single module

The total fluid panel number is npanel. For each panel, the coordinates of the four
nodes can be defined in the global coordinate system. Fig. 4.5 shows a fluid panel, in

which

{r;} = {(x;—x), (y;-¥), (—-2)} (i#j),i,j=1,2,3,4 (4.18)

represents a vectior from node i to node j; {n} is the normal vector of the fluid panel;
(x,¥,2) i = 1,2, 3, 4 are the coordinates of node i in the global coordinate system;

(X, ¥.z,) are the coordinates of the center of the fluid panel; X —; is the local
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coordinate system in the panel plane with z axis parallel to the normal vector {n}, which

has the same definition as the local coordinate system of the shell element.

(X3, Y3, 23)
(X4, Y4, Z4) 3

(xc’ Yo zc)

2
(X5 Y2 Z,)

(xl’ yl’ Zl) l

Figure 4.5 Fluid panel

The area of panel n, A, is the sum of two triangle areas:

1 1
A = §| {r,} x {rzs}[ +'2‘| {r} x {r34}| 4.19)

The center coordinates of the fluid panel can be calculated by taking L = n = 0 in
Eq.4.4 as

xX{ _INJON,ON, 0N, 0| |y, @20
y 0N, 0N, 0N, 0N _ol|x,

n="0
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The normal vector for each fluid panel is directed out of the fluid domain and into the
structure, as mentioned in Section 3.3.2. The normal vector in global coordinates can be
calculated by following the procedure in Section 3.4.1. The normal vector in local

coordinates is, by definition,
{n} = (0,0,1) @.21)
4.2.2 Generalized normal for three-dimensional panel

The generalized normal defined by Eq. 3.99 is in global coordinates. This generalized
normal can be used in the body boundary condition in Eq. 3.100. It is straightforward to
show that the generalized normal is the same whether calculated in the global or local
coordinate system.

The normal vector {n} of a quadrilateral element in the global coordinate system is
calculated at the center of the panel. From Eq. 4.13, the normal vector {n} has the

relationship with the normal vector {ﬁ} in local coordinates

{n} = [T] {n} @.22)

where [T,] has been defined in Eq. 4.14. {ch} is the displacement vector in the jth
mode shape, which contains only three translational displacement components. {\71;}
represents the same mode-shape vector but in the local coordinate system. {\lec} and

{w;} have the relationship

(v} = [T,] {v}} 4.23)

So the generalized normal calculated in the local coordinate system can be written as

62



— —c T _ c T T c T *
o, = {w;} {0} = (v} [TI [T {0} = €vj} {n} =n, @2

This means that the generalized normal can be calculated in either the local or global
coordinate system. Since the mode displacement at a point is usually calculated in the
local coordinate system, it may be more convenient to calculate the generalized normal
in the local coordinate system.

The jth nodal mode shape {y;},a 24 x 1 vector in the global coordinate system, can
be formed by extraction from the structural mode shapes {¥'}. The jth local nodal

mode shape {\—II,-} can be obtained by transforming {v;}, i.e.

(v} = [T] {v;} 4.25)

The jth mode shape vector at the center of the element in the local coordinate system,
{\4_/; }, can be interpolated from {\_ll,-} by setting € = m = 0 in the interpolation
matrix [N] in Eq. 4.9

(v;} = [N1._,{v;} @.26)

n=0

Finally, the generalized normal for each fluid panel can be calculated by

T
n' = {y;} {n} @27

By definition, the normal vector in the local coordinate system has only one nonzero
component, a 1 for the z component. Therefore, the generalized normal can be simply

obtained by taking the z component from the local mode shape {\;jc} .
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4.2.3 Three-dimensional velocity potential

For a linear problem, the total velocity potential for a sinusoidal incoming wave can

be decomposed, as in Eq. 3.63, into

q
@y = @ = (G+dprode = [dh +op+ Zp,-dnj e *.28)
j=1

in which ¢, is the incident wave potential; ¢y, is the diffraction wave potential; and ¢;

are the radiation wave potentials. The incident wave potential is given by

[gO. ik(xcosp+ysinP) kz'
180 e
®

b = — (4.29)

The diffraction and radiation velocity potentials need to be solved by using the Green
function method. The source distribution method described in Section 3.3.4 is chosen to
solve the velocity potentials. This method can be expressed by the following two

equations:

0P = 1-[[6(P.OYs@ds  Pes,
S,

aG( .0 s _ %.(P) @0

—c(P)+—H o (Q) ——=—= -

=4, (P)
in which G(P, Q) is the Green function; ¢ (Q) is the source density on the mean body
surface S,; u, (P) is the normal velocity of the mean structural surface.

The structural surface below the still water line is discretized by quadrilateral fluid
panels. Constant velocity potential (constant source density) at each fluid panel is

assumed. The normal velocity at point P in each panel is taken at the center of the panel.
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The jth normal modal velocity, which is equal to ~i® {\y;}T {n} = -io nj* , is used as
the body boundary condition to solve the jth radiation velocity potential. The
generalized normal nj* can be calculated in the panel local coordinate system as
mentioned in Section 4.2.2. Therefore, by using the constant fluid panel method,

Eq. 4.30 can be written for the jth radiation potential as

npanel
6P = 1= 3 5@ [ [6 (P, 0)as
i=1 as;

i=o @31)

upanel

0' (P) +— z 6. (Q) jj‘ "’Q) S = -ion* (P)

izn

where npanel is the total number of the fluid panels. Egs. 4.31 are true for all the fluid
panels. Therefore, a total of npanel linear equations exist in each equation of Egs. 4.31.

These two equations can be written, in matrix form, as

[7] {o} = {u,}
{6} = [G] {o}

4.32)

1
In the first of Eqs. 4.32, [J] is an npanel x npanel matrix with diagonal equal to >

while the off-diagonal terms J ; contain the integral in Eq. 4.31, which can be written as

npanel

Z J-IaG(PmQ)

4.33)

ni
i=1 AS;

izn

{o} isan npanel x 1 vector that contains the source densities on each panel; {u,} is
an npanel x 1 vector that contains the prescribed normal velocity in terms of the

normal modal velocity on each panel. It can be seen that matrix [J] depends on the
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Green function, mean body-surface shape, discretization, and the wave frequency, but
not on the body motion. [J] is called the influence coefficient matrix. In the second
equation of Eqs.4.32, [G] is called the Green function coefficient matrix, which
contains the integral term in the first equation of Eqs. 4.31, which is also not motion
related.

To solve the three-dimensional radiation velocity potential by the Green function
method, first one needs to form the influence coefficient matrix [J] for each wave
frequency. Then for each structural mode, npanel x npanel algebraic equations are
solved to obtain the source density {c;} at each fluid panel. The Green function
coefficient matrix [G] is formed for each wave frequency, and multiplied by {c—s } to
obtain the velocity potential at each fluid panel.

The remaining problems are the selection of the Green function and the calculation of
the influence coefficient and the Green function coefficient matrices. Fortunately, much
work has been done on these two problems. Wehausen and Laitone (1960) presented
significant work on the Green functions. Some forms of the Green functions also can be
found in Wu (1984). It can be seen, from Eq. 3.79, the Green function has a singularity
when the source point Q approaches the field point P. Therefore, the integration for
influence and the Green function coefficients need special consideration. A pioneering
study on this subject can be found in Newman (1986).

The diffraction wave potential also can be obtained by the Green function method.
Instead of using normal modal velocity at the structural mean surface, the boundary
conditions for the diffraction potential in Eq. 3.69 are used to solve the source density.
The jth modal diffraction wave force can be obtained by using the radiation potential and

the incident potential by the Haskind-Hanaoka relationship. It should be mentioned here
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that the Haskind-Hanaoka relationship cannot provide the pressure distribution. This

relationship is used here to calculate the modal diffraction wave force.
4.2.4 Hydrodynamic force vectors and matrices

After obtaining the incident, diffraction, and radiation velocity potentials, the linear
generalized (modal) hydrodynamic forces can be calculated by using Eq. 3.104. The
generalized incident wave force can be calculated by substituting the incident wave

potential ¢, into Eq. 3.104:

npanel

(F3* = 3 iopf{n}"0.as @34

n=1 (]

Similarly, the generalized diffraction wave force can be calculated by substituting the

diffraction wave potential ¢, into Eq. 3.104:

npanel

(Fo}* = 3 iop[f{n}*¢ods @39

n=1 e

As mentioned before, the diffraction wave force can be obtained by using the Haskind-

Hanaoka relationship. The jth modal diffraction wave force becomes
Oy
fp; = P!I‘bja ds (4.36)

Finally, the generalized radiation wave force can be calculated by substituting the

radiation wave potentials ¢, into Eq. 3.104, which can be written as
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npanel npanel
{F}* = Y iop[[{n}*9.dS = ¥ iop[[ {n}*¢; pds @37
n=1 S, n=1 S,
where summation convention is used in Eq. 4.37. The generalized radiation wave force
is related to the structural motion. Therefore, Eq. 4.37 can be written in the form of the

hydrodynamic coefficient matrix and the principal coordinates as

npanel

{F3* = Y iop[[{n}*¢, pdS = (o' [M"] +i0 [C]']) {p} @38)

a=1 e

where [Mg,] and [Cg] are added mass and damping matrices, respectively; the
subscript j and k represent, the jth modal force caused by the kth modal displacement.

The element ijk* of the added mass matrix is

npanel

My* = 3 %Re{im | j'n,.*q;kds} (4.39)
® s,

n=1
and the element C,jk* of the hydrodynamic damping matrix is

npanel

* P . *
Cor = 3 aIm{m) ;[ fn, ¢de} (4.40)
n=1 e
where Re and Im denote the real and imaginary parts of the complex functions,
respectively.
4.3 Hydrostatic restoring coefficients in the three-dimensional model
“Hydrostatics is the oldest and most elementary topic of naval architecture and fluid

mechanics” (Newman, 1977). The hydrostatic restoring coefficients for rigid body
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motion of floating structures have been studied very well. However, the hydroelastic
restoring forces which result from flexible deformations of very large flexible structures
may be significant compared with elastic forces. Therefore, the study of hydrostatics
becomes an important topic for very large floating structures.

The formulation for generalized hydrostatic restoring coefficients is discussed in this
section. The formulation discussed here is based on the mode-superposition and panel
methods. The general formulation for hydrostatic restoring coefficients is discussed
first. The traditional hydrostatic restoring coefficients then become a special case of the
general formulation presented here. The consistent formulation of hydrostatic restoring
coefficients for single beams and frame structures can be found in Chapters 5 and 6,

respectively.
4.3.1 Generalized hydrostatic restoring coefficients

The term —pgz' in Euler’s integral of Eq. 3.55 is the hydrostatic pressure, which gives
rise to the hydrostatic restoring forces. Again, p is the water density; g is the
gravitational acceleration; z' = z—2z,; and z, is the vertical coordinate of the still-

water plane. Fig. 4.6 shows the definition for the hydrostatics.

Figure 4.6 The definition for hydrostatics
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When a structure floats, from Archimedes’ principle, the buoyancy force is equal to the

structural weight. If the weight is {W}= [0, 0, F] T, then Archimedes’ principle gives
w3 = [[fog tx3av (4.41)
\ 4

where V is the water volume displaced by the structure and {k}=[0, 0, 1] * This volume
is surrounded by the wetted structural surface S, and still water plane surface S;.
The hydrostatic force can also be calculated by integrating the hydrostatic pressure,

—pgz', in the normal direction over the mean-wetted surface, which can be written as
{W} = -[fpgz {n}ds 4.42)
Sb

where the normal vector {n}, as before, points out of the fluid domain. If the still-water-
plane surface S is added to this integral of Eq. 4.42, from Gauss’s divergence theorem,

this surface integral can be converted to a volume integral
~[fpgz {n}ds-[[pgz {n}as = [[fogtx3av = (w3 4.43)
S, S, v

where the minus sign in the front of the surface integral is canceled with the minus sign
implicit in the normal vector. On the still water plane surface S, the hydrostatic pressure

is equal to zero. Therefore, Archimedes’ principle can be also expressed as

{W} = —[[pgz {n}ds (4.49)

b

In this case, the structure is in the equilibrium position. Hydrostatic pressure tends to

restore the structure to this equilibrium position from a disturbed position. In other
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words, a disturbance of the structure will modify the hydrostatic pressure acting on the
structure, and the resulting pressure forces and moments are called hydrostatic restoring
forces.

Suppose that the disturbance in the vertical direction is w, which is a function of the

position. Then, after disturbance, the vertical coordinates 2 of each position is given by

Z=z2+w 4.45)

and the hydrostatic pressure at this position becomes

—-pgZi = —-pgz'—pgWw 4.46)

The hydrostatic force {F,,,} acting on the wetted surface can be obtained by

{F,.} = ~[fpez {n} ds-[[pgw {n}ds @47

S S,

b b

The first term of Eq. 4.47 is equal to the structural weight from Eq. 4.44. Only the

second term results in hydrostatic restoring force, which can be written as

{F.} = -pg[[w{n}ds 4.43)

b

where {n} is the wetted surface normal vector in the global coordinate system. The jth

modal hydrostatic restoring force can be calculated by

F." = (v} {E} =-pg[w{v;}" (n}ds=—pg|fwn'as

s 4.49)

b b

i=12,..,q
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in which {y;} is the jth mode shape vector at a point in the global coordinate system,
which contains three translational displacements only; nj* is the jth generalized normal.

From the above discussion, it is possible to determine the modal hydrostatic restoring
forces for displacements associaied with any mode. The vertical displacement w at any

point on the wetted surface is

w= (v} () 450

where {y,} is the vertical modal displacement vector at the point, which can be
extracted from the mode shape [W]; and {p} is the principal coordinate vector. When
the first g mode shapes are used in mode superposition, {y,} isa g x 1 vector and it
can be expressed as {\uw}T = {Wu1> Vo> ---» Uy} - Thus generalized hydrostatic

restoring force vector {F,=I= } can be written as
(F*} = —[pg [[tw™ ) {ww}Tds} (p} = -IK}1 {p} @

where {y} is the mode shape matrix at a point which has column j equal to {;} and
[Kf*] is the newly defined generalized restoring coefficient matrix. The elements of

[Kf*] are given by

T .
Koo = pgff{w} (0}v,ds = pg[fn*yv,.ds jk=12..q 452
S, S,

b b

Eq. 4.52 is the general formulation for the generalized restoring coefficients.
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4.3.2 Rigid body hydrostatic restoring coefficients

The conventional hydrostatic restoring coefficients for rigid body displacements are a
special case of Eq. 4.52. For rigid body motion, if the surface integral in Eq. 4.52 is
extended to include the still-water plane surface, then it becomes a closed surface
integral. Gauss’s divergence theorem can be applied to this integral and it can be written

as

pef[ (w3 (0} w,dS+pgf[ (w3 (n} v..dS = —pgf[[V({w}v,0dv @5y

sb £

where V is the gradient operator as defined in Eq. 3.62, and the minus sign in the front
of the volume integral, again, is because the normal vector points into the body. So the

hydrostatic restoring coefficients can be written as

Keo =pgff (v} {n}v,,dS

Sy

= —peff[V (Wl v AV -peff ()" {0} w.ud5

4.54)

For heave restoring coefficient Km* , W3 =1 and {wy,} = {0,0,1}, and
therefore V ({vy,} v,;) = 0. The volume integral in Eq. 4.54 is equal to zero. On the
still water plane, the generalized normal vector n3* = {vy,} T {n} = -1, which points

into the structure, so {\|/3}T {n}vy,, = —1.Hence

Kf33* =0- pg‘” (-1)dS = pgA; (4.55)
s

1

where A, is the still-water-plane area. Eq. 4.55 can be recognized as the heave restoring

coefficient in naval architecture.
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For roll restoring coefficient Km* , Yws = Y~ Yo and

T T
{vad = {0,-(z-29), (Y-Yo) } . Therefore, V({w.} v.)) =-(2-25), and
n4* = {w4}T{n} = ~n,(z —2Zg) +n; (Y —¥g) - On the still-water-plane, n, = 0 and

n; = -1,s0 n4* = —(y-Yo) and \Vw4n4* = —(Y_YG)Z-Hence
Kue = —pg[[[[-(z-29)1dV-pg[[[- (v -yo)*]as (4.56)
v 5

The hulls of most ocean structures, such as ships, exhibit port-starboard symmetry, and,

in this case, y is equal to zero. In such a case, Eq. 4.56 becomes

Kuo = PEIV(Zs-2) +S,.] @57

in which z; is the center of the displaced water volume (or the center of buoyancy), and
S,, is the second moment of the water-plane area about the axis which is parallel to the

x-axis (in Fig. 4.6) and in the still-water-plane. Noting that
~ Sxx
GM; = 7 + (z5 — 25) (4.58)

where GM; is the transverse metacentric height, the restoring coefficient for roll motion

can be written as

K., = pgVGM, .59

which is the conventional expression in naval architecture.
By using similar steps, the hydrostatic restoring coefficient for pitch, Kfss* , can also

be obtained as
Kes = pglV(z—25) +8S,,] (4.60)
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where S, is the second moment of the water plane area about the axis which is parallel

to the y-axis (in Fig. 4.6) and in the still-water-plane. By noting that

— S
GM, = _‘,,, + (25— Zg) @4.61)

where a/l,_ is the longitudinal metacentric height, then
Ky = pgVGM, (4.62)

The off-diagonal rigid-body restoring coefficient Km* can be obtained as follows. In
this case, {y,} = {0,0,1} and vy = —(x~Xg). Therefore, V ({wy;} v,s) = 0,
and so the volume integral in Eq. 4.54 is equal to zero. On the still-water plane, the

generalized normal n3* =n, = -1,%0 {\113}T {n}v,s = (x-x;).Hence,

Km* =0- pg” (x—-xg5)dS (4.63)

S,

If the center of gravity of the structure is located at x; = 0, then

Kss = —peS, 4.64)

where

s, = J' .fde (4.65)
S,

The off-diagonal rigid-body restoring coefficient K,s;l< can be obtained as follows. In
this case, {w} = {(z—-25),0,-(x-x%x5)} and vy, = 1. Therefore,
V({v;} v,s) = 0, and so the volume integral in Eq. 4.54 is equal to zero. On the still-
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water plane, the generalized normal ns* =n(2-25) —n;(x—X%Xg) = (X—Xg), S0

{w,} {0}y, = (X-xg).Asaresult,

*

Kz = Kf35* (4.66)

Similarly, it can be proved that for a structure with y; = 0

Kpe = Ky = pgs, 4.67)

where

S, = [[yas “.68)
sl‘

For K...*, {w,} = {0,—(z-2y),-(¥y-Yo)} and vy, = —(x—xg) . Therefore,
V({v,}v,s) = 0,and so the volume integral in Eq. 4.54 is equal to zero. On the still-
water plane, the generalized normal n4* =-n,(z2-25) —0,(¥y-Yg) = (y—Yg), SO
n* Yos = —(X—Xg) (Y —¥g) - Similarly, n Yeus = —(X—X%g) (Y —ys) - Therefore,

for a structure with x; = 0 and y; = 0,

Km;|= = Kf54* = —pgS,, (4.69)

where

S, = [[xyds 4.70)
Sl

From Egs. 4.64, 4.67, and 4.69, if a structure is double symmetric, the off-diagonal

terms are all equal to zero.
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4.4 Hydrostatic restoring coefficients by panel method

Even though the hydrostatic restoring coefficients can be calculated by evaluating a
volume integral and water plane surface integral, in practical cases, the formulation in
Eq. 4.52, which involves an integral on the mean-wetted surface, is more convenient for
the hydrostatic restoring coefficient calculation. As described in Section 4.2.1, the panel
method has been used in the velocity potential calculation. The same panels can be used

to calculate the hydrostatic restoring coefficients. Thus Eq. 4.52 can be written as

npanel

Kﬁk* = pg Z I Inj* v, dS @4.71)
n=1 ASn

in which npanel is the total number of fluid panels and AS, is the area of panel n. If the

fluid panel is small enough, the integrand can be assumed constant on each panel, and

thus Eq. 4.71 becomes

N
Ky = pgY n'y,,AS, @.72)

n=1

4.5 Equations of motion of three-dimensional hydroelasticity

The modal equations of motion are

[~o’ (IM] + [M*]) —io (IC*] + [C*1) + (K] + [K1) ] (p}

" * 4.73)
= {FI }'*' {FD }

in which [Ms*] , [Cs*] , and [Ks*] are the modal structural mass, damping, and
stiffness matrices, respectively; Mg, and Cg, are the elements of the modal added-mass

and damping matrices, [Mf*] and [Cf*] , respectively; [K,*] is the hydrostatic
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stiffness matrix, which results from the changes in hydrostatic pressure as discussed in
Sections 4.3 and 4.4; and {FI*} and {FD*} are the modal hydrodynamic forces,
which represent incident and diffraction forces, respectively.

Eq. 4.73 represents g modal equations. Upon solutions of Eq. 4.73 for the principle
coordinates {p}, the nodal displacements {D} can be calculated by Eq. 3.45. The other
structural responses required by engineering design can be calculated, and internal

forces and stresses can be obtained from Eqs. 3.46 and 3.47.
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CHAPTER 5
TWO-DIMENSIONAL HYDROELASTICITY

5.1 Overview

The difficulty of applying general three-dimensional hydroelasticity to a VLES is the
large computational resources that would be required. Although it may be technically
possible to carry out a three-dimensional hydroelastic analysis of a VLFS, it would
appear that such an analysis may be most appropriate as a final step in the design
process, rather than during the intermediate design phases. Hence, there is a need for
alternative, less computationally demanding methods of analysis which can provide the
basic data for design of VLFSs. Two-dimensional hydroelasticity offers one such
method.

Two-dimensional hydroelasticity was developed originally based on strip theory for
hydrodynamic force calculations. Strip theory is most applicable to long structures with
relatively constant cross-sectional geometry because two-dimensional flow is assumed.
In strip theory, The structure is assumed as a single rigid ‘beam’. In two-dimensional
hydroelasticity, the slender structure is modeled as an elastic, nonuniform beam to
satisfy the two-dimensional flow assumption. Therefore, the beam-like structural
deformations and internal forces, such as vertical and horizontal bending moments and
shear force, can be predicted by two-dimensional hydroelasticity. Two-dimensional
hydroelasticity has been applied extensively to ships (Bishop and Price, 1979), bridges
(Langen and Sigbjornsson, 1980; Georgiadis, 1981; Luft, 1981; Hartz and Georgiadis,
1982), and other slender structures (Okamoto et al., 1985; Masuda et al., 1987; Che et
al., 1990; Ertekin et al., 1990; Riggs et al., 1991).

The two-dimensional hydroelasticity developed by Bishop and Price (1979) models a
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slender structure as a nonuniform Timoshenko beam to describe the beam deformation,
and the fluid forces are determined by strip theory. This approach employs the mode-
superposition method. This theory is reviewed first. An alternate two-dimensional
hydroelasticity developed herein is based on the finite element method. The ubiquitous
‘frame’ element is used to model the slender structure below the water line. Above the
water line, a general three-dimensional model of the structure can be used. The
hydrodynamic coefficients, wave exciting forces, and hydrostatic restoring coefficients
are formed in a consistent manner with the beam finite element model. The direct
solution method is used to solve the equations of motion. This method is very efficient
for hydroelastic analysis of very large floating structures. This chapter will discuss this

approach for two-dimensional hydroelasticity.
5.2 Two-dimensional hydroelasticity of Bishop and Price

Based on the well-developed strip theory, Bishop and Price (1979) developed a two-
dimensional hydroelasticity theory for ships. Unlike the traditional strip theory, a slender
structure is modeled as an elastic beam. Bishop and Price (1979) have illustrated that for
ships (which have a very large cross section compared to most other applications), shear
deformation can have a measurable effect on the response. Hence, they used
Timoshenko beam theory.

In this approach, the whole structure is modeled as a Timoshenko beam. Mode
superposition is used to solve the equations of motion, and therefore an eigenvalue
problem must be solved. The hydrodynamic coefficients and wave exciting forces for
each section are obtained from strip theory. They are then transformed to the modal
hydrodynamic coefficients and fluid forces. The modal equations of motion are solved
and the physical displacement and beam-like internal forces can be obtained by

superposition.
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5.3 Alternative approach

As discussed in Section 5.2, the mode-superposition method has been used in two-
dimensional hydroelasticity by Bishop and Price (1979). Since the structure is modeled
as a beam, the total displacement-degrees-of-freedom are not large, and it is trivial to
solve the equations of motion directly. In addition, since strip theory is used, there is no
advantage to use mode superposition for the hydrodynamic calculations as there is in
three-dimensional hydroelasticity. For these reasons, an alternate approach of two-
dimensional hydroelasticity is developed. In this approach, the structure below the still-
water line is modeled by beam finite elements. The part of the structure above the still-
water line can be modeled as a general three-dimensional structure. The hydrodynamic

and hydrostatic loads are formed in a manner consistent with the finite element model.

Figure 5.1 Schematic of a beam-like VLFS

Fig. 5.1 shows schematically a nonuniform beam. This beam model can be used to
determine basic structural motion response and cross sectional internal forces. To
describe the beam element, the global coordinate system x-y-z is defined in Fig. 5.1. The
global longitudinal axis, x, is located such that it passes through the center of mass of the
structure, and the z-axis is directed upward.

A 2-node, three-dimensional beam element is used to discretize the beam model of

the submerged structure. Each node has six displacement-degrees-of-freedom, three
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translations and three rotations. The element local coordinate system X — ; —z is
defined such that x is parallel to the global x-axis; ; and z are the principal axes of the
beam cross-section. The element local coordinate x — ; ~z typically corresponds to the
global x-y-z system, except for x and (possibly) z translations. This local coordinate
system has been shown in Fig. 3.1.

The formulation for the element mass matrix and the equivalent nodal forces will be
used often in this chapter, and are therefore repeated for convenience. The element mass

matrix is given by
[m] = | [N]"[m] [N]dL 5.1)
Lﬂ

in which [N] is the 6 x 12 matrix of interpolation functions from Eq. 3.27, which
includes all interpolations for axial, torsional, and transverse displacements; [I;] is the
6 x 6 matrix of mass densities per unit length given by Eq. 3.28, which is assumed
constant within an element; and L, is the length of the beam element. This formulation
is also valid for other beam element matrices which have distributed properties similar to
mass density.

The forces distributed along an element are replaced by equivalent nodal forces,

which in local coordinates are given by

{(r™} = [INI"{E.}dL 5:2)

L

eXt

in which {F_} isthe 6 x 1 vector of distributed forces and moments, and {r*"} isa
12 x 1 nodal force vector.

The Euler-Bernoulli beam element mass matrix is given in Eq. A.10, and stiffness
matrix is given in Eq. A.11 in Appendix A. As mentioned previously, if a beam model is

used to model a slender structure, the shear deformation should be considered. The
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element stiffness matrix that includes the shear deformation can be found in Eq. A.12 in
Appendix A. The structural mass, damping, and stiffness matrices, [M,], [C,], and
[K.], respectively, can then be assembled by using the procedure described in Section

3.2.2.
5.4 Distributed hydrodynamic forces

Strip theory was originally developed to predict the rigid motion of slender
structures, such as ships. It was first developed by Korvin-Kroukovsky (1955 and 1957)
for predicting heave and pitch motions. It is the first motion theory which is suitable for
numerical computations with adequate accuracy for engineering applications. Even
today, strip theory is still used to predict motions in ship design. Tasai (1967) extended
the theory first to obtain the sway, roll and yaw motions of a ship in oblique waves.
Since then, many researchers have made significant contributions to this theory which
include numerical improvements (Frank, 1967; Gerritsma and Beukelman, 1967; Smith,
1967; Smith and Salvesen, 1970). In 1970, Salvesen, Tuck, and Faltinsen (1970) revised
the new strip theory of Ogilvie and Tuck (1969) for head seas to predict the heave, pitch,
sway, roll, and yaw motions, as well as the wave-induced vertical and horizontal shear
forces, bending and torsional moments for a ship advancing at constant forward speed in
regular waves.

Strip theory has the following assumptions. First, an inviscid and incompressible
fluid undergoing irrotational flow is assumed. Second, the fluid disturbance induced by
the motion of a strip of the structure only propagates in the plane of the strip,
perpendicular to the longitudinal axis of the body. The first assumption results in a
potential problem, and the second assumption results in two-dimensional flow. The
derivation of the two-dimensional flow problem based on the above assumptions can be

found in many references, for example, Wang (1991).
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The hydrodynamic forces obtained from strip theory have been used to excite rigid
body motions. Actually, the hydrodynamic forces for each strip also can be taken as the
distributed forces for hydroelastic analysis. For this reason, strip theory is reviewed here
and the formulation of the distributed hydrodynamic forces are given.

In strip theory, the fluid forces are calculated for each cross-section. Each section has
three rigid body modes: sway, heave, and roll. The two-dimensional radiation potential
¢; for the jth mode (j=2, 3, 4), in infinitely deep water, satisfies the following boundary-
value problem, which is illustrated in Fig. 5.2,

2 2
[%Jr%}pj =0 inD 5:3)
oy 0Oz
(g‘—k)‘h =0 on z =z, (549
z
g% = U, = —imn;'= on C, (5.5
im 2) = 0, lim [%:Fikd)} =0 (5.6)
z -~ az ] y—>teo ay ]

where D is the two-dimensional fluid domain; k = m2/g is the wave number in deep
water; C, is the immersed contour of the strip cross-section; 0/0n is the derivative in
the normal direction where the normal is determined from the normal to the contour of
the cross-section and is directed out of the fluid; ,; is the normal velocity of the wetted
strip surface, and j=2, 3 and 4 represent sway, heave, and roll motion, respectively;
nj* = {\yj}T {n} is the jth generalized normal for rigid-body motion given by

Eq. 3.101. Similarly, the two-dimensional diffraction potential problem can be written.
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Figure 5.2 Two-dimensional domain for velocity potential

The two-dimensional flow described in Egs. 5.3 - 5.6 can be solved with the Green
function method (sometimes known as Frank’s method; Frank, 1967). For the two-

dimensional boundary-value problem, Green’s third identity can be written as

3G(P Q)

0@ = of (6@F L2 @022 )yc 67

where C represents the entire two-dimensional boundary, which includes the still-water
line, C;; the sea floor boundary, C,; the control boundary at +eo, C,; and the mean
body surface below the still-water line, C,. G(P, Q) is the Green function.

The Green function G(B, Q) can be chosen by the same consideration as described in
Section 3.3.3. The two-dimensional potential at point P(y, z) caused by a source located

at @ (&, ) can be expressed by a simple source:

b, = In(r) (5.8)

where r = «/ (y- ‘c’,)2 +(z- 11)2. This two-dimensional potential ¢, can be taken as a

part of the two-dimensional radiation potential.
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It can be shown that if one can choose a function H(P, Q) such that the Green function

G(P,Q) =1In(r) +H(P,Q) (5.9)

satisfies

V'G=8({P-Q) in D (5.10)
—@——k)G =0 on z =12, (5.11)

VA

lim —(G) =0 (5.12)

z—-© aZ

lim {a—(—} xikG} =0 (5.13)

y->zo Oy

then the integral in Eq. 5.7 need be evaluated only on the body wetted surface C,, and

can therefore be written as

6G(l" 9)

-G(P,Q) (5.14)

o(P) = —— f (b0 LD 249 )ac
Considering the interior and exterior problems which are illustrated in Fig. 5.2, the
source distributicn method, as described in Eq. 3.3.3, can be applied to this problem.

The velocity potential can be written as
1
b(P) = - [cr.9s(@dc  Pec, (5.15)
Cb

where G {) is the source density at the source point Q.

One very efficient method for solving the two-dimensional potential problem is the
so-called Frank’s “‘Close-Fit” method (Frank, 1967). This method considers not only the
interior and exterior problems but also the upper imaginary part which is mirrored from

the strip contour line about the still-water line. The integral Eq. 5.15 is carried out over a
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closed contour line. The name of “Close-Fit” comes from this closed contour line. The

Green function for this problem was given earlier by Wehausen and Laitone (1960):

G(P,0Q) = In(r) —In(r,) +2PV- je‘*“&‘r‘:l(ll:ﬁdm —ie"®*™ cosk (v - £)5.16)
0

where k = coz/g; r = J(y—§)2+ (z—n)z; I, = J(y—§)2+ (z+n)2; and PV
denotes the Cauchy principal value integral.

By using the body boundary condition of Eq. 5.12 and taking the normal derivative of
Eq. 5.15, one has

aG(P Dyc-2® _, (5.17)

S0P+ Jo@= 0B ac = 5 - i,

where 1, is the normal velocity of the mean-wetted surface. The source density can be
determined from Eq. 5.17. and the radiation potential follows from Eq. 5.15.

A numerical method is needed to calculate these two integral equations. Since it is a
two-dimensional problem, ‘line’ panels are used to discretize the cross section. The
potential is solved for each cross section, so the number of the two-dimensional panels is
not very large. Therefore, this method is very efficient.

The dynamic fluid pressures p can be calculated by using Euler’s integral. The
sectional modal fluid forces (moments) f; can be calculated by integrating the pressures

along the contour of the cross section in the generalized normal direction:
f, = fpnfac  j=23.4 (5.18)
C

These sectional modal fluid forces are the distributed forces acting on a beam element.
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5.5 Direct solution for two-dimensional hydroelasticity

The purpose of this section is to develop expressions for the distributed
hydrodynamic forces acting on a beam model. Structural analysis typically requires that
the six distributed generalized forces (forces and moments) which potentially act along
the beam be defined. However, in two-dimensional hydroelasticity, these forces are
obtained from strip theory. In strip theory, only the distributed “sway” and “heave”
forces and “roll” moment in the y-z plane are defined. The other force and two moments
cannot be obtained by using strip theory. Hence, they are assumed to be zero in the
structural analysis.

The structure (Figure 5.1) is freely floating and it is assumed to be stationary (i.€.,
with zero forward speed). The hydrodynamic forces result from a train of regular waves
with a crest at x = 0 (at time t=0) and an incidence angle of B, and from the resultant
motion of the structure. The structure is partially submerged in an incompressible fluid
undergoing irrotational flow in infinitely deep water. To determine the fluid flow, in

linear theory, the total velocity potential, @, can be decomposed as in Eq. 3.63, and

rewritten here
q
—iot -iot ~ie
D = (G +dp+dgp)e Y= (¢I+¢D+ij¢j}e = de (5.19)
j=1
The incident wave potential is given in Eq. 3.71, which can be written for two-
dimensional theory as
¢I _ _.lg?a.eikxoosﬁeikysinﬂekz' (5.20)

Once the potentials have been determined, the distributed forces acting on a beam

element can be determined by integrating the hydrodynamic pressure for each cross
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section obtained from Euler's integral. The sectional modal forces as a result of the

incident, diffraction, and radiation potentials can be written, respectively, as

fy = iopf¢ndC  j=12,3,4 (5.21)
C
. % .
fp = io pj¢Dn,. acC i=23,4 (5.22)
c
fo; = i0pp,f $n*dC  kj=2,34 (5.23)
C

where summation convention is used in Eq. 5.23. Substitution of the body boundary-

condition in Eq. 5.5 into Eq. 5.23 results in the modal sectional radiation wave force for

mode j:
o).
fe; = "pPkJ. 'azjd)kdc = 8Py (529
c
i o9
q = lvljk"'a)"jk = _PIBHJ ¢, dC (5.25)
c

The a, are the (complex) modal sectional hydrodynamic coefficients, and ., and A;,
are the (real) modal sectional added mass and damping coefficients, respectively.

The diffraction force given by Eq. 5.22 requires the calculation of the diffraction
wave potential. However, with the Haskind-Hanaoka relationship, the diffraction wave

force f;,; can be obtained from the incident and radiation wave potentials:

[ (5-26)

The physical meaning of the sectional modal forces is very clear. They are exactly the

same as the distributed forces acting along the beam element, which is shown in Fig. 5.3.
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Figure 5.3 Distributed hydrodynamic forces on the slice of beam

It is assumed that the distributed fluid forces acting on each element are constant.
Therefore, the surface distributed force vector for each element can be formed by

sectional incident and diffraction wave exciting forces as

0
£, +1fp
fi3+fps
f1a+1fps

0

0

{F.} = 5.27)

The radiation wave forces are related to the structural motion. They can be used to
form the added mass and damping matrices. The added mass “density” can be formed by

the sectional added mass coefficients, for the port-starboard symmetric section, as
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00 0 000
Opyp 0 K00
[m] = [0 0 Ps 000 (5.28)
Op, 0 p,00
00 0 000
00 0 000

The damping “density” matrix can be formed by sectional damping coefficients as

00 0 000
O0Ay 0 Ay 00
[c] = 002,000 (5.29)
OAgy 0 2,00
00 0 00O
00 0 000

Since the sway and heave (or mode 2 and mode 3) are orthogonal to each other,
My = Uy = Ayy = Ay, = 0.  The  port-starboard  symmetry results  in
My = Uy = Ay, = Ay = 0.

The distributed surface force vector in Eq. 5.27 can be used to form the equivalent
nodal forces by using Eq.5.2. The added mass “density” and damping “density”
matrices can be used to form the element added-mass and damping matrices,

respectively, by using Eq. 5.1.
5.6 Hydrostatic restoring coefficients of a beam element

To use the consistent formulation in Section 5.5 to perform two-dimensional
hydroelasticity, corresponding hydrostatic restoring coefficients need to be formed.
When a structure floats in water, the hydrostatic restoring forces can be represented by a
Winkler-type foundation of vertical and rotational ‘springs.” The Winkler foundation

(see for example, Cook et al. 1989) consists of uncoupled, distributed springs to form a
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continuous base. For each element, it is then possible to define a 6 x 6 ‘density’ matrix
[Ef] of distributed spring stiffnesses. This density matrix can be used in Eq. 5.1 in place
of the mass density matrix [IE] to form the element hydrostatic stiffness matrix.
Consider a unit strip of the beam and a corresponding cross section, shown in
Fig. 5.4. The local x-axis of the element passes through the center of gravity of the
structure, which is located a distance KG from the bottom (or keel) of the cross section,
denoted by K. The z axis is along the center line of the beam. The center of gravity of
the strip is located a distance KG, from the keel. The weight of the strip is W,. The

center of buoyancy of the strip is located a distance KB, and the buoyancy force is A,.

\ Z
G -
G | N
v v )
B, KG,
KB, KG
Ki 1 \
b

Figure 5.4 Definition for hydrostatic stiffness of a beam element

Because no horizontal restoring forces exist, k,;, = k;,, = 0, where the subscript 1
refers to the x-direction and 2 refers to the y-direction. A unit vertical displacement of
the strip results in a change in distributed hydrostatic force equal to pgb, where
b=>b (i) is the width of the water plane; that is,

K, = pgb (5.30)

For a non surface-piercing section, b=0, and therefore, k,,, = 0.
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Figure 5.5 Restoring moments

From Fig. 5.5a, a rotation a about the x-axis of the unit strip results in the following
moments. The upward buoyancy force A, results in a negative restoring moment, which
is equal to —A, (KG - KB,) a.. The weight of the unit strip also results in a negative
restoring moment, which is equal to ~W, (KG, — KG) a.. The water plane area of the
unit strip has the contribution of pgS:- to the rotational restoring moment as described
in Section 4.3, where S:- is the second moment of the water plane area of the unit strip
about the x-axis. The total restoring moment for a unit rotation about the x-axis can be

written as

k., = —A,(KG-KB)-W, (KG,-KG) +pgS:: : (531
The first term in Eq. 5.31 is typically negative.

From Fig.5.5b, a unit rotation about the ;-axis results in a restoring moment
identical to the first two terms in Eq. 5.31. In addition, the water plane area also has the
contribution of p gS;; to rotational hydrostatic restoring force, where S;; is the second

moment of the unit strip area about the §—axis. The total rotational hydrostatic restoring
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‘density’ for the unit rotation about the §-axis is

kss = —A,(KG -KB,)-W, (KG, - KG) +pgS;; (5.32)

If each element has a uniform symmetric cross section, the element hydrostatic

restoring ‘density’ matrix [Ef] can then be written as

00 0 0 0 0
000 0 00
_ 00k.,, 0 00
k] = = (5.33)
00 0 ky, 00
00 0 0 kg0
000 0 0 0

where off-diagonal terms are equal to zero because of symmetry. Substitution of
Eq. 5.33 into Eq. 5.1, the consistent hydrostatic restoring matrix for each element can be
formed.

The above formulations are not only for the application of strip theory in
hydroelasticity. They are also applicable to any horizontal beam element, whether it is
partially submerged or totally submerged. When a horizontal beam-like structure is
submerged in water, the water plane area is equal to zero. Therefore, ]Em, S, and S;;
are equal to zero. Only the rotational restoring coefficients may not be equal to zero,
which is the case for a submarine. The magnitudes of the rotational restoring forces can
be designed based on KG, KB, KG, and KB,.

These formulations of hydrostatic restoring forces may be useful for design of
slender ships, slender structures, submarines, horizontal pipelines, towing cables, and

horizontal beam elements in three-dimensional frames.
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5.7 Equations of motion in two-dimensional hydroelasticity

Following the procedure described in Section 3.2.2, the element added-mass and
damping matrices, and nodal forces can be transformed to the global element matrices
and forces; finally, the global structural added-mass and damping matrices, [M,],
[C.] , and force vector, {F,} can be assembled. The element hydrostatic stiffness can
be used to form the global hydrostatic stiffness matrix, [K;]. Together with the

structural mass, damping, and stiffness matrices, the resulting equations of motion are

{~0" (IM,] + M) —io ([C] + [CA) + (K] + [K1)} {D} = {F} 349
in which {D} is the (complex) vector of the physical nodal displacements. The fluid
terms, [M;], [C;, and {F;}, are dependent on the wave frequency ®, and hence,
they must be formed for each frequency.

The response of a stationary structure to regular waves (transfer functions) are
obtained through the solution of Eq. 5.34 for a range of wave frequencies. Since the
nodal displacements {D} have been solved directly from Eq. 5.34, any sectional

structural internal force can be obtained from nodal displacements.
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CHAPTER 6
MORISON’S EQUATION METHOD

6.1 OQOverview

Morison’s equation (Morison, et al., 1950), which includes the effects of fluid
acceleration and viscous form drag in terms of empirically determined coefficients, has
been successfully used in the offshore industry to determine the motion response of
floating structures, especially during the preliminary design stage. Morison’s equation
was introduced originally to calculate the wave exciting forces on vertical piles of
circular cross section. Since then, this equation has been used by many to obtain the
dynamic forces on fixed tubular structures, as well as the motion response of floating
structures, such as semi-submersibles. The earliest applications of Morison’s equation,
in the frequency domain, to rigid semisubmersibles can be found in Burke (1969) and
Paulling (1970). This approach has been extended by Paulling and Tyagi (1991) to
multiple rigid modules flexibly connected to each other; however, it appears that
Morison’s equation has not been used in conjunction with elastic body motion of very
large floating structures.

The main reason for introducing Morison’s equation to analyze very large floating
structures is due to the large computational cost of using three-dimensional
hydroelasticity. Morison’s equation avoids the calculation of velocity potentials. Since it
is not limited to a two-dimensional model, the method also overcomes the disadvantages
of using two-dimensional hydroelasticity. Of course, Morison’s equation is only
applicable to structures which have tubular structural elements below the still-water

plane.
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In this chapter, the consistent hydrodynamic formulation for Morison’s equation
based on the finite element method will be introduced. The formulation includes
hydrodynamic added-mass, damping matrices and wave exciting forces. The

formulation of hydrostatic restoring coefficients for the frame element is also discussed.
6.2 Three-dimensional frame model of a structure

Since hydrodynamic loading will be based on Morison’s equation, the structure
below the still-water plane is modelled by frame finite elements. The formulation of the
two-node frame eclement has been described in Section 3.1.3. The element local
coordinates §—§ —z and global coordinates x-y-z has been shown in Fig. 3.1. Each
node has 6-displacement degrees of freedom, three translational and three rotational
displacements. The displacements within an element can be represented by the nodal

displacements through interpolation functions, which can be written as

{u} = (IN,+N]) {d} = [N] {d} 6.1)
in which {u} is the 6 x 1 displacement vector at a point of the element; the axial and
torsional displacement interpolation function matrix [N,] and the transverse
displacement interpolation function [N,] are given in Eq. II.2 and Eq. I1.4 in Appendix
H; and {d} isa 12 x 1 vector of nodal displacements which has been shown in Fig. 3.1.

The forces distributed along an element can be replaced by equivalent nodal forces.

The equivalent nodal forces acting at the two nodes of a frame element are given by

(™} = [[NI"{E}ds (6.2)

in which {F.} is the 6 x 1 vector of distributed forces and moments, which are

calculated from Morison’s equation, {r*™'} is the corresponding 12 x 1 vector of
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equivalent nodal forces in the element local coordinate system, and L, is the element
Iength.

The structural mass and stiffness matrices, [M,] and [K,], for frame structures can
be formed by using the formulations in Egs. I1.10 and II.11 in Appendix IT for the
element mass and stiffness matrices, transforming to global coordinates, and then
assembling to the global matrices. If the frame elements below the still-water plane do
not have a circular cross section, they will be modelled as circular cylinders for
hydrodynamic force calculations, such that the displaced volumes of the elements

remain the same.
6.3 Morison’s equation

The two important hydrodynamic forces on a circular cylinder are the inertia and
form drag forces. The domination of these two forces depends on the ratio of the
diameter of the cylinder (D) to the wave length (L). When this ratio is relatively large,
the wave diffraction is relatively important. Therefore, the inertia force will be
dominant. On the other hand, when this ratio is relatively small, the wave diffraction
may be negligible, flow will be separated and the form drag force becomes important.
The frictional drag force is generally too small to have an appreciable effect on the
overall forces.

When D/L is relatively small such that the cylinder is regarded as a slender cylinder,
the drag force can not be neglected. Morison et al. (1950) suggested an empirical

relationship for a fixed vertical cylinder:

1 . . 1 2 -
{FCP} = EPCDDH {u,} l {ug} +ZP7rD Cy {U,} 6.3)
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where {F_} is the distributed normal pressure force vector; C, is the drag coefficient;
fu.,} isthe 3 x 1 water particle displacement vector, normal to the element; p is the
water density; Cy (=1+C,) is the inertia coefficient, where C  is the added-mass
ceefficient; and the superposed dot denotes the local time derivative. The first term on
the right hand side of Eq. 6.3 represents the drag forces, and the second term represents
the inertia forces.

Because of the importance of cylindrical piles in offshore engineering and coastal
engineering, there have been many investigations on the proper coefficients after
Morison et al. proposed Eq.6.3. When structural motions and deformations are
considered, the inertia and drag forces are dependent not only on the fluid motion but
also on the structural motion and deformation. Morison’s equation can then be written,

in terms of the relative motion between the fluid and structure, as

(Fy} = 50CoD| (e} - (0.3 ({a} - €3.3)

1 , 6.4)
+2pmD" (Cy (i} — (Cy—1) {i})
where u, is the 3 x 1 normal displacement vector of a point on the element.

The drag term in Morison’s equation contains the product of the unknown
displacement (velocity) vector, and therefore, is nonlinear. The usual practice is to
linearize this term. Among the several available linearization methods, the method of
equal energy dissipation per wave cycle, (Blagoveshchensky 1962) is chosen. The equal

energy dissipation can be expressed as

Ep, = Ep (6.5)
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where E, is the energy dissipated by drag forces, while E,,; is the energy dissipated by
the linearized drag forces. The nonlinear drag term can be written, in the linearized

form, as

(Fyn} = 20CorD ({i} - (1) 69

where C,, is called the equivalent linear drag coefficient. Mathematically, the

equivalent linear drag coefficient can be obtained from the relationship in Eq. 6.5:

8 . .
CoL = 3 TCy (g = Uy) (6.7

in which u,,, is the amplitude of the water particle velocity and 4, is the amplitude of
velocity of a point on the element, in the normal direction. Note that Cp is a
dimensional coefficient. Drag forces in Eq. 6.6 requires an iterative scheme for the
determination of the relative velocity on which the equivalent linear drag coefficient

depends. By substitution of Eg. 6.6 into 6.3, the linearized Morison’s equation becomes

{F} = 5PCouD ({ig} - {i.})

1 6.8)
+ Zpﬂ:D2 (Cyu {85} - (Cy—-1) {i;})

Eq. 6.8 can be decomposed into four parts. The first part involves the water particle

acceleration:

1 2 v
{Fu} = ZPTCD Cu {ig} (6.9)

in which {F } isa 6 x 1 distributed normal force vector; the subscript I and f denote

the inertia and fluid, respectively; {ii,}  is the 6 x 1 water particle acceleration vector,

100




which is obtained by including 3 x 1 subvector {ii;,;} and three zero rotational
components.

The second part involves the water particle velocity:

1 .
{Feped = EpCDLD U}, (6.10)

in which {F_.} is a 6 x 1 distributed normal force vector; the subscript D denotes
drag; {u,} . is 6 x 1 water particle velocity vector, which is obtained by including
3 x 1 subvector {1, } and three zero rotational components.

The third part involves the structural acceleration:

1 -
{Fcls} = anDz (CM_ 1) {un}6 (6'11)

in which {F_} is a 6 x 1 distributed normal force vector; the subscript s denotes
structure; {,} . is 6 x 1 structural acceleration vector, which is obtained by including
3 x 1 subvector {ii,} and three zero rotational components.

The last part involves the structural velocity:

1 .
{Fch} = EpCDLD {un}6 (6.12)

in which {F,,} isa 6 x 1 distributed force vector; {u,} is 6 x 1 structural velocity
vector, which is obtained by including 3 x 1 subvector {u,} and three zero rotational
components.

From the above decomposition, the fluid forces from Eq. 6.9 contribute to the fluid
inertia forces; the fluid forces from Eq. 6.10 contribute to the fluid damping forces; the
fluid forces from Eq. 6.11 contribute to the fluid added mass; and the fluid forces from

Eq. 6.12 contribute to the fluid damping.
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The water particle velocity and acceleration is calculated from the incident wave

potential @,
igo ik wp) kz' -i -

(DI _ __g_e (stﬂ+ysmﬂ)e ze ot _ d)[e iot 6.13)
®

6.4 Hydroelastic formulations for Morison’s equation

Egs. 6.9, 6.10, 6.11 and 6.12 give the distributed normal forces acting on an
element. The distributed forces are replaced by equivalent nodal loads in the finite
element model via Eq. 6.2. Because the distributed forces involve both the fluid and
structural motion, the result will be expressions for added mass, damping, and wave
exciting forces. Since no axial forces are involved in these fluid forces, only the
interpolation functions for transverse displacements are considered.

For each element, substitution in Eq. 6.2 of Eq. 6.9 results in the element nodal

inertia exciting forces, which are dependent on the water particle acceleration
T -
(B} = [INJ] {F,}dx (6.14)
L

These wave exciting forces can be directly calculated from the water particle
acceleration at each point, if C,, is given. The water particle acceleration can be
calculated from the incident wave potential. The wave exciting forces in Eq. 6.14 are the
Froude-Krylov forces.

Substitution in Eq. 6.2 of Eq. 6.10 results in the element nodal drag exciting forces,

which are dependent on the water particle velocity:

{Fp} = I [Nb]T {Fpe} dx (6.15)
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Eq. 6.15 involves the equivalent linear drag coefficient C,,;, which is a function of the
unknown relative velocity. Hence, this exciting force must be calculated iteratively.
Substitution in Eq. 6.2 of Eq.6.11 results in the element nodal inertial exciting

forces, which are dependent on the structural acceleration:

(B} = [IN]" {F,} dx (6.16
L

{F,,} depends on the structural displacements. Eq. 6.11 can be used to form a
distributed inertia density matrix [Ef] . Since only distributed normal forces are
considered, the only nonzero terms of the 6x6 matrix [1;{] are

My, = m,, = aD’p (Cy— 1) /4. Therefore, Eq. 6.11 can be written as

{Fy} = [m] {i,} = [m] [N,] {3} ©.17)

Thus, Eq. 6.16 becomes

{(F,} = [IN]"[m] [N,]dx {8} = [m] {a} 6.18)
La

where

m] = [[N" [mg] [N,]dx (6.19
L

Similarly, the distributed forces in Eq. 6.12 can be written, either in force format, as

{Fo} = [N {F,p,} dx (6.20)

or in element damping-matrix format, as

{Fp,} = [c] {4} (6.21)

where
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[ed = JINJ]" [c] [N,]dx (622)
L

in which [Ef] is 6 x 6 damping-density matrix whose only nonzero terms are
Cin = Cy = pCp D/2.

An additional force exists due to the presence of the end planes of a structural
member exposed to direct wave action. The end planes of a structural member can be
taken as the element nodes. Therefore, the nodal Froude-Krylov forces can be calculated
by considering the wave pressure due to the incident wave (in Eq. 6.13) alone. For an

end of area A, the end plane force can be approximated by

{Fina} = —ipodA {n} 6.23)
where {n} is the 3 x 1 unit normal to the end plane in the local coordinate system. The
end plane force vector {F,} also can be extended to the 6 x 1 nodal vector {F,}
by adding rotational components, so it is consistent with the general definition.

The element added-mass matrix in Eq. 6.19 and damping matrix in Eq. 6.22 can be
transferred to the global coordinate system, and then assembled to form the structural
added-mass matrix [M;], and damping matrix [C,], following the procedures used for
structural matrices. The element local nodal forces {F;} and {F,} can be transformed
to global coordinates and assembled to form the structural nodal forces {F;} and

{F.,} , respectively. If one prefers to form the nodal drag-force-vector which involves
the structural velocity instead of forming the damping matrix, the structural nodal force

{F?D} can be formed from Eq. 6.12 by the same procedure as for other nodal force

vectors.
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6.5 Hydrostatic restoring coefficients for frame element

It is convenient to use a direct solution method to deal with the hydroelastic problem
by using Morison’s equation. Therefore, it is necessary to form the hydrostatic restoring
matrix for three-dimensional frame elements. Only horizontal and vertical frame
elements are discussed here.

Before considering the hydrostatic restoring coefficients for each element, consider
first the stability of the structure. For a semisubmersible structure, the water-plane area
of the members which pierce the still-water plane will resist any disturbance from its
equilibrium position, which is the stabilizing component in hydrostatic restoring forces.
The structural weight may be another factor to keep the structure in its equilibrium
position in the case the center of weight is in the proper position. However, when the
center of the net buoyancy forces of the structure shifts from the equilibrium position,
the net buoyancy force will overturn the structure. The net buoyancy forces become the
destabilizing component in hydrostatic restoring forces, leading to negative stiffness. If
a structure is stable, the contribution to the hydrostatic restoring forces from the

stabilizing component must be larger than that from the destabilizing component.
6.5.1 Stabilizing components

The stabilizing components which result from the water-plane area can be treated as
in the following. For a horizontal beam which is semi-submerged in the water, the
formulations in Section 5.6 can be used directly to form the element hydrostatic stiffness
for each element. For a vertical beam which pierces the still-water surface, the
hydrostatic stiffness is modeled as follows. A node of the beam element is located at

each intersection of the still-water surface and the vertical beam, and discrete vertical
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and rotational springs are attached to these nodes. The vertical and rotational nodal

spring stiffnesses are given, in local coordinates, X — y — z, by

k. =pgA, kg =p8S;  Kg=peS; (6.24)

fxx vyy
where A, is the water-plane area of the vertical element, S :- and S .- are the second
moments of water-plane area of the column about x and ; axes, respectively. The
location of the springs at the still-water surface means that the effects of the change in
hydrostatic forces will be accurately represented in the structure above the still-water
surface, but not necessarily below. That is, the change in the distributed hydrostatic
pressures on the submerged members is not modelled directly. Note also that implicit in
Eq. 6.24 is the assumption that x and § are the principal axes of the vertical beam cross-

section.
6.5.2 Destabilizing components

The destabilizing components of the hydrostatic stiffness is caused by the change of
the positions of the center of buoyancy and the center of gravity. For a completely
submerged horizontal circular cylinder, with its center of buoyancy located at the center
of gravity and the center of gravity located on the local x-axis, from Section 5.6, the
cylinder will not contribute to the hydrostatic restoring forces. However, to support the
part of the structure above the still-water plane, the buoyancy force on a submerged
horizontal cylinder is usually larger than the weight of the cylinder, and the center of
buoyancy of the cylinder is usually below the center of gravity of the structure. Clearly,
a shift in the center of buoyancy such that it is no longer vertically aligned with the
center of gravity tends to overturn, or destabilize, the structure and causes an
overturning moment on the structure. This overturning moment, which is caused by the

buoyancy forces of the lower elements, is transmitted to the upper elements through
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compression in the vertical elements. Hence, this component of the hydrostatic stiffness
is incorporated in the structural model by the geometric stiffness of the frame elements,
which was discussed in Section 3.2.3.

The geometric stiffness of a frame element is given by Eq. 3.31

L

[kl = [£, [N']7[N']dx 6.25)

0

and f, is the axial force (tension positive) in the element and {N',} is the derivatives
with respect to x of the corresponding transverse displacement interpolation matrix. In
this case, f, is negative because the buoyancy from the lower elements will compress the
vertical elements.

The hydrostatic pressure acting on the vertical elements and the pressure inside the
cylinder will affect the geometric stiffness. This effect can be included by using the
effective tension in Eq. 6.25. The effective tension of a cylinder is well-known in riser

mechanics (see for example, Spark, 1984), and is given by

fr = £,+pA,— DA, (6.26)

in which p_ and p; are the external and internal pressures, respectively, and A  and A,
are the external and internal areas of the element cross sections, respectively. In the case
no internal pressure exists, p, = 0. The axial forces within the element, for
simplification, may be assumed constant and they are determined based on the

hydrostatic buoyancy forces and the weight of the structure.
6.5.3 Net buoyancy-force contribution
Since a floating structure is semi-submerged, the buoyancy force for a completely

submerged horizontal element may be larger than its weight. The horizontal elements
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are connected to the other horizontal elements or vertical columns and this buoyancy
force causes the compression in the columns, which can be calculated from statics.

The element hydrostatic stiffness matrices are assembled, together with the nodal
spring stiffness, to form the giobal hydrostatic stiffness [K;] in the same manner as

described in assembling the structural element matrix.
6.6 Solution methods

The equations of motion in the frequency domain can be formed

{~0" (IM]] + [M]]) —io ([C,] + [C]) + (IK] + [K])} {D}
= {Fq} + {Fp}

Because [C,] and {F.,} include the drag coefficient C,;, which is dependent on the

6.27)

unknown structural velocity, the equations of motion must be solved iteratively until the
value of Cp,; for each element converges.

The relative error between successive iterations can be used to control the iteration
procedure. First, the relative velocity between the fluid and structure is used to form the
relative error (er,,;) . The structural velocity at iteration i-1is {D} o and at iteration i
is {D} i. The fluid velocity during the iteration does not change within the assumption

of linearity (small motions). The relative error (er,,) is defined as

i-1

| (g - (3) - ({ﬁ_f} “w )]
|t - 03

As a second measure, the relative error (er,) of the structural displacements between

(errel) = (6.28)

two adjacent iterations is defined as

ery = 123 - 0]
| 031

(6.29)
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Since the displacements {D} can be directly obtained by solving the equations of

motion, it is easy to use (er,) for convergence. The convergence criterion is

(er.,) <s, (er) <e (6.30)

where € is an input tolerance.

At iteration i, the linearized equations of motion can be written as

{0’ (IM,] + [M]]) —io ([C,] + [C1*™Y) + ([K] + [K])} {D}'
= {FrM} + {Fm} o

in which [C]'' and {Fg}'"' are based on {D}'"' for i>1. By definition,

(6.31)

D) = ao /= for translational displacement components of {D°}.

This iteration strategy is stable and few iterations are required for convergence.
However, at each iteration, [C,] must be reformed and therefore Eq. 6.31 must be
solved completely. Because the coefficient matrices in Eq. 6.31 are complex, re-
factoring this matrix and then solving Eq. 6.31 is time consuming.

A potentially attractive alternative to this scheme resuits if all the drag-dependent
terms are kept on the right-hand-side of Eq. 6.31. That is

{0 (IM,] + [M]]) —io [C] + ([K] + [K]) } {D}'

) ) i (6.32)
= {Fg} + {Fp} ' +io [C]' {D}
or, alternatively,
{-o (IM,]] + [M{]) —io [C] + (K] + [K]) } {D} 633

= {Fu} + {Fp,}
in which the drag forces included in {F,,,}'~* are based on the relative velocity and not
the fluid velocity. The advantage to this approach is that the coefficient matrix of

Eq. 6.33 is constant for each wave frequency; hence it need be formed and factored only
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once for each frequency. Furthermore, if there is no or negligible structural damping,

Eq. 6.33 can be written as

{-o” (IM] + M) + (IK] + [K1) } {D}'
= {Fq} + {qu}i_l

Eq. 6.34 has a real coefficient matrix with a complex right-hand vector. The solution of

(6.34)

Eq. 6.34 is computationally less involved. In addition, the damring matrix [C;] need
never be formed, and the effort to form {F,,,} is the same as required to form {F}.
The potential disadvantage of this approach is that a few more iterations will be required
for convergence. However, for an inertia dominated structure, any increase in the
number of iterations likely would be overcome by the previously mentioned advantages.
Both iterative strategies in Egs. 6.31 and 6.34 have been implemented in the program
HYDRAS-MORISON.
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CHAPTER 7
A COMPOSITE 2-D/3-D METHOD FOR HYDROELASTICITY

7.1 Imtroduciion

Two-dimensional hydroelasticity, discussed in Chapter 5, uses strip theory to
determine the fluid forces and a nonuniform beam model to represent a floating
structure. Hence, this approach is numerically efficient especially for very large floating
structures. In this model, the ‘cross-section’ of the structure is assumed rigid (at least
below the still-water plane) and this primitive structural model means that only ‘beam’
deformational modes are considered. Therefore, it is limited to the evaluation of motions
and force resultants along the longitudinal axis of the structure. In particular, the method
cannot provide the more detailed results which are useful for engineering design. For
example, in the case of a twin-hull structure, such as a SWATH ship shown
schematically in Fig. 7.1, no information about the ‘prying’ forces on the struts are
obtained from such an analysis. These forces are of course important in designing not

only the struts but also the connections between the deck and struts.

Figure 7.1 Schematic view of a SWATH ship

111



Three-dimensional hydroelasticity, discussed in Chapter 4, avoids the limitations of a
two-dimensional theory by using the three-dimensional potential theory to model the
fluid forces and a three-dimensional finite element model of the structure. It therefore
represents the most general and accurate theory to date, and information on the detailed
response is provided by such an analysis. However, it is computationally intensive,
primarily because of the three-dimensional fluid model. As such, it is probably most

useful as a final design tool.

Il

¢)) @ 3)
|| @ H ‘ )] ’ 6)

Figure 7.2 ’Basic modes’ of a cross-section

To avoid the limitations of a beam model and the computational requirements of a
three-dimensional fluid model, a hybrid approach for twin-hull structures has been
proposed in Wang (1991) and Wang et al. (1991). In this approach, the structure is
represented by a three-dimensional finite element model, while the fluid forces are still
calculated from strip theory. However, the ‘basic modes’ of deformation in Fig. 7.2 are
used to represent the actual deformation. A very approximate procedure was used to
represent the three-dimensional finite element deformational response by the ‘basic
modes.’

Recently, Che et al. (1992a) presented preliminary results of an effort to develop the
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composite 2D/3D method so that the three-dimensional finite element results are used
directly in the hydroelastic analysis. In this approach, the mode shapes predicted by a
three-dimensional finite element model of the structure are used. Because two-
dimensional strip theory is used to calculate the fluid forces, the method retains a
fundamental assumption of strip theory; that is, flow at one cross-section is assumed to
be independent of flow at any other section. Hence, the method is primarily applicable to
slender structures. However, there is no other restriction on the structure, that is it can be
monohull or multi-hull.

In this chapter, the feasibility of using a composite 2D/3D approach for
hydroelasticity is discussed first. Then, the formulation of this approach is given for
general structures and twin-hull symmetric structures. In addition, the three-dimensional
incident wave force and a revised two-dimensional normal are used to improve the
method. Finally, a more rigorous approach for representing the finite element response

by the basic modes is presented.
7.2 3-D model of structure and 2-D model of fluid

Two-dimensional hydroelasticity has primarily two disadvantages. First, the structure
is limited to have only beam motion and deformation. Second, the motion and fluid
action in the direction of the longitudinal axis are not considered. The limitations come
from the two-dimensional structural and fluid models. To overcome these disadvantages,
the structural model or fluid model, or both structural and fluid models must be changed.
Changing only the fluid model cannot solve the first problem. In addition, using a three-
dimensional fluid model will tremendously increase the computational effort.

The two-dimensional Green function method requires the solution of Eq. 5.17 to

obtain the source densities. Note that in this equation, the body-boundary conditions
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affect only the right-hand side. Therefore, application of Eq. 5.17 to deformable cross-

section affects only the right hand side.

/\ |

[
/ /

(a) Rigid cross-section (b) Flexible cross-section

Figure 7.3 Cross-sectional motion

Fig. 7.3 shows possible cross sectional motion for a rigid cross-section and a flexible
cross-section. The rigid cross-sectional motion is considered in traditional strip theory
and two-dimensional hydroelasticity. The flexible cross-sectional motion is considered
in this approach. The basic difference between the composite 2D/3D approach and
three-dimensional hydroelasticity is that, in the former, two-dimensional flow is
assumed.

The three-dimensional structural model described in Chapter 4 is used here to
describe the structural motions and deformations. Mode superposition is used for the
three-dimensional structural dynamic analysis. The first g ‘dry’ modes are assumed to
be sufficient to represent the structural response. The actual nodal displacements {D}

can be expressed in terms of the mode shapes ['¥] as

{D} = [¥] {p} (7.1)
where {p} is the g x 1 vector of principle coordinates. The modal equations of motion

can be written as
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[-0" M1 ~i0 [C] + [KX1] {p} = (F'} + {F} (12
where [Ms*] R [Cs*] , and [K,*] are structural modal mass, damping, and stiffness
matrices, respectively; and {Ff* } and {F,* } are modal hydrodynamic and hydrostatic
forces, respectively.

The two-dimensional fluid model described in Chapter 5 is used to solve for the
radiation velocity potentials. The coupling of the three-dimensional structural model and
the two-dimensional fluid model and some special modifications will be described in the

following sections.
7.3 Formulations for composite 2-D/3-D method

The generalized wave forces acting on the whole structure can be obtained, as

described before, by integrating the distributed force over the mean wetted-surface S:

{F'} = iop|[@ [\u]T{n}dS (1.3)

where o is the wave frequency; p is the water density; @ is the velocity potential; the
3 x q matrix [y] contains the modal translational displacements at a point (x,y,z) on S,
which can be obtained from the global mode shapes, ['¥'] ; and {n} is the normal vector
at a point (x,y,z). The term [\u]T {n} is defined as the generalized normal vector,

{n*}.
In infinitely deep water, the boundary-value problem of the jth radiation potential ¢,

has been given in Egs. 5.3 through 5.6, they are repeated for convenience:

2 2
(_6_2_!__65] ;=0 in D (74)
oy oz
D_k)g;=0 onz=g @)
Z
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%" = —ion”  on C, (1.6)

. 0 . a¢j s il —
) = — Fikp;| =0 .
im 2@)=0  lin| Zrikh D

where D is the two-dimensional fluid domain; k = »2/g is the wave number in deep
water; C, is the immersed contour of the cross-section; 0/0n is the derivative in the
normal direction; and {nj’|= } is the generalized normal on the wetted surface, and j=1 to
g. It should be emphasized that the normal vector {n} in Eq. 7.6 may be determined
from either the normal to the cross section, C,, as is typical in strip theory, or directly
from the three-dimensional normal vector obtained from a three-dimensional structural
model.

It is convenient to write Eq. 7.3 as an integration along the structural length, L, and

the contour of the cross-section of the wetted surface, C,:

{F*} = impj{jd){n*}dC} dx (7.8
L g

Consistent with strip theory, the integral on C, can be interpreted as the modal sectional
fluid forces, denoted {f}. Eq. 7.8 is similar to the formulation in strip theory for the
hydrodynamic wave forces with zero forward speed (Salvesen et al., 1970). Howeyver, in
the present formulation, the three-dimensional structural mode shapes are used, whereas
in traditional two-dimensional hydrodynamics, only sway, heave, and roll of the ‘rigid’
cross-section are used.

Decomposing the total velocity potential @ into incident, diffraction, and radiation
potentials and substitution of them into Eq. 7.8 results in the sectional modal forces as a

result of the incident, diffraction, and radiation potentials:
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f; = iopf¢;n*dC (7.9)
[

fo; = i@ p[dpn dC (7.10)
(o4

fg; = io ppkf¢knj* dc (7.11)
C

where summation convention is used in Eq.7.11. The total jth sectional modal

hydrodyramic forces are

f; = f; +fp; + (1.12)

The force from the incident wave is determined from the incident wave potential,

which for deep water is
igo ik ikysinp kz'

¢ = — B Hremeboitvinfels (7.13)
o

where a is the wave amplitude. With Eq. 7.13, Eq. 7.9 becomes

% ikysinp kz'

f1j=pgoceikx°°sp_[n e e dC . (7.14)

]
Cb
which can be termed the Froude-Krylov sectional modal force.
The diffraction force requires additional consideration. With Eqs. 7.6 and 7.10, the

modal sectional diffraction wave force can be written as
09
fo; = =P (J:' bpdC (7.15)

By using the well-known Haskind-Hanaoka relationship, the diffraction wave force fi,

can be obtained from the incident and radiation wave potentials:
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o
fr; = P _[ ¢j51dc (7.16)
c,

From Egq. 7.13, one has

0Py -
3 k(n,+in sinB) ¢, (7.17)

so that the modal sectional diffraction force can be written as

fo; = —cope | (in,~ n,sinp) e’ ¢,dC (7.18)
Cb

The modal sectional radiation wave force for mode j can be obtained by substitution

of Eq. 7.6 into 7.11:

0b.
foy = ~PP[ 570dC = ap, @.19)
Cb
where
i 0b,
ap = Myt 57\,1 = —pfa’dndc (7.20)
Cb

The a;, are the modal sectional hydrodynamic coefficients, p;, and A;, are the modal
sectional added-mass and damping coefficients, respectively.

It should be emphasized, again, that j and k can be larger than 6 in Egs. 7.14, 7.18,
and 7.20. That is, these equations for the generalized incident, diffraction, and radiation

wave forces are valid for the rigid-body modes as well as the deformational modes.
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7.4 Twin-hull symmetric structure

For a twin-hull structure, which is symmetric about its center plane, the contour
integration in the above equations can be simplified (Wang et al., 1991; Che et al.,

1992b). For port to starboard symmetric modes
nj* x,y,2) = nj* (x,-y, z) (7.21)
b;(x,¥,2) = ¢;(x,-y,2) (7.22)
and for port to starboard anti-symmetric modes
nj* (x,y,2) = —nj* (x,-y,2) (7.23)

b;(x,¥,2) = -¢;(x,-y,2) (7.24)
With these relations, the integrations in Egs. 7.14, 7.18 and 7.20 around the sectional
contour need only be carried out along a single hull, for example, the port hull If R is
used to denote the cross-sectional wetted surface of the port hull, the modal sectional

incident and diffraction wave forces in Egs. 7.14 and 7.18 can be written for symmetric

modes as
f; = pgaeikxmsﬁj'an* cos (kysinB)e” dR (1.25)
R
fo; = —aope |2 [in,cos (kysinB) ~in,sinsin (kysinB)] e ¢,dR (7.26)
R

and for anti-symmetric modes as

f; = pgoe " [2n* isin (kysin)e” dR (7.27)
R

g

fp; = —aope’ " |2 [-n,sin (kysinB) —n,sinBcos (kysinB)]e” ¢,dR (7.28)
R
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The sectional hydrodyramic coefficients a;, in Eq. 7.20 can be written as

9;
a, = —2p{ 5. budR (7.29)

when both ¢, and ¢; correspond to either symmetric or antisymmetric modes. The
corresponding terms in Eq. 7.29 for coupling of symmetric and antisymmetric modes
are zero.

The structural modal hydrodynamic forces are obtained by integrating the sectional

modal hydrodynamic forces along the structural length:

{F*} = [ (£} ax (7.30)
{F,'} = [{f,}dx (7.31)
{F.'} = [ {fe} ax (1.32)

where the components of {FR* } are given by

*—

2 .
Fr' = pfaudx = (0 Mg, +iaCy)p, (133)
L

In the above equations, {FI* } is the vector of modal incident wave forces; {E,'} is
the vector of modal diffraction wave forces; {FR*} is the vector of modal radiation

wave forces; and M, and Cy;, are modal added-mass and damping, respectively.
7.5 Consistent two-dimensional normal

A two-dimensional fluid model is used in the composite 2-D/3-D approach for
hydroelasticity. Therefore, Frank’s method is applied on each cross-section. The normal

vector {n}, in traditional strip theory, is determined from the normal to the cross section
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C. Each cross section is represented by two-dimensional line elements along the contour

line.

AGa Yz 4 A(Xy;¥002,)
3 {n},
{n},
Cc
n
ing} o
B (XB’ ¥p» ZB) 1 B (XB’ Ypr ZB)

Figure 7.4 Two-dimensional normal vector {n}, and {n,} _

The body boundary condition for the radiation potential problem involves the
component of normal velocity in the y-z plane. Therefore, from Fig. 7.4, the two-
dimensional normal vector should be obtained by assuming n, = 0 in the three-
dimensional normal {n} ,. This “consistent two-dimensional normal vector” is denoted
by {n,},,- The traditional normal vector {n}, is not equal to the consistent two-
dimensional normal {n,}  except when the normal to the body surface is normal to
the x-axis.

The difference between the consistent two-dimensional normal {n,} = and the
normal {n}, which is used in traditional strip theory may result in differences in
hydrodynamic force calculations. Since the two-dimensional normal {n}, is always

larger than or equal to the consistent two-dimensional normal {n,} , it may be one of

2D’
the reasons that the quantities in strip theory are always larger than or equal to those in
three-dimensional potential theory.

A three-dimensional structural model is used in the composite 2-D/3-D approach.
Therefore, it is possible to calculate the consistent two-dimensional normal {n,}, for

this approach. For example, if the structural surface below the still-water plane is
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modeled by quadrilateral thin shell elements, one possible way to calculate the
consistent normal is as follows.

The four node three-dimensional shell element can be used to calculate the three-
dimensional normal vector {n}, in such a way that the center of the two neighbor
nodes A (X,, Y., 2,) and B (xg, ¥g, Zz) of a two-dimensional panel is located at the
same position as the center ¢ of the three-dimensional element. The three-dimensional
normal vector {n}, can be obtained as described in Section 3.4.1. After the three-
dimensional normal vector {n}, is obtained, set the component n, = 0. Thus, the

consistent two-dimensional normal vector is

{n;},, = {0,n,n, (7.34)

The consistent two-dimensional normal vector can then be used to forin the

generalized normal vector, {n* }:

'} = [wl"{n} (7.35)
The generalized normal vector {n*} can be used in the equations in Sections 7.3 and

7.4. The implementation of this consistent normal vector concept is left for future work.
7.6 Modification of two-dimensional fluid forces

It is well known that two-dimensional strip theory and two-dimensional
hydroelasticity has some serious limitations. For example, pitch response cannot be
predicted very well. The incorrect pitch response results from neglecting the fluid action
in the longitudinal direction. Some work has been done to improve two-dimensional
strip theory by considering longitudinal fluid forces. For example, Riggs and Ertekin
(1993) have proposed augmenting the forces from strip theory by surge forces calculated

from Morison’s equation.
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The same idea can be applied in the composite 2-D/3-D approach to improve the
motion responses. Two components of the fluid forces may be calculated by a three-
dimensional model without much more computational effort. They are the three-
dimensional hydrostatic restoring forces and the incident wave forces.

Hydrostatic restoring coefficients calculated by a three-dimensional model for the
rigid body motion are the same as those by the two-dimensional model because in both
cases, the structure is treated as a rigid body. HoWever, three-dimensional hydrostatic
restoring coefficients for flexible motions of a structure are different from those obtained
by traditional two-dimensional hydroelasticity. The generalized three-dimensional
hydrostatic restoring coefficients have been discussed in Section 4.3; they can be

calculated by

Ky = ng Inj*\vwkds hk=12..,q (7.36)

5,

in which nj* is the three-dimensional generalized normal at the point (X,y,z) on the mean
wetted-surface corresponding to the jth mode shape, and w,, is the vertical
displacement at the point (x,y,z) on the mean-wetted surface in the kth mode shape.

The incident wave potential which was given in Eq. 7.13 can be used to calculate the
three-dimensional incident wave force. Unlike Eq. 7.14, the integral will be carried out
by using three-dimensional generalized normal. The incident wave force for the jth

mode shape can be written as

)

* ikxcosB ikysi z'
f; = pgafn e Peihrinet g g (1.37)
}
Sb

Since two-dimensional potential theory is used to calculate the radiation potentials,
the horizontal motion in the x-direction cannot be predicted by the composite 2-D/3-D

approach. The objective in introducing the three-dimensional incident wave force here is
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to include the component of the pitch moment which results from the incident wave

forces in the x-direction.
7.7 Simplified method using “basic modes”

The integrations in Eqs. 29 must be carried out numerically. Because the mode
shapes {w} vary, in general, along the x-axis, the modal sectional hydrodynamic
coefficients and forces must be calculated for each cross-section at which the integrand
is evaluated, even if the geometry of the cross section does not change along the length.

To reduce further the computations, Wang (1991) proposed for twin-hull structures to
approximate the cross-sectional deformation in the mode shapes by a small number of
‘basic modes,” which include the three rigid modes (modes 1-3 in Fig. 7.2) used in two-
dimensional hydrodynamics, as well as three additional deformational modes (modes 4-
6 in Fig. 7.2). The basic modes assume that the deformation can be expressed as
extensional deformation of the deck (mode 4) and rigid rotation of each hull about some
point, typically at the connection of the strut and deck (modes 5 and 6). With this
simplification, the same basic modes can be used for all cross-sections, and the velocity
potentials for the basic modes need only be determined once for geometrically identical
sections. These can then be used to approximate the forces and hydrodynamic
coefficients for the actual modes. A more rigorous approach to approximate the actual
mode shapes with the basic modes has been used for the present work. This approach is
developed below.

From Fig. 7.2, a 3 x 6 matrix, [D], which contains the translational displacements
associated with the basic modes at any point (y,z) on the mean wetted-surface at the

cross-section with longitudinal coordinate x can be written as
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00 0o 00 o
[D] =(10-(z-25) 10 —(z—zp*) on port hull (7.38)

01 (y-¥o) 01 (¥y-¥o)

00 0 00 0
[D] = [10-(z-25) -1 0 (z-%) on starboard hull (7.39)

01 (y-¥o) 0 -1-(y-ys)

where y; and z are the y and z coordinates of the center of gravity of the structure; and
yp* , zl,’I= and yg', zs* are the coordinates of the center of rotation between the deck and
the port and starboard hulls, respectively.

Only the structural motion below the still-water line affects the fluid motion, and
therefore, the basic modes are only used to represent the motion of the mean wetted-
surface. For a given cross-section, suppose there are m, nodes in the structural model
below or at the still-water line. If there are no nodes at the still-water line, m, will also
include the nodes which are just above the still-water line. Then the modal translational
displacements of the m, nodes can be used to form an n, xq matrix [y,], with

n, = m, x 3. The modal displacements can be approximated by the basic modes as

(v.] = [D] [S,] (7.40)

in which [D,] is an n, x 6 matrix formed by the basic mode shape matrices for the m,
nodes; and [S,] is a 6 x ¢ matrix. Using the method of least squares, [S,] for each

cross-section can be obtained by solving the following equation:

D] [w] = D] D] [S] (7.41)

[D.] T [D,] only needs to be factored once for each different cross-section.
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The use of the basic modes introduces a significant simplification of the

deformational motion. To estimate how well Eq.7.40 is satisfied, the following

indicators are defined:
g v | 0
| oy 1sshy'|
1§ i
g dawa) apa s s

vl | (og sy

in which ([ ])’ is the jth column of the matrix ([ ]) and || represents the L,
norm. Here y’ is the ratio of the length of the actual displacements ( [v,] )j to the length
of the approximation ([Dg] [S¢] )j. Accordingly, 6 is the angle between these two
vectors. For an exact representation,'yj =1land @ = 0.

If {&€} is used to represent the principal coordinates for basic modes, the two

principal coordinates {£} and {p} have the following approximate relationship:

{8} ~ ISl {p} (7.44)
The generalized normal vector {n,*} for the basic modes can be found, similar to

{n*},as

{n,*} = D] {n} (7.45)
which does not vary as a function of x for geometrically identical cross-sections.

Therefore, the radiation potentials only need to be solved once for similar cross-sections.

The generalized normal vector {nb* } can be written as
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n,
n,
{n*} = | (z-26)my + (¥ = ¥o) s on port hull (7.46)
n,
n,

- (z-2, )n,+ (¥-¥,))

n,

o
—_— — + —_—
{n,'} = (z-20) ﬂzn (y=Yo) 1, on starboard hull (7.47)
]

-z, - (y-ys) |

By substituting Eq. 7.40 into Eq. 7.3, the modal wave forces for basic modes, noting

that the matrix [S,] is a function of x only, can be written as

{F'} =iop| [SJT{ [ (@1 [D]" {n} dc} dx

S

(7.48)

=j[ss]T{impj [®] {n,,*}dc} dx
L c,

which has the same terms as Eq. 7.8 except for [S,] T, Note that the quantity in braces in
Eq. 7.48 is the sectional force which can be decomposed into incident, diffraction, and
radiation terms as in Egs. 7.9, 7.10 and 7.11. Eq. 7.48 illustrates that the 2-D potential
problem can be solved only for the basic modes for each cross-section to obtain the
sectional modal forces. Then, the generalized wave forces for principal modes in terms

of the forces for the basic modes become

{5} =[[S] {f}dx (7.49)
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(Fo'} = [IS) {fp} dx (7.50)

F* = (j [SB]Tajkdx)ék = (j 18,072, [S,] dx)pk = (@M +i0Cy)p, (75D

L L
in which it is understood that {f;}, {f;}, and a, are the result of the term in braces in
Eg. 7.48.
The generalized hydrodynamic forces from either Egs. 7.30, 7.31, and 7.32 or
Eqgs. 7.49, 7.50, and 7.51 can be substituted into Eq. 7.2 to obtain

[0  (IM] + IM*1) —io (ICF] + [C*D) + (K1 + [K*D) ] {p}

(7.52)
= {F}* + {(F,}*

in which {FI*} and {FD*} have the same definitions as before; M, and C,;, are the
elements of the modal added-mass and damping matrices, [Mf*] and [Cf*] ,
respectively; and {F,*} is written as —[Kf*] {p}, where [Kf*] is the hydrestatic
restoring stiffness which results from the hydrostatic pressure.

After solving Eq. 7.52 for the principle coordinates, the nodal displacements {D} can
be calculated with Eq. 7.1, and internal forces or stresses can be calculated with nodal
displacements {D}.

The computer programs have been implemented based on both methods described in
Sections 7.3 and 7.7. They are named HYDRAS-COMPOSITE and HYDRAS-
BASIC, respectively (Che, 1993).
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CHAPTER 8
STRUCTURAL MODELS

Three models of floating structures are developed primarily to apply and verify the
approaches described in Chapter 5 to 7 for determining hydroelastic response of floating
structures. They are: a 100 m x 100 m module, which is used to ‘assemble’ a multi-

module VLFS; an idealized twin-hull structure; and a SWATH ship.
8.1 VLFS module

The single VLFS module used here was designed by Winkler et al. (1990). The
overall geometry of a single module, which is their ‘revised design No. 2’, is shown in
Fig. 8.1. The cross-bracings prevent deformation in the transverse plane (prying
deformations). However, since the bracings have minimal influence on the
hydrodynamic loading to which the system is subject, they are ignored in the present
study. Such a simplification reduces the single module to a 4-column, 2-pontoon
structure. The principal characteristics of a single module is given in Table 8.1. Further
details on the module design may be found in Winkler et al. (1990).

This single module can function individually. Therefore the dynamic behavior is one
important consideration (among many others) for the design. Therefore, a structural
dynamic analysis was performed by Winkler et al. (1990) for the single module. In
present study, the module was modeled as a frame structure. That is, the pontoons and
columns were modeled by frame elements and the deck was represented by a grid of
frame elements, as shown in Fig. 8.2. The secﬁon properties of the pontoon, column,
and deck are shown in Table 8.2, in which I;;, L, and J arc the mass moment of inertia
about the local )7-axis and z-axis, and the torsional constant of the section, respectively.

In addition, the hydrodynamic forces acting on the module will be calculated by
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Morison’s equation. Therefore, any non-tubular member of the structure below the still-
water plane is approximately modeled as a circular cylinder based on the equivalent
underwater volume, which is shown in Fig. 8.3.

The other option for single module design is to consider various arrangements of
modules to construct multi-module VLFSs. In this case, the single module must function
both individually and as part of a VLFS with respect to floating stability, strength, and
motions induced by environmental forces. Functional arrangements for airfield, OTEC
power plant, and offshore mining facilities can be made by connecting single modules.
Fig. 8.4 shows a multi-module VLFS connected in tandem.

An important aspect for multi-module VLFS design is the connections. It is difficult
enough to connect together two relatively light floating structures in a calm sea. To
connect two VLFS modules will increase the difficulty many times. The objective of the
research here is not to explore what the physical connectors should be and how the
modules are connected. Rather, it is limited to determining the response for hinged,
elastic, and rigid connections. These results can be used for further preliminary design of

the VLFS connections.
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(a) Forward elevation of the single module
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(b) Starboard elevation of the single module
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(c)Plan view of the single module
Figure 8.1 Configuration of a single module (Winkler et al. 1990)
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Table 8.1 Principle characteristics of a single module

Description Value
Displacement (mass) (kg) 46, 440 x 10°
Water-plane area A (mz) 816
Length (m) 100
Width (m) 100
Operating draft (m) 25
Height (m) 59

Column Width x Depth x Length (m) 12 x 17 x 35
Pontoon Width x Height x Length (m) 18 x 10 x 96

KG (m) 30.67

KB (m) 8.25

GM, (m) 5.01

GM; (m) 4.13

Mass moment of inertia I, (kg-m’) 7.19 x 10"
Mass moment of inertia I, (kg - mz) 6.49 x 10"
Mass moment of inertia I, (kg - mz) 9.53x 10"

Table 8.2 Section structural properties

Modulus of Elasticity: 2.07 x 10" (N/m’)
Shear Modulus: 8.0 x 10 (N/m)

Member Ste(el 2z,l)rea L. (m4) I-- (m4) J (m4) m (kg/m)
m
Pontoon 2.8 40 90 60 57290
Column 221 70 40 70 39230
Deck
Longitudinal 0.80 25 25 50 23400
Transverse 0.25 20 40 50 23400
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8.2 Simple twin-hull structore

A simple, idealized, very long and slender twin-hull floating structure, shown in
Fig. 8.5, has been designed to verify the composite 2-D/3-D hydroelasticity theory. A
uniform cross-section, as shown in Fig. 8.6, was assumed. Additional properties of this
simple twin-hull floating structure are given in Table 8.3. It should be noted that this
simple structure is not meant to represent a realistic structure and neither is the
calculated response realistic. Rather, the structure is simple and highly idealized, and it
has been developed to demonstrate application of the theory. The other purpose of using
this simple structure is to validate the new methods and corresponding computer
implementation. It is difficult to find a computational model with sufficient geometric
and property description to validate and compare the results of newly developed
methods. This simple structural model also can be used for comparison in future work.

To simplify the analysis and verification, the deck and struts are assumed to be rigid
with the only flexibility represented by rotational springs joining the deck and struts.
The cross-section of the structure model, therefore, is represented by the line diagram.
The exact, dry modes for this simple structure are readily obtained by hand calculation.
If the structure is assumed fixed at the center of gravity, there are only two modes, which
involve symmetric (mode 7) and antisymmetric (mode 8) ‘swinging’ of the struts. The
natural frequencies of these two modes, which can be calculated based on the rotational
stiffness of the strut-deck connection, are 0.6 rad/sec.

When the structure is freely-floating, there are eight displacement degrees of
freedom. The first six dry modes are the usuval rigid body motions. Mode 7 is identical to
mode 7 for the fixed structure, with a corresponding dry natural frequency of 0.6 rad.sec.
Mode 8 is a combination of mode 8 for the fixed structure and sway and roll, and it has a

natural frequency of 1.16 rad/sec.
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Figure 8.5 Schematic view of a twin-hull structure

2m

8m

1m| 19m 1m

Figure 8.6 Geometry of cross-section of a simple twin-hull structure
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Table 8.3 Principle characteristics of simple twin-hull structure

Description Value
Length (m) 300
Displaced volume (m3) 4300
Distance between struts (m) 20
Draft (m) 8
Strut
Dimensions
Thickness x Height x Length (m) | 1x10x300 m
Mass density kg/m’ 300
Rotational stiffness of
strut-deck connection N - m/m 3.6 x 10"
Roll mass moment of inertia kg - m’ 1.31 x 10°
Heave restoring stiffness MN/m 6.03
Roll restoring stiffness MN-m 314

8.3 SWATH model
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The Small Waterplane Area Twin Hull (SWATH) ship concept began to be
recognized in the 1970s and the technology has since developed rapidly (Kalloi et al.,
1976; Curphey et al., 1977). The majority of the SWATH’s buoyancy comes from hulls
submerged well below the sea surface and hence the hulls are away from the location of
the largest wave excitation forces. Therefore, SWATH ships have superior seakeeping
characteristics. Another advantage is that they have a minimum speed degradation when
operated in the seas. However, because very few SWATH vessels exist, there is still
insufficient information available on the motion, loading, and structural responses of

SWATH ships. For example, one of the structural strength problems is transverse wave




‘prying moment’ on struts. Hence, a SWATH model is developed here to study these.

Fig. 8.7 schematically shows the geometry of the SWATH model. The principle
characteristics of the SWATH model can be found in Table 8.4. The resonant frequencies
for rigid body motion of the SWATH ship in water are estimated, by assuming constant
added mass, as 0.62 rad/sec, 0.42 rad/sec, and 0.32 rad/sec for heave, roll, and pitch
motion, respectively.

Fig. 8.8 shows the finite element model, developed with the general purpose finite
element code COSMOS/M, which is used for structural analysis. The structural model
consists entirely of shell elements. The properties of the shell elements are shown in
Table 8.5. For dynamic analysis, the mass of all nonstructural components has been
incorporated in the mass densities of the shell elements. The inside girder elements are
assumed massless to simplify the problem. Because of port-starboard (x-z plane)
symmetry, only one-half of the structure was modeled, using a total of 922 elements,
many of which are used for inside stiffeners. To simplify the coupling of the structural
model with the fluid models, the fore-aft symmetry was not exploited. The structural dry
modes are calculated by using the finite element code COSMOS/M and the first 14 ‘dry’
mode shapes are considered (q=14). The first 6 modes involve rigid body motion, while
the remaining 8 consist of 4 symmetric and 4 antisymmetric deformational modes. The
deformational modes and. corresponding natural frequencies are shown in Fig. 8.9. To
increase the responses in the deformation modes and thereby more readily compare the
results of the composite method and three-dimensional hydroelasticity, the structure has
been designed such that these frequencies are lower than they would be for a practical

design. This is why the thickness of the inside stiffener is only 0.0015 m.
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Figure 8.7 Geometry of SWATH ship, (a) side view, (b) top view
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Table 8.4 Principle characteristics of SWATH ship

Parameter Value

Length (m) 80m
Displaced Volume (ma) 3356.1 m’
Distance between struts (m) 26 m
Draft (m) 8§m
KB (m) 3.192m
KG (m) 9.5m
Height of the deck above still water line (m) 8§m
GM; (m) 479 m
GM; (m) 10.37 m

8
Roll mass moment of inertia kg - m’ 2303 x 10
Pitch mass moment of inertia kg - m’ 1529 x 10°
Roll restoring stiffness N - m 1.454 x 10°

Figure 8.8 Finite element model of the SWATH ship
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Table 8.5 Section structural properties

Modulus of Elasticity: 2.0 x 10 N/m’,
Shear Modulus: 8.0 x 10°N/m’

Member Thickness Densitsy
(m) kg/m
Element for pontoon 0.0025 2.557 x 10°
Element for strut 0.0025 | 5.288 x 10°
Element for deck 0.4 2.380 x 10°
Element for stiffener 0.0015 0
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CHAPTER 9
NUMERICAL RESULTS AND DISCUSSIONS

%.1 Application of two-dimensional hydroelasticity

The approach for two-dimensional hydroelasticity described in Section 5.3 has been
used to determine the motions of the single module described in Section 8.1. The
geometry of the 4-column, 2-pontoon single module has been shown in Fig. 8.1, and the
module properties have been given in Table 8.1. For the two-dimensional hydroelastic
analysis, the structure must be modeled as a beam. To determine the equivalent beam
properties of the structure, a detailed 3-D frame model of a single module was
developed. This model, together with ‘engineering judgement,” was used to determine
the beam stiffness and mass properties shown in Table 9.1 for the three cross sections
considered: pontoon, column-pontoon, and deck overhang. In Table 9.1, I, and I, are
the second moment of the cross-section area about the y-axis and the z-axis,
respectively; J is the torsional constant of the cross-section; A, and A,, are the shear
area about the y-axis and the z-axis, respectively; m;; are the mass densities, for i=1,2,3,
and mass moment of inertia densities, for i=4,5,6, per unit length. The latter results from
the fact that the pontoons are 96 m long, while the deck is 100 m long. Structural
damping is assumed to be zero, and, for simplicity, it is assumed that the centers of mass
and shear for each section are located on the x axis.

The hydrodynamic coefficients and wave exciting forces were determined based on a
column-pontoon section and 2 pontoon section (Fig. 9.1). Twenty sections are used for
two-dimensional hydrodynamic and wave exciting force calculations. The bracing was
ignored in these calculations.

The response of a single module to regular head (P = 180°), quartering
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(B = 135°), and beam seas (P =90°) has been determined for a range of wave
frequencies between 0.2 and 1.25 rad/s. The results are compared in Fig. 9.5 with the
results obtained from 3-D potential theory (Wang et al., 1991). As can be seen, the
results of the 2-D analysis agree favorably with the 3-D results, especially for heave,
sway, and roll. The pitch response is clearly less accurate. The discrepancy is likely due
to ignoring the hydrodynamic forces in the x direction on the pontoon ends and the
column face in strip theory. This error presumably should be less for a multi-module,
‘linear’ structure. Similar difficulties in using strip theory for semisubmersibles were

reported by Kim and Chou (1973) and Carlsen and Mathisen (1980).

1] |
1]«

column column

column-pontoon pontoon column-pontoon
section section

\ I pontoon section

Figure 9.1 Two sections of a single VLFS

Two-dimensional hydroelasticity is also applied to a five module VLEFS which
consists of five identical single modules. Two models for the module connectors were
investigated: a “hinge” connector, for which the three relative rotations between
modules are unrestrained, and a “rigid” connector, which ensures both displacement and
rotational continuity at the module interfaces. Practical connector designs would fail

etween these two extremes.

The response of the five module VLFS to regular head and quartering seas has been
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determined for a range of wave frequencies between 0.2 and 1.25 rad/s. The absolute
value of the vertical displacements per unit wave amplitude is shown in Fig. 9.6 as a
function of position and wave frequency. For the hinge connector, the presence of the
individual modules is quite clear. For the rigid connector, however, the individual
modules are not obvious because the motion is predominantly that of a rigid body. The
vertical deflection for the hinge model is shown in Fig. 9.7 as.a function of time for a
frequency of 0.5 rad/s. It is clear that there is significant pitching of the individual
modules. From Fig. 9.6a it may be observed that the displacements are not symmetric
for low frequencies. The unsymmetry is likely due to the inaccuracies in the pitch
motion of a single module. For the rigid connection model, the results are unsymmetric
only very close to the heave resonant frequency of a single module, possibly a result of
numerical sensitivity. These results indicate that the inaccuracies in the pitch response
determined from strip theory are less important for large structures which behave as a
‘single’ structure, rather than one whose response is primarily composed of connected
smaller structures.

The vertical and rotational displacements at the bow are compared for the two models
in Figs. 9.8 and 9.9. The motion of the hinged model is nearly always larger than the
motion of the rigid mcdel. That is, flexible connections allow greater motion than stiff
connections, as expected.

Fig. 9.10 shows the absolute value of the rotations of the four hinge-connectors in
head seas, and Fig. 9.11 shows the moments in the rigid connectors. Whereas the
displacement transfer functions are a maximum at low wave frequencies, the force
transfer functions are maximum at intermediate frequencies. Also, the response is nearly
symmetric, with the connections at 100 m and 200 m responding nearly identically to

those at 400 m and 300 m, respectively. Fig. 9.12 shows the corresponding moment at
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the center of the VLFS. Again, the maximum moment response occurs at intermediate
frequencies. Also, the moment in the rigid connection model is significantly larger than
the moment in the hinge-connection model. This increase in moment may have a major

impact not only on the connector design, but also on the module design.

Table 9.1 Equivalent beam properties

Table 9.1 (a) Pontoon section

vy 5500 m"
I, 12000 m’
] 480 m’
A, 51m’
A, 1.6 m’
m,, = M, = M, 416700 kg/m
m,, 7.12x 10° kg-m
m,, 236 10° kg-m
m, 473x 10 kg-m
Table 9.1 (b) Column section
" 7500 m’
L, 2800 m’
] 550 m’
A, N/A
m, = m, = my 1578500 kg/m
m,, 9.76 x 10° kg-m
m 263x 10° kg-m
m 7.19x 10° kg-m
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Table 9.1 (c) Deck overhang section

'3
I, 5500 m
1, 12000 m’
] 480 m'
2
- 5.1m
A, 1.6 m’

m,;, = m,, = My, 234000 kg/m
m,, 2.96 x 10° kg-m
m,, 1.05 x 10° kg-m
Mg 1.95x 10° kg-m

9.2 Application of Mcrison’s equation method

Three-dimensional hydroelasticity by Morison’s equation method is applied to the
same 4-column, 2-pontoon VLFS model which has been analyzed by two-dimensional
hydroelasticity (Fig. 8.1). The columns and pontoons below the still-water surface are
modeled as circular cylinders as shown in Fig. 8.3. The entire structure, including the
deck, are modeled by frame elements (Fig. 8.2). There are a total of 171 frame elements
for a single module, of which 56 are below the still-water surface, with a maximum
length of 5 m each. In Morison’s equation, the inertia coefficient C,, = 2.0 and drag
coefficient C, = 1.0 are used for all cases studied in this work as representative values.
However, one needs to use more accurate values in actual design studies by using
experimental data.

The rigid motion responses of a single module are calculated first. To compare the
motion responses of a rigid module obtained by Morison’s equation and

three-dimensional potential theory, the module was made rigid in the finite element
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model by substantially increasing the elastic modulus and shear modulus. The transfer
function of 6 rigid-body motions (per unit wave amplitude) obtained by Morison’s
equation method and three-dimensional potential theory (Wang et al., 1991) are shown
in Figs. 9.13 a-f. Considering the rough estimate of the inertia and drag coefficients and
large diameters of pontoon and column cross-sections, the overall agreement between
the two methods for wave heading angles of B = 180° (head seas), 135° (quartering
seas), and 90° (beam seas) seems to be good except for the yaw response in quartering
seas. Therefore, Morison’s equation method may be useful for analyzing VLFSs with
pontoons and columns.

With good comparison for a single module, Morison’s equation method is then used
to predict the responses of a 16 module, 100 m by 1600 m VLFS (Fig. 9.2). A total of
2464 nodes and 1872 frame elements are used for the entire 16 module VLFS. The
module connectors, which are 4 m long, are located at the deck level, and their structural
properties are the same as the properties of the longitudinal deck elements given in Table
8.2. Therefore, the structure consists of elastic modules and flexible connectors (EMFC
model). Because each node has 6 degrees-of-freedom, the complex matrix equation to
be solved contains a coefficient matrix of more than 218 million elements. To reduce this
matrix to a manageable size, a profile-storage scheme, which exploits the sparsity of the
coefficient matrix, is used. The resultant matrix then contains about 2.2 million
elements. The CPU time for the complete solution by Morison’s equation method for 20
frequencies, and 3 wave headings was about 4 hours on an IBM/RS/6000/530
workstation. This CPU time includes the complete re-assembly of the coefficient matrix
required for each iteration on the relative velocity used in the drag term. About 3-4
iterations were required to obtain convergence within a 1% tolerance.

The 16 module VLES is also analyzed by three-dimensional potential theory. In this
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case, the module is assumed to be rigid with flexible connections (RMFC model), and
double symmetry of the structure is exploited. As a result, the solution for 20 wave
frequencies and 3 wave heading requires about 13 hours of CPU time on a Cray YMPS8/
864 super computer, which is about 5 times faster than the IBM/RS/6000/530
workstation. This means that by using Morison’s equation method to determine the
hydroelastic response of a 16-module VLFS, one needs about one-sixteenth CPU time
compared with the RMFC method even though the entire structure is modeled as an

elastic body.

Table 9.2 Natural frequencies of the 16 module VLFS (rad/sec)

Mode No. 1]2 3 4 5 6 7 8 9 10 11 12
Dry mode 0]0 0 0 0 0 | 017 | 047 § 090 | 1.20 | 1.46 | 2.13
wet mode oo} .11 | 27| .27 0 29 43 65 a1 1.00 | 1.51

Module Gg \‘ Module

Y

16 ol 3 1

Figure 9.2 Schematic view of a multi-module VLFS

The natural frequencies for the 16 module VLFS are calculated for dry modes and
wet modes (for wet modes, the added mass coefficients in Morison’s equation method

are constant), and they are listed in Table 9.2. The comparison of the transfer functions
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of the response amplitude of module 1 and 8, in head seas, are shown in Figs. 9.14a-f
obtained by both methods. From Fig. 9.2, module 1 is located at the bow and module 8 is
located near the origin, in the middle of the VLFS. It is interesting to note, in Figs. 9.14a
and b, different surge responses for modules 1 and 8. This is due to the flexibility of the
connectors used between neighboring modules. Due to the very small damping present
at around o = 0.3 rad/s, the RMFC model, indicated in these figures by ‘GFM’,
predicts very large responses. On the other hand, the EMFC model, which includes
viscous form drag, exhibits smaller responses at this frequency. However, the overall
agreement for surge, heave and pitch responses is acceptable. Note that the EMFC
model, indicated by ‘Morison’ in these figures, consistently predicts large peaks around
® = 0.5 rad/s and 0.8 rad/s. These frequencies, as well as ® = 0.3 rad/s
correspond to flexible-mode natural frequencies shown in Table 9.2.

Figs. 9.15a-1 show the transfer functions for the case of quartering seas. The
agreement for surge, heave and pitch is better than sway and roll transfer functions. The
explanation for this discrepancy is related to the fact that in the RMFC model, where the
Green function method is used, the hydrodynamic interaction between multiple modules
is included. This interaction becomes more important in quartering seas than in head
seas, as expected, since in quartering seas, the pontoon end-planes of two neighboring
modules are exposed more to wave action and, therefore, wave-scattering interaction is
very strong. Obviously, Morison's equation cannot incorporate such effects. Note that
the fluid velocity between the columns and pontoons of two neighboring modules is
much greater in magnitude than the fluid velocity in the middle of a pontoon, resulting
in reduced fluid pressure in these areas. This, in turn, causes the overall forces to reduce
and, thus, the response predicted by the Green function method becomes significantly

smaller than Morison's equation results. The transfer functions of response for other
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modules show similar trends and, therefore, they are not shown here. The transfer
functions presented here can be easily used to predict the responses in irregular seas by

using measured or analytic wave spectra.
9.3 Application of compesite 2-D/3-D hydroelasticity

The composite 2-D/3-D hydroelasticity method has been applied to two structures.
The first is a simple, idealized, very long and slender twin-hull structure as described in
Section 8.2 and shown in Figs. 8.5 and 8.6. To obtain results for the composite 2-D/3-D
method, the two-dimensional potcntiél problem has been solved by the ‘close-fit’
method. Because of port-starboard (x-z plane) symmetry, only one-half of the structure
was modeled. A total of 149 sections at 2 meter intervals were used, and the trapezoidal
integration rule was used to evaluate the hydrodynamic coefficients and wave exciting
forces in the longitudinal direction. The mean wetted-surface of the port hull of each
section was discretized by 10 two-dimensional fluid panels. The discretization is

schematically shown in Fig. 9.3.

] q
<

{4 [ ]
112}13]|4 146|147 (148149 % &

71 ® 4
6 5
Side-view Port hull-view

Figure 9.3 Schematic view of discretization of a twin-hull structure

For comparison, the response was also determined by three-dimensional

hydroelasticity. A total of 1506 fluid panels, each 2m x 2m, except at the ends and the
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bottom, were used in this case. Therefore, the two-dimensional fluid panels and the
three-dimensional panels have the same size.

If only the first 6 modes are considered (g=6), then the results from the composite
method are identical to those from traditional two-dimensional hydrodynamics based on
a rigid structure. The resonant frequencies for rigid-body motion of a structure in water
depend on the structural mass, added mass, and hydrostatic restoring coefficients. They
are approximately 1.05 rad/sec, 0.38 rad/sec, and 1.04 rad/sec for heave, roll and pitch,
respectively. Fig. 9.16 compares the rigid motions for three wave headings based on the
composite method (2-D) and three-dimensional (3-D) potential theory. Zero responses
for some wave headings have been removed from these figures (e.g., sway in head seas).
The agreement is very good, with the primary differences in heave and pitch at resonant
frequencies. These differences may result from the different hydrodynamic damping
obtained from two-dimensional and three-dimensional flow problems. The maximum
roll response occurs not at the resonant frequency, but at a wave frequency of
approximately (.87 rad/sec. This frequency corresponds to a wave length which is equal
to four times the width of the structure. At the natural roll frequency, the wave length is
too long to create significant roll motion. The maximum sway response occurs at the
same frequency as does maximum roll. The correspondence between the 2-D and 3-D
results indicate that the two-dimensional flow assumption of strip theory is likely to be
acceptable for this structure.

Flexible cross-sectional motion is considered next, which cannot be treated by either
traditional two-dimensional hydrodynamics or two-dimensional hydroelasticity. As
mentioned in Section 8.2, if the structure is assumed fixed at the deck, there are only two
dry modes, which involve symmetric and antisymmetric ‘swinging’ of the struts. The

symmetric ‘prying’ mode, identical to the basic mode 6 in Fig. 7.2, is labeled mode 7,
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while the antisymmetric ‘torsional’ mode is labeled mode 8. (Mode 8 involves
antisymmetric rotation of the struts.) Both modes have a dry natural frequency of 0.6
rad/sec. For both of these flexible modes, the associated hydrostatic restoring stiffness is
negligibly small and is ignored in the calculations. Note that the actual modes in this
simple example can be represented exactly by the ‘basic modes’ in Fig. 7.2.

Figs. 9.17, 9.18, and 9.19 compare, for the fixed-deck case, the modal added mass,
hydrodynamic damping and exciting forces determined by the composite 2-D/3-D

approach and three-dimensional hydroelasticity. In these three figures, Mﬁj* and Msﬁ*

*
fij

are the jth modal added mass and the jth structural modal mass; C,;. are the jth modal

damping; F * are the jth modal wave exciting forces; a is the wave amplitude.

fii
ijj* / Msjj* is the ratio between the jth modal added mass and the jth structural modal

*

mass, Cg; /2w; (M,jj* + ijj*) (w@; is the jth natural frequency) is the ratio between the

*
3]

jth modal hydrodynamic damping and the jth critical damping, and F;..” /apgV is the

ratio between the jth modal wave exciting force for unit wave amplitude and the

*M.F. C

fii sjj

*
fij

structural weight. M /2w,(M,;" +M") and F.'/apgV are
non-dimensional quantities. The agreement is quite good. It is interesting to note that for
some wave frequencies, the modal hydrodynamic damping is greater than critical
damping. In this case, the system is overdamped. For such systems, the free vibration
response will not be oscillatory. The response in these modes, as measured by the
relative rotation between the deck and strut, is shown in Fig. 9.20. Only beam sea results
for wave exciting forces and relative rotation are plotied here since they are significant
for these two modes. The distributed moment at the joint between deck and strut is
simply the rotational stiffness, 36 kN-m/m (from Table 8.3), multiplied by the rotation in
Fig. 9.20.

When the simple twin-hull structure, whose deck and struts are connected by hinges,
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is freely floating, there are a total of eight displacement degrees-of-freedom. The
responses of the freely floating structure in beam seas is shown in Figs. 9.21a-d.
Figs. 9.21a-c show the horizontal and vertical displacements and ‘roll’ rotation of the
center of gravity. The agreement between the results obtained by two-dimensional and
three-dimensional fluid models is reasonably good, with the major differences occurring
at the resonant frequencies. Fig. 9.21c shows that roll has the largest discrepancy
between the two approaches. In particular, resonant response of mode 8 results in
substantial deviation at high frequencies, which is due primarily to a shift in the ‘wet’
natural frequency of this mode. The deformational responses, that is, the relative rotation
of the deck joint, are in substantially better agreement (Fig. 9.21d). The ‘prying’ forces,
that is, the bending moment at the deck joint, is simply the product of the rotational
stiffness (in Table 8.3) and the rotation in Fig. 9.21d.

It has already been mentioned that the motivation to use a two-dimensional fluid
model is to reduce the computer time so that hydroelastic analysis of very large
structures is more readily accomplished. For the hydrodynamic coefficient and wave
exciting force calculations of this simple twin-hull s‘tructure, in which 6-rigid body
modes and two flexible modes were used, the CPU computer time required by full 3-D
hydroelasticity, on an IBM RS/6000/550, is 16 minutes and 24 seconds. The total time is
12 hours and 20 minutes, which consists primarily of disk I/O for intermediate files. The
composite 2D/3D approach, however, took only 3.85 seconds CPU time, with a total
time of 1 minute and 26 seconds. Hence, the composite method requires just a fraction
of the time that three-dimensional hydroelasticity requires. As long as the accuracy is
sufficient, it therefore represents a more useful tool for design, especially if small
computers are used.

The previous structure was artificial, having been designed solely to test and validate

155



the composite method. For further validation, a more realistic SWATH ship, Fig. 8.7, has
been designed and analyzed with the composite 2-D/3-D method and three-dimensional
hydroelasticity. The rigid and flexible responses and internal forces are calculated by the
composite method and ‘full’ three-dimensional hydroelasticity.

Again, because of symmetry, only half the structure was modeled to determine the
hydrodynamic coefficients and wave exciting forces. The structure has been modeled
entirely by shell elements, as shown in Fig. 8.8. For the three-dimensional hydroelastic
analysis, a one-to-one correspondence was used between the quadrilateral shell elements
below the mean water line and the fluid panels. A total of 372 fluid panels were used.
The surface elements of the SWATH ship are shown in Fig. 9.4, in which the fluid panels
are those surface elements below the still water plane. For the composite 2D/3D
analysis, each vertical line in Fig. 9.4 was taken as a section, and structural nodes below
the mean water line were taken as sectional nodes for the two-dimensional fluid model.
Therefore, a total of 31 sections were used, and the trapezoidal rule was used for the
integration in the longitudinal axis direction to evaluate the hydrodynamic coefficients
and wave exciting forces.

First, the rigid body motions are compared. Figs. 9.22 and 9.23 show the comparison
of added-mass coefficients and wave exciting forces, respectively, for rigid-body mode
shapes between 2-D/3-D composite method and three-dimensional hydroelasticity. A
comparison of the rigid-body motions are shown in Figs. 9.24. Again the results

compare favorably with the primary differences resulting from resonance.
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N

Figure 9.4 Surface elements of the SWATH ship

Figs. 9.25 and 9.26 show the comparison of added-mass coefficients and wave
exciting forces between three-dimensional hydroelasticity and 2D/3D composite method

for flexible mode shapes. In these two figures, M., M..*, and Fﬁj* , j=1.8,...,14, have

fij » Mg 0
the same definiticn 25 before. The comparisons for some mode shapes are not very good,
although they demonstrate the same tendencies. The reasons for these differences are not
clear at this stage and need to be studied.

To compare the predicted deformational responses obtained by the two methods, the
‘deformational’ motion (excluding rigid-body motion) at point ‘A’ (Fig. 9.4) and the
moment at the strut-deck interface at point ‘B’ have been determined. Figs. 9.27a-b
show the horizontal u, and vertical u, displacements. Since point A is taken at midship,

the response for head seas is expected to be small from the symmetry. From the figures,

it can be seen that the results from the composite method compare favorably with those
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from three-dimensional hydroelasticity.

Fig. 9.28 shows the internal forces at the point B. N, and N, represent the deck
‘membrane’ forces per unit length in the x-direction and y-direction, respectively, and
M, and M, represent the bending moment per unit length about the x-axis and y-axis,
respectively. The forces are calculated at the edge of the deck where it is connected to
the strut, so that they can be used to design the connection. It can be seen that the
comparison of the internal forces between the composite method and three-dimensional
hydroelasticity is good.

The simplified composite method which uses basic modes to represent the actual
modes has also been applied to the same SWATH model. Fig. 9.29 represents the ratios
of the lengths and angles between the actual four symmetric flexible modes and
approximations obtained with the basic modes (Egs. 7.42 and 7.43). From Fig. 9.29, the
ratios of the ‘length’ and the angles between those two modes at most cross-sections are
close to 1 and 0, respectively. These indicate that the real modes for the SWATH ship
can be well represented by the basic modes. Fig. 9.30 shows the horizontal flexible
displacement u, at point A, and Fig. 9.31 shows the comparison of bending moment
M,, at the element B, between the composite method and the simplified composite
method, for beam seas. These results indicate that, at least for this structure, the basic

modes can be used to estimate the flexible response.

158



1 | 1 ] ]
{ ——6— 3D-Head
—8— 3D-Quar
0.8 7 —o— 3D-Beam | [
E ---%-- 2D-Head
§, 0.6 _t ---+- 2D-Quar |
8 ---&-- 2D-Beam |,
2 .
& ;
< 0.4 :_
>
]
é
0.2 T B
0 +—e—ox—=
0.2 0.4 0.6 0.8 1 1.2
Frequency (rad/s)
(9.5a)
2 | ! ! |
—6— 3D-Head
6 i —&— 3D-Quar i
T ) ,'," —e— 3D-Beam
E
223
o
=2
a
£
L9
@
®
[}
I

0.2 0.4 0.6 0.8 1 1.2
Frequency (rad/s)

(.5b)
159



Roll Amplitude (deg/m)

Pitch Amplitude (deg/m)

Figure 9.5 Comparison of single module motions based on 2-D and 3-D

0.5
0.4
0.3
0.2
0.1 -
0
0.2 0.4 0.6 0.8 1 1.2
Frequency (rad/s)
(9.5¢)
0.8 | 1 | 1
3 —6— 3p-Head
0.7 Vs —&— 3D-Quar
0.6 - ".‘ ‘ —— 3D-Beam S
05 - Y ---x-- 2D-Head i
’ 5 ---+-- 2D-Quar
0.4 ---a-- 2D-Beam -
0.3
0.2
0.1
0

0.6 0.8 1
Frequency (rad/s)

9.5d)

hydroelasticity, (a) sway, (b) heave, (c) roll, (d) pitch

160



Vertical displ, (m/m)

3

2e X0

1.8

2

“\ \ SN
aVaeietetets:
) " * 4 .
OO0
A T et et e s
SRR RROOIG
Atz N T
e Teven. ;::,.‘.
N
R

- AN otary
& AR
) »_\.\\\\.;:e.’.:;;\:te%'e
Q .
L
X
-t~
> <>
“a
_——‘;’o e -
</
. f
~

N o« X
S 0 NN
RROR W \:“3&&:
OO RNRY ey
o \\\\}"n‘.”s\""
$ R
-
o, Ve
P,
<>
<,

oriical dlspy, (m/m)

20 25

1.5

1.0

Quartering Sea

(9.6a) Hinge model

161




Vertical ojspy, (m/m)

Verticat dispy, (m/m)

00 o0¢ 08 12 1.6 20 24 2

i L

\\\\\\\3\\\ \“‘

W
:

iy

1
o
S o
RV
-
‘%9,00
°—:';;,<:J - -
Head Sea

MR

\ \\\\\\\\{
\\‘

Quartering Sea



3
E
;e; 0.2 —
£
g
o v e NS »
% '0 2 , /’ \ \ J
A4} ’
:g ~ ’/ pN
g 7
-0.6 T T T T
0 100 200 300 400 500

x (m)

Figure 9.7 Vertical motion of hinge model during one wave cycle (® = 0.5 rad/s,
T=12.6s)

w
3,1
|

—6— Hinge-Head —
---8-- Rigid-Head

w
|
|

N
[4,]
|

-
)
!

Vert. displ. at 0 m (m/m)
N
|

pury
|

o
(34}
]

o

0 0.25 0.5 0.75 1 1.25
Frequency (rad/s)

(9.8a) Head Sea
163



Vert. displ. at 0 m (m/m)
- N
2

o
(3]

N

n

-t

—5— Hinge—Quar
---8-- Rigid-Quar

0.25 0.5 0.75 1 1.25
Frequency ({(rad/s)

(9.8b) Quartering Sea

Figure 9.8 Absolute value of the vertical displacement at x=0 m for head and

1.

[=]
o]

[=]
[+

o
H

Rotation at x=0 m (deg/m)

o
N

-t

quartering seas

——&— Hinge-Head
---&-- Rigid-Head

0.25 0.5 0.75 1 1.25
Frequency (rad/s)

(9.9a) Head Sea
164



0.6 - —6— Hinge—Quart

---f-- Rigid-Quart.

o
wn
1

o (=] (=]
N w »
] | ]

Rotation at x=0 m (deg/m)

o
-
]

o

0 0.25 0.5 0.75 1 1.25
Frequency (rad/s)

(9.9b) Quartering Sea

Figure 9.9 Absolute value of the rotation about y-axis at x=0 m

1.2 | | I ]

1 - —&— x = 100

---&-- x = 200

o
(o]
I

—%— x = 300 B

Hinge Rotation (deg/m)
9 o
£ [}
I L

o
v
i

0 0.25 0.5 0.75 1 1.25
Frequency (rad/s)

Figure 9.10 Absolute value of hinge rotation about the y-axis for head sea
165



1000 : ‘ . .

—&— x = 100
—0-— x = 200

®
o
(=}
|
=

600 ]

400

200

Connection Moment (MN-m/m)

0 0.25 0.5 0.75 1 1.25
Frequency (rad/s)

(9.11a) Moment (head sea)

500 ] | ] ]

W H
o o
o o

] |

que (MN-m/m)

N
o
o

|

100

Connection Tor

0 0.25 0.5 0.75 1 1.25
Frequency (rad/s)

(9.11b) Torque (quartering sea)

Figure 9.11 Absolute value of the connection moment (head sea) and torque
(quartering sea)

166



l | _
S ®
c 9
_ T tc
A* '
1
H—u IIIII
" LI
R R
freso""
S ]
O
1 0 g -4
..
T--..
W o o o B
o o o S =4
-~ @ © 5 Q

(WaL-NN) W 052=X 18 JUSWOW

1.25

0.75

0.5
Frequency (rad/s)

0.25

Figure 9.12 Absolute value of the moment about the y-axis at x= 250 m for head sea

167




Surge (m/m)

Sway (m/m)

08"

0.5

T 17

03

—&—— Morison-Head
- - 0 - - Morison-Quar
— - — Morison-Beam

- - # - - GFM-Head
- - # - - GFM-Quar
—e — GFM-Beam

11 1 1

1.5

0.8 7]

0.5 7

T T T T

T T T

0.3

——6-—— Morison-Head
- 0 - - Morison-Quar
— - — Morison-Beam

~ - # - - GFM-Head
- -® - - GFM-Quar
—e& — GFM-Beam

0.6

. 0.9 12
o (rad/s)

(9.13b)

168

OSBRI T T TN |

1.5




Heave (m/m)

Roll (deg/m)

——&— Morison-Head
- - -0 - - Morison-Quar
— ¢ — Morison-Beam

i - -- GFMHead ]
- - - -® - - GFM-Quar 7
B —e& — GFM-Beam i
1_-
057
0
0
(9.13¢c)
0.5 1 i ! |
[ / .\:. —6— Morison-Head | -
. - - 3 - - Morison-Quar [
- / 7 "‘; — - — M$son-Beam =
047] S (|- CReHe
[ ooy e GPMQuar |
d. . RN e i
03 1 ' \h\ I
| %

0 03

0.6 0.9 1.2
 (rad/s)

(9.13d)

169




04t ] ] ! 1 ]
—o— Morison-Head §
- - 4 - - Morison-Quar § |
037 — -¢ — Morison-Beam L
=t - - & - - GFM-Head -
_ - - & - - GFM-Quar E
% i ~—¢ — GFM-Beam ’
T 027 -
g
& [
017 B
0— -
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.13e)
1
01 ! 1 ] .
——e— Morison-Head i
-+ -0 - - Morison-Quar b
- - — Morison-Beam “_
0.087] |--®--GFM-Head |
- - = - - GFM-Quar ]
G ~—¢ — GFM-Beam J
9 pa T
2,005 2 In
2 2o . 4
s F’. I o'n : i
-' . é L
0037 i, h ! |
L [ ] . . M . -
[ - ‘s a ! . i
- 8 conm
0 ep-eeeecesooesosioee
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.13f)

Figure 9.13 Comparison of the motion transfer functions of a single module obtained
by the Green Function and Morison’s equation method for head, quartering and beam
seas

170




Surge (m/m)

Surge (m/m)

05 ¢
i N —o— Morison-Head 7
. o - --® -+ GFM-Head -
041 . - - ]
- . Module-1 .
0.3 7 . u
0.1 7
0
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.14a)
] I ! I
02T ]
: ~—6— Morison-Head i
027 --® - - GFM-Head I
L. , -
[ : Module-8 i
0.1 __ __
0.05 I
I i
0
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.14b)

171



Heave (m/m)

Heave (m/m)

2 é | | I

[ : —o— Morison-Head ]
2] ---® - - GFM-Head =

i Module-1 i
11 B

057

0

0 03 0.6 0.9 1.2 1.5

@ (rad/s)
(9.14¢)

2 é ) I |

I —o— Morison-Head ]
. L

i - --® - - GFM-Head ]
- Module-8 il

057

0

()} 0.3 0.6 0.9 1.2 1.5

o {rad/s)
(9.144)

172



0.8

—=o6— Mornson-Head 1

PRI W

0.6 . --.® - - GFM-Head -

Module-1

Pitch (deg/m)
(=]
-
1
)

027

0.4

—o6— Morison-Head

N S |

03] -- @ - - GFM-Head =

° Module-8
02}

Pitch (deg/m)

0.1

Figure 9.14 Comparison of the motion transfer function of module 1 and 8 obtained by
the Green Function and Morison’s equation method for head seas

173




0.4

T 7T

03 7]

Surge (m/m)
o
[ ]
l T Ll L Ll

=717

[ ]
¢
¢
o

.

——6— Morison-Quar

T .

.- -® - - GFM-Quar =

I W W |

Module-1

017 I
0
0 1.5
(9.15a)
02 | § i | -
i —o6— Morison-Quar i
02 .-.® - - GFM-Quar T
— - 1
£ ? Module-8 )
= o1
] [
3 [
0057
0
0 03 0.6 09 12 1.5
 (rad/s)
(9.15b)

174



Sway (m/m)

Sway (m/m)

087
05

037

4
T T I |

—6— Morison-Quar

- -® - - GFM-Quar -

Module-1

0.6
0.5 7
0.3 7

027

—=6— Morison-Quar

- - -® - - GFM-Quar =

Module-8 .

0.3 0.6 09 1.2 1.5
® (rad/s)

(9.15d)

175




Heave (m/m)

Heave (m/m)

5 ] ] ] 1
: —&— Morison-Quar :
17 GJY ---® - - GFM-Quar -
. i
° Module-1 i
0.8 7] . B
0.4 7
0
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.15¢e)
. * 1 ] ) ]
——8— Morison-Quar i
087 - ® - - GFM-Quar In
Module-8 ]
0.5 7]
037
0
0

176



Roll (deg/m)

Roll (deg/m)

™7 T7

T T T

—0— Morison-Quar

T T |

- - @ - - GFM-Quar

Module-1

0.5

0.4 7

03]

—6— Morison-Quar -

j’ ---® - - GFM-Quar

Module-8

03 0.6 0.9 1.2 1.5
® (rad/s)

(9.15h)

177




—6— Morison-Quar

-- - - GFM-Quar

TTTT
|l

L1 L1

- . Module-1

Pitch (deg/m)
e

TTTT
LLLL

0171 i
o o -—
0 0.3 0.6 0.9 1.2 1.5
® (rad/s)
(9.15i)
03+ 1 1 ] L |
5 —6— Momison-Quar 3
--® - - GFM-Quar ]
0271 I
g - Module-8 .
g ¢ ]
§ :
& 011 I
0 [ ——
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)
(9.15))

Figure 9.15 Comparison of the motion transfer function of module 1 and 8 obtained by
the Green Function and Morison’s equation method for quartering seas

178




Sway (m/m)

Heave (m / m)

—6— 2-D Beam

<+ 0 - - 2-DQuar
— - — 2-DHead

- - --3-DBeam
- - B - - 3-DQuar
— & — 3-D Head

| |
0.25 0.5 0.75 1 1.25
o (rad/s)
9.16b)

179



Roll (deg/m)

0 0.25 0.5 0.75 1 1.25
o (rad/s)
(9.16¢)
15 ] | | I

1.17]

0.8 ‘T\ -

04| ;/?\:\- % i:/ ®

Pitch (deg/m)

. . goal
0 0.25 0.5 0.75 1 1.25
o (rad/s)
(9.16d)

Figure 9.16 Rigid body motions based on 2-D (present results) and 3-D potential
theory (a) sway, (b) heave, (c) roli, and (d) pitch

180



100

72.5 7

17.5

%
Modal Added Mass M“;, M
&
]

10
0.15 0.425 0.7 0.975 1.25

o (rad/s)

Figure 9.17 Modal added mass (j=7 and 8) based on composite 2D/3D method and
3-D hydroelasticity

5 1 1 1
- 15 4 |—— Composite j=7 =
= [ |- - B - - Composite j=8 ]
* [ |- e —3D =7 ]
2 [ |--=--3D 38 \\ :
LEO1T B
B -
Q 0571 B
v
0 In
05 T I ]
0.15 0.425 0.7 0.975 1.25

o (rad/s)

Figure 9.18 Modal hydrodynamic damping (j=7 and 8) based on composite 2D/3D
method and 3-D hydroelasticity

181



3

Modal Wave Exciting Force |E‘|/(ang)

% 107>

1.5

0.5

L L L L)

~——8— Composite j=7
- - -0 - - Composite j=8

— e —3D
--=--3D

=7
78

[T WS S T O W T B §

0.5
o (rad/s)

0.75 1

Figure 9.19 Modal exciting forces (j=7 and 8) based on composite 2D/3D method
and 3-D hydroelasticity

Relative Rotation Gj (deg/m)

——oe— Composite j=7
- - - - Composite j=8

C N — e —3D =7 §

10_- \-\B'E] --u--3.D _‘|=8 |
8
6
4
2
ot

0 c.25 0.5 0.75 1 1.25

o (rad/s)

Figure 9.20 Amplitude of the relative rotation between deck and strut for modes 7
and 8 based on composite 2D/3D method and 3-D hydroelasticity

182



Horizontal Displacement (m/m)

Vertical Displacement (m/m)

0.25

0.5 0.75
® (rad/s)

(9.21a)

1711 T 1 17 F T P T T ]

L L AR

0.25

0.5 0.75
® (rad/s)

(9.21b)

183

1.25




70 1 { 1 |
g 60-{ [——3-D 1
3 - oo --2-D ]
= 50 i
.é : :
X 40— I+
= r ]
B iy 1
I :
E Lot 1
B X .
(=} o a
STl I
n 8 . .
0 = T | lc:- o O- 0O
0 0.25 0.5 0.75 1 1.25
® (rad/s)
(9.21¢c)
40 1 | 1 i
A —o—3-D 1
g Z --3--2-D 1
B 907 ]
NS o .
£ 257 1
g _F =
S 207 .
g 15 I
g CF =
A 10 In
5 I
0t 5;5'\, | T T .
0 0.25 0.5 0.75 1 1.25
o (radfs)
(9.21d)

Figuré 9.21 Response of the freely floating structure computed with 2-D and 3-D fluid
models (a) Horizontal displacement, (b) Vertical displacement, (c) Rotation about the
x-axis, and (d) Relative rotation between the deck and strut

184



1107

—o— Composite

T s --®--3D -
*Ea : -..
g o] g
g i
§ 5
3 i [
:§ 510
= Z ]
110 T T n T
0 0.3 0.6 09 1.2 1.5
o (rad/s)
(9.22a)
1 1 § | |
. | ——o— Composite
’% 097 ..e--3D i
iz : |
g 087 B
E L
3 L
= B ]
B _
= 071 ]
2 - ]
p=> B 1
0.6 | | T T
0 0.3 0.6 0.9 1.2 1.5
 (rad/s)
(9.22b)

185



l | 1 |

—=6— Composite

§ TR SO W |

--®--3D L

I S T |

* *
Modalladdedmass M f44/M odd
(=]
]

| | T T
0 0.3 0.6 0.9 1.2 1.5
o (rad/s)

(9.22¢)

- ——e— Composite

--e--3D

o 6.
e9 000066 R4 ®c g0

* 3
Modal added mass M f55/M .55

0 0.3 0.6 0.9 1.2 1.5
o (rad/s)

(9.22d)

Figure 9.22 Modal added mass for rigid body motion of SWATH ship based on
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Figure 9.23 Modal wave exciting forces and moments for rigid body motion of
SWATH ship based on composite 2-D/3-D method and 3-D hydroelasticity
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Figure 9.24 Rigid body motions of SWATH based on 2-D (composite method) and
3-D potential theory, (a) sway, (b) heave, (c) roll, and (d) pitch
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Figure 9.25 Modal added mass for flexible motion of SWATH ship based on
composite 2-D/3-D method and 3-D hydroelasticity
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Figure 9.26 Modal wave exciting forces for flexible motion of SWATH ship based on
composite 2-D/3-D method and 3-D hydroelasticity
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

Three methods for the hydroelastic analysis of very large floating structures have
been developed. They are an improved two-dimensional hydroelastic method, a three-
dimensional hydroelastic method incorporating frame elements with Morison’s
equation, and a composite 2-D/3-D hydroelastic method. All the methods are developed
to apply to very large floating structures. However, the methods are also applicable to
other offshore structures.

A common characteristic of all three methods is efficiency. The methods avoid three-
dimensional potential theory to calculate hydrodynamic coefficients and wave exciting
forces, which is a computationally time consuming part of hydroelastic analysis of
VLFSs. Another common characteristic is that structural responses and forces are an
integral result of the analysis.

The two-dimensional hydroelastic method is based on strip theory and a nonuniform
beam model for the structure below the stili-water line. A general three-dimensional
structural model is possible for the structure above the water surface. Therefore,
modeling the fluid is very simple and the method is very efficient. The deficiency of this
method is that the fluid interaction between the beam cross-section and the longitudinal
fluid forces are ignored and only the beam-like responses and forces can be predicted.
Two-dimensional hydroelasticity has been used to analyze the motions and forces in a
long, relatively slender S-module VLFS which is 100 m wide and 500 m iong. The
resulis are useful io develop an understanding of the fundamental modes of

displacement and force magnitudes for which multi-module VLFSs must be designed.
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Ignoring the longitudinal forces in two-dimensional hydroelasticity results in
inaccuracies, especially for pitch motion of a single module. However, the results
indicate that the inaccuracies are less important for large structures which behave as a
‘single’ structure, rather than one whose response is primarily composed of connected
smaller structures.

Frame finite elements for modeling the structure and Morison’s equation for
calculating the fluid forces have been incorporated in a three-dimensional hydroelastic
analysis method. The advantages of this method are that a three-dimensional structural
model is used to provide detailed information of the structure and the very efficient
Morison’s equation is adopted to calculate the fluid force. One of the deficiencies of this
method is that fluid interaction is not taken into account since Morison’s equation is
used. Another is that the method is limited to structures which can be modeled by
circular cylinders below the still water line. Moreover, one needs to have accurate inertia
and drag coefficients in this analysis.

Despite the limitation of Morison’s equation and the relatively large diameters of the
circular members, somewhat acceptable results, especially for a single module, in
comparison with the three-dimensional potential theory, are obtained. Based on the
present results, it appears the method can be used to predict the hydroelastic response of
a VLFS during, at least, the preliminary design stage. This is especially true when one
considers that the method requires very little computational time in comparison with
three-dimensional potential theory.

To reduce the computational time required for a full, three-dimensional hydroelastic
analysis, but to improve the results of two-dimensional hydroelasticity, a composite 2-D/
3-D hydroelastic methcd has been developed. The method combines a three-

dimensional structural model and a two-dimensional fluid model to compute the wave-
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induced, hydroelastic response. The advantages of this method are that three-
dimensional structural motions and deformations are used with two-dimensional
potential theory to obtain the hydrodynamic coefficients and wave exciting forces, and
the deformation and internal forces of each individual structural element can be
obtained. However, because the fluid forces are determined from two-dimensional
potential theory, the method is applicable to slender structures.

To demonstrate the composite method and to verify the implementation, a simple,
twin-hull structure with two flexible modes has been analyzed. The comparison of
results between the composite method and three-dimensional analysis is good. In
addition to this highly idealized, ‘two-dimensional’ structure, the method is also applied
to a more realistic SWATH-like structure. Again the results of the composite method
compare well with those from a full, three-dimensional analysis. From the results, we
conclude that the composite 2-D/3-D method represents an effective alternative to a full
three-dimensional hydroelastic analysis in the preliminary design of large, floating
structures which can be characterized as slender. For large structures, the savings in
computer time is substantial with the composite method, and the accuracy is sufficient
for many design purposes. To calculate hydrodynamic coefficients and wave exciting
forces for the simple, twin-hull structure, three-dimensional potential theory requires
255 times the CPU computer time that the composite 2-D/3-D method does.

The results clearly indicate that a VLFS will experience substantial deformations as a
result of wave loading. Therefore, conventional motion analysis methodology for
floating structures, in which the structure is assumed rigid, does not apply to VLFSs.
Hydroelasticity must be considered to determine both the force in the structure and the

overall motion response.
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10.2 Recommendations

1. Since three-dimensional hydroelasticity using potential theory is the most general
and accurate linear theory to date, an efficient three-dimensional hydroelasticity theory
should be developed for VLFS design. Three aspects should be considered for this
development: exploiting the symmetry of the structure (Wu et al., 1993); using an
efficient vector basis to replace the ‘dry modes’; and developing more efficient
numerical techniques to determine the three-dimensional fluid potential.

2. Since VLFSs may have large motions and deformations, non-linearities may have
to be considered to obtain more accurate results. An efficient second-order theory which
is suitable for VLFS analysis should ideally be developed. However, such a decision
should be based on a comparison between experimental data and predictions.

3. The connection design is a very important aspect for multi-module VLFS design. It
has been seen from this study that different connections used in multi-module VLFSs
affect the response. Further study on the connection design should be done to provide
'design information for physical connector design.

4. For final VLFS design, an experimental study should be carried out to verify the

analytical methodology and provide final design criteria.
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APPENDIX A. FRAMEELEMENT

The shape function for a frame element, [N], can be written as
[N] = [N,] + [N,] (A1)

where [N,] isa 6 x 12 matrix of interpolation functions for axial and torsional degrees

of freedom:

N,00 0 00N,00 0 00|

000000000000
[N.j=|000000000000 a2
0 00ON,00 0 00N,,00

0000000000 00
(0000000000 00

in which N, = N, and N,, = N,. N, and N; are for axial effects, and are given by

(A3)

where L is the beam element length, and x is the local x-coordinate.

N, is a 6 x 12 matrix of interpolation functions for transverse displacements:

[N,] = (A4)

where the components N,, N;, N, N, Ng, Ny, N, and N, are for deflection effects,
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and are

x (x
N, =+ (‘ - 1) Ny = =Ny

L

Therefore [N] can be written as

N, 0 00 0 0
ON, 0 0 0N,
oy |0 0N 0N 0
00 ON, 0 0
ON, 0 0 0 N,
0 0 N, 0Ny 0

Z

~

o Z o o Z o

S O © O O

&

coZ o o
oo Zooo
Z

Z

OO._.ZOO

Z

[

OO._.ZO
(S

(A.5)

(A.6)

A7)

(A.8)

(A.9)

The frame element mass [m] suitable for displacement field {u} in Eq. 3.28 is given

in Eq. I1.10. The frame element damping matrix [c] can be obtained in the same manner.

The frame element stiffness matrix [k] is given in Eq. II.11. The frame element stiffness

matrix [ks] that includes the shear deformation is written in Eq. I1.12.
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In the above equations, A is the cross-sectional area of the beam; E is the elastic

modulus; G is the shear modulus; I, and I, are the second moment of the cross-sectional

. 12EI, 12EI A
area about local y and z axes, respectively; ¢, = —— and o, = —’2, A, =— and
N GA,L GAL X,

A =g K, and K, are the cross-section shear coefficients in y and z direciion,
z
respectively.

In general, geometric stiffness coefficients may be expressed as

ko = [EL()N'NGL  for i,j = 2,3,5,6,8,9,11, 12 (A13)
L

The beam element geometric stiffness matrix, for the case where the axial force is

constant, can be written as

0

0 36 Symmetric
0 0 36

00 0O

0 0 —3L04L’

N 2
k= [03L 000 4L A
30LI0 0 000 00

0-36 0 0 0 -3L0 36
00 -3603L 0 0 0 36

00 000 00O 0 0
00 -3L0-L° 0 00 3L 04L
03L 000 -L’0-3L. 0 0 0 4L
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APPENDIX B. COMPUTER PROGRAMS
The methods developed in this work have been implemented in the HYDRAS series
of computer programs. The program HYDRAS performs the linear Hydroelastic
Response Analysis of Structures in the frequency domain. HYDRAS includes five
programs HYDRAS-2D, HYDRAS-MORISON, HYDRAS-COMPOSITE,
HYDRAS-BASIC, and HYDRAS3D-1. The program user’s guide can be found in a
separate report (Che, 1993).

B.1 HYDRAS-2D

The program HYDRAS-2D is the part of program HYDRAS-I, which is for linear
two-dimensional hydroelastic analysis of floating structures in the frequency domain.
This two-dimensional hydroelasticity is developed by using a consistent formulation
based on the finite element method. The structure below the still water plane is modeled,
by the finite element method, as a nonuniform beam subjected to hydrodynamic forces.
Above the water surface, a three-dimensional model of the structure is possible. Strip
theory is used to calculate the hydrodynamic coefficients and wave exciting forces.
Hydrodynamic matrices for added mass and damping, and wave exciting force vectors
are formed directly in the same manner as the structural mass matrix and structural force
vector. The resulting coupled equations of motion are solved directly. The detailed
description of this method can be found in Chapter 5. The method is applicable to

slender floating structures with any stiffness distribution.
B.2 HYDKAS-MORISON

The program HYDRAS-MORISON is the part of program HYDRAS-1, which is for
linear three-dimensional hydroelastic analysis of floating structures in the frequency

domain. A three-dimensional frame model is used to represent the elasticity of the
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structure. Morison’s equation (Morison et al.,, 1950) is used to determine the fluid
loading. This approach is applicable to structures which can be modeled by tubular
members below the still water line. There is no restriction on the upper part of the
structure. Morison’s equation includes the effects of fluid acceleration and viscous form
drag in terms of empirically determined coefficients. Since the three-dimensional
potential problem is avoided, Morison’s equation is an efficient method for VLFSs
which use columns and pontoons below the still water line. In addition, the hydrostatic
restoring stiffness matrices for frame element is also included in this method. The

detailed description of this method can be found in Chapter 6.
B.3 HYDRAS-COMPOSITE

The program HYDRAS-COMPOSITE is for linear 2-D/3-D hydroelastic analysis
of floating structures in the frequency domain. This approach uses a three-dimensional
structural model and a two-dimensional fluid model. The method includes an accurate
description of the structure by a three-dimensional structural model and the
computational efficiency of a two-dimensional fluid model. Therefore, the responses are
not limited to the beam-like response of traditional two-dimensional hydroelasticity. The

detailed description of this method can be found in Chapter 7.
B.4 HYDRAS-BASIC

The program HYDRAS-BASIC is for linear 2-D/3-D hydroelastic analysis of
floating structures in the frequency domain. This approach is identical to the one
implemented in HYDRAS-COMPOSITE, except the deformations of the three-
dimensional structural model is represented by ‘basic modes’ for the fluid potential
calculations. The computational efficiency of a two-dimensional fluid model is used in

this method. The detailed description of this method can be found in Chapter 7.
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B.S HYDRAS3D-1

The program HYDRAS3D-I is the first phase of a program for the three-dimensional
hydroelastic analysis of floating structures in the frequency domain. The body-boundary
conditions coupling the structure and fluid are calculated in this program. Quadrilateral
fluid panels and quadrilateral thin shell elements are used for structural and fluid
models, respectively. A one-to-one mapping between structural element and fluid panel
is adopted in the program. Further development is necessary. The detailed description of

this method can be found in Chapter 4.
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