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ABSTRACT

Very Large Floating Structures (VLFSs) have been proposed for a number of

applications. However, significant amounts of experimental and analytical work are still

required before reliable designs of VLFSs can be made. The theme of this study is the

development of analytical techniques for hydroelastic analysis of VLFSs in regular

waves. Three efficient methods are developed and presented herein.

First, an improved method for two-dimensional hydroelastic analysis is developed by

using a formulation consistent with the finite element method. Strip theory is used to

calculate the hydrodynamic coefficients and wave exciting forces. The structure below .

the still water plane is modeled, by the finite element method, as a nonuniform beam

subjected to hydrodynamic forces. Above the water surface, a three-dimensional model

of the structure is possible.

Second, an efficient method for three-dimensional "hydroelastic" analysis

incorporating frame elements with Morison's equation is developed. This approach is

applicable to structures which consist of tubular members below the still water line,

although there is no restriction on the upper part of the structure. This method is an

efficient method for VLFSs which use columns and pontoons below the still water line.

Third, a composite 2D/3D method of hydroelastic analysis is developed for slender

VLFSs. The method combines an accurate description of the structure by a three­

dimensional structural model and the computational efficiency of a two-dimensional

fluid model. The three-dimensional responses can be obtained by this method. In

addition, the three-dimensional incident wave exciting force and more accurate
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definition of normal vectors are used to improve the results calculated by using two­

dimensional potential theory. This method is very useful for analysis of some twin-hull

VLFSs with respect to their lower structure. Furthermore. this method is useful for

SWATHship design.

The methods discussed have been implemented in the HYDRAS series of computer

programs and applied to three floating structures (a multi-module VLFS; a simple. twin­

hull structure; and a SWATHship). The comparisons of the results between the present

methods and three-dimensional hydroelasticity are encouraging and show a significant

reduction in computations compared with a complete three-dimensional analysis.

Therefore. these methods are believed to be useful analytical tools for VLFS design.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Numerous proposals have been made for very large floating structures (VLFSs) for

ocean space utilization and ocean resource development Proposed uses include floating

airports and runways (Takarada, 1984; Lemke, 1987; Baschieri and Bellincioni, 1991;

Chow et al., 1991); wave power generation (Katory, 1977); deep ocean miming (Winkler

et al., 1990; Cruickshank, 1991); ocean thermal energy conversion (OTEC) (Nihous and

Vega, 1993); and floating 'cities' (St Denis, 1974; Yoshida et al., 1991). The largest of

all VLFS applications would likely be a floating airport, which might have plan

dimensions on the order of 1,000 m x 3, 000 m. By comparison, the plan dimensions

of the largest floating platforms used in the offshore oil industry are approximately

100 m x 100 m.

VLFSs, whether for public use (for example, airport or floating city) or for industrial

facilities (for example, ornc or deep ocean miming), will have a long service life, and

their safety, reliability, and survivability are vital for their economic feasibility. Both

experimental data and analytical methods will be very important for the design of a

VLFS. The development of analytical tools and experimental methods which are reliable

and robust is likely to require a considerable amount of time (Wilkins et al., 1992). The

work described here concentrates on the development of analytical methodologies for

the hydroelastic analysis of VLFSs.

The analysis of VLFSs differs substantially from that of a conventional structure

because the motion of the latter is usually determined based on rigid body dynamics.

This approach is insufficient for the much larger VLFS. Hence, much of the
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methodology has either not been developed, needs further development, or is not

oriented toward large scale systems (Riggs, 1991).

The size of a VLFS requires an alternative analysis methodology than that used for

conventional floaters. Two basic characteristics of a VLFS must be considered in the

methodologies for VLFSs: the flexibility and the huge dimensions. VLFSs, whether

constructed from a series of modules hinged together or rigidly connected together, will

behave in the open ocean as a flexible body, and the structural displacements as a result

of the deformational response will generate significant hydrodynamic forces on the

structure. Hence, traditional hydrodynamic theory based on rigid body motion is no

longer sufficient for dynamic analysis of VLFSs. Instead, hydroelasticity theory must be

used to determine the structural displacements and forces induced by wave action. Since

a VLFS must be modeled as a flexible structure, the number of degrees of freedom will

become huge. A very large computational problem for the fluid dynamics also results

from the large dimensions. Therefore, efficient methodologies for hydroelastic analysis

of VLFSs need to be developed.

The techniques developed in this work will reflect the above two basic

characteristics. All the techniques treat the structure as a flexible body and

hydroelasticity theory is involved. Efficiency is the basic feature of the methods

developed in this work. While all techniques are oriented toward VLFSs, they are also

applicable to general floating structures and other offshore structures.

1.2 Very large floating structures

VLFSs, when constructed, will be the largest and most expensive structures ever

built. Physically, a VLFS will have large dimensions to accommodate significant human

activity. A proposed floating city, shown in Figs. 1.1 and 1.2, requires 1,100,000 m
2

to

allow 30,000 people to work and live on it (Yoshida et al., 1991). Proposed floating

2



airports. such as in Fig. 1.3.have varied from a few hundred meters in length to several

thousand meters.

- --
-=-~~~~::::- .s:~:-'

Figure 1.1 Businessfloating city complex byusingring-likesemisubmersible

(Yoshida et aI., 1991)

.":

. . .
r :: ',' " .: '.' I

.,.' ..~

Figure 1.2 Section of ring-like semisubmersible (Yoshida et al., 1991)
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Figure 1.3 Floating airfield (Bretz et al., 1991)

The huge size is one of the significant characteristics of VLFSs. Based on data for

existing semisubmersibles, a 'module' of 100 m x 100 m plan dimensions may be

considered withinthecapability ofexisting floating structure technology, exemplified by

modem floating drilling units. They usually use a semisubmersible hull design, which

have two or more pontoons to provide buoyancy and columns to provide stability and

support the superstructure. These shapes have smaller wave forces and motions than

shipshavebecause of theirtransparency andthe relatively small hull areanearthe water

surface, The successes of semisubmersibles make them candidates for constructing

VLFSs. To provide a large space, a VLFS may be built-up from multiple modules

connected side byside. Wmkler et al. (1990) developed a basic module design (Fig. 1.4),

100 m x 100m, which could be used to assemble alternative VLFSs, depending on

the application.

4



Figure 1.4 Schematic of a basic module design

The large size of a VLFS means the flexibility will be increased as compared to

smaller, more 'rigid' structures. Hence, as mentioned before, the flexibility is another

significant characteristic of a VLFS.

There is not a well-accepted definition of what constitutes a very large floating

structure. Since this work focuses on development of methodologies, the definition

proposed by Riggs (1991) is adopted: A VLFS is a floating structure whose

characteristics, especially its sizeand flexibility, require for its design, construction, and

operation special consideration not required by conventional-size floating structures.

The techniques of analysis of VLFS developed in this work will be based on this

definition.

1.3 Previous work on hydroelastic analysis of VLFS

Conventional hydrodynamics theory assumes that the structural motionas a result of

deformational response does not affect hydrodynamic forces. While this assumption is

most likely appropriate for many 'small size' structures, it will tend to breakdown as

5



structures increase in size and flexibility. Therefore, the formulation of hydrodynamics

based on rigid-body motion is unsuitable for VLFSs. The size and flexibility of VLFSs

require an alternative analysis methodology than that used for conventional floating

structures.

Substantial work has been carried out in the last twenty years on the development of

two-dimensional and three-dimensional hydroelasticity theories. 1\vo-dimensional

hydroelasticity is primarily applied to ship structures (Bishop and Price, 1979). Due to

the huge dimensions, efficient two-dimensional hydroelasticity is attractive for the

dynamic analysis of VLFS. Early application of two-dimensional hydroelasticity theory

to large floating structures can be found in Okamoto et al. (1985) and Masuda et al.

(1987).

The first application of strip theory to a multi-hull and multi-module VLFS appears

to be by Che et al. (1990), and Ertekin et al. (1990). In their work, the rigid module,

flexible connector model (RMFC) is proposed for the case in which the module is much

stiffer than the connector. Application of using two-dimensional strip theory to VLFSs

are then reported by Ertekin et al. (1991), Hamida and Webster (1991), Riggs et al.

(1991), Wang et al. (1991), and Riggs and Ertekin (1993). A deficiency in this method is

that because two-dimensional flow is assumed, the out-of-plane fluid forces, which may

be particularly important for semisubmersible hulls, are not modeled, which can result in

substantial error. Riggs and Ertekin (1993) used Morison's equation to represent the out­

of-plane fluid forces to improve signillcantly the results. Another method to improve

two-dimensional hydroelasticity considers the transverse deformation of the cross­

section by a hybrid approach (Wang, 1991).

Three-dimensional hydroelasticity theory has also been applied to VLFSs. Che et al.

(1990) and Ertekin et al. (1990) used the RMFC model and the three-dimensional

6



hydrodynamic coefficients and wave exciting forces for a single module, ignoring the

fluid interaction between modules. Du and Ertekin (1991), Wang et al. (1991), and

Ertekin et al. (1993) extended this approach to include the hydrodynamic interaction

between modules. This approach was used for the hydroelastic analysis of a

100m x 1600m airfield by Ertekin et al. (1993), which appears to be the largest floating

structure considered in a three-dimensional analysis. To reduce the computational

requirements, the single-symmetry and double-symmetry of the structure were exploited

by using the single-plane and double-plane composite source distribution method (WU et

al., 1993). In the single-plane composite source distribution method, the calculation

domain of the fluid problem only involves one-half of the wetted surface (Wu, 1984),

while in the double-plane composite source distribution method, only one-quarter of the

wetted surface is considered.

Using single or double symmetry source distribution methods can reduce

significantly the computational effort. Another efficient method to improve the three­

dimensional source distribution method, called iterative source distribution technique,

was proposed by Seidl (1991). The method allows, in principle, any number of surface

facets to be employed in the analysis. Initially a coarse grid is employed. Consecutive

iterations are performed (automatically) by subdividing a certain number of facets with

each iteration.

A useful resource for detailed information on recent developments in VLFS-related

work can be found in the Proceedings of the First International Workshop on Very Large

Floating Structures (Ertekin and Riggs, 1991).

1.4 Objective and scope of work

The objective of this research is to develop efficient techniques for hydroelastic

analysis of very large floating structures. Several different structural and fluid models

7



are involved for the different types of VLFSs. Based on the above defmition of a VLFS,

these techniques will specially consider the size and flexibility.

The well-developed hydrodynamic theory is the fundamental theory for solving the

hydrodynamic fluid problems. Existing two-dimensional and three-dimensional

hydroelasticity theories provide a basis for the hydroelastic analysis of flexible floating

structures. Therefore, they are reviewed in Chapter 2.

The fundamental formulations of structural mechanics, fluid dynamics and their

coupling, the key to hydroelasticity, are reviewed in Chapter 3.

The basic concept and formulation for three-dimensional hydroelasticity and the

general formulation for three-dimensional hydrostatic restoring coefficients are given in

Chapter 4. As mentioned previously, three-dimensional hydroelasticity theory is the

most general and accurate theory to date. Therefore, this theory is also described in this

work for completeness, specially for the coupling problem between structure and fluid.

As an example, quadrilateral fluid panels are coupled with quadrilateral thin shell

elements for the structure. The computer program HYDRAS3D-I, which performs the

coupling between structure and fluid, has been developed. The brief description of this

program can be found in Section B.S.

In Chapter 5, an alternative analysis method for two-dimensional hydroelasticity is

developed by using a consistent formulation for both hydrodynamic forces and

hydrostatic restoring coefficients. Strip theory is used to calculate the hydrodynamic

coefficients and wave exciting forces. The structure below the still water plane is

modeled, by the fmite element method, as a nonuniform beam subjected to

hydrodynamic forces. Above the water surface, a three-dimensional model of the

structure is possible. Hydrodynamic matrices for added mass and damping, and wave

exciting force vectors are formed directly in the same manner as the structural mass
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matrix and structural force vector. The resulting coupled equations of motion are solved

directly. The method is applicable to slender VLFSs with any stiffness distribution. This

method is applicable to several different structural models, such as a fully elastic model;

a rigid module, flexible connector model (RMFC); or elastic module, flexible connector

model (EMFC). In addition, the hydrostatic restoring stiffness for the beam element is

also derived. The method has been implemented in the computer program HYDRAS­

2D. The brief description of this program can be found in Section B.t. The method is

applied to a multi-module VLFS model.

In Chapter 6, a three-dimensional frame model to incorporate the elasticity of the

structure is introduced. Morison's equation (Morison et al., 1950) is used to determine

the fluid loading. This approach is applicable to structures which consist of tubular

members below the still water line. There is no restriction on the upper part of the

structure. Morison's equation includes the effects of fluid acceleration and viscous form

drag in terms of empirically determined coefficients. Since the three-dimensional

potential problem is avoided, Morison's equation is an efficient method for VLFSs

which use tubular columns and pontoons below the still water line. In addition, the

hydrostatic restoring stiffness matrix for a frame element is also derived. The method

has been implemented in the computer program HYDRAS-MORISON. The brief

description of this program can be found in Section B.2. The method is applied to a

multi-module VLFS model.

In Chapter 7, a composite 2-D/3-D hydroelasticity approach is developed for slender

VLFSs. A three-dimensional structural model and a two-dimensional fluid model are

combined to obtain a new, efficient method. The method includes an accurate

description of the structure by a three-dimensional structural model and the

computational efficiency of a two-dimensional fluid model. Therefore, the responses are
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not limited to the beam-like response of traditional two-dimensional hydroelasticity. In

addition, since a three-dimensional structural model is used, some modifications to the

two-dimensional flow problem can be made. For example, the three-dimensional

incident wave exciting force can be obtained based on the three-dimensional structural

model. This new method is very useful for the analysis of some twin-hull VLFSs.

Furthermore, this method is also useful for SWATH (Small Water plane Area Thin-Hull)

ship design. The method has been implemented in the computer program HYDRAS­

COMPOSITE. The brief description of this program can be found in Section B.3. The

method is applied to a simple, twin-hull structure and a SWATH ship.

Chapter 8 discusses three VLFS models for which the methods developed herein are

applied. These structural models include a multi-module VLFS; an idealized twin-hull

structure used to verify the composite 2-D/3-D method; and a SWATH ship model. The

results obtained with the methods developed in this work, together with a comparison

with the results from general three-dimensional hydroelasticity, can be found in Chapter

9. Conclusions and recommendations for future work are made in Chapter 10.
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CHAPTER 2

BASIC CONCEPTS IN HYDROELASTICITY

2.1- Hydroelasticity

A formal definition of hydroelasticity was proposed by Heller and Abramson (1959):

"hydroelasticity is concerned with the phenomena involving mutual interaction among

inertial, hydrodynamic, and elastic forces." The difference between this definition and

the traditional hydrodynamics is that hydroelasticity theory includes the elasticity of the

structure in the fluid-structure interaction problem. Therefore, two advantages can be

found in hydroelasticity theory. First, additional to the rigid body motion, the elastic

deformation of the structure is also considered in the wave generation. This reflects the

real situation so that more accurate results can be expected. Second, the coupled

structural dynamics and hydrodynamics problems are solved simultaneously. This

overcomes the disadvantage of the traditional two-step solution process (Ogilvie, 1971).

Hence, even for stiffer structures, hydroelasticity theory provides a general and unified

approach for dynamic analysis of ocean structures.

Briefly, the basic approach of hydroelasticity is to model the structure as an elastic

body (e.g., with the finite element method). The linear potential theory is used to obtain

the dynamic fluid pressure caused by waves and structural motion and deformation. The

structural and fluid problems are interfaced by the kinematic continuity condition on the

structural wetted surface. The hydrodynamic and hydrostatic pressures can be used to

form the fluid loads. The structural responses can then be obtained by solving the

coupled equations of motion.

Two solution techniques are used to determine hydroelastic response. One technique

is based on modal superposition. In this approach, the structural motion is represented
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by a linear combination of the normal modes of vibration of the structure in air ('dry

modes'). The radiation potential is obtained as a linear combination of the radiation

potentials for each mode. Modal structural properties and fluid properties are used to

form the modal equations. The second approach may be called a direct approach. In this

approach, the distribution of fluid forces are defined. Similar to that in the finite element

method, these distribution of fluid forces can be used to form consistent fluid coefficient

matrices and force vectors. The equations of motion are directly solved to obtain the

physical responses.

Although hydroelasticity theory has many advantages over conventional

hydrodynamics, this theory has not been widely applied in the design of floating

structures. In addition, for a VLFS, numerically efficient techniques for hydroelastic

analysis need to be developed.

2.2 Basicassumptions

In this work, linear structural dynamics theory is used for the structure. Methods

based on both the linear potential theory (ideal fluid) and Morison's equation method are

developed. The following assumptions are made.

The structure is assumed to respond linearly, which implies that the stiffness matrix

and the load vector are independent of the displacements. This assumption requires both

linear, elastic material and (infinitesimally) small displacements. Linear structural

dynamics is applicable.

The structure is assumed to be freely floating and stationary (that is, with zero

forward speed). A global coordinate system (x-y-z), with the z-axis directed upward, is

used to describe the geometry and position. The hydrodynamic forces result from a train

of regular waves with a crest at x=O (at time t=O), an incidence angle of f3 about the x­

axis, and propagating in the -x-direction, and also from the resultant motion of the
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structure. For linear potential theory, the structure is partially submerged in an

incompressible and inviscid fluid undergoing irrotational flow in infinitely deep water.

For Morison's equation, the viscous form drag in terms of empirically determined

coefficients is considered.

2.3 Hydrodynamics

Hydrodynamics provides a basisfor hydroelasticity. Hydrodynamics originated in the

fields ofship design andmarine technology. An in depth discussion of hydrodynamics in

marine technology can be found in Marine Hydrodynamics by Newman (1977). Ship

hydrodynamics hasbeenextended to apply to offshore structures. Representative topics

in this area can be found in Hydrodynamics of Offshore Structures by Chakrabarti

(1987), which has an extensive list of references on the subject.

Hydrodynamics based on linear potential theory has been developed to a high level.

In this area, two-dimensional hydrodynamics (strip theory) has been especially well­

developed. Significant workincludes the ordinary strip theory (Korvin-Kroukovsky and

Jacobs, 1957; Jacobs, 1958), the rational strip theory (Ogilvie and Tuck, 1969),and the

revised ordinary striptheory (Salvesen, Tuck and Faltinsen, 1970). Strip theoryis widely

accepted in naval architecture and offshore engineering because of its computational

efficiency and satisfactory agreement with experiments for rigid-body motions, and it is

still used topredict ship motions. However, since two-dimensional flow is assumed in

strip theory, no interaction is considered in the longitudinal direction. Therefore, strip

theory is only applicable to slenderstructures.

Three-dimensional linear potential theory has been developed and used in three­

dimensional hydrodynamics. Three-dimensional linear potential theory is applicable to

an arbitrary shaped body. The interactions between various parts of the whole structure

are rigorously treated. That is, the diffraction and radiation fluid motions are based on
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the entire structural body boundary. This leads to more accurate predictions of the

hydrodynamic pressure distribution and the estimations of wave exciting forces and

moments. Three-dimensional potential theory for rigid body motion has been discussed

in detail by Newman (1978) and Wu (1984), for example.

An essential feature of all two-dimensional and three-dimensional hydrodynamics

based on potential theory is that the structure is assumed to be rigid. Hence, only rigid

body motions can be predicted by conventional hydrodynamics. The internal forces and

stresses are determined by applying to the structure the fluid pressures and inertial forces

calculated in the hydrodynamic analysis for rigid-body motion. Therefore, this theory is

most likely appropriate for conventional structures but not for large, flexible structures.

2.4 Existing hydroelasticity theories

The concept ofhydroelasticity, which was introduced in the late 1950's by analogy to

aeroelasticity, has been discussed in several excellent monographs (Flax, 1960; Heller.

1964; Kito, 1970). The application of hydroelasticity in marine hydrodynamics has

received more attention after Bishop and Price's work (1979). An extensive list of

references on hydroelasticity theory may be found in Wu (1984).

A significant contribution to two-dimensional hydroelasticity was made by the

research group of Bishop and Price. Two-dimensional hydroelasticity, based on strip

theory, is first introduced by Betts. Bishop, and Price (1977) to represent the generalized

hydrodynamic forces as an essential step in a unified dynamic analysis of ship response

to waves. A relatively complete presentation of two-dimensional hydroelasticity is found

in Hydroelasticity ofShips by Bishop and Price (1979).

Mode superposition is usually used in two-dimensional hydroelastic analysis. Before

1974, the 'wet modes' were employed. The calculation of 'wet modes' involves not only

the mechanical properties of the structure but also the fluid actions which makes the
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calculations more complicated. Later, Bishop and Price (1974) pointed out that by

employing the structural mode shapes in air ('dry modes'), the calculations are

simplified. In addition, the orthogonality of the 'dry modes' can be used to simplify the

mode superposition procedure. In 1976, Bishop and Price (1976) examined the

relationship between employing dry modes and wet modes.

Briefly, in two-dimensional hydroelasticity, as formulated by Bishop and Price

(1979), the structure is modeled as a nonuniform Timoshenko beam, while the

hydrodynamic forces are calculated from strip theory. The continuous beam structural

displacement is represented by a set of mode shapes to reduce the degrees of freedom.

The modal fluid forces are calculated for each mode and then applied to the structure to

obtain the principal coordinates. Symmetric structural motions are excited by the

vertical (heave) hydrodynamic forces and antisymmetric motions are excited by the

horizontal (sway and roll) hydrodynamic forces.

An essential feature of two-dimensional hydroelasticity is that the structure is

assumed to be 'beam-like'. Only beam-like motion, deformation, and corresponding

forces and moments can be predicted by this theory. Another limitation is that the

structure must be slender, because the hydrodynamic forces are calculated by two­

dimensional strip theory. Therefore, this theory can not be applied to an arbitrary

structure.

A general linear hydroelasticity theory was developed by Wu (1984). This theory is

based on conventional three-dimensional hydrodynamic theory. Therefore, it is

applicable to any arbitrary-shaped structure. An elastic structural model is used to

represent the structural motion and deformation, for which the finite element method is

used. Mode superposition is used, and the external fluid forces are expressed in terms of

the generalized forces corresponding to a set of principal modes. The radiation
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potentials resulting from structural deformation are first directly calculated in this

theory. Three-dimensional hydroelasticity theory is the most general and accurate theory

to date.

Although two-dimensional hydroelasticity has limitations, it is a very efficient

method, especially for large structures. Therefore, at the early design stage, this theory

can be used to provide basic data for design of slender structures. On the other hand, the

calculation of the three-dimensional velocity potential is computationally very time

consuming. It requires significant computer memory and CPU time. As such, it is

probably most useful as a final design tool.
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CHAPTER 3

FUNDAMENTAL FORMULATIONS FOR HYDROELASTICITY

3.1 Overview

It is well known that the interaction between the structure and the fluid may be very

significant The fluid forces come not only from waves and currents, but also from

structural motions, and the behavior of the structure in water is much different from that

in air. This interaction complicates the dynamic analysis of offshore structures.

Structural dynamics has been studied extensivelyas evidenced by the large number of

textbooks and papers on the subject The finite element method, which has been used in

structural mechanics and structural dynamics for several decades, provides a powerful

tool to establish the structural model in offshore structural analysis. The well-known

structural mode-superposition method has been applied to simplify the analysis of large

structural systems. These developments in structural dynamics provide the fundamental

theory for hydroelastic analysis of offshore structures.

Hydrodynamics has also been well developed. The linear potential theory has been

used in the motion response of offshore structures for many years. In addition, the

principle of superposition has also been applied to the ship-motion problem (St. Denis

and Pierson, 1953). The most difficult aspect of hydroelasticity is to determine the

coupling of the fluid and structural problems.

The general formulations for hydroelasticity are given in this chapter. The pertinent

aspects of structural mechanics are reviewed first. The fluid dynamics, in particular

linear potential theory and Green function method, are then discussed for the purpose of

determining the fluid loads for hydroelastic analysis. Finally, the coupling of structural

dynamics and hydrodynamics is introduced.
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3.2 Structural mechanics

The study of hydroelasticity of offshore structures is primarily for structural analysis

and design. The goal of this study is to provide structural responses, such as structural

motions and deformations, internal forces, and strains and stresses under the fluid

actions, for engineering design. Therefore, the equations of structural mechanics are

used to form the foundation, and the hydrodynamic forces are expressed such that they

can be easily fitted into the formulations for structural analysis. In fact, very little work

in hydrodynamicshas been donefrom a structural design viewpoint For this reason, the

linear theory of structural dynamics, finite element formulations, and mode

superposition method are discussedin this section.

3.2.1 Dynamic equations of motion

The fmite element method is used for structural dynamic analysis. In this case, the

equations of motion for the lineardynamic response of a structure can be written as

[Msl {O (t) } + [Csl {D (t) } + [Ksl {D (t) }

= {F f (t) } + {Fr (t) } + {F. (t) }
(3.1)

in which [M}; [C.l, and [K.l are the ndofx ndof structural mass, damping, and

stiffness matrices, respectively;ndofts the number of displacement degrees-of-freedom;

{O (t) }, {D (t) }, and {D(t)} are the ndofx I vectors of nodal accelerations, nodal

velocities, and nodal displacements, respectively; {F, (t)} is the ndofx 1 vector of

hydrodynamic forces; {F, (t)} is the ndofx 1 vector of hydrostatic restoring forces;

and {F. (t)} is the structural load vector (i.e., loads which are not fluid related, such as

from machinery vibration). Structural weight and buoyancy forces, in equilibrium, are

excluded from Eq. 3.1. That is, the displacements are measured from the static
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equilibrium position.

Eq. 3.1 represents a system of linear, second order, ordinary differential equations

which govern the motion in the time domain. Superposition can be used to decompose

Eq. 3.1 into two equations: one related to structural loads, and the other to the fluid

loads. In this study, only the equations which are related to the fluid loads are considered

here

where {D, (t)} is the vector of nodal displacement vector caused by fluid loads. The

restoring forces have been expressed by {R} = - [Kcl {D (t) } , where [Kcl is the

hydrostatic restoring stiffness matrix which will be discussed later. For convenience,

{Dr (t)} is replaced by {D (t)} in the following.

The structure is assumed to be excited by a train of regular, long-crested waves with

frequency co and a crest at x=O (at time t=O). The resulting linear fluid forces, {Fe(t) } ,

are most conveniently determined in the frequency domain. The response of a structure

to regular, harmonic excitation of the form

-iCDt
{Fe (t)} = {Fe}e

in which i = .H., can be represented as

{D (t)} = {D} e-
i CD t

(3.3)

(3.4)

{D} and {Fe} are time independent, and, in general, they are complex quantities.

Substitution of Eqs. 3.3 and 3.4 into 3.2 results in

(3.5)
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Eq. 3.5 will be considered first from a structural dynamics viewpoint and then from a

hydrodynamics viewpoint

3.2.2 Finite element formulation

The finite element method is fumly established as a powerful and popular analysis

tool, especially for structural mechanics. Since the floating structure will be modeled by

the fmite element method for hydroelastic analysis, the basic concept and procedure of

this method are reviewed here. The Euler-Bernoulli beam element is used as an example.

The most popular finite element approach is based on an assumed displacement field

(see Cook et al., 1989). The most straightforward formulation of the equations is at the

element level. As such, it is convenient to define a local (element) coordinate system

(x, y, z), as distinguished from the global (structural) coordinate system (x,y,z). The

displacement vector {u}, which usually contains the three translational displacement

components, is written in the local coordinate system as {u} = {u, v, w} T. It is

assumed that the displacements {u} can be adequately interpolated from {d}, the vector

of the element nodal displacements in the local coordinate system:

{u} = [N] {d} (3.6)

where [N] is the matrix of interpolation functions. It should be pointed out here that Eq.

3.6 can be used to calculate the displacements at any point (x, y, z) within the element

provided that the nodal displacements {d} have been obtained. (The displacements

within the element will be required later to form the body boundary conditions for the

fluid problem.) The interpolation functions depend on the element type, as does the

dimension of the nodal displacement vector. At this point, the formulation is general and

the particular element type need not be specified.
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The velocity vector {ti} can be written, noting that the interpolation functions are

independent of time, as

{ii} = [N] {d}

and the acceleration vector {ii} can be written as

{ii} = [N] {a}

(3.7)

(3.8)

The element strain vector {e} is obtained from displacements by differentiation:

{s} = [a] {u} (3.9)

where [a] is a differential operator matrix obtained from the strain-displacement

relations. With Eq. 3.6, Eq. 3.9 yields

{s} = [B] {d}

where [B] is the strain-displacement matrix:

[B] = [a] [N]

The constitutive relations are represented by

(3.10)

(3.11)

{s} = [C] {a} or as {a} = [E] {s} (3.12)

where {a} is the element stress vector; [C] is a matrix of material compliances; [E] is a

matrix of material stiffnesses, and [E] = [C] -1.

Equations that govern the dynamic response of a structure or medium will be derived

by using the principle of virtual displacements (see for example, Bathe and Wilson,

1976). This principle states that the equilibrium of the body requires that for any

compatible, small virtual displacements, {Su}, imposed onto the body, the total
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internal virtual work is equal to the total external virtual work.

To use the principle of virtual displacements, the inertial force and damping force

need to be defined. If the diagonal matrix [m] is defined such that the three

translational mass densities are on the diagonal, then the inertial force (per unit volume)

can be written as [m] {ii}. The energy-loss mechanisms are not well understood and

the actual damping mechanism is usually approximated by viscous damping. Thus, it is

assumed that the structural damping forces are proportional to the relative structural

velocities. If [Kd ] is used as a material-damping parameter matrix analogous to

viscosity, the structural linear damping forces (per unit volume) can be written as

The principle of virtual displacements, for a single element, requires

n

J{Bu} T {Fb } dV +J{Bu} T {Fe} dS + L {BuJ T {pJ + {Bd} T {Fint}
V. S. i = 1 (3.13)

= J({BE}T {O"} + {Bu} T [m] {ii} + {Bu} T [Kd] {U}) dV
V.

where {Su}, {BE} and {Sd} are small, arbitrary, compatible virtual displacement,

strain and nodal displacement vectors, respectively; {Fb } are the body forces; {Fe}

are the surface tractions; {Pi} are concentrated loads that act at a total ofn points on the

element; {BuJ is the virtual displacement vector of the point at which load {pJ is

applied; {Fint} is the internal forces at the nodes; the volume integration is carried out

over the element volume Vc ; and the surface integral is carried out on the element

surface s.,
Substitution of Eqs. 3.6,3.7,3.8,3.10, and 3.12 into Eq. 3.13 results in
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{Bd} T [ J[B] T [E] [B] dV {d} + J[N] T [m] [N] dV to}
V. V.

+ J[N]T [Kd] [N] dV {d} ]
Va

(3.14)

in which [NJ is the interpolation function matrix evaluated at the coordinates of the

point at which load {p;} is applied. Since {Sd} is arbitrary,Eq. 3.14 can be written as

[m] to} + [c] {d} + [k] {d} = {rCXl
} + {r i n l

} (3.15)

where the element mass matrix [m], damping matrix [c], and stiffness matrix [k], in the

local coordinate system, are defined as

[m] = J[N] T [m] [N] dV
V.

[c] = J[N] T [Kc] [N] dV
va

[k] = J[B] T [E] [B] dV

the extemalload vector {r?"} is defined as

n

{rCXl
} = J[N] T {Fb } dV + J[N] T {Fe} dS + L [NJ T{pJ

V. ~ i=l

(3.16)

(3.17)

(3.18)

(3.19)

and the internal force vector {r i n l
} is equal to {FJ, which will be canceled when
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elements are assembled.

The element mass matrix [m] and damping matrix [c] in Eqs. 3.16 and 3.17 are called

the consistent mass and consistent damping matrices. These matrices are symmetric, as

is the element stiffness matrix. Generally, the consistent matrices [m] and [c] are positive

definite. That is, using the mass matrix as an example, the kinetic energy

i {d} T [m] {d} is positive for any nonzero velocity vector {d}.

Often, the element matrices are formed in element local coordinates. Hence, the

assembly of the element matrices to form the structural matrices includes the coordinate

transformation from local coordinate (x, y, z) to the global structural coordinates

(x,y,z):

[mel = [Tl T [ml [Tl [cel = [Tl T [cl rn [kel = rnT [kl rn (3.20)

where [T] is a transformation matrix. [T] is a block diagonal matrix with matrix [TIl

on the diagonal. [TIl is defined such that

(3.21)

in which {A} and {A} are, respectively, the vectors of components in the local and

global coordinate system of an arbitrary vector. [mel, [cel, and [kel are element

mass, damping and stiffness matrices, but in the global coordinate system. The local

element load vectors can be transformed to the global element load vectors as

(3.22)

The structural matrices [M], [C], and [K] are constructed by the conceptual expansion

of element matrices [mel, [cel, and [kel to 'structural size' followed by addition,

which can be written symbolically as

24



"elm

c=l

"elm

c= 1

nelm

c=l

(3.23)

The global structural load vector {F} can be assembled in the same manner from the

element load vectors {r:xt
} .

nelm

(3.24)

c=l

where nelm is the number of elements.

3.2.3 Three-dimensional frame element- an example

Since the three-dimensional frame element, shown in Fig. 3.1, is frequently used in

the following chapters, it is discussed in detail here. (x, y, z) is the element local
- - -

coordinate system, in which the x axis is directed from node i to node j; and y and z are

principal axes of the beam cross section. Each node has 6 displacement degrees of

freedom. The nodal displacement vector {d} can be written as

(3.25)

in which the components d., d2, d3 and d7, dg, dg are the translational displacements at

nodes i and j, respectively; while d4, ds' d, and d1o, dw d12 are the rotational

displacements at nodes i and j, respectively.

The displacement field vector {u}, in local coordinates, contains six components:

{u} = [u, v, w, 0-, 0-, 0-] T
x y z

(3.26)

where u, v, and ware, again, the three translational displacement components in the
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x, y, z directions, respectively, and 8~, 8y' and 8~ are the corresponding three rotational

displacement components. The interpolation function [N] can bewritten as

(3.27)

where [Nat] is a 6 x 12 matrix of interpolation functions for axial and torsional degrees

of freedom; and N, is a 6 x 12 matrix of interpolation functions for transverse

displacements. These interpolation functions are given in Eq. A.2 and Eq. A.4 in

Appendix A.

Lx d121 )/

d
9 t>
1-- -- •
. d, dlO X
J

Figure 3.1 A frame element with 12 degrees-of-freedom

The mass density matrix [m] is usually defmed as

mll 0 0 0 0 0

0 m22 0 0 0 0

[m]
0 0 m33 0 0 0

= (3.28)
0 0 0 m44 0 0

0 0 0 0 mss 0

0 0 0 0 0 m66

-
where mll , m22, and m33 are translational mass densities in x,y,and z axisdirection,

respectively; and ffi44, ffiss' and m66 are rotational mass densities about x, y,and z
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axes, respectively. The mass densities are measured per unit length for the frame

element In this case,Eq. 3.16for the element massmatrix [m] becomes

[m] = J[N] T [m] [N] dL (3.29)

where L, is the element length. The 12 x 12 frameelement massmatrix can be found in

Eq. A.lOin Appendix A.

The elementdamping matrixcanbe obtained in a similar mannerto theelement mass

matrix. However structural damping is often expressed in terms of damping ratios for

each mode shape. Therefore, if the response is sought using the mode-superposition

method, thesedamping ratiosare introduced directly in themodalequations.

The elementstiffness matrix [k] can be obtained by

[k] = J[B] T [E] [B] dL
L.

(3.30)

The 12 x 12 elementstiffness matrix can be foundin Eq. A.ll in Appendix A.

When a beamelement is subjected to an axial forcein addition to a flexural load, the

stiffness coefficients kjj are modified by the presence of the axial force. The

modification is known as the beam geometric stiffness kGjj • The physical meaning of

kGij can be explained as the force corresponding to degree of freedom i and caused by a

change in orientation of the axial forces in the structure induced by a displacement at

degree of freedom j. These coefficients can be evaluated by application of the principle

of virtualdisplacements. Thegeometric stiffness coefficients may be expressed as

kGij = Jf" (x) N'jN'jdL
L.

for i,j = 2,3,5,6,8,9,11,12
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in which fa (x) is the axial force, which may vary along the element length; and N'; and

N'j are the derivatives of the corresponding interpolation functions defined in Eq. 3.27.

By using these interpolation functions to calculate the geometric stiffness coefficients,

the result is the consistent geometric stiffness matrix. The beam element geometric

stiffness matrix for the case where the axial force is constant can be found in Eq. A.14 in

Appendix A.

The assembly of the system geometric stiffness matrix can be carried out exactly in

the same manner as for assembly of the stiffness matrix. However a more efficient

approach is to add the element stiffness matrix and element geometric stiffness matrix to

form a combined stiffness matrix [k.}:

(3.32)

[kel is then transformed to the global coordinate system before adding the element

combined stiffness matrix into the global stiffness matrix.

3.2.4 Mode-superposition method

In structural analysis, mode superposition is often used for dynamic analysis of large

structural systems. If the structural motion can be approximately represented by q mode

shapes, a large ndo.f-dimensional linear space of the displacements is reduced to a q­

dimensional (q« ndof) space of modal displacements. Such an approach is also useful

for hydroelastic analysis. Only a few structural mode shapes corresponding to the lower

natural frequencies need to be considered in hydroelasticity, because most of the wave

energy is concentrated at relatively low frequencies compared to the structural natural

frequencies. This reduction in dimensionality is especially important in the solution of

the radiation problem. A radiation potential can be obtained for each mode shape, and
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the total radiation potential can be obtained by superposing all radiation potentials for

the reduced set of mode shapes.

As is common in hydroelasticity (Bishop and Price, 1976; Wu, 1984), the so-called

'dry' undamped structural normal modes are used to perform the mode superposition.

The dry modes are obtained by solving the homogeneous, undamped form of Eq. 3.5:

[Ms] {I> (t) } + [Ks] {D (t)} = 0

The solution to Eq. 3.33 has the form

{D } = { '" } e-iwt

and

{
..;:,. } 2 { } -iwt
U = -fiJ 'II e

(3.33)

(3.34)

(3.35)

where tn is the angular frequency (radians per second), {'II} is the vector of maximum

values, or amplitudes, and it is time independent With Eqs. 3.34 and 3.35, Eq. 3.33

becomes

or

[K] {'II} = A [M] {'II} or ([K] - A [M]) {'II} = 0

(3.36)

(3.37)

2
where A = tn and ([K] - A [M]) is the characteristic matrix of the structure. Eq.

3.37 is the so-called generalized eigenvalue problem. By solving Eq. 3.37, the

eigenvalues Ai and corresponding eigenvector {'IIJ can be obtained. Correspondingly,

fiJi is called the ith natural frequency. For the first q eigenvalues, the generalized
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eigenvalue problem can be written as

[K] PP] = [M] PP] [A] (3.38)

in which ['1'] is the ndofx q mode-shape matrix with column i equal to {'J1;}, and

[A] represents a q x q diagonal matrix withvalues of Ai on the diagonal.

The eigenvector {'J1J defines only the 'direction' of the mode shape in an n­

dimensional space. That is, if a is a nonzero constant, then a {'l'J is also an

eigenvector whichcorresponds to the same eigenvalue. Hence, for any ith mode shape

{ \IIJ ,where

- T -
{'l'J [M] {'l'J = mji> 0

it is possible to defme a corresponding eigenvector {'J1J as

suchthat

{\IIJ T [M] {'l'J = 1

(3.39)

(3.40)

(3.41)

The process in Eqs. 3.39 and 3.40 is called mass-normalization of the eigenvectors. If

not specially mentioned, the mass-normalized eigenvectors are used in the following.

Formass-normalized eigenvectors, there are thefollowing relationships:

(3.42)

(3.43)
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where 8 jj is the Kronecker delta. Eq. 3.43 means that the eigenvectors are also [K]­

orthogonal.

For a structure 'in-air', the first six zero frequency modes are defined here to be the

usual rigid body modes in ship-motion theory, that is, surge, sway, heave, roll, pitch, and

yaw, respectively. The corresponding rigid modal displacements ['P r ] at any point

(X,y,Z) are given by

100 0 (z - zG) - (y - YG)

o1 0 - (z - zG) 0 (x-xG)

PPr ] = 001 (Y- YG) -(x-xG) 0 (3.44)

000 1 0 0
000 0 1 0
000 0 0 1

where (xG, YG' zG) is the coordinates of the center of gravity.

The actual nodal displacements {D} can be expressed in terms of the mode shapes

['1'] as

{D} = ['1'] {p} (3.45)

where {p} is the q x 1 vector of principle coordinates. Given the modal displacements at

the element nodes, the modal internal 'force' (forces and moments) matrix [F'i'] and

modal 'stress' matrix, [L'i']' at a point within the element can be calculated. Therefore,

the corresponding internal forces and stresses within the element can be calculated,

respectively, by

{F} = [F'i'] {p}

and
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in which {F} is the internal forces and {o} is the stresses at any point within the

element

When Eq. 3.5 is premultiplied by ['P] T and Eq. 3.45 is substituted into Eq. 3.5, the

result is

(3.48)

where

[Mg*] = ['P] T [Mg] ['P] = [I]

[Cg*] = ['P] T [Cg] ['P]

[Kg*] = ['P] T [Kg] ['P] = [Mg*] [A] = [A]

[Kc* ] = ['P] T [Kc] ['P]

* T{Fe} = ['P] {Fe}

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

where [I] is an identity matrix. Eq. 3.48 represents the q modal equations of motion,

while Eqs. 3.49-3.53 define the structural modal mass, damping, and stiffness matrices,

modal hydrostatic restoring stiffness matrix, and modal hydrodynamic forces.

3.3 Fluid dynamics

3.3.1 Fluid forces

When a structure is floating in an ideal fluid, the fluid pressure acting normal to the

structural wetted surface will affect the motion. Therefore, to calculate the structural

loads caused by fluid forces, the fluid pressure must be calculated first,

It is well known that for irrotational flow the total velocity field can be represented

simply by the gradient of the total velocity potential <PT' In linear wave theory, the total
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velocity potential is the summation of the incident wave potential 4>1' the diffraction

wave potential 4>0' and radiation wave potentials 4>R' The total velocity potential satisfies

Laplace's equation, which can be written as

(3.54)

For irrotational, unsteady flow, the fluid pressure PT can be calculated from Euler's

integral, which can be written as

(3.55)

where p is the water density; g is the gravitational acceleration; zI = Z - zw; z is the

vertical coordinate of the position at which the pressure is measured; and z; is the

vertical coordinate of the still-water plane. In Eq. 3.55, the first term is the

hydrodynamic pressure, which comes from time-dependent flow; the second, nonlinear

term is also hydrodynamic pressure, which is due to the flow velocity; and the third term

is the hydrostatic pressure. In the linear theory, the higher-order nonlinear term is

dropped.

The distributed pressure force {Fcp } normal to the wetted element surface in local

coordinates can be calculated from the pressure distribution as

(3.56)

where {n} is the normal vector of the wetted surface at the point (x, y, z) in the

element local coordinate system. The vector {n} is directed out of the fluid, and it can

be written as
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T

{n} = In- n- nJ
l' x y ~

(3.57)

The calculation of the normal vector in the local coordinate system will be discussed in

Chapter 4.

Eq. 3.56 can be substituted in Eq. 3.19 to form the localexternal load vector for each

element:

(3.58)

s.

Eq. 3.58 will be used often. In the linear theory, for the sinusoidal wave the time­

independent part of hydrodynamic forces can be written as

(3.59)

The local external element load vector {r;xt} must be transformed to the global

coordinate system and then added to the global external loadvector.

3.3.2 LinearPotential Theory

Based on the assumptions of an incompressible, inviscid fluid and irrotational flow,

there exists a velocity potential eDT (x, y, z, t) which is a complex function of position

and time. This potential function satisfies Laplace's equation in the fluid domain. In the

three-dimensional case, it is written as

A<PT (x, y, Z, t) = 0 (3.60)

The fluid velocity vector, {V (x, y, z, t) } , is given by the gradient of the potential

function
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{V (x, y, z, t)} = V<I>T (x, y, z, t)

where V is the vector gradient operator:

T

v-faaal
Lax ay a~

(3.61)

(3.62)

If the wave height is very small compared with thewave length, the linear potential

theory is applicable. The total potential cI>T can be decomposed, if monochromatic

waves are assumed, as

<'I>T = (~I +~D+ i);~;)e-;·' =<I1e-'·'
j = 1

(3.63)

where cPI is the incident wave potential; $0 is the diffraction wave potential; $j is the

radiation potential for the jth mode; Pj is the principal coordinate for modej; and cI> is

the time-independent part of the total velocity potential. cPI is the potential for the case

when there is no structure; cPo is the modification to the potential due to a fixed

structure. cPj is the potential which results from the structure vibrating in the jth mode

shape in an otherwise calm fluid. All the potentials must satisfy Laplace's equation in

the fluid domain. In addition, they must satisfy thelinear boundary conditions:

I. Linearfree surface condition:

2a<I>T acI>T
- +g- = 0at2 az

or ap -k$ = 0az (3.64)

where k = (j)
2/ g is thewave number in infinitely deep fluidand cP = cPI or cl>o or $j'

II. Sea-floor condition:
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limap=o
z-+-«>oz

ill. Radiation conditions (for the diffraction and radiation potentials):

Sommerfeld condition in three-dimensional problems:

lim {Rl/
2

(_0 - ik)cI>} = 0
R-+«> \BR

(3.65)

(3.66)

where R = Jx2+ y2 and k is the wave number, and for y-z plane two-dimensional flow

lim {~ + ik} cI> = 0
Y-+±«> uy

IV. No-flux condition on the body wetted surface

0</> = {ti} T {n}on

(3.67)

(3.68)

where {ii} is the velocity vector of the body wetted surface, which excludes e-iCDt and

{n} is the normal vector of the fluid domain which is shown in Fig. 3.2. Eq. 3.68

becomes for the diffraction potential

or
O</>D

=on
apr
on (3.69)

and for the jth radiation potential

(3.70)

The incident wave potential can be easily solved by using the method of separation of

variables, and can be expressed for deep water as
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<j) iga. ik(xcosll+ ysinll) kz'
I = --;-e e (3.71)

The diffraction and radiation potentials may be solved by using the Green function

method.

3.3.3 Green Function Method

The diffraction and radiation potentials can be solved by different methods. One of

the most convenient methods is the Green function method (see for example, Frank,

1967; Yeung, 1973; Faltinsen and Michelsen, 1974; Garrison, 1977; and Garrison,

1984), which is based on Green's second identity.

In a three-dimensional fluid domain V, bounded by a closed surface S, if there are two

scalar functions <p and G, which are second differentiable in V, and first differentiable on

S, then Green's second identity states

II(<j): -G:)dS = III (<j)'lG -GV<j)dV
s v

(3.72)

where ..Q. is the normal derivative, and the normal vector of the surface S is pointing outan
of the fluid domain. In this case, let <j) be the velocity potential that satisfies Laplace's

equation, and the second term on the right hand side of Eq. 3.72 will disappear.

If a suitable function G(P' Q) can be found, the right hand side of Eq. 3.72 can be

expressed as

III<j) (Q) VG(P, Q) dV = a.<j) (P)
v

(3.73)

where P=P(x,y,z) is L1.e field point in the domain Vor on the surface S, Q=Q (~, 11,~) is

the source point (which will be explained later) in the domain Vor on the surface S, and

37



a. is a constant If such a G(P' Q) can be found, Eq. 3.72becomes

JJ(cI> (Q) 00~ Q) - G (P, Q) 04>~») dS = a.cI> (P)
s

(3.74)

This means that the potential cI> (P) at any point P in Vor on S can be determined by the

function and its normal derivative.

From Eq. 3.73, the function G(x,y,z) satisfies the following Poisson equation

V
2G

(P, Q) = a.B (P - Q) (3.75)

in which B(P - Q) is the Dirac delta function. This function has the following property

for a well-behaved function f(P)

+00

JJJf(P)B(P-Q)dV = f(Q)
-00

One of the particular solutions of Eq. 3.75 is a Rankine source given by

(3.76)

G(P, Q) =
1

r(P, Q)
(3.77)

where r(p, Q) is the distance between point P and point Q:

J 2 2 2r (P, Q) = (x -~) + (y - t'}) + (z -~) = R (3.78)

From Eq. 3.77, G (P, Q) will be singular when point Q approaches point P. Therefore,

the Green function method is also called the singularity distribution method. It is also

known that by defmition ofEq. 3.77, G (P, Q) is a potential at any pointP due to a unit

source located at point Q, and 00~ Q) is also a potential at any point P due to a unit
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dipole located at point Q and having itsaxis in the normaldirection {n}.

It should be noted that if there is another function H(~ Q) which satisfies Laplace's

equation in the fluid domain V, then

G (P, Q) = r (P: Q) + H (P, Q) (3.79)

is also a solution of Eq. 3.75. G(P' Q) defined in Eq. 3.79 is the Green function. The

reason for adding this additional harmonic function is that if a suitable function H(P, Q)

can be found such that the Green function satisfies all other boundary conditions except

the body boundary condition, the surface integration in Eq. 3.72 need only be evaluated

on the body surface.

z y

Figure 3.2 Three-dimensional fluid domainfor velocity potential

Substitution of Eq. 3.79 into Eq. 3.73, if the singular point P(x,y,z) is isolated by

enclosing it with a sphere of small radius E (when P is in V) or a hemisphere of small

radius & (when P is on S), as shown in Fig. 3.2, then G(P' Q) will be harmonic outside
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this isolated regionand the volume integral,by knowing

becomes

P:t:-Q

P=Q
(3.80)

fJf~v'GdV = {
v

-41tcP (P)

-21tcP (P)

o

PeV
PeS
P~VuS

(3.81)

Eq. 3.72, then can be writtenas

II(cP (Q) CO <;;. Q) - G(P, Q) Ocj)~Q») d(S)
s

={
- 41tcP(P)

- 21tcP (P)

o

PeV
PeS
P~VuS

(3.82)

Eq. 3.82 is a general Green's third identity. Now, the potential at any field point can be

written in a general form as

cP (P) = aII (cP (Q) CO <:: Q) - G(P, Q) aj>~Q) )dS
s

(3.83)

where a is a constant,which is equal to -~ when P is in V, -~ when P is on S, and
41t 21t

owhen P is outside the domain V uS. From Eq. 3.83 and the definition of the Green

function G(P' Q), it can be seen that the velocity potential cP (P) at any field point P

inside the fluid domain V or on the surface S can be expressed by the sum of a

distribution of sources on the surface S with the density iJ4>~Q) and a distribution of

dipoleson the surfaceS with the density cP (Q) . For thisreason, Q (~, 11, l:) is called the
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source point.

To obtain the fluid pressure forces, only the values of the potential located on the

structural wetted surfaceneed to becalculated. This means that the field point P willbe

limited to the wetted surface. For source point Q, if they are distributed on all surfaces,

which include free surface Sr, sea bed surface Ss' infinite surface Sco' and wetted

structural surface Sb' it may be impossible to calculate velocity potential by using Eq.

3.83. If the additional term H(~ Q) is chosen such thatthe Green function G(P' Q) also

can satisfy the free surface condition, sea bed boundary condition, and the radiation

condition, then the velocity potential 4> (P) must be calculated only on the structural

body surface.To demonstrate this, Eq. 3.83 canbewritten as

cP (P) = aff(cP(Q) 00<;: Q) -G(P, Q) aj)~Q) )dS
s

= a[f. +! +l +!J (.p(Q) 00<;; Q) -G(P. Q) "'1>:;) )dS
(3.84)

Consider each boundaryseparately:

1. When Q is on the sea bed, if the Green function satisfies 00 <;;. Q) = 0, the

integral on the sea bed surfacewill be zero since at> (Q) = O.
On

2. When Q is on the control boundary at infinity, from Eq. 3.66, the velocity potential

satisfies lim {R1/2 (_a - ik) cP } . When R~ 00,
R-.+oo 'BR

<I> (Q) 00<:: Q) -G (P, Q) ap~)

ex: Rl/2e -ikROO <;;. Q) _ G (P, Q) R1I2e-ikR (- ~R-1
- ik)

= Rl/2e-
ikR (00~ Q) + ikG (P, Q») R~ 00
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If the Green function satisfies theradiation condition

limR1I2(00(P,Q) +ikG(P,Q») = 0
R~'" On

then the integralon the infinite boundary will disappear.

3. When Qis on the free surface, from Eq. 3.64

q, (Q) 00~ Q) _ G (P, Q) ap~Q) =cP (Q) 00 <:: Q) - G (P, Q) ap~Q)

= (00 <:: Q) _ kG (P, Q) )cP (Q)

(3.86)

(3.87)

IfG(~ Q) also satisfies the freesurface boundary condition, the integral on free surface

will disappeartoo. Therefore, if the Green function G(P' Q) has beenchosensuch that it

satisfies

V
20(P,

Q) = 0 (P- Q) in V

00 <:: Q) _ kG (P, Q) = 0 on z = Zw

lim OG (P, Q) =0
z~-eo On

lim R1I2 (00 (P, Q) + ikG (P, Q») =0
R~.., an

(3.88)

then the velocity potential cP (P) at any field point can be obtained by integration only

on the wetted surface Sb'leading to a Fredholm integral equation of the secondkind:

q, (P) = ex ff(cP (Q) 00<:: Q) - G(P, Q) ap~) )dS
Sb

(3.89)

In Eq. 3.89, the unknowns are the field velocity potential cP (P) , the source density
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~ (Q) , and dipole density 8t1>~Q) . All of them are distributed on the wetted surface.

Fortunately, the Green functions have been studied quite well; some are found in

Weihausen and Laitone (1960).

3.3.4 Solutionof the integral equation

In Eq. 3.89, the two 'densities' ~ (Q) and ap~) must be determined. The

unknowns canbe reduced to oneby constructing the interior problem (Newman, 1978).

The interior domain Vi is the domain inside the structural body, Fig. 3.2.

Mathematically, there exists a Green's third identity in the interiordomain Vi andon the

wettedsurface S.It canbe written as

PeS

II(~i (Q) ao~:Q) -0 (P, Q) ap~~»)dS
S. I I

b

{

-41t~i (P)

= -201t~i (P)

(3.90)

where the normal vector {ni } is pointing out of the interior domain, and cPi (P) is the

field velocity potential in the interior domain. By definition, {n.} = - {n.}, where

{n.} is the normal vector for the exteriordomain, which is equal to the normal vector,

{n}, defined before.

Eq. 3.82can berewritten for theexteriorproblem as

II(cPe (Q) ao~' Q) - 0 (P, Q) 8t1>~Q») dS
see

b

{

-41t~e(P)

= -21t~e(P)

o
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Eq. 3.90 and Eq. 3.91 are called interior and exterior problems, respectively. Subtracting

Eq. 3.90 from Eq. 3.91, by knowing that the normal vectors {n.} and {n.} are equal

but of opposite sign, results in

1
in which a = -------

27t (<Pi (P) + <Pe (P»

The basic two solution methods used to solve the potential from Eq. 3.92 are the

source distribution method and the dipole distribution method, which are briefly

discussed below.

3.3.4.1 Source distribution method

If the exterior and interior velocity potentials are set equal to each other, that is

<Pe (Q) = <Pi (Q) , and the source density a (Q) is defined such that
api (Q) ape (Q)

a (Q) = On - On ' then Eq. 3.92 becomes

<p(P) = ~JJG(p,Q)a(Q)dS
47t

Sb

(3.93)

Eq. 3.93 means that the field velocity potential <P (P) can be expressed by the sum of the

distribution of sources on the wetted surface Sb with the density a (Q). To obtain

a (Q) , the structural body boundary condition can be used. The normal derivative of

Eq. 3.93, together with Eq. 3.70 and $ (P) = ! (Q>e (P) + cl>i (P», results in
2
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!cr (P) + ~JJcr (Q) 00 (P, Q) dS = ape (P) =
2 ~ & &

Sb

T
{u} {n} (3.94)

Eq. 3.93 and Eq. 3.94 are the two basic equations used in the source distribution method.

3.3.4.2 Dipole distribution method.

If the normal derivatives of the exterior and interior velocity potentials are set equal

to each other, that is ape (Q) = api (Q) , and the density m(Q) is defined such that
& an

m (Q) = cl>i (Q) - cl>e (Q) , then Eq. 3.92 becomes

cI>(P) = ~JJoo(P, Q) m(Q)dS
41t an

Sb

(3.95)

Eq. 3.95 means that the field velocity potential cI> (P) can be expressed by the sum of the

distribution of dipoles on the wetted surface Sb with the density m (Q) .

3.4 Coupling of structural dynamics and hydrodynamics

From the above discussion, the coupling of structural dynamics and hydrodynamics

for hydroelastic analysis of floating structures includes two key phases. First, the

radiation wave potentials are obtained independently for each of the structural dry mode

shapes required to represent the structural motion. The wetted surface boundary

conditions for solving the radiation potentials are defined in terms of the modal normal

velocity. Second, the hydrodynamic pressure from the incident, diffraction and radiation

waves are calculated to determine the fluid loads acting on the structure.

3.4.1 Structural body boundary condition

The modal normal velocity at a point on the wetted surface is the velocity in the
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normal direction for a particular mode shape. The modal velocity will be used in the

wetted surface boundary condition to solve the radiation potential. To calculate the

modal normal velocity, the structural normal vector, shown in Fig. 3.2, needs to be

calculated first

The structural normal vector {n} = {n., n2, n3 } T can be calculated in the global

coordinate system. The normal vector is a free vector for the plane, which means the

vectorcan be located at any position within the plane. For thenumerical calculation, the

structural wetted surface is discretized byquadrilateral panels. Thenormalvector canbe

calculated bythevector crossproduct of thediagonal vectors, which can beformed from

the coordinates of the four nodes. The vectorcross product can then be normalized to

obtainthe unitnormal vector. FromFig. 3.3, the diagonal vectors can be written as

(3.96)

and

The unit normal vector of thequadrilateral planecan be written as

(3.97)

{n} =
{r13 } x {r24 }

I{r l3 } x {r24 } I
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Figure 3.3 Normal vector of quadrilateral panel

For a curved panel, as long as the size of the panel is small enough, the method to

calculate the unit normal vector for a plane panel can be used.

For each motion mode shape {'IIj}' the normal component of the displacement is

(3.99)

where { 'IIj} is a mode shape vector containing the three translational displacements at

the point (x,y,z) on the panel. Vector {n*} , whose jth component is nt ' is defined as

the generalized normal vector. The panel mode shape vector {'IIj} can be obtained from

the global mode shape [\P]. For a sinusoidal wave, the modal normal velocity can be

written as

(3.100)

Eq. 3.100 can be used in Eq. 3.94 to determine the source densities for the jth radiation

potential.

The generalized normal for the first six rigid body modes is obtained by substitution

of Eq. 3.44 into Eq. 3.99:
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*n1

*n2

*n3

*n4

*nS

*n6

=

n1

n2

n3

-n2 (Z - ZG) + n3 (y - YG)

n1 (z - ZG) -n3 (x - XG)

-n1 (Y-YG) +n2 (x - xG)

(3.101)

3.4.2 General fonnulation for modal hydrodynamic forces

The hydrodynamic forces result from the hydrodynamic pressures, and hence, only

normal forces act on a structure in an ideal fluid. For the finite element method, the

normal pressure force is treated as any other distributed force acting on the element

From Euler's integral, the linear time-independent part of the hydrodynamic distributed

normal force at a point (x,y,z) on the wetted surface is, for a sinusoidal wave,

p {n} = iCi> pel> {n}

and the corresponding 'distributed' modal force becomes

(3.102)

(3.103)

where [\j1] is the 3 x q modal shape matrix.at (x,y,z) with column j equal to {\j1j}. The

total modal hydrodynamic force {Fr} * is obtained by integration over the wetted

surface:

npanel np anel

{Fr}* = L ffiCi> pel> [\j1]T {n}dS = L iCi>Pffel> {n}*dS

e =1 S. e = 1 S.
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The 3 x q modal shape matrix [\jI] are modal displacements in global coordinates.

In the finite element method, the displacements within the element are first calculated in

the local coordinate system and then transformed to global coordinates as follows. First,

the nodal mode shape matrix [\jIn] for an element can be extracted from the global

mode shape ['1'] in the global coordinate system. The nodal mode shape matrix. in the

local coordinate system, [\jIn] , can be obtained by the transformation

(3.105)

The mode shape matrix [\jI] at the point (x,y,z) within an element in the local

coordinate system can beobtain by interpolation as

[\jI] = [N] ['lfn ] (3.106)

[\jI] can be obtained by transforming ['If] in the local coordinate system to the global

coordinate system

(3.107)

If the pressure p is used in Eq. 3.104, one has

npanel

{Fr}* = L II {n}*pdS
e= 1 s.

(3.108)

Eq. 3.108 is the general formulation for the modal fluid force given the fluid pressure. It

is also valid for the hydrostatic force calculation. The calculation of the generalized

normals will be discussed in Chapter 4.
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CHAPTER 4

THREE-DIMENSIONAL HYDROELASTICITY

4.1 Basicconcept

Three-dimensional hydroelasticity theory (Wu, 1984; Price and Wu, 1985; Lee and

Lou, 1989) uses a three-dimensional finite element structural model and a three­

dimensional fluid model to describe the wave-induced motion problem. and mode

superposition is used in coupling the interaction of structural and fluid motions. This

method avoids the limitations of traditional three-dimensional hydrodynamics, which

provides only rigid body motions, and two-dimensional hydroelasticity (Bishop and

Price, 1979), which evaluates only beam-like motions and force resultants along the

longitudinal axis of the structure. To date, three-dimensional hydroelasticity represents

the most general and accurate theory for the hydroelastic analysis of very large floating

structures.

Since three-dimensional hydroelasticity theory is the most general linear theory in

hydroelasticity, the details of it will be discussed in this chapter with an example by

using three-dimensional quadrilateral thin shell elements to model the structure and four

node quadrilateral panels to model the fluid. The structural responses, such as motions

and deformations, internal forces and moments, and strains and stresses, are of most

interest to structural engineers for design. Therefore, this chapter explains three­

dimensional hydroelasticity theory from a structural viewpoint and considers the

hydrodynamic theory as a tool to obtain the fluid loads. In addition, the general

formulations for the hydrostatic restoring coefficients are discussed.
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4.1.1 Linear quadrilateral thin shell element

A fmite element model is used to describe the structure for hydroelastic analysis of

floating structures. Varioustypes of elements, such as, beam, plate, shell, truss and solid

elements, may be used to model the complex structure. The number of elements used to

model the wetted structure depend on the accuracy of the structural motions and

deformations required for the fluid-structure interaction problem.

To provide sufficient buoyancy for the structure, a large volume with relatively low

weight is required for the part below the still-water plane. Such structures typically are

'shell-like'. Hence, one of the most useful finite elements used to model floating

structures is the linear quadrilateral thin shell element The formulation of a basic

quadrilateral thin shell element is described in this section; many other formulations are

possible.

A quadrilateral thin shell element is shown in Fig. 4.1 in the global coordinate system
- - - -

x-y-z. The element local coordinate system is denoted x - y - z. The local z is directed

in the same direction as the normal vector defined by the fluid panels, that is, it points

into the structure.
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Figure 4.1 Quadrilateral thin shell element

The element has the capability to resist both membrane and bending loads. The

24 x 1 vector of element nodal displacements {d} in the local coordinate system is

(4.1)

and the corresponding nodal force vector is

u j ' v j i=I,2,3,4 refer to the in-plane displacements and F x j ' F y j i=I,2,3,4 refer to the

membrane forces. w.,ex j ' ey j i=I,2,3,4 refer to the transverse displacements, and

Fz j , M x j ' My j , Mz j i=I,2,3,4 refer to transverse shear and bending moments. ezj i=I,2,3,4

do not contribute to the element forces and displacements. The element displacement

field {u} are interpolated from the nodal displacements by

{u} = [N] {d}
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where [N] is a 3 x 24 matrix of interpolation functions.

To formulate a general quadrilateral thin shell element, it is convenient to define a

natural coordinate system in the element plane, as shown in Fig. 4.2. For the local ~, 11

(natural) coordinate system, the origin is taken as the intersection of lines joining the

mid-points of the opposite sides, and the sides are defined by l; = ±1 and 11 = ±l.

\,
y ~··~·········~·_·····~·.Jf········~·····

~
!
!

Figure 4.2 Natural coordinates for a quadrilateral element

The natural and cartesian coordinates are related by the interpolation function as:

Xl

Yl

X2

~
-

=
[N1 0N, 0N, 0N. 0] Y2 (4.4)
o N I 0 N2 0 N3 0 N4 X3

Y3

X4

Y4

where (Xi' Yi) are the (X, y) coordinates of node i (i=l,2,3,4), and each interpolation
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function is defmed as (Rao, 1989)

i = 1,2,3,4 (4.5)

(l;i'1')) are the (l;,1') coordinates of node i (i=I,2,3,4) and they are given by

(l;I,1')J = (-1, -1)

(~3' 1')3) = (1, 1)

(l;2,1')2) = (1, -1)

(l;I,1')I) = (-1,1)
(4.6)

The same interpolation matrix is used to transform the nodal displacements to the

displacement field in the element. For example, the in-plane displacements {u, v} are

U1

VI

u2

[~ =
[N1 0N, 0N, 0N. 0] v2 (4.7)
o N1 0 N2 0 N3 0 N4 u3

v3
U4
v4

Much work has been done on quadrilateral bending elements (e.g., Cook et al., 1989;

Rao, 1989) and there are many possible formulations available. The vertical

displacement field w can be interpolated by the nodal vertical displacements and

rotations. Together with Eq. 4.7, the displacement field can be written as

{u} ~ F} ~ [N] {d}

w
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where [N] is a 3 x 24 interpolation function matrix:

IN1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0 0 0 N4 0 0 0 0 ~
[N] = 0 N

1
0 0 0 0 0 N

2
0 0 0 0 0 N

3
0 0 0 0 0 N

4
0 0 0 0 (4.9)

o 0 NIl N
12

N
13

0 0 0 N
21

N
22

N
23

0 0 0 N
31

N32 N
33

0 0 0 N
41

N
42

N43 0

where N1, N2, N3, N4 are given by Eq.4.5. The other interpolation functions, which

involve the vertical displacements, can be written, respectively, as (Rao, 1989)

1 2 2
N11 = -- (- 1 + l;) (- 1+11) (- 2 + l; + l; + 11 + 11 )

8

1 2 2
N21 = 8 (1 + l;;) (- 1+11) (- 2 -l; + l; + 11 + 11 )

1 2 2
N31 = -- (1 + l;;) (1 +11) (- 2 + l; + l; -11 + 11 )

8

1 2 2
N41 = - (- 1 + l;) (1 +11) (- 2 + l; + l; -11 + 11 )

8

1 2
N12 = -- (-1 +l;) (1 +l;) (-1 +11)

8

1 2
N22 = -8 (-1 +l;) (1 +l;) (-1 +11)

1 2
N 32 = - (- 1+ l;) (1 + l;) (1 + 11)

. 8

1 2
N42 = 8(- 1+ l;) (1 + l;) (1 + 11)
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1 2
N 13 =-8 (-1 +l;) (-1 +1') (1 +1')

1 2
N23 = - (1 +l;) (-1 +1') (1 +1')

8

1 2
N33 = 8(1 + l;) (- 1 + 1') (1 + 1')

1 2
N43 = -8 (-1 +l;) (-1 +1') (1 +1')

(4.12)

The element mass and stiffness matrices can be formed based on this interpolation

function matrix by using Eqs.3.16 and 3.18. The distributed element force can be

transferred to the equivalent nodal force vector in element local coordinate system by

using Eq. 3.19.

A mapping between the shell elements and the fluid panels is required to couple the

structural and fluid models. The principle of the mapping between a structural element

and fluid panel is that the structural motion must be related to the fluid motion through

the boundary conditions. A one-to-one mapping between structural elements and panels

is used herein, as it is the simplest approach and requires the least approximation.
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4.1.2 The coordinate systems for quadrilateral element

y z

1

2

{n}

4

3

x

1 3,4

r:
2

Triangle

Figure 4.3 Global, local and natural coordinates for quadrilateral element

The definition of the global coordinate system x-y-z, the local element coordinate

system x - y - z, and the element natural coordinate system l; - 11 are illustrated in

Fig. 4.3. If a triangle element is necessary to fit the structural surface, the numbering of

the four nodes are also shown in Fig. 4.3. The x axis is directed from node 1 to node 2,
- -

and the z axis is parallel to the normal vector of the quadrilateral element. The local y

axis is then determined by the right hand rule.

The general vector {A}, with the components in the global coordinate system x-y-z,

can be transferred to the same vector {A}, with the components in the local coordinate

system x - y - z, by the transformation

{A} = [TIl {A}

or
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l] [ - - -~ ljx cosxx cosxy cosxz x

~ = cos~x cos~y cos~z y
z coszx coszy coszz z

(4.14)

where [TIl is the transformation matrix which contains the direction cosines. From the

properties of the direction cosines, it can be easily shown that [TIl T [TIl = [Il,

where [I] is an identity matrix. The procedure to calculate the direction cosines can be

found in many references (for example, Paz, 1985, pp. 364-368). The transformation of

the nodal displacement vectors involves the transformation of linear and angular

displacement vectors at each node of the element. Therefore, a 4-node quadrilateral

element requires the transformation of a total of eight displacement vectors. Toe

transformation of 24 x 1 nodal displacement vector {dg } in the global coordinates to

the displacement vector {d} in local coordinates may be written in abbreviated form as

{d} = rn {dg}

in which

[Tl =

(4.15)

(4.16)

Analogously, the transformation from nodal forces {r:
xt

} in global coordinates to
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(4.17)

nodal forces {r
ext

} in local coordinates is given by

{r
ext

} = [T] {r:
xt

}

4.2 Three-dimensional fluid model

The three-dimensional velocity-potential problem has been described in Section

3.3.2. The incident wave potential in the fluid without a structure can be obtained easily

by solving the Laplace equation subject to linear boundary conditions. The Green

function method is introduced to solve the diffraction and radiation potentials, for which

the structure is present. The volume integral in the three-dimensional domain is

transferred to the two-dimensional surface integral by Green's identity. A Green

function is selected which satisfies all boundary conditions, except on the structure, so

that the integration is limited to the structural wetted surface under the still-water plane.

The prescribed body motions, represented by the structural 'dry' mode shapes, are used

to define the boundary conditions for the radiation potentials.

The Green function integral on the structural mean-wetted surface is calculated

numerically. The structural wetted surface is discretized by a number of fluid panels.

The structural and fluid motions are coupled by mapping the structural mode shapes for

the structural elements onto the fluid panels. For simplicity, a constant velocity potential

is assumed at each fluid panel. Therefore, the boundary condition is evaluated at the

center of each fluid panel.

4.2.1 Fluid panels

The fluid panel method is used to solve numerically the velocity potentials by the

source distribution method. Because a constant source distribution is assumed on each

fluid panel, the panel size cannot be very large in general.
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Four node quadrilateral panels are adopted as the fluid panels to describe the

geometry of the structural wetted surface. If a triangular panel is necessary to fit the

structural surface, a four node triangle elementcanbe used as shown in Fig. 4.3. A one­

to-one mapping between structural elements and fluid panels is used to couple the

structural and fluid motions, that is the fluid panels exactly correspond to the structural

shell elements on the wetted surface. Fig. 4.4 schematically shows the fluid panel

distribution on a singlemodule.

Figure 4.4 Quadrilateral paneldistribution ona singlemodule

The total fluid panel number is npanel. For each panel, the coordinates of the four

nodes can be defined in the global coordinate system. Fig. 4.5 shows a fluid panel, in

which

(i ~ j), i,j = 1,2,3,4 (4.18)

represents a vector from node i to node j; In} is the normal vector of the fluid panel;

(x; Yj, Zj) i = 1,2,3,4 are the coordinates of node i in the global coordinate system;

(xc, Yc' zJ are the coordinates of the center of the fluid panel; x - y is the local
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coordinate system in thepanel plane with z axisparallel to the normal vector{n},which

has the same defmition as thelocal coordinate system of the shellelement.

Figure 4.5 Fluidpanel

The areaof paneln, An' is thesumof twotriangle areas:

(4.19)

The center coordinates of the fluid panel can be calculated by taking s = 11 = 0 in

Eq. 4.4 as

(4.20)
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The normal vector for each fluid panel is directed out of the fluid domain and into the

structure, as mentioned in Section 3.3.2. The normal vector in global coordinates can be

calculated by following the procedure in Section 3.4.1. The normal vector in local

coordinates is, by definition,

{n} = (0,0, 1)

4.2.2 Generalized normal for three-dimensional panel

(4.21)

The generalized normal defined by Eq. 3.99 is in global coordinates. This generalized

normal can be used in the body boundary condition in Eq. 3.100. It is straightforward to

show that the generalized normal is the same whether calculated in the global or local

coordinate system.

The normal vector {n} of a quadrilateral element in the global coordinate system is

calculated at the center of the panel. From Eq. 4.13, the normal vector {n} has the

relationship with the normal vector {n} in local coordinates

{n} = [TIl {n} (4.22)

where [Ttl has been defined in Eq. 4.14. {'II;> is the displacement vector in the jth
-c

mode shape, which contains only three translational displacement components. {'IIj}
-c

represents the same mode-shape vector but in the local coordinate system. { 'IIj} and

{ 'II;} have the relationship

(4.23)

So the generalized normal calculated in the local coordinate system can be written as
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(4.24)

This means that the generalized normal can be calculated in either the local or global

coordinate system. Since the mode displacement at a point is usually calculated in the

local coordinate system, it may be more convenient to calculate the generalized normal

in the localcoordinate system.

Thejth nodalmodeshape {'IIj}' a 24 x 1 vector in theglobalcoordinate system, can

be formed by extraction from the structural mode shapes P¥}. The jth local nodal

modeshape {'IIj} can be obtained by transforming {'IIj}' Le.

(4.25)

The jth mode shape vector at the center of the element in the local coordinate system,
-c

{ 'IIj } , can be interpolated from {'IIj} by setting ~ = 11 = 0 in the interpolation

matrix [N] in Eq. 4.9

-c

{'IIJ = [N] 1;=0 {'IIj}
'1=0

Finally, thegeneralized normal for each fluid panelcan be calculated by

(4.26)

(4.27)

By definition, the normal vector in the local coordinate system has only one nonzero

component, a 1 for the z component. Therefore, the generalized normal can be simply
_ -c

obtained by taking the z component from the localmode shape {Wj}'
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4.2.3 Three-dimensional velocity potential

For a linearproblem, the total velocity potential for a sinusoidal incoming wave can

be decomposed, as in Eq. 3.63,into

o1>T = o1>e-;·' = (<I>, + <1>0 + <1>0 e-i., = (<I>, + <1>0 +:i);<I>,)e-o.,
i= 1

(4.28)

in which cj)I is the incident wave potential; <Po is the diffraction wave potential; and cj)j

are the radiation wave potentials. The incident wave potential is givenby

'" iga ik(xcos!3+ysin!3) kz'
'VI = --e e

co
(4.29)

The diffraction and radiation velocity potentials need to be solved by using the Green

function method. The sourcedistribution method described in Section3.3.4 is chosento

solve the velocity potentials. This method can be expressed by the following two

equations:

cj)(P) = 411tffG(p, Q)u(Q)dS P E s,
Sb

!u (P) + ~ffu (Q) ao (P, Q) dS = aj>e (P) =U (P)
2 41t an an n

Sb

(4.30)

in which G(P' Q) is the Green function; 0' (Q) is the source density on the mean body

surface Sb; un (P) is the normalvelocity of themean structural surface.

The structural surface below the still water line is discretized by quadrilateral fluid

panels. Constant velocity potential (constant source density) at each fluid panel is

assumed. The normalvelocityat pointP ineach panel is taken at the center of the panel.
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T

The jth normal modal velocity, which is equal to -iro {\jI;} {n} = -ironj* , is used as

the body boundary condition to solve the jth radiation velocity potential. The

generalized normal nt can be calculated in the panel local coordinate system as

mentioned in Section 4.2.2. Therefore, by using the constant fluid panel method,

Eq. 4.30 can be written for the jth radiation potential as

i:oen

1Ipanel OG (P Q)
!cr~ (Pn) +~ L cr~ (Q) JJ a:: i dS =-iront (P)
2 41t

i = 1 IiSi

i.en

(4.31)

where npanel is the total number of thefluid panels. Eqs. 4.31 are true for all the fluid

panels. Therefore, a total of npanellinearequations exist in each equation of Eqs. 4.31.

These two equations can be written, in matrix form, as

-
[J] {o} = {un}

{~} = [G] {o}
(4.32)

1
In the first of Eqs. 4.32, [1] is an npanel x npanel matrix with diagonal equal to 2'
while the off-diagonal terms Jni containthe integralin Eq. 4.31, which can be written as

(4.33)

-
{o} is an npanel x 1 vector that contains the source densities on each panel; {un} is

an npanel x 1 vector that contains the prescribed normal velocity in terms of the

normal modal velocity on each panel. It can be seen that matrix [1] depends on the
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Green function, mean body-surface shape, discretization, and the wave frequency, but

not on the body motion. [J] is called the influence coefficient matrix. In the second

equation of Eqs. 4.32, [G] is called the Green function coefficient matrix, which

contains the integral term in the first equation of Eqs.4.31, which is also not motion

related.

To solve the three-dimensional radiation velocity potential by the Green function

method, first one needs to form the influence coefficient matrix [J] for each wave

frequency. Then for each structural mode, npanel x npanel algebraic equations are
-

solved to obtain the source density {0' } at each fluid panel. The Green function
-

coefficient matrix [G] is formed for each wave frequency, and multiplied by {O'} to

obtain the velocitypotentialat each fluid panel.

The remaining problems aretheselection of theGreen function and the calculation of

the influence coefficient and theGreen function coefficient matrices. Fortunately, much

work has been done on these two problems. Wehausen and Laitone (1960) presented

significant work on the Greenfunctions. Some forms of the Green functionsalso canbe

found in Wu (1984). It can be seen, from Eq. 3.79, the Green function has a singularity

when the source point Q approaches the field point P. Therefore, the integration for

influence and the Green function coefficients need specialconsideration. A pioneering

study on this subjectcan be found in Newman (1986).

The diffraction wave potential also can be obtained by the Green function method.

Instead of using normal modal velocity at the structural mean surface, the boundary

conditions for the diffraction potential in Eq. 3.69 are used to solve the source density.

The jth modaldiffraction wave force canbeobtained by using the radiation potential and

the incidentpotentialby the Haskind-Hanaoka relationship. It should be mentioned here
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that the Haskind-Hanaoka relationship cannot provide the pressure distribution. This

relationship is used here to calculate the modal diffraction wave force.

4.2.4 Hydrodynamic force vectors and matrices

After obtaining the incident, diffraction, and radiation velocity potentials, the linear

generalized (modal) hydrodynamic forces can be calculated by using Eq. 3.104. The

generalized incident wave force can be calculated by substituting the incident wave

potential cl>I into Eq. 3.104:

npanel

{F1}* = Limpff {n}*cl>IdS
n= 1 S.

(4.34)

Similarly, the generalized diffraction wave force can be calculated by substituting the

diffraction wave potential cl>D into Eq. 3.104:

npanel

{FD}* = Limpff {n} *cl>DdS
n = 1 S.

(4.35)

As mentioned before, the diffraction wave force can be obtained by using the Haskind­

Hanaoka relationship. The jth modal diffraction wave force becomes

(4.36)

Finally, the generalized radiation wave force can be calculated by substituting the

radiation wave potentials cl>R into Eq. 3.104, which can be written as
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npanel npane!

{FR}* = L impfJ {n}*<pRdS = L impJJ {n}*<pj PjdS
n = 1 S. n= 1 S.

(4.37)

where summation convention is used in Eq. 4.37. The generalized radiation wave force

is related to the structural motion. Therefore, Eq. 4.37 can be written in the form of the

hydrodynamic coefficient matrix and the principal coordinates as

npanel

{FR}* = L impJJ{n}*<pj PjdS = (m
2[M

f*] +iro[Ctn {p}
n= 1 S.

(4.38)

where [Mfjk] and [Cfjk] are added mass and damping matrices, respectively; the

subscript j and k represent, the jth modal force caused by the kth modal displacement.

The element Mfjk* of the added mass matrix is

npanel

Mr,: = L :,Re{iIDHnt'hdS}
n= 1 s.

and the element C{jk* of the hydrodynamic damping matrix is

npanel

Cr,: = ~ ~Im{iIDpnt<l>kdS}

(4.39)

(4.40)

where Re and 1m denote the real and imaginary parts of the complex functions,

respectively.

4.3 Hydrostatic restoring coefficientsin the three-dimensional model

"Hydrostatics is the oldest and most elementary topic of naval architecture and fluid

mechanics" (Newman, 1977). The hydrostatic restoring coefficients for rigid body
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motion of floating structures have been studied very well. However, the hydroelastic

restoring forceswhich result from flexible deformations of very large flexiblestructures

may be significant compared with elastic forces. Therefore, the study of hydrostatics

becomes an importanttopic for very large floating structures.

The formulation for generalizedhydrostatic restoring coefficients is discussed in this

section. The formulation discussed here is based on the mode-superposition and panel

methods. The general formulation for hydrostatic restoring coefficients is discussed

first, The traditional hydrostaticrestoringcoefficients then become a special case of the

general formulation presented here. The consistent formulation of hydrostatic restoring

coefficients for single beams and frame structures can be found in Chapters 5 and 6,

respectively.

4.3.1 Generalized hydrostatic restoring coefficien1s

The term-pgz' in Euler's integral of Eq. 3.55is thehydrostatic pressure,whichgives

rise to the hydrostatic restoring forces. Again, p is the water density; g is the

gravitational acceleration; z' = z - zw; and z; is the vertical coordinate of the still-

waterplane. Fig. 4.6 showsthe defmition for the hydrostatics.

z y

xOa.e....,- -.-.
z

Z'
{n}.....-8 ..

Figure 4.6 The defmition for hydrostatics
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When a structure floats, from Archimedes' principle, the buoyancy force is equal to the

structural weight If the weight is {W}= [0, 0, Fw] T, then Archimedes' principle gives

{W} = IIIpg {k} dV
v

(4.41)

where Vis the water volume displaced by the structure and {k}= [0,0, 1] T This volume

is surrounded by the wetted structural surface Sb and still water plane surface Sf.

The hydrostatic force can also be calculated by integrating the hydrostatic pressure,

-pgz', in the normal direction over the mean-wetted surface, which can be written as

{W} = -J1pgz'{n}dS
Sb

(4.42)

where the normal vector {n}, as before, points out of the fluid domain. If the still-water­

plane surface Sf is added to this integral of Eq. 4.42, from Gauss's divergence theorem,

this surface integral can be converted to a volume integral

-11pgz' {n} dS - J1pgz' {n} dS = 111pg {k} dV = {W}
v

(4.43)

where the minus sign in the front of the surface integral is canceled with the minus sign

implicit in the normal vector. On the still water plane surface Sf' the hydrostatic pressure

is equal to zero. Therefore, Archimedes' principle can be also expressed as

{W} = -11pgz'{n}dS
Sb

(4.44)

In this case, the structure is in the equilibrium position. Hydrostatic pressure tends to

restore the structure to this equilibrium position from a disturbed position. In other
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words, a disturbance of the structure will modify the hydrostatic pressure acting on the

structure, and the resulting pressure forces and moments are called hydrostatic restoring

forces.

Suppose that the disturbance in the vertical direction is w, which is a function of the

position. Then, after disturbance, the vertical coordinates 2 of each position is given by

2 = z'+w

and the hydrostatic pressure at this position becomes

-pg2 = -pgz'-pgw

The hydrostatic force {Fhyst } acting on the wetted surface can be obtained by

{Fhyst } = -JJpgz' {n}dS-JJpgw{n}dS

(4.45)

(4.46)

(4.47)

The first term of Eq. 4.47 is equal to the structural weight from Eq. 4.44. Only the

second term results in hydrostatic restoring force, which can be written as

{Frl = -pgJJw {n} dS
Sb

(4.48)

where {n} is the wetted surface normal vector in the global coordinate system. The jth

modal hydrostatic restoring force can be calculated by

(4.49)

j = 1,2, ... , q
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in which {'Vj} is thejth mode shape vector at a point in the globalcoordinate system,

whichcontains three translational displacements only; nt is the jth generalized normal.

Fromthe above discussion, it is possible to determine the modal hydrostatic restoring

forces for displacements associated with any mode. Thevertical displacement w at any

point on the wetted surface is

T
W = {'IIw} {p} (4.50)

where {'IIw} is the vertical modal displacement vector at the point, which can be

extracted from the mode shape ['P]; and {p} is the principal coordinate vector. When

the first q mode shapes are used in mode superposition, {'Vw} is a q x 1 vectorand it

can be expressed as {'IIw} T = {'Vwt, 'IIwz, ... , 'IIWq } , Thus generalized hydrostatic

restoring force vector {Fr*} can be written as

(4.51)

where {'II} is themode shape matrixat a pointwhich hascolumnj equal to {'Vj} and

[Kt] is the newly defmed generalized restoring coefficient matrix. The elements of

[Ktl aregivenby

j, k = 1,2, ... , q (4.52)

Eq. 4.52is the general formulation for the generalized restoring coefficients.
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4.3.2 Rigid body hydrostatic restoring coefficients

The conventional hydrostatic restoring coefficients for rigid body displacements are a

special case of Eq. 4.52. For rigid body motion, if the surface integral in Eq. 4.52 is

extended to include the still-water plane surface, then it becomes a closed surface

integral. Gauss's divergence theorem can be applied to this integral and it can be written

as

where V is the gradient operator as defmed in Eq. 3.62, and the minus sign in the front

of the volume integral, again, is because the normal vector points into the body. So the

hydrostatic restoring coefficients can be written as

Kcit = pgII {'I'i} T {n} 'I'wkdS
Sb

= -pglIIv ({'I'i} 'I'wJ dV - pgII {'I'J T {n} 'I'wkdS
v ~

(4.54)

For heave restoring coefficient Kf33*' 'I'w3 = 1 and {'I'3} = {O, 0, I}, and

therefore V ( {'I'3} 'I'w3) = O. The volume integral in Eq. 4.54 is equal to zero. On the

still water plane, the generalized normal vector n,* = { 'I'3}T {n} = -1, which points

into the structure, so {'I'3}T {n} 'I'w3 = -1. Hence

Kf33* = O-pgII (-I)dS = pgA,
Sf

(4.55)

where A c is the still-water-plane area. Eq. 4.55 can be recognized as the heave restoring

coefficient in naval architecture.
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For roll restoring coefficient \IIw4 = Y- Yo and
T T

{'I'4} = {D, - (z - zo), (y - Yo) }. Therefore, V ( {'I'4} \IIW4) = - (z - zo), and

n4* = {\II4} T {n} = -n2 (z - zo) + n, (y - Yo)' On the still-water-plane, n, = Dand

* * 2n3 = -1, so n4 = - (y - Yo) and'l'w4n4 = - (y - YG) . Hence

K C44* = -pgJJJ[- (z - zG) ] dV - pgJJ[- (y - yG) 2J dS
v ~

(4.56)

The hulls of most ocean structures, such as ships, exhibit port-starboard symmetry, and,

in this case, YG is equal to zero. In such a case, Eq. 4.56 becomes

(4.57)

in which ZB is the center of the displaced water volume (or the center of buoyancy), and

Sxx is the second moment of the water-plane area about the axis which is parallel to the

x-axis (in Fig. 4.6) and in the still-water-plane. Noting that

(4.58)

where GMT is the transverse metacentric height, the restoring coefficient for roll motion

can be written as

(4.59)

which is the conventional expression in naval architecture.

By using similar steps, the hydrostatic restoring coefficient for pitch, Kcss* ,can also

be obtained as

(4.60)
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where Syy is the second moment of the water plane area about the axis which is parallel

to the y-axis (in Fig. 4.6) and in the still-water-plane. By noting that

where GML is the longitudinal metacentric height, then

* -Kess = pgVGML

(4.61)

(4.62)

The off-diagonal rigid-body restoring coefficient Kns* can be obtained as follows. In

this case, {\II3} = to, 0, I} and \IIws = -(x-xG). Therefore, V ({\II3} \IIws) = 0,

and so the volume integral in Eq. 4.54 is equal to zero. On the still-water plane, the

generalized normal n," = n, = -l,so {\II3}T {n}\IIws = (x-xG).Hence,

Kf3S* = 0 - pgSS (x - xG) dS
Sf

If the center of gravity of the structure is located at xG = 0, then

where

S, = JJXdS
S,

(4.63)

(4.64)

(4.65)

The off-diagonal rigid-body restoring coefficient KfS3* can be obtained as follows. In

this case, {\lis} = {(z - zG)' 0, - (x - xG) } and \IIw3 = 1. Therefore,

V ( {\II3} \IIws) = 0, and so the volume integral in Eq. 4.54 is equal to zero. On the still-
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water plane, the generalized normal ns* = n 1 (z - ZG) - n3 (x - XG) = (x - Xo) , so
T

{\JI3} {n}\JIws = (x-xG)·Asaresult,

* *Kf53 = Kf35 (4.66)

Similarly, it can be proved that for a structure with Yo = 0

(4.67)

where

(4.68)

*For Kf4S ' {\JI4} = {O,-(z-zG)'-(Y-Yo)} and \jIws = -(x-xo). Therefore,

V ( {\jI4} \jIws) = 0, and so the volume integral in Eq. 4.54 is equal to zero. On the still­

water plane, the generalized normal n4* = -n2 (z - zG) - n3 (y - Yo) = (y - Yo), so

n*\jIws = -(x-xo) (Y-YG)· Similarly, n*\jI4ws = -(x-xo) (Y-YG). Therefore,

for a structure with Xo = 0 and YG = 0,

where

Sxy = ffxydS

(4.69)

(4.70)

From Eqs.4.64, 4.67, and 4.69, if a structure is double symmetric, the off-diagonal

terms are all equal to zero.
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4.4 Hydrostatic restoring coefficients by panel method

Even though the hydrostatic restoring coefficients can be calculated by evaluating a

volume integral and water plane surface integral, in practical cases, the formulation in

Eq. 4.52, which involves an integral on the mean-wetted surface, is more convenient for

the hydrostatic restoring coefficient calculation. As described in Section 4.2.1, the panel

method has been used in the velocity potential calculation. The same panels can be used

to calculate the hydrostatic restoring coefficients. Thus Eq. 4.52 can be written as

npanel

Kfjk* = pg L I I nt 'VwkdS
n = 1 I1Sa

(4.71)

in which npanel is the total number of fluid panels and ASn is the area of panel n. If the

fluid panel is small enough, the integrand can be assumed constant on each panel, and

thus Eq. 4.71 becomes

N

Kfjk* = pgL nt'VWkASn
n=1

4.5 Equations of motion of three-dimensional hydroelasticity

The modal equations of motion are

[ 2 * * . * * * *J- 0) ([Ms ] + [Me]) - 10) ([Cs ] + [C, ]) + (jK, ] + [Ke]) {p}

= {F1* } + {FD* }

(4.72)

(4.73)

in which [M s*] ' [Cs*] ' and [Ks*] are the modal structural mass, damping, and

stiffness matrices, respectively; Mej k and Crj k are the elements of the modal added-mass

and damping matrices, [Mr*] and [C r*] , respectively; [Ke* ] is the hydrostatic
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stiffness matrix, which results from the changes in hydrostatic pressure as discussed in

Sections 4.3 and 4.4; and {Ft} and {Fo*} are the modal hydrodynamic forces,

whichrepresent incident anddiffraction forces, respectively.

Eq.4.73 represents q modal equations. Upon solutions of Eq. 4.73 for the principle

coordinates {pl, the nodal displacements {D} can be calculated by Eq. 3.45. The other

structural responses required by engineering design can be calculated, and internal

forces andstresses can be obtained from Eqs. 3.46and 3.47.
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CHAPTER 5

TWO-DIMENSIONAL HYDROELASTICITY

5.1 Overview

The difficulty of applying general three-dimensional hydroelasticity to a VLFS is the

large computational resources that would be required. Although it may be technically

possible to carry out a three-dimensional hydroelastic analysis of a VLFS, it would

appear that such an analysis may be most appropriate as a [mal step in the design

process, rather than during the intermediate design phases. Hence, there is a need for

alternative, less computationally demanding methods of analysis which can provide the

basic data for design of VLFSs. Two-dimensional hydroelasticity offers one such

method.

Two-dimensional hydroelasticity was developed originally based on strip theory for

hydrodynamic force calculations. Strip theory is most applicable to long structures with

relatively constant cross-sectional geometry because two-dimensional flow is assumed.

In strip theory, The structure is assumed as a single rigid 'beam'. In two-dimensional

hydroelasticity, the slender structure is modeled as an elastic, nonuniform beam to

satisfy the two-dimensional flow assumption. Therefore, the beam-like structural

deformations and internal forces, such as vertical and horizontal bending moments and

shear force, can be predicted by two-dimensional hydroelasticity. Two-dimensional

hydroelasticity has been applied extensively to ships (Bishop and Price, 1979), bridges

(Langen and Sigbjornsson, 1980; Georgiadis, 1981; Luft, 1981; Hartz and Georgiadis,

1982), and other slender structures (Okamoto et al., 1985; Masuda et al., 1987; Che et

al., 1990; Ertekin et al., 1990; Riggset al., 1991).

The two-dimensional hydroelasticity developedby Bishop and Price (1979) models a
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slenderstructure as a nonuniform Timoshenko beam to describe the beamdeformation,

and the fluid forces are determined by strip theory. This approach employs the mode­

superposition method. This theory is reviewed first, An alternate two-dimensional

hydroelasticity developed herein is based on the finite elementmethod. The ubiquitous

'frame' elementis used to model the slenderstructure belowthe water line. Above the

water line, a general three-dimensional model of the structure can be used. The

hydrodynamic coefficients, wave exciting forces, and hydrostatic restoring coefficients

are formed in a consistent manner with the beam finite element model. The direct

solution method is used to solve the equations of motion. This method is very efficient

for hydroelastic analysis of very largefloating structures. This chapter will discuss this

approach for two-dimensional hydroelasticity.

5.2 Two-dimensional hydroelasticity of Bishop and Price

Based on the well-developed strip theory, Bishop and Price (1979) developed a two­

dimensional hydroelasticity theory for ships. Unlike the traditional strip theory, aslender

structure is modeled as an elastic beam. Bishop andPrice (1979) haveillustrated that for

ships (which have a verylargecrosssection compared to mostother applications), shear

deformation can have a measurable effect on the response. Hence, they used

Timoshenko beam theory.

In this approach, the whole structure is modeled as a Tunoshenko beam. Mode

superposition is used to solve the equations of motion, and therefore an eigenvalue

problem must be solved. The hydrodynamic coefficients and wave exciting forces for

each section are obtained from strip theory. They are then transformed to the modal

hydrodynamic coefficients and fluid forces. The modal equations of motion are solved

and the physical displacement and beam-like internal forces can be obtained by

superposition.
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5.3 Alternative approach

As discussed in Section 5.2, the mode-superposition method has been used in two­

dimensional hydroelasticity by Bishop and Price (1979). Since the structure is modeled

as a beam, the total displacement-degrees-of-freedom are not large, and it is trivial to

solve theequations of motion directly. In addition, sincestrip theory is used, there is no

advantage to use mode superposition for the hydrodynamic calculations as there is in

three-dimensional hydroelasticity. For these reasons, an alternate approach of two­

dimensional hydroelasticity is developed. In this approach, the structure below the still­

water line is modeled by beam finite elements. The part of the structure above the still­

water line can be modeled as a general three-dimensional structure. The hydrodynamic

and hydrostatic loadsare formed in a manner consistent withthe fmiteelementmodel.

Figure5.1 Schematic of a beam-like VLFS

Fig.5.1 shows schematically a nonuniform beam. This beam model can be used to

determine basic structural motion response and cross sectional internal forces. To

describe the beamelement, theglobal coordinate system x-y-z is defined in Fig. 5.1.The

globallongitudinal axis,x, is locatedsuchthat it passes through thecenterof massof the

structure, and the z-axis is directed upward.

A 2-node, three-dimensional beam element is used to discretize the beam model of

the submerged structure. Each node has six displacement-degrees-of-freedom, three
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translations and three rotations. The element local coordinate system x - y - z is
- - -

defined such that x is parallel to the global x-axis; y and z are the principal axes of the

beam cross-section. The element local coordinate x - y - z typically corresponds to the
- -

global x-y-z system, except for x and (possibly) z translations. This local coordinate

system has been shown in Fig. 3.1.

The formulation for the element mass matrix and the equivalent nodal forces will be

used often in this chapter, and are therefore repeated for convenience. The element mass

matrix is given by

[m] = J[N] T [m] [N] dL
L.

(5.1)

in which [N] is the 6 x 12 matrix of interpolation functions from Eq. 3.27, which

includes all interpolations for axial, torsional, and transverse displacements; [m] is the

6 x 6 matrix of mass densities per unit length given by Eq. 3.28, which is assumed

constant within an element; and L, is the length of the beam element This formulation

is also valid for other beam element matrices which have distributed properties similar to

mass density.

The forces distributed along an element are replaced by equivalent nodal forces,

which in local coordinates are given by

(5.2)

in which {Fe} is the 6 x 1 vector of distributed forces and moments, and {r?"} is a

12 x 1 nodal force vector.

The Euler-Bernoulli beam element mass matrix is given in Eq. A,1O, and stiffness

matrix is given in Eq. A.ll in Appendix A, As mentioned previously, if a beam model is

used to model a slender structure, the shear deformation should be considered. The
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element stiffness matrix that includes the shear deformation can be found in Eq. A.12 in

Appendix. A. The structural mass, damping, and stiffness matrices, [Msl, [Csl, and

[Ksl , respectively, can then be assembled by using the procedure described in Section

3.2.2.

5.4 Distributed hydrodynamic forces

Strip theory was originally developed to predict the rigid motion of slender

structures, such as ships. It was first developed by Korvin-Kroukovsky (1955 and 1957)

for predicting heave and pitch motions. It is the first motion theory which is suitable for

numerical computations with adequate accuracy for engineering applications. Even

today, strip theory is still used to predict motions in ship design. Tasai (1967) extended

the theory first to obtain the sway, roll and yaw motions of a ship in oblique waves.

Since then, many researchers have made significant contributions to this theory which

include numerical improvements (Frank, 1967; Gerritsma and Beukelman, 1967; Smith,

1967; Smith and Salvesen, 1970). In 1970, Salvesen, Tuck, and Faltinsen (1970) revised

the new strip theory of Ogilvie and Tuck (1969) for head seas to predict the heave, pitch,

sway, roll, and yaw motions, as well as the wave-induced vertical and horizontal shear

forces, bending and torsional moments for a ship advancing at constant forward speed in

regular waves.

Strip theory has the following assumptions. First, an inviscid and incompressible

fluid undergoing irrotational flow is assumed. Second, the fluid disturbance induced by

the motion of a strip of the structure only propagates in the plane of the strip,

perpendicular to the longitudinal axis of the body. The first assumption results in a

potential problem, and the second assumption results in two-dimensional flow. The

derivation of the two-dimensional flow problem based on the above assumptions can be

found in many references, for example, Wang (1991).
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The hydrodynamic forces obtained from strip theory have been used to excite rigid

body motions. Actually, the hydrodynamic forces for each strip also can be taken as the

distributed forces for hydroelastic analysis. For this reason, strip theory is reviewed here

and the formulation of the distributed hydrodynamic forces are given.

In strip theory, the fluid forces are calculated for each cross-section. Each section has

three rigid body modes: sway, heave, and roll. The two-dimensional radiation potential

cPj for the jth mode 0= 2,3,4), in infinitely deep water, satisfies the following boundary­

value problem, which is illustrated in Fig. 5.2,

~+~}=o in D (5.3)
a/ az2

J

(tz - k) cPj = 0 on z = z; (5.4)

apj. . *
on C b (5.5)- = u· = -lroO.an nJ J

lim -?<cP·) = 0, lim [apj + ikcPjJ = 0 (5.6)
z-+-co az J y-+±co ay

where D is the two-dimensional fluid domain; k = ro2/g is the wave number in deep

water; Cb is the immersed contour of the strip cross-section; a/an is the derivative in

the normal direction where the normal is determined from the normal to the contour of

the cross-section and is directed out of the fluid; unj is the normal velocity of the wetted

strip surface, and j=2, 3 and 4 represent sway, heave, and roll motion, respectively;

nt = {'IIj}T {n} is the jth generalized normal for rigid-body motion given by

Eq. 3.101. Similarly, the two-dimensional diffraction potential problem can be written.
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Figure 5.2 Two-dimensional domain for velocity potential

The two-dimensional flow described in Eqs. 5.3 - 5.6 can be solved with the Green

function method (sometimes known as Frank's method; Frank, 1967). For the two­

dimensional boundary-value problem, Green's third identity can be written as

cjl (P) = aJ(cf> (Q) CO<;: Q) - G (P, Q) 8cf>~) )dC
c

(5.7)

where C represents the entire two-dimensional boundary, which includes the still-water

line, Cr; the sea floor boundary, Cs; the control boundary at ±oo, C±oo; and the mean

body surface below the still-water line, Cb • G(P' Q) is the Green function.

The Green function G(P' Q) can be chosen by the same consideration as described in

Section 3.3.3. The two-dimensional potential at point P(y, z) caused by a source located

at Q (I;, T) can be expressed by a simple source:

$2 = In (r) (5.8)

where r = J(y -I;)2+ (z -11) 2. This two-dimensional potential $2 can. be taken as a

part of the two-dimensional radiation potential.
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Itcan be shownthat ifonecan choosea function H(P, Q) such that the Green function

G (P, Q) = In (r) + H (P, Q)

satisfies

lim -?<G) = 0
Z~-<O OZ

lim [OG =F ikGJ = 0
y~±oo oy

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

then the integral in Eq. 5.7 need be evaluated only on the body wetted surface Cb, and

can therefore be written as

cP (P) = - 2~ f (cP (Q) OG~ Q) - G (P, Q) ap~Q) ) de
Cb

(5.14)

Considering the interior and exterior problems which are illustrated in Fig. 5.2, the

source distribution method, as described in Eq. 3.3.3, can be applied to this problem.

The velocitypotentialcan be writtenas

cP (P) = 2~fG (P, Q) G (Q) de
Cb

(5.15)

where o (Q) is the source densityat the sourcepoint Q.

One very efficient method for solving the two-dimensional potential problem is the

so-calledFrank's "Close-Fit" method(Frank, 1967). This methodconsiders notonly the

interiorand exteriorproblems but also the upper imaginary part whichis mirrored from

the strip contourline about the still-water line.The integral Eq. 5.15 is carried outover a
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closed contour line. The name of "Close-Fit" comesfrom this closed contour line. The

Green function for thisproblem wasgiven earlier by Wehausen and Laitone (1960):

co

Jz+11 cosm(y -I;) . k(Z+l1)
G(P,Q) = In(r) -In(r1) +2PV· e drne-fe cosk(y-l;)s.16)

m-k
o

where k = ro2/ g; r = J(y_I;)2 + (Z-T\)2; f 1 = J(y_I;)2 + (Z+T\)2; and PV

denotes theCauchy principal value integral.

By using thebody boundary condition of Eq.5.12 andtaking the normal derivative of

Eq.5.15, onehas

!a (P) + 2- fa (Q) ao (P, Q) de = ap (P)
2 4n 00 &

Cb

= u..DJ
(5.17)

where u
D

is thenormal velocity of themean-wetted surface. The source density can be

determined from Eq. 5.17. andthe radiation potential follows from Eq. 5.15.

A numerical method is needed to calculate these twointegral equations. Since it is a

two-dimensional problem, 'line' panels are used to discretize the cross section. The

potential is solved for eachcrosssection, so thenumber of the two-dimensional panels is

not verylarge. Therefore, this method is very efficient.

The dynamic fluid pressures p can be calculated by using Euler's integral. The

sectional modal fluid forces (moments) fj can becalculated by integrating thepressures

along thecontour of thecrosssection in thegeneralized normal direction:

j =2,3,4 (5.18)

These sectional modal fluidforces are the distributed forces acting on a beam element.
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5.5 Direct solution for two-dimensional hydroelasticity

The purpose of this section is to develop expressions for the distributed

hydrodynamic forces acting on a beam model. Structural analysis typically requires that

the six distributed generalized forces (forces andmoments) which potentially act along

the beam be defined. However, in two-dimensional hydroelasticity, these forces are

obtained from strip theory. In strip theory, only the distributed "sway" and "heave"

forces and "roll" moment in the y-z plane are defined. The other force and two moments

cannot be obtained by using strip theory. Hence, they are assumed to be zero in the

structural analysis.

The structure (Figure 5.1) is freely floating and it is assumed to be stationary (i.e.,

with zero forward speed). The hydrodynamic forces result from a train of regular waves

with a crest at x = 0 (at time t=O) and an incidence angle of p, and from the resultant

motion of the structure. The structure is partiallysubmergedin an incompressible fluid

undergoing irrotational flow in infinitely deep water. To determine the fluid flow, in

linear theory, the total velocity potential, <I>T' can be decomposed as in Eq. 3.63, and

rewritten here

e, = (<I>, +<l>D + <1>'> e-;·' = (<I>, + <l>D + i);<I>}-Iet = <l>e-;..

j =1

(5.19)

The incident wave potential is given in Eq.3.71, which can be written for two­

dimensional theory as

"" iga. ikxcosp ikysinp kz'
'1'1 = --e e e

co
(5.20)

Once the potentials have been determined, the distributed forces acting on a beam

element can be determined by integrating the hydrodynamic pressure for each cross
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section obtained from Euler's integral. The sectional modal forces as a result of the

incident, diffraction, and radiation potentials can be written, respectively, as

flj = iro pJ<PInt dC j = 2,3,4 (5.21)

c

fnj = iro pJ<Pnnt dC j = 2,3,4 (5.22)

c

fRj = iro PPkJ<Pknj* dC k,j = 2,3,4 (5.23)

c

where summation convention is used in Eq. 5.23. Substitution of the body boundary­

condition in Eq. 5.5 into Eq. 5.23 results in themodalsectional radiation wave force for

modej:

(5.24)

(5.25)

The ajk are the (complex) modal sectional hydrodynamic coefficients, and Jljk and A.jk

are the (real) modalsectional added massand damping coefficients, respectively.

The diffraction force given by Eq. 5.22 requires the calculation of the diffraction

wave potential. However, with the Haskind-Hanaoka relationship, the diffraction wave

force fnj can be obtained from the incident andradiation wave potentials:

(5.26)

The physical meaning of the sectional modal forces is very clear. Theyare exactlythe

sameas thedistributed forces acting along thebeam element, which is shown in Fig. 5.3.
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Figure 5.3 Distributed hydrodynamic forces on the slice of beam

It is assumed that the distributed fluid forces acting on each element are constant

Therefore, the surface distributed force vector for each element can be formed by

sectional incident and diffraction wave exciting forces as

0
fl2 + f0 2

{Fcl =
fn + fO)

(5.27)
fl4 + f0 4

0
0

The radiation wave forces are related to the structural motion. They can be used to

form the added mass and damping matrices. The added mass "density" can be formed by

the sectional added mass coefficients, for the port-starboard symmetric section, as
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o 0 0 0 00

oJ.122 0 J.124 0 0

= 00J.133 000

oJ.142 0 J.144 0 0
o 0 0 0 00
o 0 0 0 00

The damping "density" matrix can be formed by sectional damping coefficients as

o 0 0 0 00

01..22 0 ~OO

- = OOA33000[cel
01..42 0 1..44 00

o 0 0 0 00
o 0 0 0 00

(5.28)

(5.29)

Since the sway and heave (or mode 2 and mode 3) are orthogonal to each other,

J.123 = J.132 = 1..23 = 1..32 = O. The port-starboard symmetry results in

J.134 = J.143 = 1..34 = 1..43 = O.

The distributed surface force vector in Eq. 5.27 can be used to form the equivalent

nodal forces by using Eq.5.2. The added mass "density" and damping "density"

matrices can be used to form the element added-mass and damping matrices,

respectively, by using Eq. 5.1.

5.6 Hydrostatic restoring coefficients of a beam element

To use the consistent formulation in Section 5.5 to perform two-dimensional

hydroelasticity, corresponding hydrostatic restoring coefficients need to be formed.

When a structure floats in water, the hydrostatic restoring forces can be represented by a

Winkler-type foundation of vertical and rotational 'springs.' The Winkler foundation

(see for example, Cook et al. 1989) consists of uncoupled, distributed springs to form a
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continuous base. For each element, it is then possible to define a 6 x 6 'density' matrix

[kcl of distributed spring stiffnesses. Thisdensity matrix can be used in Eq, 5.1 in place

of the mass densitymatrix [m] to form theelementhydrostatic stiffness matrix.

Consider a unit strip of the beam and a corresponding cross section, shown in

Fig. 5.4. The local x-axis of the element passes through the center of gravity of the

structure, which is located a distance KG from the bottom (or keel) of thecrosssection,
-

denotedby K. The z axis is along thecenterline of the beam. The center of gravity of

the strip is located a distance KGs from the keel. The weight of the strip is Ws ' The

center of buoyancy of thestrip islocated a distance KBs and the buoyancy force is As.

z

Gs
-.............................................. ............................ Y

G .....................................
'iJ 'iJ
- -

Bs
KGs-r KG

K ~ s
.................. ...

b..

Figure5.4 Definition forhydrostatic stiffness of a beamelement

- -
Because no horizontal restoring forces exist, kfll = k C22 = 0, where the subscript 1

refers to the x-directionand 2 refers to the y-direction. A unit vertical displacement of

the strip results in a change in distributed hydrostatic force equal to pgb, where
-

b = b (x) is the widthof the water plane; that is,

-
km = pgb

For a non surface-piercing section, b=O, andtherefore, km = O.
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Figure 5.5 Restoringmoments

From Fig. 5.5a, a rotation a. about the x-axis of theunit strip results in the following

moments.The upwardbuoyancy force As results in a negative restoring moment, which

is equal to -As (KG - KBs) a.. The weight of the unit strip also results in a negative

restoring moment, which is equal to -Ws (KGs - KG) a.. The water plane area of the

unit strip has the contribution of pgS~~ to the rotational restoring moment as described

in Section 4.3, where S-- is the secondmoment of the water plane areaof the unit stripxx
- -

about the x-axis. The total restoring momentfor a unit rotation about the x-axis can be

written as

k = -A (KG-KB )-W (KG -KG) +pgS--£44 s s s s xx (5.31)

The first term in Eq. 5.31is typically negative.

From Fig.5.5b, a unit rotation about the y-axis results in a restoring moment

identical to the first two terms in Eq. 5.31. In addition, the water plane areaalso has the

contribution of pgS-- to rotational hydrostatic restoring force, where S-- is the second
yy yy

moment of the unit strip area about the y-axis. The total rotational hydrostatic restoring
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'density' for the unit rotation about the y-axis is

-
kess = -As (KG - KBs) -Ws (KGs- KG) + pgS--yy

(5.32)

If each element has a uniform symmetric cross section, the element hydrostatic

restoring 'density' matrix [kel can then be written as

00 0 0 0 0

00 0 0 0 0
-

- o0 kf33 0 0 0
[kel = - (5.33)

00 0 k C44 0 0
-

00 0 0 kess 0

00 0 0 o 0

where off-diagonal terms are equal to zero because of symmetry. Substitution of

Eq. 5.33 into Eq. 5.1, the consistent hydrostatic restoring matrix for each element can be

formed.

The above formulations are not only for the application of strip theory in

hydroelasticity. They are also applicable to any horizontal beam element, whether it is

partially submerged or totally submerged. When a horizontal beam-like structure is
-

submerged in water, the water plane area is equal to zero. Therefore, km , Sii' and Syy

are equal to zero. Only the rotational restoring coefficients may not be equal to zero,

which is the case for a submarine. The magnitudes of the rotational restoring forces can

be designed based on KG, KB, KG
6
and KBs'

These formulations of hydrostatic restoring forces may be useful for design of

slender ships, slender structures, submarines, horizontal pipelines, towing cables, and

horizontal beam elements in three-dimensional frames.
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5.7 Equations of motion in two-dimensional hydroelasticity

Following the procedure described in Section 3.2.2, the element added-mass and

damping matrices, and nodal forces can be transformed to the global element matrices

and forces; finally, the global structural added-mass and damping matrices, [Mel,

[Cel , and force vector, {Fe} can be assembled. The element hydrostatic stiffness can

be used to form the global hydrostatic stiffness matrix, [Kel. Together with the

structural mass, damping, and stiffness matrices, the resulting equations of motion are

{-co
2
([Msl + [Me]) - is» ([Csl + [CeD + ([Ksl + [Kcl)} {D} = {Fe} (5.34)

in which {D} is the (complex) vector of the physical nodal displacements. The fluid

terms, [Mel, [Cel, and {Fe}' are dependent on the wave frequency co, and hence,

they must be formed for each frequency.

The response of a stationary structure to regular waves (transfer functions) are

obtained through the solution of Eq. 5.34 for a range of wave frequencies. Since the

nodal displacements {D} have been solved directly from Eq.5.34, any sectional

structural internal force can be obtained from nodal displacements.
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CHAPTER 6

MORISON'S EQUATION METHOD

6.1 Overview

Morison's equation (Morison, et al., 1950), which includes the effects of fluid

acceleration and viscous form drag in tenus of empirically determined coefficients, has

been successfully used in the offshore industry to determine the motion response of

floating structures, especially during the preliminary design stage. Morison's equation

was introduced originally to calculate the wave exciting forces on vertical piles of

circular cross section. Since then, this equation has been used by many to obtain the

dynamic forces on fixed tubular structures, as well as the motion response of floating

structures, such as semi-submersibles. The earliest applications of Morison's equation,

in the frequency domain, to rigid semisubmersibles can be found in Burke (1969) and

Paulling (1970). This approach has been extended by Paulling and Tyagi (1991) to

multiple rigid modules flexibly connected to each other; however, it appears that

Morison's equation has not been used in conjunction with elastic body motion of very

large floating structures.

The main reason for introducing Morison's equation to analyze very large floating

structures is due to the large computational cost of using three-dimensional

hydroelasticity.Morison's equation avoids the calculation of velocity potentials. Since it

is not limited to a two-dimensional model, the method also overcomes the disadvantages

of using two-dimensional hydroelasticity. Of course, Morison's equation is only

applicable to structures which have tubular structural elements below the still-water

plane.
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In this chapter, the consistent hydrodynamic formulation for Morison's equation

based on the finite element method will be introduced. The formulation includes

hydrodynamic added-mass, damping matrices and wave exciting forces. The

formulation of hydrostatic restoring coefficients for the frame element is also discussed.

6.2 Three-dimensional frame model of a structure

Since hydrodynamic loading will be based on Morison's equation, the structure

below the still-water plane is modelled by frame fmite elements. The formulation of the

two-node frame element has been described in Section 3.1.3. The element local

coordinates x - y - z and global coordinates x-y-z has been shown in Fig. 3.1. Each

node has 6-displacement degrees of freedom, three translational and three rotational

displacements. The displacements within an element can be represented by the nodal

displacements through interpolation functions, which can be written as

(6.1)

in which {u} is the 6 x 1 displacement vector at a point of the element; the axial and

torsional displacement interpolation function matrix [Nat] and the transverse

displacement interpolation function [Nb] are given in Eq. II.2 and Eq. ITA in Appendix

II; and {d} is a 12 x 1 vector of nodal displacements which has been shown in Fig. 3.1.

The forces distributed along an element can be replaced by equivalent nodal forces.

The equivalent nodal forces acting at the two nodes of a frame element are given by

(6.2)

in which {R} is the 6 x 1 vector of distributed forces and moments, which are

calculated from Morison's equation, {r?"} is the corresponding 12 x 1 vector of
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equivalent nodal forces in the element local coordinate system, and L, is the element

length.

The structural mass and stiffness matrices, [Mal and [K] , for frame structures can

be formed by using the formulations in Eqs. IT.IO and IT.II in Appendix II for the

element mass and stiffness matrices, transforming to global coordinates, and then

assembling to the globalmatrices. If the frame elements below the still-waterplane do

not have a circular cross section. they will be modelled as circular cylinders for

hydrodynamic force calculations, such that the displaced volumes of the elements

remain the same.

6.3 Morison's equation

The two important hydrodynamic forces on a circular cylinder are the inertia and

form drag forces. The domination of these two forces depends on the ratio of the

diameterof the cylinder (D) to the wave length (L). When this ratio is relatively large,

the wave diffraction is relatively important Therefore, the inertia force will be

dominant. On the other hand, when this ratio is relatively small. the wave diffraction

may be negligible, flow will be separated and the form drag force becomes important.

The frictional drag force is generally too small to have an appreciable effect on the

overallforces.

When DILis relatively small such that the cylinderis regarded as a slendercylinder,

the drag force can not be neglected. Morison et al. (1950) suggested an empirical

relationship for a fixed vertical cylinder:

(6.3)
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where {Fcp } is the distributed normal pressure force vector; CD is the drag coefficient;

{urn} is the 3 x 1 water particle displacement vector, normal to the element; p is the

water density; CM (=l+Cm) is the inertia coefficient, where Cm is the added-mass

coefficient; and the superposed dot denotes the local time derivative. The first term on

the right hand side of Eq. 6.3 represents the drag forces, and thesecondterm represents

the inertia forces.

Because of the importance of cylindrical piles in offshore engineering and coastal

engineering, there have been many investigations on the proper coefficients after

Morison et al. proposed Eq. 6.3. When structural motions and deformations are

considered, the inertia and drag forces are dependent not only on the fluid motion but

also on the structural motion and deformation. Morison's equation can then be written,

in terms of the relative motion between the fluid and structure, as

{Fcp } = ~PCDDII {urn} - {Un} II ( {Urn} - {Un})

+ ~P1tD\CM {Urn} - (CM - 1) {Un})

(6.4)

where un is the 3 x 1 normal displacement vector of a point on theelement.

The drag term in Morison's equation contains the product of the unknown

displacement (velocity) vector, and therefore, is nonlinear. The usual practice is to

linearize this term. Among the several available linearization methods, the method of

equal energy dissipation per wave cycle, (Blagoveshchensky 1962) is chosen.The equal

energy dissipation can be expressed as

(6.5)
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where Eo is the energy dissipated by drag forces, while EOL is the energy dissipated by

the linearized drag forces. The nonlinear drag term can be written, in the linearized

form, as

(6.6)

where COL is called the equivalent linear drag coefficient. Mathematically, the

equivalent linear drag coefficient can be obtainedfrom the relationship in Eq. 6.5:

(6.7)

in which UCnOis the amplitude of the water particle velocity and unO is the amplitude of

velocity of a point on the element, in the normal direction. Note that COL is a

dimensional coefficient. Drag forces in Eq. 6.6 requires an iterative scheme for the

determination of the relative velocity on which the equivalent linear drag coefficient

depends. By substitution ofEq. 6.6 into 6.3, the linearized Morison's equation becomes

{Fep } = ~PCOLD ( {UCn} - {Un})

+ ~P1tD2 (CM {UCn} - (C M -1) {iin})

(6.8)

Eq. 6.8 can be decomposed into four parts. The first part involves the water particle

acceleration:

(6.9)

in which {Felf} is a 6 x I distributed normal force vector; the subscript I and f denote

the inertia and fluid, respectively; {urn} 6 is the 6 x I water particle acceleration vector,
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which is obtained by including 3 x I subvector {Uen} and three zero rotational

components.

The second part involves the water particle velocity:

(6.10)

in which {F cDC} is a 6 x I distributed normal force vector; the subscript D denotes

drag; {uen} 6 is 6 x I water particle velocity vector, which is obtained by including

3 x I subvector {uen} and three zero rotational components.

The third part involves the structural acceleration:

(6.11)

in which {FcIs} is a 6 x I distributed normal force vector; the subscript s denotes

structure; {un} 6 is 6 x I structural acceleration vector, which is obtained by including

3 x I subvector {Un} and three zero rotational components.

The last part involves the structural velocity:

(6.12)

in which {FcDs } is a 6 x 1 distributed force vector; {un} 6 is 6 x 1 structural velocity

vector, which is obtained by including 3 x 1 subvector {un} and three zero rotational

components.

From the above decomposition, the fluid forces from Eq. 6.9 contribute to the fluid

inertia forces; the fluid forces from Eq. 6.10 contribute to the fluid damping forces; the

fluid forces from Eq. 6.11 contribute to the fluid added mass; and the fluid forces from

Eq. 6.12 contribute to the fluid damping.

101

..- ----------------------------- ----------------



The water particle velocity and acceleration is calculated from the incident wave

potential <1>1

m _ iga. ik(xcosll+ ysinll) kz' -ialt _ '" -ialt
'VI - --e e e - 'l'Ie

(j)

6.4 Hydroelastic formulations for Morison's equation

(6.13)

Eqs.6.9, 6.10, 6.11 and 6.12 give the distributed normal forces acting on an

element The distributed forces are replaced by equivalent nodal loads in the finite

element model via Eq. 6.2. Because the distributed forces involve both the fluid and

structural motion, the result will be expressions for added mass, damping, and wave

exciting forces. Since no axial forces are involved in these fluid forces, only the

interpolation functions for transverse displacements are considered.

For each element, substitution in Eq. 6.2 of Eq. 6.9 results in the element nodal

inertia exciting forces, which are dependent on the water particle acceleration

{FI } = f [Nbl T {FeU} dx
L.

(6.14)

These wave exciting forces can be directly calculated from the water particle

acceleration at each point, if eM is given. The water particle acceleration can be

calculated from the incident wave potential. The wave exciting forces in Eq. 6.14 are the

Froude-Krylov forces.

Substitution in Eq. 6.2 of Eq. 6.10 results in the element nodal drag exciting forces,

which are dependent on the water particle velocity:

{FD } = f [Nbl T {FeDC} dx
L.
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Eq. 6.15 involves the equivalent linear drag coefficient COL' which is a function of the

unknown relative velocity. Hence, this exciting force must be calculated iteratively.

Substitution in Eq. 6.2 of Eq. 6.11 results in the element nodal inertial exciting

forces, which are dependent on the structural acceleration:

{FIs } = J[Nbl T{Fels } dx
L.

(6.16)

{FIs } depends on the structural displacements. Eq.6.11 can be used to form a

distributed inertia density matrix [m.}. Since only distributed normal forces are

considered, the only nonzero terms of the 6 x 6 matrix [mfl are
- - 2
mf22 = mf33 = 1tD P (CM - 1) /4. Therefore, Eq. 6.11 can be written as

Thus, Eq. 6.16 becomes

{Fl s } =j[NblT[mrl[NbldX{Q} = [mfl{il}
L.

where

[me] = f [Nb] T [me] [Nb] dx
L.

(6.17)

(6.18)

(6.19)

Similarly, the distributed forces in Eq. 6.12 can be written, either in force format, as

{Fos} = I [Nbl T {Feos}dx
L.

or in element damping-matrix format, as

where
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[eel = J[Nbl T [eel [Nbl dx
L.

(6.22)

-
in which [cel is 6 x 6 damping-density matrix whose only nonzero terms are

Ce22 = Cm = pCoLD/2.

An additional force exists due to the presence of the end planes of a structural

member exposed to direct wave action. The end planes of a structural member can be

taken as the element nodes. Therefore, the nodal Froude-Krylov forces can be calculated

by considering the wave pressure due to the incident wave (in Eq. 6.13) alone. For an

end of area A, the end plane force can be approximated by

(6.23)

where {n} is the 3 x 1 unit normal to the end plane in the local coordinate system. The

end plane force vector {Ffend} also can be extended to the 6 x 1 nodal vector {Feend}6

by adding rotational components, so it is consistent with the general definition.

The element added-mass matrix in Eq. 6.19 and damping matrix in Eq. 6.22 can be

transferred to the global coordinate system, and then assembled to form the structural

added-mass matrix [Mel, and damping matrix [Cel, following the procedures used for

structural matrices. The element local nodal forces {FI } and {Fo} can be transformed

to global coordinates and assembled to form the structural nodal forces {Fa} and

{Fro} , respectively. If one prefers to form the nodal drag-force-vector which involves

the structural velocity instead of forming the damping matrix, the structural nodal force
s .

{Fro} can be formed from Eq. 6.12 by the same procedure as for other nodal force

vectors.
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6.5 Hydrostatic restoring coefficientsfor frame element

It is convenient to use a direct solution method todeal with thehydroelastic problem

by usingMorison's equation. Therefore, it is necessary toform thehydrostatic restoring

matrix for three-dimensional frame elements. Only horizontal and vertical frame

elementsare discussed here.

Before considering the hydrostatic restoring coefficients for each element, consider

first the stability of the structure. For a semisubmersible structure, the water-plane area

of the members which pierce the still-water plane will resist any disturbance from its

equilibrium position, whichis the stabilizing component in hydrostatic restoring forces.

The structural weight may be another factor to keep the structure in its equilibrium

position in the case the center of weight is in the proper position. However, when the

center of the net buoyancy forces of the structure shifts from the equilibrium position,

the net buoyancy force will overturn thestructure. The net buoyancy forces become the

destabilizing component in hydrostatic restoring forces, leading to negative stiffness. If

a structure is stable, the contribution to the hydrostatic restoring forces from the

stabilizing component mustbe largerthanthat from the destabilizing component.

6.5.1 Stabilizing components

The stabilizing components which result from the water-plane areacan be treated as

in the following. For a horizontal beam which is semi-submerged in the water, the

formulations in Section 5.6canbe useddirectly toform the element hydrostatic stiffness

for each element. For a vertical beam which pierces the still-water surface, the

hydrostatic stiffness is modeled as follows. A node of the beam element is located at

each intersection of the still-water surface and the vertical beam, and discrete vertical
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and rotational springs are attached to these nodes. The vertical and rotational nodal

springstiffnesses are given, in localcoordinates, x - y - z, by

k -- = pgAfzz v
k -- = pgS --

fxx vxx
k -- = pgS --

fyy vyy
(6.24)

where Av is the water-plane area of the vertical element, S -- and S -- are the second
vxx vyy

- -
moments of water-plane area of the column about x and y axes, respectively. The

location of the springs at the still-water surface means that the effects of the change in

hydrostatic forces will be accurately represented in the structure above the still-water

surface, but not necessarily below. That is, the change in the distributed hydrostatic

pressures on the submerged members is not modelled directly. Note also that implicit in
- -

Eq. 6.24 is the assumption that x and y are the principal axesof the vertical beam cross-

section.

6.5.2 Destabilizingcomponents

The destabilizing components of the hydrostatic stiffness is caused by the change of

the positions of the center of buoyancy and the center of gravity. For a completely

submerged horizontal circularcylinder, with itscenter of buoyancy located at the center

of gravity and the center of gravity located on the local x:-axis, from Section 5.6, the

cylinder will not contribute to the hydrostatic restoring forces. However, to support the

part of the structure above the still-water plane, the buoyancy force on a submerged

horizontal cylinder is usually larger than the weight of the cylinder, and the center of

buoyancy of the cylinder is usually below the center of gravityof the structure. Clearly,

a shift in the center of buoyancy such that it is no longer vertically aligned with the

center of gravity tends to overturn, or destabilize, the structure and causes an

overturning moment on the structure. This overturning moment, which is caused bythe

buoyancy forces of the lower elements, is transmitted to the upper elements through
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compression in the vertical elements. Hence, this component of the hydrostatic stiffness

is incorporated in thestructural model by the geometric stiffness of the frame elements,

which was discussed in Section 3.2.3.

The geometric stiffness of a frame elementis givenbyEq. 3.31

[keg] = Jfa [N'] T [N'] dx
o

(6.25)

and fa is the axial force (tension positive) in the element and {N\} is the derivatives

with respect to x of the corresponding transverse displacement interpolation matrix. In

thiscase, fa is negative because thebuoyancy fromthelowerelements will compress the

vertical elements.

The hydrostatic pressure acting on the verticalelements and the pressure inside the

cylinder will affect the geometric stiffness. This effect can be included by using the

effective tension in Eq.6.25. The effective tension of a cylinder is well-known in riser

mechanics (seefor example, Spark, 1984), and is givenby

(6.26)

in which Po andPi are the external and internal pressures, respectively, and Ao and Ai

are the externaland internal areas of the elementcrosssections, respectively. In the case

no internal pressure exists, Pi = O. The axial forces within the element, for

simplification, may be assumed constant and they are determined based on the

hydrostatic buoyancy forces and the weightof the structure.

6.5.3 Net buoyancy-force contribution

Since a floating structure is semi-submerged, the buoyancy force for a completely

submerged horizontal element may be larger than its weight. The horizontal elements
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are connected to the other horizontal elements or vertical columns and this buoyancy

force causes the compression in the columns, which can be calculated from statics.

The element hydrostatic stiffness matrices are assembled, together with the nodal

spring stiffness, to form the global hydrostatic stiffness [Krl in the same manner as

described in assembling thestructural element matrix.

6.6 Solution methods

Theequations of motion in thefrequency domain can be formed

{-ro\[Msl + [Mr]) -iro([Csl + [Cr]) + ([Ksl + [Krl)} {O}

= {Ffl} + {Fro}
(6.27)

Because [Csl and {Fro} include the drag coefficient COL' which is dependent on the

unknown structural velocity, theequations of motion mustbe solved iteratively untilthe

value of COL for eachelement converges.

The relative error between successive iterations can be used to control the iteration

procedure. First, the relative velocity between the fluid and structure is used to form the
i-I

relative error (erre1) . Thestructural velocity at iteration i-I is {O} and at iteration i
i

is {O} . The fluid velocity during the iteration does not change within the assumption

of linearity (smallmotions). Therelative error (errel) is defmed as

II ({Ur} - {Oi}) - ({lir} _ {oi-l})11

II {u.} - {Oi} II
(6.28)

As a second measure, the relative error (e rs) of the structural displacements between

two adjacent iterations is defmed as

II {Oi}_ {Oi-l} II

II {D
i
} II
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Since the displacements {D} can be directly obtained by solving the equations of

motion, it is easy to use (e ra) for convergence. The convergence criterion is

(6.30)

(6.31)

where 8 is an inputtolerance.

At iteration i, the linearized equations of motion can be written as

{-ro
2([M

al + [Mel) -iro([Cal + [Cel i- I
) + ([Kal + [Ke]) } {D}i

= {FfM} + {Fro} i-I

in which [Cel i
-

I and {Fro} i-I are based on {O}i-I for i » 1. By defmition,

O~ = aro 11t for translational displacement components of {Do}.

This iteration strategy is stable and few iterations are required for convergence.

However, at each iteration, [Cel must be reformed and therefore Eq.6.31 must be

solved completely. Because the coefficient matrices in Eq.6.31 are complex, re­

factoring this matrix and thensolving Eq. 6.31 is timeconsuming.

A potentially attractive alternative to this scheme results if all the drag-dependent

terms arekept on the right-hand-side of Eq.6.31.That is

{-ro
2

([Mal + [Me]) - iro [Cal + ([Kal + [Ke])} {O} i

= {Fa} + {Fro} i-I + iro [cef- I {D} i-I

or, alternatively,

{-ro
2

([Mal + [Me]) - iro [Cal + ([Kal + [KeD} {O} i

= {Fa} + {Frou} i-I

(6.32)

(6.33)

in which the dragforces included in {Frou} i-I are basedon therelative velocity and not

the fluid velocity. The advantage to this approach is that the coefficient matrix of

Eq. 6.33 is constant for eachwave frequency; hence it need be formed andfactored only
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once for each frequency. Furthermore, if there is no or negligible structural damping,

Eq. 6.33 can be written as

2 i
{-(i) ([Msl + [Mel) + ([Ksl + [KeD} {D}

= {Fa} + {Fmu} i-I

(6.34)

Eq. 6.34 has a real coefficient matrix with a complex right-hand vector. The solution of

Eq. 6.34 is computationally less involved. In addition, the damoing matrix [Cel need

never be formed, and the effort to form {Fmu} is the same as required to form {Fm} .

The potential disadvantage of this approach is that a few more iterations will be required

for convergence. However, for an inertia dominated structure, any increase in the

number of iterations likely would be overcome by the previously mentioned advantages.

Both iterative strategies in Eqs. 6.31 and 6.34 have been implemented in the program

HYDRAS-MORISON.
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CHAPTER 7

A COMPOSITE 2-DI3-D METHOD FOR HYDROELASTICITY

7.1 Introduetion

Two-dimensional hydroelasticity, discussed in Chapter 5, uses strip theory to

determine the fluid forces and a nonuniform beam model to represent a floating

structure. Hence, this approach is numerically efficient especially for very large floating

structures. In this model, the 'cross-section' of the structure is assumed rigid (at least

below the still-waterplane) and this primitive structural model means that only 'beam'

deformational modesareconsidered. Therefore, it is limited to theevaluation ofmotions

and force resultantsalong thelongitudinal axisof the structure. In particular, themethod

cannot provide the more detailed results which are useful for engineering design. For

example, in the case of a twin-hull structure, such as a SWATH ship shown

schematically in Fig.7.1, no information about the 'prying' forces on the struts are

obtained from such an analysis. These forces are of course important in designing not

only the struts but alsothe connections between the deck and struts.

z

.....................- ". .-•..•..•....•..•.

Figure 7.1 Schematic view of a SWATH ship
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Three-dimensional hydroelasticity, discussed in Chapter4, avoids the limitations ofa

two-dimensional theory by using the three-dimensional potential theory to model the

fluid forces and a three-dimensional finite element model of the structure. It therefore

represents the mostgeneral and accurate theory to date, and information on the detailed

response is provided by such an analysis. However, it is computationally intensive,

primarily because of the three-dimensional fluid model. As such, it is probably most

useful as a final design tool.

n
(1) (2)

o
(3)

(6)

Figure 7.2 'Basic modes' of a cross-section

To avoid the limitations of a beam model and the computational requirements of a

three-dimensional fluid model, a hybrid approach for twin-hull structures has been

proposed in Wang (1991) and Wang et al. (1991). In this approach, the structure is

represented by a three-dimensional finite elementmodel, while the fluid forces are still

calculatedfrom strip theory. However, the 'basic modes' of deformation in Fig. 7.2are

used to represent the actual deformation. A very approximate procedure was used to

represent the three-dimensional [mite element deformational response by the 'basic

modes.'

Recently, Che et al. (1992a) presented preliminary results of an effort to develop the
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composite 2D/3D method so that the three-dimensional finite element results are used

directly in the hydroelastic analysis. In this approach, the mode shapes predicted by a

three-dimensional finite element model of the structure are used. Because two­

dimensional strip theory is used to calculate the fluid forces, the method retains a

fundamental assumption of strip theory; that is, flow at one cross-section is assumed to

be independent of flow at any other section. Hence, the method is primarily applicable to

slender structures. However, there is no other restriction on the structure, that is it can be

monohull or multi-hull.

In this chapter, the feasibility of using a composite 2D/3D approach for

hydroelasticity is discussed first Then, the formulation of this approach is given for

general structures and twin-hull symmetric structures. In addition, the three-dimensional

incident wave force and a revised two-dimensional normal are used to improve the

method. Finally, a more rigorous approach for representing the finite element response

by the basic modes is presented.

7.2 3-D model of structureand2-D model of fluid

Two-dimensional hydroelasticity has primarily two disadvantages. First, the structure

is limited to have only beam motion and deformation. Second, the motion and fluid

action in the direction of the longitudinal axis are not considered. The limitations come

from the two-dimensional structural and fluid models. To overcome these disadvantages,

the structural model or fluid model, or both structural and fluid models must be changed.

Changing only the fluid model cannot solve the first problem. In addition, using a three­

dimensional fluid model will tremendously increase the computational effort.

The two-dimensional Green function method requires the solution of Eq. 5.17 to

obtain the source densities. Note that in this equation, the body-boundary conditions
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affect only the right-hand side. Therefore, application of Eq. 5.17 to deformable cross­

section affects only the righthand side.

r ··························1

(a) Rigidcross-section (b)Flexible cross-section

Figure 7.3 Cross-sectional motion

Fig.7.3 showspossible crosssectional motion for a rigidcross-section anda flexible

cross-section. The rigid cross-sectional motion is considered in traditional strip theory

and two-dimensional hydroelasticity. The flexible cross-sectional motion is considered

in this approach. The basic difference between the composite 2D/3D approach and

three-dimensional hydroelasticity is that, in the former, two-dimensional flow is

assumed.

The three-dimensional structural model described in Chapter 4 is used here to

describe the structural motions and deformations. Mode superposition is used for the

three-dimensional structural dynamic analysis. The first q 'dry' modes are assumed to

be sufficient to represent the structural response. The actual nodal displacements {D}

can be expressed in termsof themode shapes [7] as

{D} = [7] {p} (7.1)

where {p} is the q x 1 vector of principle coordinates. The modal equations of motion

can be written as
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[ 2 * . * *J * *-CO [Ms ] -ICO [C s ] + [Ks ] {p} = {Ff } + {Fr } (7.2)

where [Ms*] ' [Cs*] ' and [Ks*] are structural modal mass, damping, and stiffness

matrices, respectively; and {Ff* } and {Fr* } are modal hydrodynamic and hydrostatic

forces, respectively.

The two-dimensional fluid model described in Chapter 5 is used to solve for the

radiation velocity potentials. The coupling of the three-dimensional structural model and

the two-dimensional fluid model and some special modifications will be described in the

following sections.

7.3 Formulations for composite 2-DI3-D method

The generalized wave forces acting on the whole structure can be obtained, as

described before, by integrating the distributed force over the mean wetted-surface S:

T

{F*} = icopII<I>[",] {n}dS
s

(7.3)

where co is the wave frequency; p is the water density; <I> is the velocity potential; the

3 x q matrix lvl contains the modal translational displacements at a point (x,y,z) on S,

which can be obtained from the global mode shapes, ['P]; and {n} is the normal vector

at a point (x,y,z). The term [",] T {n} is defmed as the generalized normal vector,

*{n }.

In infmitely deep water, the boundary-value problem of the jth radiation potentialljlj

has been given in Eqs. 5.3 through 5.6, they are repeated for convenience:

( f/ 8
2J-2+-2 cPj = 0

8y 8z
in D
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acp. . *
_J = -lCDn.an J

lim -?<cI>.) = 0
z-+-co az J

lim [apj + ikc\>j] = 0
y-+±co ay

(7.6)

(7.7)

where D is the two-dimensional fluid domain; k = (j)2/g is the wave number in deep

water; C, is the immersed contour of the cross-section; a/an is the derivative in the

normal direction; and {nt} is the generalized normal onthe wetted surface, and j=1 to

q. It should be emphasized that the normal vector {n} in Eq.7.6 may be determined

from either the normal to the cross section, Cb, as is typical in strip theory, or directly

from the three-dimensional normal vector obtained from a three-dimensional structural

model.

It is convenient to write Eq. 7.3 as an integration along the structural length, L, and

the contourof the cross-sectionof the wettedsurface, Cb:

(7.8)

Consistentwith strip theory, the integral on C, canbe interpreted as the modalsectional

fluid forces, denoted {f}. Eq.7.8 is similar to the formulation in strip theory for the

hydrodynamic waveforces with zero forward speed (Salvesen et al., 1970). However, in

the presentformulation, the three-dimensional structural mode shapes are used, whereas

in traditional two-dimensional hydrodynamics, only sway, heave, and roll of the 'rigid'

cross-section are used.

Decomposing the total velocity potential ep into incident, diffraction, and radiation

potentialsand substitutionof them into Eq. 7.8 results in the sectional modal forces as a

result of the incident, diffraction, and radiation potentials:
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fIj = iropJ4>Int dC
C

fDj = iro pJ 4>ont dC
C

fRj = iro PP1J4>knj* dC
C

(7.9)

(7.10)

(7.11)

where summation convention is used in Eq.7.11. The total jth sectional modal

hydrodynamic forces are

(7.12)

The force from the incident wave is determined from the incident wave potential,

which for deep water is

4> iga ikxcosl3 ikysinl3 kz'
I = --;-e e e

where a is the wave amplitude. WithEq. 7.13, Eq. 7.9 becomes

f ikxCOSI3J * ikysinl3 "uc
Ij = pgue nj e e

c,

(7.13)

(7.14)

whichcan be termedthe Froude-Krylov sectionalmodalforce.

The diffraction force requires additional consideration. With Eqs. 7.6 and 7.10, the

modal sectionaldiffraction wave force can be written as

(7.15)

By using the well-known Haskind-Hanaoka relationship, the diffraction wave force fDj

can be obtainedfrom the incidentand radiationwavepotentials:
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(7.16)

From Eq. 7.13, one has

so that themodal sectional diffraction force can be written as

ikxCOSllj ikysinll kz'
fOj = -a.ID pe (in, - nysin~) e e ~jdC

Cb

(7.17)

(7.18)

The modal sectional radiation wave force for mode j can be obtained by substitution

ofEq. 7.6into 7.11:

(7.19)

where

(7.20)

The ajlr. are the modal sectional hydrodynamic coefficients, J.ljlr. and Ajlr. are the modal

sectional added-mass and damping coefficients, respectively.

It should beemphasized, again, that j and k can be larger than 6 in Eqs.7.14, 7.18,

and 7.20. That is, these equations for the generalizedincident, diffraction, and radiation

waveforces are valid for the rigid-body modes as well as the deformational modes.
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7.4 Twin-hull symmetric structure

For a twin-hull structure, which is symmetric about its center plane, the contour

integration in the above equations can be simplified (Wang et al., 1991; Che et al.,

1992b). For port to starboard symmetric modes

* *nj (x, y, z) = nj (x, -y, z)

cl>j (x, y, z) = cl>j (x, -y, z)

and for port to starboard anti-symmetric modes

* *nj (x, y, z) = -nj (x, -y, z)

cl>j (x, y, z) = -cI>j (x, -y, z)

(7.21)

(7.22)

(7.23)

(7.24)

With these relations, the integrations in Eqs. 7.14, 7.18 and 7.20 around the sectional

contour need only be carried out along a single hull, for example, the port hull. If R is

used to denote the cross-sectional wetted surface of the port hull, the modal sectional

incident and diffraction wave forces in Eqs.7.14 and 7.18 can be writtenfor symmetric

modes as

jkxC08~J * . kz'fIj = pgcee 2nj cos (kysmJ3) e dR
R

fOj = -am peikXC08~J2 [inzcos (kysinJ3) -inysin J3 sin (ky sinJ3) ] e
kZ

' cl>jdR
R

and for anti-symmetric modesas

f ikXC08~J2 *. . (k . fl) kz'dRIj = pgue nj Ism ysm .... e
R

fOj = -am pejkXC08~J2 [-nzsin (ky sinJ3) -nysin J3 cos (kysinJ3)] ekz
' cl>jdR

R
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The sectional hydrodynamic coefficients ajk in Eq. 7.20 can be written as

(7.29)

when both cPk and cPj correspond to either symmetric or antisymmetric modes. The

corresponding terms in Eq.7.29 for coupling of symmetric and antisymmetric modes

are zero.

The structural modal hydrodynamic forces are obtained by integrating the sectional

modal hydrodynamic forces along the structural length:

where the components of {F/} are given by

FRt = PkJajkdx = (00 2Mrjk+ ioo CrjJ Pk
L

(7.30)

(7.31)

(7.32)

(7.33)

In the above equations, {FI* } is the vector of modal incident wave forces; {Fo* } is

the vector of modal diffraction wave forces; {FR* } is the vector of modal radiation

wave forces; and Mrjk and erjk are modal added-mass and damping, respectively.

7.S Consistent two-dimensional normal

A two-dimensional fluid model is used in the composite 2-D/3-D approach for

hydroelasticity. Therefore, Frank's method is applied on each cross-section. The normal

vector {n}, in traditional strip theory, is determined from the normal to the cross section
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c. Each cross section is represented by two-dimensional line elements along the contour

line.

1

4
A (xA, YA' zA)

3 {n} 3

Figure 7.4 Two-dimensional normal vector {n} 2 and {n.} 20

The body boundary condition for the radiation potential problem involves the

component of normal velocity in the y-z plane. Therefore, from Fig. 7.4, the two­

dimensional normal vector should be obtained by assuming nx = 0 in the three­

dimensional normal {n} 3. This "consistent two-dimensional normal vector" is denoted

by {n3 } 20. The traditional normal vector {n} 2 is not equal to the consistent two­

dimensional normal {n3 } 20 except when the normal to the body surface is normal to

the x-axis.

The difference between the consistent two-dimensional normal {n3 } 20 and the

normal {n} 2 which is used in traditional strip theory may result in differences in

hydrodynamic force calculations. Since the two-dimensional normal {n} 2 is always

larger than or equal to the consistent two-dimensional normal {n.} 20' it may be one of

the reasons that the quantities in strip theory are always larger than or equal to those in

three-dimensional potential theory.

A three-dimensional structural model is used in the composite 2-D/3-D approach.

Therefore, it is possible to calculate the consistent two-dimensional normal {n3 } 20 for

this approach. For example, if the structural surface below the still-water plane is
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modeled by quadrilateral thin shell elements, one possible way to calculate the

consistent normal is as follows.

The four node three-dimensional shell element can be used to calculate the three­

dimensional normal vector {n} 3 in such a way that the center of the two neighbor

nodes A (xA, YA' z.J and B (xB, YB' ZB) of a two-dimensional panel is located at the

same position as the center c of the three-dimensional element. The three-dimensional

normal vector {n} 3 can be obtained as described in Section 3.4.1. After the three­

dimensional normal vector {n} 3 is obtained, set the component n, = O. Thus, the

consistent two-dimensional normal vector is

{n.} 2D = {O, ny, n.} (7.34)

The consistent two-dimensional normal vector can then be used to form the

generalized normal vector, {n*} :

{n*} = ['V] T {n3 } 2D (7.35)

The generalized normal vector {n*} can be used in the equations in Sections 7.3 and

7.4. The implementation of this consistent normal vector concept is left for future work.

7.6 Modification of two-dimensional fluid forces

It is well known that two-dimensional strip theory and two-dimensional

hydroelasticity has some serious limitations. For example, pitch response cannot be

predicted very well. The incorrect pitch response results from neglecting the fluid action

in the longitudinal direction. Some work has been done to improve two-dimensional

strip theory by considering longitudinal fluid forces. For example, Riggs and Ertekin

(1993) have proposed augmenting the forces from strip theory by surge forces calculated

from Morison's equation.
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The same idea can be applied in the composite 2-D/3-D approach to improve the

motion responses. Two components of the fluid forces may be calculated by a three­

dimensional model without much more computational effort. They are the three­

dimensional hydrostatic restoring forces and the incident wave forces.

Hydrostatic restoring coefficients calculated by a three-dimensional model for the

rigid body motion are the same as those by the two-dimensional model because in both

cases, the structure is treated as a rigid body. However, three-dimensional hydrostatic

restoring coefficients for flexible motions of a structure are different from those obtained

by traditional two-dimensional hydroelasticity. The generalized three-dimensional

hydrostatic restoring coefficients have been discussed in Section 4.3; they can be

calculated by

Kfjk* = pgIInt\j/wkdS
Sb

j,k = 1,2, ... ,q (7.36)

in which nt is the three-dimensional generalized normal at the point (x,y,z) on the mean

wetted-surface corresponding to the jth mode shape, and \j/wk is the vertical

displacement at the point (x,y,z) on the mean-wetted surface in the kth mode shape.

The incident wave potential which was given in Eq. 7.13 can be used to calculate the

three-dimensional incident wave force. Unlike Eq. 7.14, the integral will be carried out

by using three-dimensional generalized normal. The incident wave force for the jth

mode shape can be written as

f II * ikxcosP ikysinP b'dS
Ij = pga. n. e e e

J
Sb

(7.37)

Since two-dimensional potential theory is used to calculate the radiation potentials,

the horizontal motion in the x-direction cannot be predicted by the composite 2-D/3-D

approach. The objective in introducing the three-dimensional incident wave force here is
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to include the component of the pitch moment which results from the incident wave

forces in the x-direction.

7.7 Simplified method using ''basic modes"

The integrations in Eqs. 29 must be carried out numerically. Because the mode

shapes {\jI} vary, in general, along the x-axis, the modal sectional hydrodynamic

coefficients andforces mustbe calculated for each cross-section at which the integrand

is evaluated, evenif the geometry of the cross section doesnotchange along thelength.

Toreduce further thecomputations, Wang (1991) proposed for twin-hull structures to

approximate the cross-sectional deformation in the mode shapes by a small number of

'basic modes,' which include the threerigid modes (modes 1-3 in Fig.7.2)usedin two­

dimensional hydrodynamics, as wellas three additional deformational modes (modes 4­

6 in Fig.7.2). The basic modes assume that the deformation can be expressed as

extensional deformation of thedeck(mode 4) and rigidrotation of eachhullaboutsome

point, typically at the connection of the strut and deck (modes 5 and 6). With this

simplification, the same basic modes can be used for all cross-sections, andthe velocity

potentials for the basic modes need onlybe determined once for geometrically identical

sections. These can then be used to approximate the forces and hydrodynamic

coefficients for the actual modes. A more rigorous approach to approximate the actual

mode shapes with thebasic modes has been used for the present work. Thisapproach is

developed below.

From Fig.7.2, a 3 x 6 matrix, [0], which contains the translational displacements

associated with the basic modes at any point (y,z) on the mean wetted-surface at the

cross-section with longitudinal coordinate x can be written as
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[00 0 00 0 ]
[D] = 1 0 - (z - zG) 1 0 - (Z-Zp:) on port hull (7.38)

01 (Y-YG) 01 (Y-YP )

[00 0 00 0 ]
[D] = 1 0 - (z - zG) -1 0 (z - Zs*! on starboard hull (7.39)

01 (Y-YG) 0 -1 -(Y-Ys )

where YG and zG are the Yand Z coordinates of the centerof gravity of thestructure; and

Yp* , zp* and Ys* , zs* are the coordinates of the centerof rotation between thedeck and

the port andstarboard hulls, respectively.

Only the structural motion below the still-water line affects the fluid motion, and

therefore, the basic modes are only used to represent the motion of the mean wetted­

surface. For a given cross-section, suppose there are m, nodes in the structural model

below or at the still-water line. If there are no nodes at the still-water line, m, will also

include the nodes which are just above the still-water line. Then the modal translational

displacements of the ma nodes can be used to form an na x q matrix ['IIa] , with

n, = m, x 3. The modal displacements can be approximated by thebasicmodes as

(7.40)

in which [Da] is an naX 6 matrixformed by the basic modeshape matrices for the ma

nodes; and [Sa] is a 6 x q matrix. Using the method of least squares, [Sa] for each

cross-section can be obtained by solving the following equation:

(7.41)

[Da] T [Da] onlyneeds to be factored oncefor each different cross-section.
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The use of the basic modes introduces a significant simplification of the

deformational motion. To estimate how well Eq.7.40 is satisfied, the following

indicators are defined:

j II (['I's] )jll
y =

II ([Os] [Ss] )jll

II (['I's] T)j ([Os] [Ss])jll
cosei = ,.,...:.:.-.---::--:-:---_--.:.--...:..:...".

II (['I's] )ill II ([Os] [Ss] )ill

(7.42)

(7.43)

in which ([ ]) i is the jth column of the matrix ([ ]) and II-II represents the L 2

norm. Here yj is the ratio of the length of the actual displacements ([ 'l's] ) i to the length

of the approximation ([Os] [Ss])i. Accordingly, ei is the angle between these two

vectors. For an exact representation, I = 1 and ei = O.

If {l;} is used to represent the principal coordinates for basic modes, the two

principal coordinates {l;} and {p} have the following approximate relationship:

{l;} ~ [Ss] {p} (7.44)

The generalized normal vector {n,"} for the basic modes can be found, similar to

*{n }, as

* T{n, } = [D] {n} (7.45)

which does not vary as a function of x for geometrically identical cross-sections.

Therefore, the radiation potentials only need to be solved once for similar cross-sections.

The generalized normal vector {nb* } can be written as
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n2

n3

{nb*} - (Z - ZO) n2 + (y - YO) n3=
n2

n3

* *- (Z - Zp ) n2 + (y - yp )

n2

n3

* - (Z - ZO) n, + (y - YO) n3{n, } =
-n2

-n3

* *(Z-Zs )n2 - (Y-Ys )

on port hull

on starboard hull

(7.46)

(7.47)

By substituting Eq. 7.40 into Eq. 7.3, the modal wave forces for basic modes, noting

that the matrix [Sa] is a function ofx only, can be written as

{p*} = impJ[Ss]T{J [(f)] [D]T{n} dC} dx
L Cb

= J[Sa] T{impJ[(f)] {nb*} dC} dx
L Cb

(7.48)

which has the same terms as Eq. 7.8 except for [Ss]T. Note that the quantity in braces in

Eq. 7.48 is the sectional force which can be decomposed into incident, diffraction, and

radiation terms as in Eqs. 7.9,7.10 and 7.11. Eq. 7.48 illustrates that the 2-D potential

problem can be solved only for the basic modes for each cross-section to obtain the

sectional modal forces. Then, the generalized wave forces for principal modes in terms

of the forces for the basic modes become

(7.49)
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* I T{Fo } = [S.] {fo} dx
L

(7.50)

FRt = (J[s.]Tajkdx)l;k = (J[s.]Tajk[S.]dX)Pk = (co2Mrjk+icoCfjk)Pk (7.51)
L L

in which it is understood that {fI } , {fo} ' and ajk are the result of the term in braces in

Eq.7.48.

The generalized hydrodynamic forces from either Eqs.7.30, 7.31, and 7.32 or

Eqs.7.49, 7.50, and 7.51 can be substituted into Eq. 7.2 to obtain

[ 2 * * . * * * *J-co ([M.] + [Mr]) -ICO([C.] + [Cr]) + ([K.] + [Kr]) {p}

* *= {FI } + {Fo}
(7.52)

in which {FI*} and {Fo*} have the same defmitions as before; Mrjk and Crjk are the

elements of the modal added-mass and damping matrices, [M r*] and [Cr*] ,

respectively; and {Fr* } is written as - [Kr*] {p}, where [Kr*] is the hydrostatic

restoring stiffness which results from the hydrostatic pressure.

After solving Eq. 7.52 for the principle coordinates, the nodal displacements {D} can

be calculated with Eq. 7.1, and internal forces or stresses can be calculated with nodal

displacements {D}.

The computer programs have been implemented based on both methods described in

Sections 7.3 and 7.7. They are named HYDRAS-COMPOSITE and HYDRAS­

BASIC, respectively (Che, 1993).
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CHAPTER 8

STRUCTURAL MODELS

Three models of floating structures are developed primarily to apply and verify the

approaches described in Chapter 5 to 7 for determining hydroelastic response of floating

structures. They are: a 100 m x 100 m module, which is used to 'assemble' a multi­

module VLFS; an idealized twin-hull structure; and a SWATH ship.

8.1 VLFS module

The single VLFS module used here was designed by Winkler et al. (1990). The

overall geometry of a single module, which is their 'revised design No.2', is shown in

Fig. 8.1. The cross-bracings prevent deformation in the transverse plane (prying

deformations). However, since the bracings have minimal influence on the

hydrodynamic loading to which the system is subject, they are ignored in the present

study. Such a simplification reduces the single module to a 4-column, 2-pontoon

structure. The principal characteristics of a single module is given in Table 8.1. Further

details on the module design may be found in Winkler et al. (1990).

This single module can function individually. Therefore the dynamic behavior is one

important consideration (among many others) for the design. Therefore, a structural

dynamic analysis was performed by Winkler et al. (1990) for the single module. In

present study, the module was modeled as a frame structure. That is, the pontoons and

columns were modeled by frame elements and the deck was represented by a grid of

frame elements, as shown in Fig. 8.2. The section properties of the pontoon, column,

and deck are shown in Table 8.2, in which 1--,1--, and J are the mass moment of inertia
yy zz

- -
about the local y-axis and z-axis, and the torsional constant of the section, respectively.

In addition, the hydrodynamic forces acting on the module will be calculated by
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Morison's equation. Therefore, any non-tubular member of the structure below the still­

water plane is approximately modeled as a circular cylinder based on the equivalent

underwater volume, which is shown in Fig. 8.3.

The other option for single module design is to consider various arrangements of

modules to construct multi-module VLFSs. In this case, the single module must function

both individually and as part of a VLFS with respect to floating stability, strength, and

motions induced by environmental forces. Functional arrangements for airfield, OI'EC

power plant, and offshore mining facilities can be made by connecting single modules.

Fig. 8.4 shows a multi-module VLFS connected in tandem.

An important aspect for multi-module VLFS design is the connections. It is difficult

enough to connect together two relatively light floating structures in a calm sea. To

connect two VLFS modules will increase the difficulty many times. The objective of the

research here is not to explore what the physical connectors should be and how the

modules are connected. Rather, it is limited to determining the response for hinged,

elastic, and rigid connections. These results can be used for further preliminary design of

the VLFS connections.
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(a) Forward elevation of the single module
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(b) Starboard elevation of the single module
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Figure 8.1 Configuration of a singlemodule (Winkler et aI. 1990)
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Table 8.1 Principle characteristics of a single module

Description

Displacement (mass) (kg)
2

Water-plane area A (m)

Length (m)

Width (m)

Operating draft (m)

Height(m)

Column Width x Depth x Length (m)

Pontoon Width x Height x Length (m)

KG(m)

KB(m)

GML (m)

GMT (m)

Mass moment of inertia Ixx (kg. m
2
)

Mass moment of inertia Iyy (kg. m
2

)

Mass moment of inertia Izz (kg. m2)

Value
3

46,440 x 10

816

100

100

25

59

12 x 17 x 35

18 x 10 x 96

30.67

8.25

5.01

4.13

7.19 x 10
10

6.49 X 10
10

9.53 X 10
10

Table 8.2 Section structural properties

Modulus of Elasticity: 2.07 x 1011 (N/m
2

)
10 2

Shear Modulus: 8.0 x 10 (N/m)
4 4

J (m")
-

Member Steel area 1-- (m) 1-- (m) m (kg/m)
(m

2
)

yy zz

Pontoon 2.8 40 90 60 57290

Column 2.21 70 40 70 39230

Deck

Longitudinal 0.80 25 25 50 23400

Transverse 0.25 20 40 50 23400
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Figure 8.2 Frame model ofa single module
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Figure 8.3 Idealization of a single module bytubular members (Ertekin et al. 1991)

Figure 8.4 Schematic of a five module VLFS
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8.2 Simple twin-hullstructure

A simple, idealized, very long and slender twin-hull floating structure, shown in

Fig. 8.5, has been designed to verify the composite 2-D/3-D hydroelasticity theory. A

uniform cross-section, as shown in Fig. 8.6, was assumed. Additional properties of this

simple twin-hull floating structure are given in Table 8.3. It should be noted that this

simple structure is not meant to represent a realistic structure and neither is the

calculated response realistic. Rather, the structure is simple and highly idealized, and it

has been developed to demonstrate application of the theory. The other purpose of using

this simple structure is to validate the new methods and corresponding computer

implementation. It is difficult to find a computational model with sufficient geometric

and property description to validate and compare the results of newly developed

methods. This simple structural model also can be used for comparison in future work.

To simplify the analysis and verification, the deck and struts are assumed to be rigid

with the only flexibility represented by rotational springs joining the deck and struts.

The cross-section of the structure model, therefore, is represented by the line diagram.

The exact, dry modes for this simple structure are readily obtained by hand calculation.

If the structure is assumed fixed at the center of gravity, there are only two modes, which

involve symmetric (mode 7) and antisymmetric (mode 8) 'swinging' of the struts. The

natural frequencies of these two modes, which can be calculated based on the rotational

stiffness of the strut-deck connection, are 0.6 rad/sec.

When the structure is freely-floating, there are eight displacement degrees of

freedom. The first six dry modes are the usual rigid body motions. Mode 7 is identical to

mode 7 for the fixed structure, with a corresponding dry natural frequency of 0.6 rad.sec.

Mode 8 is a combination of mode 8 for the fixed structure and sway and roll, and it has a

natural frequency of 1.16 rad/sec.
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Figure 8.5 Schematic view of a twin-hull structure
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Figure 8.6 Geometry of cross-section of a simple twin-hull structure
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Table 8.3 Principlecharacteristics of simple twin-hull structure

Description
Length (m)

Displaced volume (m
3

)

Distance betweenstruts (m)

Draft(m)

Strut
Dimensions

Thickness x Height x Length (m)

Mass density kg/m3

Rotational stiffness of
strut-deckconnection N· m/m

Roll mass moment of inertia kg . m
2

Heave restoring stiffness MN/ m
Roll restoring stiffness MN· m

8.3 SWATH model

Value

300

4800

20
8

1 x 10 x 300 m

300

4
3.6 x 10

8
1.31 x 10

6.03
314

The Small Waterplane Area 1\vin Hull (SWATH) ship concept began to be

recognized in the 1970s and the technology has since developed rapidly (Kalloi et al.,

1976; Curphey et al., 1977).The majority of the SWATH's buoyancy comes from hulls

submerged well below the sea surface and hence the hulls are away from the location of

the largest wave excitation forces. Therefore, SWATH ships have superior seakeeping

characteristics. Anotheradvantage is thatthey have a minimum speed degradation when

operated in the seas. However, because very few SWATH vessels exist, there is still

insufficient information available on the motion, loading, and structural responses of

SWATH ships. For example, one of the structural strength problems is transverse wave
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'prying moment' on struts. Hence, a SWATH model is developedhere to study these.

Fig. 8.7 schematically shows the geometry of the SWATH model. The principle

characteristicsof the SWATH modelcan be foundin Table8.4.The resonantfrequencies

for rigid body motion of the SWATH ship in waterare estimated, by assuming constant

added mass, as 0.62 rad/sec, 0.42 rad/sec, and 0.32 rad/sec for heave, roll, and pitch

motion, respectively.

Fig. 8.8 shows the finite element model, developed with the general purpose finite

element code COSMOSIM, which is used for structural analysis. The structural model

consists entirely of shell elements. The properties of the shell elements are shown in

Table 8.5. For dynamic analysis, the mass of all nonstructural components has been

incorporated in the mass densities of the shell elements. The inside girder elements are

assumed massless to simplify the problem. Because of port-starboard (x-z plane)

symmetry, only one-half of the structure was modeled, using a total of 922 elements,

many of which are used for inside stiffeners. To simplify the coupling of the structural

model with the fluid models, the fore-aft symmetry wasnot exploited. The structural dry

modes are calculatedby using the finite elementcodeCOSMOSIM and the first 14 'dry'

mode shapes are considered (q=14). The first 6 modes involve rigid body motion, while

the remaining 8 consist of 4 symmetric and 4 antisymmetric deformationalmodes. The

deformational modes and. corresponding natural frequencies are shown in Fig. 8.9. To

increase the responses in the deformation modesand thereby more readily compare the

results of the compositemethod and three-dimensional hydroelasticity, the structure has

been designed such that these frequencies are lower than they would be for a practical

design.This is why the thickness of the insidestiffener is only 0.0015 m.
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Figure 8.7 Geometry of SWATH ship, (a) side view, (b) top view
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Table8.4 Principle characteristics of SWATH ship

Parameter Value
Length (m)

Displaced Volume(m
3

)

Distance betweenstruts (m)
Draft(m)
KB(m)

KG(m)

Height of the deck above still water line (m)

GMT (m)

GML (m)

Roll mass momentof inertia kg . m
2

Pitch mass momentof inertia kg . m
2

Roll restoringstiffness N . m

80m
3

3356.1 m

26m

8m
3.192m

9.5m

8m

4.79m

10.37m
8

2.303 x 10
9

1.529x 10
9

1.454x 10

Figure 8.8 Finite element modelof the SWATH ship
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Mode=8 (I) =4.62rad/sec

Mode=ll (I) =9.40rad/sec

Mode=9 (I) =5.80rad/sec

Mode=14 (I) =16.33 rad/5eI:.

Mode=7 (I) = 3.84 rad/5eI:.

Symmetric modes

Mode=10 (I) =8.29rad/sec

Mode=12 (I) =9.55 rad/sec Mode=13 (I) =11.35 rad/SIX

Antisymmetric modes

Figure 8.9 Flexible mode shapesof SWATH ship
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Table 8.5 Section structural properties

Modulus of Elasticity: 2.0 x I0
11N/m2

,

10 2
Shear Modulus: 8.0 x 10 N/m

Member Thickness Density

(m) kg/m
3

Element for pontoon 0.0025
s

2.557 x 10

Element for strut 0.0025
4

5.288 x 10

Element for deck 0.4
3

2.380 x 10

Element for stiffener 0.0015 0
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CHAPTER 9

NUMERICAL RESULTS AND DISCUSSIONS

9.1 Application of two-dimensional hydroelasticity

The approach for two-dimensional hydroelasticity described in Section 5.3 has been

used to determine the motions of the single module described in Section 8.1. The

geometry of the 4-column, 2-pontoon single module has been shown in Fig. 8.1, and the

module properties have been given in Table 8.1. For the two-dimensional hydroelastic

analysis, the structure must be modeled as a beam. To determine the equivalent beam

properties of the structure, a detailed 3-D frame model of a single module was

developed. This model, together with 'engineering judgement,' was used to determine

the beam stiffness and mass properties shown in Table 9.1 for the three cross sections

considered: pontoon, column-pontoon, and deck overhang. In Table 9.1, Iyy and Izz are

the second moment of the cross-section area about the y-axis and the z-axis,

respectively; J is the torsional constant of the cross-section; Asy and Asz are the shear

area about the y-axis and the z-axis, respectively; mii are the mass densities, for i=I,2,3,

and mass moment of inertia densities, for i=4,5,6, per unit length. The latter results from

the fact that the pontoons are 96 m long, while the deck is 100 m long. Structural

damping is assumed to be zero, and, for simplicity, it is assumed that the centers of mass

and shear for each section are located on the x axis.

The hydrodynamic coefficients and wave exciting forces were determined based on a

column-pontoon section and a pontoon section (Fig. 9.1). Twenty sections are used for

two-dimensional hydrodynamic and wave exciting force calculations. The bracing was

ignored in these calculations.

The response of a single module to regular head (13 = 180°), quartering

144



(13 = 135°), and beam seas (13 = 90°) has been determined for a range of wave

frequencies between 0.2 and 1.25 rad/s. The results are compared in Fig. 9.5 with the

results obtained from 3-D potential theory (Wang et al., 1991). As can be seen, the

results of the 2-D analysis agree favorably with the 3-D results, especially for heave,

sway,and roll. The pitchresponse is clearly less accurate. The discrepancy is likely due

to ignoring the hydrodynamic forces in the x direction on the pontoon ends and the

column face in strip theory. This error presumably should be less for a multi-module,

'linear' structure. Similar difficulties in using strip theory for semisubmersibles were

reported by Kim andChou(1973) andCarlsen and Mathisen (1980).

ntoon

xr \l
- -

column column

-J?ontoonl pontoon Icolum~-po
ction section

column
se

----LI. pontoon section .1-%

Figure 9.1 Two sections of a single VLFS

Two-dimensional hydroelasticity is also applied to a five module VLFS which

consists of five identical single modules. Two models for the module connectors were

investigated: a "hinge" connector, for which the three relative rotations between

modules are unrestrained, and a "rigid"connector, which ensures both displacement and

rotational continuity at the module interfaces. Practical connector designs would fall

between these twoextremes.

The response of the five module VLFS to regular head and quartering seashas been
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determined for a range of wave frequencies between 0.2 and 1.25 rad/s. The absolute

value of the vertical displacements per unit wave amplitude is shown in Fig.9.6 as a

function of position and wave frequency. For the hinge connector, the presence of the

individual modules is quite clear. For the rigid connector, however, the individual

modules are not obvious because the motion is predominantly that of a rigid body. The

vertical deflection for the hinge model is shown in Fig.9.7 asa function of time for a

frequency of 0.5 radls. It is clear that there is significant pitching of the individual

modules. From Fig. 9.6a it may be observed that the displacements are not symmetric

for low frequencies. The unsymmetry is likely due to the inaccuracies in the pitch

motion of a single module. For the rigid connection model, the results are unsymmetric

only very close to the heave resonant frequency of a singlemodule, possibly a resultof

numerical sensitivity. These results indicate that the inaccuracies in the pitch response

determined from strip theory are less important for large structures which behave as a

'single' structure, rather than one whose response is primarily composed of connected

smallerstructures.

The vertical androtational displacements at thebowarecompared for the twomodels

in Figs. 9.8 and 9.9. The motion of the hinged model is nearly always larger than the

motion of the rigid model. That is, flexible connections allow greater motion than stiff

connections, as expected.

Fig. 9.10 shows the absolute value of the rotations of the four hinge-connectors in

head seas, and Fig. 9.11 shows the moments in the rigid connectors. Whereas the

displacement transfer functions are a maximum at low wave frequencies, the force

transferfunctions are maximum at intermediate frequencies. Also, theresponse is nearly

symmetric, with the connections at 100 m and 200 m responding nearly identically to

those at 400 m and 300 m, respectively. Fig. 9.12 shows the corresponding moment at
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the center of the VLFS. Again, the maximum moment response occurs at intermediate

frequencies. Also, the moment in the rigid connection model is significantly larger than

the moment in the hinge-connection model. This increase in moment may have a major

impact not only on the connector design, but also on the module design.

Table 9.1 Equivalent beam properties

Table 9.1 (a) Pontoon section

J

mu = m22 = m33

m44

mss

m66

5500m

12000m
4

480 m
4

2
5.1 m

2
1.6 m

416700kg/m
8

7.12 x 10 kg-m
8

2.36 x 10 kg-m
8

4.73 x 10 kg-m

Table 9.1 (b) Column section

r., 7500 m

t, 2800 m
4

J 550 m
4

N/A

1578500 kg/m
8

9.76 x 10 kg-m
8

2.63 x 10 kg-m
8

7.19 x 10 kg-m
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Table 9.1 (c) Deck overhang section

~ ~OOm

Izz 12000 m
4

J 480 m
4

2
Asy 5.1 m

2
A sz 1.6 m

234000kg/m
8

2.96 x 10 kg-m
8

1.05 x 10 kg-m
8

1.95 x 10 kg-m

9.2 Application of Morison's equation method

Three-dimensional hydroelasticity by Morison's equation method is applied to the

same 4-column, 2-pontoon VLFS model which has been analyzed by two-dimensional

hydroelasticity (Fig. 8.1). The columns and pontoons below the still-water surface are

modeled as circular cylinders as shown in Fig. 8.3. The entire structure, including the

deck, are modeled by frame elements (Fig. 8.2). There are a total of 171 frame elements

for a single module, of which 56 are below the still-water surface, with a maximum

length of 5 m each. In Morison's equation, the inertia coefficient CM = 2.0 and drag

coefficient CD = 1.0 are used for all cases studied in this work as representative values.

However, one needs to use more accurate values in actual design studies by using

experimental data.

The rigid motion responses of a single module are calculated first. To compare the

motion responses of a rigid module obtained by Morison's equation and

three-dimensional potential theory, the module was made rigid in the finite element
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model by substantially increasing the elastic modulus and shear modulus. The transfer

function of 6 rigid-body motions (per unit wave amplitude) obtained by Morison's

equation method and three-dimensional potential theory (Wang et al., 1991) are shown

in Figs. 9.13 a-f. Considering the rough estimate of the inertia and drag coefficients and

large diameters of pontoon and column cross-sections, the overall agreement between

the two methods for wave heading angles of f3 = 180° (head seas), 135° (quartering

seas), and 90° (beam seas) seems to be good except for the yaw response in quartering

seas. Therefore, Morison's equation method may be useful for analyzing VLFSs with

pontoons and columns.

With good comparison for a single module, Morison's equation method is then used

to predict the responses of a 16 module, 100 m by 1600 m VLFS (Fig. 9.2). A total of

2464 nodes and 1872 frame elements are used for the entire 16 module VLFS. The

module connectors, which are 4 m long, are located at the deck level, and their structural

properties are the same as the properties of the longitudinal deck elements given in Table

8.2. Therefore, the structure consists of elastic modules and flexible connectors (EMFC

model). Because each node has 6 degrees-of-freedom, the complex matrix equation to

be solved contains a coefficient matrix of more than 218 million elements. To reduce this

matrix to a manageable size, a profile-storage scheme, which exploits the sparsity of the

coefficient matrix, is used. The resultant matrix then contains about 2.2 million

elements. The CPU time for the complete solution by Morison's equation method for 20

frequencies, and 3 wave headings was about 4 hours on an ffiMIRS/6000/530

workstation. This CPU time includes the complete re-assembly of the coefficient matrix

required for each iteration on the relative velocity used in the drag term. About 3-4

iterations were required to obtain convergence within a 1% tolerance.

The 16 module VLFS is also analyzed by three-dimensional potential theory. In this
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case, the module is assumed to be rigid with flexible connections (RMFC model), and

double symmetry of the structure is exploited. As a result, the solution for 20 wave

frequencies and 3 wave heading requires about 13 hours of CPU time on a Cray YMP81

864 super computer, which is about 5 times faster than the IBMlRS/6000/530

workstation. This means that by using Morison's equation method to determine the

hydroelastic response of a 16-module VLFS, one needs about one-sixteenth CPU time

compared with the RMFC method even though the entire structure is modeled as an

elastic body.

Table 9.2 Natural frequencies of the 16 module VLFS (rad/sec)

Mode No. 1 2 3 4 5 6 7 8 9 10 11 12

Dry mode 0 0 0 0 0 0 0.17 0.47 0.90 1.20 1.46 2.13

wet mode 0 0 .11 .27 .27 0 .29 .43 .65 .71 1.00 1.51

y

Module Module

1

x

Figure 9.2 Schematic view of a multi-module VLFS

The natural frequencies for the 16 module VLFS are calculated for dry modes and

wet modes (for wet modes, the added mass coefficients in Morison's equation method

are constant), and they are listed in Table 9.2. The comparison of the transfer functions
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of the response amplitude of module I and 8, in head seas, are shown in Figs. 9.14a-f

obtained bybothmethods. From Fig. 9.2, module I is located at the bow and module 8is

locatednear theorigin, in the middle ofthe VLFS. It is interesting to note, inFigs. 9.14a

and b, different surgeresponses formodules I and8. This is due to theflexibility of the

connectors used between neighboring modules. Due to the very small damping present

at around CJ) = 0.3 radls, the RMFC model, indicated in these figures by 'GFM',

predicts very large responses. On the other hand, the EMFC model, which includes

viscous form drag, exhibits smaller responses at this frequency. However, the overall

agreement for surge, heave and pitch responses is acceptable. Note that the EMFC

model, indicated by 'Morison' in these figures, consistently predicts large peaks around

ro = 0.5 radls and 0.8 radls. These frequencies, as well as ro = 0.3 radls

correspond to flexible-mode natural frequencies shown in Table 9.2.

Figs.9.15a-i show the transfer functions for the case of quartering seas. The

agreement for surge, heave and pitch isbetter thansway and roll transfer functions. The

explanation for this discrepancy is related to thefactthat in the RMFC model, where the

Greenfunction method is used, the hydrodynamic interaction betweenmultiple modules

is included. This interaction becomes more important in quartering seas than in head

seas, as expected, since in quartering seas, the pontoon end-planes of two neighboring

modules are exposed more to wave action and, therefore, wave-scattering interaction is

very strong. Obviously, Morison's equation cannot incorporate such effects. Note that

the fluid velocity between the columns and pontoons of two neighboring modules is

much greater in magnitude than the fluid velocity in the middle of a pontoon, resulting

in reduced fluid pressure in these areas. This, in tum, causes the overall forces toreduce

and, thus, the response predicted by the Green function method becomes significantly

smaller than Morison's equation results. The transfer functions of response for other

151



modules show similar trends and, therefore, they are not shown here. The transfer

functions presented here can be easily used to predict the responses in irregular seas by

using measured or analytic wave spectra.

9.3 Application of composite 2-DI3-D hydroelasticity

The composite 2-0/3-0 hydroelasticity method has been applied to two structures.

The first is a simple, idealized, very long and slender twin-hull structure as described in

Section 8.2 and shown in Figs. 8.5 and 8.6. To obtain results for the composite 2-0/3-0

method, the two-dimensional potential problem has been solved by the 'close-fit'

method. Because of port-starboard (x-z plane) symmetry, only one-half of the structure

was modeled. A total of 149 sections at 2 meter intervals were used, and the trapezoidal

integration rule was used to evaluate the hydrodynamic coefficients and wave exciting

forces in the longitudinal direction. The mean wetted-surface of the port hull of each

section was discretized by 10 two-dimensional fluid panels. The discretization is

schematically shown in Fig. 9.3.

x
....................... r---

\7 sr
= 10 1 =

1 2 3 4

1

146 147 148 149 9 2

8 3
7 - 4.......................

Side-view
6 5

Port hull-view

Figure 9.3 Schematic view of discretization of a twin-hull structure

For comparison, the response was also determined by three-dimensional

hydroelasticity. A total of 1506 fluid panels, each 2m x 2m, except at the ends and the
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bottom, were used in this case. Therefore, the two-dimensional fluid panels and the

three-dimensional panels have the same size.

If only the first 6 modes are considered (q=6), then the results from the composite

method are identical to those from traditional two-dimensional hydrodynamics based on

a rigid structure. The resonant frequencies for rigid-body motion of a structure in water

depend on the structural mass, added mass, and hydrostatic restoring coefficients. They

are approximately 1.05 rad/sec, 0.38 rad/sec, and 1.04 rad/sec for heave, roll and pitch,

respectively. Fig. 9.16 compares the rigid motions for three wave headings based on the

composite method (2-D) and three-dimensional (3-D) potential theory. Zero responses

for some wave headings have been removed from these figures (e.g., sway in head seas).

The agreement is very good, with the primary differences in heave and pitch at resonant

frequencies. These differences may result from the different hydrodynamic damping

obtained from two-dimensional and three-dimensional flow problems. The maximum

roll response occurs not at the resonant frequency, but at a wave frequency of

approximately 0.87 rad/sec. This frequency corresponds to a wave length which is equal

to four times the width of the structure. At the natural roll frequency, the wave length is

too long to create significant roll motion. The maximum sway response occurs at the

same frequency as does maximum roll. The correspondence between the 2-D and 3-D

results indicate that the two-dimensional flow assumption of strip theory is likely to be

acceptable for this structure.

Flexible cross-sectional motion is considered next, which cannot be treated by either

traditional two-dimensional hydrodynamics or two-dimensional hydroelasticity. As

mentioned in Section 8.2, if the structure is assumed fixed at the deck, there are only two

dry modes, which involve symmetric and antisymmetric 'swinging' of the struts. The

symmetric 'prying' mode, identical to the basic mode 6 in Fig. 7.2, is labeled mode 7,
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while the antisymmetric 'torsional' mode is labeled mode 8. (Mode 8 involves

antisymmetric rotation of the struts.) Both modes have a dry natural frequency of 0.6

rad/sec. For both of these flexible modes, the associated hydrostatic restoring stiffness is

negligibly small and is ignored in the calculations. Note that the actual modes in this

simple example can be represented exactly by the 'basic modes' in Fig. 7.2.

Figs. 9.17,9.18, and 9.19 compare, for the fixed-deck case, the modal added mass,

hydrodynamic damping and exciting forces determined by the composite 2-D/3-D

approach and three-dimensional hydroelasticity. In these three figures, Mfjj* and Msjj*

are the jth modal added mass and the jth structural modal mass; Cfjj* are the jth modal

damping; Ffjj* are the jth modal wave exciting forces; a is the wave amplitude.

Mfjj* /Msjj* is the ratio between the jth modal added mass and the jth structural modal

mass, Cfjj* /2tiJj (Msjt +Mcjt) (tiJj is the jth natural frequency) is the ratio between the

jth modal hydrodynamic damping and the jth critical damping, and Ffjj* /apgV is the

ratio between the jth modal wave exciting force for unit wave amplitude and the

. * * * * * *structural weight, Mfjj /Msjj , Cfjj /2tiJj (Msjj + Mfjj) and Ffjj /apgV are

non-dimensional quantities. The agreement is quite good. It is interesting to note that for

some wave frequencies, the modal hydrodynamic damping is greater than critical

damping. In this case, the system is overdamped. For such systems, the free vibration

response will not be oscillatory. The response in these modes, as measured by the

relative rotation between the deck and strut, is shown in Fig. 9.20. Only beam sea results

for wave exciting forces and relative rotation are plotted here since they are significant

for these two modes. The distributed moment at the joint between deck and strut is

simply the rotational stiffness, 36 kN-mlm (from Table 8.3), multiplied by the rotation in

Fig. 9.20.

When the simple twin-hull structure, whose deck and struts are connected by hinges,
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is freely floating, there are a total of eight displacement degrees-of-freedom. The

responses of the freely floating structure in beam seas is shown in Figs.9.21a-d.

Figs. 9.21a-c show the horizontal and vertical displacements and 'roll' rotation of the

center of gravity. The agreement between the results obtained by two-dimensional and

three-dimensional fluid models is reasonably good, with the major differences occurring

at the resonant frequencies. Fig.9.2Ic shows that roll has the largest discrepancy

between the two approaches. In particular, resonant response of mode 8 results in

substantial deviation at high frequencies, which is due primarily to a shift in the 'wet'

natural frequency of this mode. The deformational responses, that is, the relative rotation

of the deck joint, are in substantially better agreement (Fig. 9.2Id). The 'prying' forces,

that is, the bending moment at the deck joint, is simply the product of the rotational

stiffness (in Table 8.3) and the rotation in Fig. 9.21d.

It has already been mentioned that the motivation to use a two-dimensional fluid

model is to reduce the computer time so that hydroelastic analysis of very large

structures is more readily accomplished. For the hydrodynamic coefficient and wave

exciting force calculations of this simple twin-hull structure, in which 6-rigid body

modes and two flexible modes were used, the CPU computer time required by full 3-D

hydroelasticity, on an IBM RS/6000/550, is 16 minutes and 24 seconds. The total time is

12 hours and 20 minutes, which consists primarily of disk YO for intermediate files, The

composite 2D/3D approach, however, took only 3.85 seconds CPU time, with a total

time of 1 minute and 26 seconds. Hence, the composite method requires just a fraction

of the time that three-dimensional hydroelasticity requires. As long as the accuracy is

sufficient, it therefore represents a more useful tool for design, especially if small

computers are used.

The previous structure was artificial, having been designed solely to test and validate
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the composite method. Forfurthervalidation, a more realistic SWATH ship, Fig. 8.7, has

been designed and analyzed with thecomposite 2-0/3-0 method andthree-dimensional

hydroelasticity. The rigidand flexible responses andinternal forces arecalculated by the

compositemethodand 'full' three-dimensional hydroelasticity.

Again, because of symmetry, only half the structure was modeled to determine the

hydrodynamic coefficients and wave exciting forces. The structure has been modeled

entirely by shell elements, as shown in Fig. 8.8. For the three-dimensional hydroelastic

analysis, a one-to-one correspondence wasused between the quadrilateral shellelements

below the mean water line and the fluid panels. A total of 372 fluid panels were used.

The surfaceelements of the SWATH shipare shown in Fig. 9.4, in which the fluidpanels

are those surface elements below the still water plane. For the composite 20/30

analysis, each verticalline in Fig. 9.4was taken as a section, and structural nodesbelow

the mean water line were taken as sectional nodes for the two-dimensional fluid model.

Therefore, a total of 31 sections were used, and the trapezoidal rule was used for the

integration in the longitudinal axis direction to evaluate the hydrodynamic coefficients

and waveexciting forces.

First, the rigid bodymotions arecompared. Figs. 9.22 and 9.23show the comparison

of added-mass coefficients and wave exciting forces, respectively, for rigid-body mode

shapes between 2-0/3-0 composite method and three-dimensional hydroelasticity. A

comparison of the rigid-body motions are shown in Figs.9.24. Again the results

comparefavorably with the primary differences resulting from resonance.
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Figure 9.4 Surface elements of the SWATH ship

Figs. 9.25 and 9.26 show the comparison of added-mass coefficients and wave

exciting forces between three-dimensional hydroelasticity and 2D/3D composite method

for flexible mode shapes. In these two figures, Mfjj*, Majj*, and Ffjt 'j=7,8,...,14, have

thesamedefinition 1t'3 before. The comparisons forsomemodeshapesarenotvery good,

although they demonstrate the same tendencies. Thereasons for thesedifferences are not

clearat this stageand need tobestudied.

Tocompare the predicted deformational responses obtained by the two methods, the

'deformational' motion (excluding rigid-body motion) at point 'N (Fig. 9.4) and the

moment at the strut-deck interface at point 'B' have been determined. Figs.9.27a-b

show the horizontal uy and vertical uJ; displacements. Sincepoint A is taken at midship,

the response for headseas isexpected tobesmall from the symmetry. From the figures,

it can be seen that the results from the composite method compare favorably with those
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from three-dimensional hydroelasticity.

Fig. 9.28 shows the internal forces at the point B. N, and Ny represent the deck

'membrane' forces per unit length in the x-direction and y-direction, respectively, and

M, and My represent the bending moment per unit length about the x-axis and y-axis,

respectively. The forces are calculated at the edge of the deck where it is connected to

the strut, so that they can be used to design the connection. It can be seen that the

comparison of the internal forces between the composite method and three-dimensional

hydroelasticity isgood.

The simplified composite method which uses basic modes to represent the actual

modes has also been applied to the same SWATH model. Fig. 9.29 represents the ratios

of the lengths and angles between the actual four symmetric flexible modes and

approximationsobtainedwith the basic modes (Eqs. 7.42 and 7.43). From Fig. 9.29, the

ratios of the 'length' and the angles between those two modes at most cross-sections are

close to 1 and 0, respectively. These indicate that the real modes for the SWATH ship

can be well represented by the basic modes. Fig. 9.30 shows the horizontal flexible

displacement uy at point A, and Fig. 9.31 shows the comparison of bending moment

Mx ' at the element B, between the composite method and the simplified composite

method, for beam seas. These results indicate that, at least for this structure, the basic

modes can beused to estimate the flexible response.
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Figure 9.22 Modal added mass for rigid body motion of SWATH ship based on
composite 2-D/3-D method and 3-D hydroelasticity
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Figure 9.23 Modal wave exciting forces and moments for rigid bodymotion of
SWAm ship based on composite 2-D/3-D method and 3-D hydroelasticity
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Figure 9.24 Rigid body motions of SWATH based on 2-D (composite method) and
3-D potential theory, (a) sway, (b) heave, (c) roll, and (d) pitch

190



30

•••••••••••

o Composite

= --~-·3-D

-l0
o 0.3 0.6 009

CO (rad/s)
1.2 1.5

(9.25a)

- -. - - 3-D

1.51.2

•

-e-- Composite

••

0.6 0.9
CO (rad/s)

0.3

•.0....
•••_ ••0

o
o

20

co
co

*
III

~ 15
co....

*:E
en 10~
S

13
"T:l
-eeu

I
5

(9.25b)

191



30

0 Composite
0\
0\ ·· .. ··3-D

" '"

~
20

0\

"
...

::s
<I)

10~e
'3
"0

'i
-a 0

~
-10

o 0.3 0.6 0.9
ro (rad/s)

1.2 1.5

(9.25c)

30

0....
0....

" '"
~

20
....
0.......

"::s
10

<I)

~e
'3
"0 0'i
-a
~

--e-- Composite

··.··3-D

•••
••• ••••..........

-10
o 0.3 0.6 0.9

ro (rad/s)
1.2 1.5

(9.25d)

192



1.51.20.6 0.9
ro (rad/s)

e Composite

--.--3-D

0.3o

5

o

10-t----.L-----'----.........--""TT".L-----t-

----'"*
~ 7.5

---....
*~

(9.25e)

40

('l- e Composite...;-
*

.,

~
20

- -. - - 3-D-ti....
*~

0
rI.l

~
El
as
"t:I .3)"t:Ieu

~
4)

0 0.3 0.6 0.9 1.2 1.5
ro (rad/s)

(9.25f)

193



6

........ 0 Composite........
*

.,

~ 4 - - .. -. 3-D
........
...........

*:s 2
CI)

~e

i 0

I
2

0 0.3 0.6 0.9 1.2 1.5
CO (radls)

(9.25g)

100

..,..... 0 Composite..,.....
*

.,

~
50 - - .. - - 3-D

.... ~..,. . ........
*:s

0
CI)

~e
~
~ .8)'i
ta
'8
:g

-100
0 0.3 0.6 0.9 1.2 1.5

CO (radls)

(9.25h)

Figure 9.25 Modal added mass for flexible motion of SWATH ship based on
composite 2-D/3-D method and 3-D hydroelasticity
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Figure 9.26 Modal wave exciting forces for flexible motion of SWATII ship based on
composite 2-D/3-D method and 3-D hydroelasticity
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

Three methods for the hydroelastic analysis of very large floating structures have

been developed. They are an improved two-dimensional hydroelastic method, a three­

dimensional hydroelastic method incorporating frame elements with Morison's

equation, and a composite 2-D/3-D hydroelastic method. All the methods are developed

to apply to very large floating structures. However, the methods are also applicable to

other offshore structures.

A common characteristic of all three methods is efficiency. The methods avoid three­

dimensional potential theory to calculate hydrodynamic coefficients and wave exciting

forces, which is a computationally time consuming part of hydroelastic analysis of

VLFSs. Another common characteristic is that structural responses and forces are an

integral result of the analysis.

The two-dimensional hydroelastic method is based on strip theory and a nonuniform

beam model for the structure below the stili-water line. A general three-dimensional

structural model is possible for the structure above the water surface. Therefore,

modeling the fluid is very simple and the method is very efficient. The deficiency of this

method is that the fluid interaction between the beam cross-section and the longitudinal

fluid forces are ignored and only the beam-like responses and forces can be predicted.

Two-dimensional hydroelasticity has been used to analyze the motions and forces in a

long, relatively slender 5-module VLFS which is 100 m wide and 500 m long. The

results are useful to develop an understanding of the fundamental modes of

displacement and force magnitudes for which multi-module VLFSs must be designed.
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Ignoring the longitudinal forces in two-dimensional hydroelasticity results in

inaccuracies, especially for pitch motion of a single module. However, the results

indicate that the inaccuracies are less important for large structures which behave as a

'single' structure, rather than one whose response is primarily composed of connected

smaller structures.

Frame finite elements for modeling the structure and Morison's equation for

calculating the fluid forces have been incorporated in a three-dimensional hydroelastic

analysis method. The advantages of this method are that a three-dimensional structural

model is used to provide detailed information of the structure and the very efficient

Morison's equation is adopted to calculate the fluid force. One of the deficiencies of this

method is that fluid interaction is not taken into account since Morison's equation is

used. Another is that the method is limited to structures which can be modeled by

circular cylinders below the still water line. Moreover, one needs to have accurate inertia

and drag coefficients in this analysis.

Despite the limitation of Morison's equation and the relatively large diameters of the

circular members, somewhat acceptable results, especially for a single module, in

comparison with the three-dimensional potential theory, are obtained. Based on the

present results, it appears the method can be used to predict the hydroelastic response of

a VLFS during, at least, the preliminary design stage. This is especially true when one

considers that the method requires very little computational time in comparison with

three-dimensional potential theory.

To reduce the computational time required for a full, three-dimensional hydroelastic

analysis, but to improve the results of two-dimensional hydroelasticity, a composite 2-D/

3-D hydroelastic method has been developed. The method combines a three­

dimensional structural model and a two-dimensional fluid model to compute the wave-
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induced, hydroelastic response. The advantages of this method are that three­

dimensional structural motions and deformations are used with two-dimensional

potential theory to obtain the hydrodynamic coefficients and wave exciting forces, and

the deformation and internal forces of each individual structural element can be

obtained. However, because the fluid forces are determined from two-dimensional

potential theory, the method is applicable to slender structures.

To demonstrate the composite method and to verify the implementation, a simple,

twin-hull structure with two flexible modes has been analyzed. The comparison of

results between the composite method and three-dimensional analysis is good. In

addition to this highly idealized, 'two-dimensional' structure, the method is also applied

to a more realistic SWATH-like structure. Again the results of the composite method

compare well with those from a full, three-dimensional analysis. From the results, we

conclude that the composite 2-0/3-0 method represents an effective alternative to a full

three-dimensional hydroelastic analysis in the prel:l.minary design of large, floating

structures which can be characterized as slender. For large structures, the savings in

computer time is substantial with the composite method, and the accuracy is sufficient

for many design purposes. To calculate hydrodynamic coefficients and wave exciting

forces for the simple, twin-hull structure, three-dimensional potential theory requires

255 times the CPU computer time that the composite 2-0/3-0 method does.

The results clearly indicate that a VLFS will experience substantial deformations as a

result of wave loading. Therefore, conventional motion analysis methodology for

floating structures, in which the structure is assumed rigid, does not apply to VLFSs.

Hydroelasticity must be considered to determine both the force in the structure and the

overall motion response.
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10.2 Recommendations

1. Since three-dimensional hydroelasticity using potential theory is the most general

and accurate linear theory to date, an efficient three-dimensional hydroelasticity theory

should be developed for VLFS design. Three aspects should be considered for this

development exploiting the symmetry of the structure (WU et al., 1993); using an

efficient vector basis to replace the 'dry modes'; and developing more efficient

numerical techniques to determine the three-dimensional fluid potential.

2. Since VLFSs may have large motions and deformations, non-linearities may have

to be considered to obtain more accurate results. An efficient second-order theory which

is suitable for VLFS analysis should ideally be developed. However, such a decision

should be basedon a comparison between experimental data and predictions.

3. The connection design is a very important aspect for multi-module VLFS design. It

has been seen from this study that different connections used in multi-module VLFSs

affect the response. Further study on the connection design should be done to provide

design information for physical connector design.

4. For [mal VLFS design, an experimental study should be carried out to verify the

analytical methodology and provide fmal design criteria.
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APPENDIX A. FRAME ELEMENT

The shape function for a frame element, [N], can be written as

(AI)

where [Nat] is a 6 x 12 matrix of interpolationfunctions foraxial and torsional degrees

of freedom:

N1 0 0 0 00 N70 0 0 00

000000000 0 00

[Nat] 000000000000
(A2)= o 0 0 N4 0 0 0 0 0 NIO 0 0

000000000000
000000000000

in which N4 = N1 and N IO = N7 • N1 and N7 areforaxial effects, and are given by

x
N = 1--°

1 L' (A3)

where L is the beam element length, and x is the localx-coordinate.

N, is a 6 x 12 matrix of interpolation functions for transverse displacements:

000000000000
o N2 0 0 0 N6 0 Ng 0 0 0 N12

o 0 N3 0 Ns 0 0 0 N9 0 Nu 0
=

000000000000
oN' 2 0 0 0 N'6 0 N'gOO 0 N\2

o 0 N'3 0 N's 0 0 0 N'9 0 N'U 0

(A4)

where the components N2 , N3 , Ns' N6 , Ng , N9, NIP and NI2are for deflection effects,
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and are

(A.5)

(A.6)

(A.7)

2

N = x (~-l)12 L L (A.8)

Therefore [N] can be written as

Nt 0 0 0 0 o N7 0 0 0 0 0

o N2 0 0 0 N6 0 Ns 0 0 0 N12

[N] 0 0 N3 0 Ns 0 0 o Ng 0 Nu 0
= (A.9)

0 0 o N4 0 0 0 0 o NIO 0 0

o N' 0 0 o N' 0 N' 0 0 o N'122 6 S

0 o N'3 0 N's 0 0 o N'g 0 N'u 0

The frame element mass [m] suitable for displacement field {u} in Eg.3.28is given

in Eq, II.10. The frame elementdamping matrix [c] can be obtainedin thesame manner.

The frame element stiffness matrix [k] is given in Eq. II.1I. The frame element stiffness

matrix [k
8

] that includes the sheardeformation is written in Eq. II.12.
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In the above equations, A is the cross-sectional area of the beam; E is the elastic

modulus; G is the shearmodulus; Iy and I, are thesecond moment of thecross-sectional
12EI 12EI A

area about local y and z axes, respectively; CJl2 = __z and CJl3 = --y , A = - and
GA L2 GA L2 y K

A K d Tl" th ° h y ffi ° 0 z d dO y °Az = -; y an ...~ are e cross-section s ear coe ctents in y an z irectton,
Kz

respectively.

In general, geometric stiffness coefficients maybe expressed as

kG·· = Jf (x)N'.N'.dLIJ a 1 J

L.

for i,j = 2,3,5,6,8,9,11, 12 (A.13)

The beam element geometric stiffness matrix, for the case where the axial force is

constant, can be written as

0
o 36 Symmetric

o 0 36
o 0 0 0

o 0 -3L 0 4L
2

[keG]
N o 3L 0 o 0 4L

2

=- (A.14)
30L o 0 0 o 0 0 0

0-36 0 o 0 -3L 0 36
o 0 -36 0 3L 0 0 0 36
o 0 0 o 0 0 0 0 0 0

2
0 0 0 3L o4L

2o 0 -3L O-L

o 3L 0 o 0
2

0 o 0 4L
2

-L 0 -3L
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APPENDIX B. COMPUTER PROGRAMS

The methods developed in this work have beenimplemented in the HYDRAS series

of computer programs. The program HYDRAS performs the linear lhdroelastic

Response Analysis of Structures in the frequency domain. HYDRAS includes five

programs HYDRAS-2D, HYDRAS-MORISON, HYDRAS-COMPOSITE,

HYDRAS-BASIC, and HYDRAS3D-L The program user's guide can be found in a

separate report (Che, 1993).

s.r HYDRAS-2D

The program HYDRAS-2D is the part of program HYDRAS-I, which is for linear

two-dimensional hydroelastic analysis of floating structures in the frequency domain.

This two-dimensional hydroelasticity is developed by using a consistent formulation

based on the finite element method. The structure below the stillwater plane is modeled,

by thefinite element method, as a nonuniform beam subjected to hydrodynamic forces.

Above the water surface, a three-dimensional model of the structure is possible. Strip

theory is used to calculate the hydrodynamic coefficients and wave exciting forces.

Hydrodynamic matrices for added mass and damping, and wave exciting force vectors

are formed directly in thesame manner as the structural mass matrix andstructural force

vector. The resulting coupled equations of motion are solved directly. The detailed

description of this method can be found in Chapter 5. The method is applicable to

slender floating structures withany stiffnessdistribution.

B.2 HYDRAS-MORISON

The program HYDRAS-MORISON is the partofprogram HYDRAS-I, whichis for

linear three-dimensional hydroelastic analysis of floating structures in the frequency

domain. A three-dimensional frame model is used to represent the elasticity of the
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structure. Morison's equation (Morison et al., 1950) is used to determine the fluid

loading. This approach is applicable to structures which can be modeled by tubular

members below the still water line. There is no restriction on the upper part of the

structure. Morison's equation includes the effects of fluid acceleration and viscous form

drag in terms of empirically determined coefficients. Since the three-dimensional

potential problem is avoided, Morison's equation is an efficient method for VLFSs

which use columns and pontoons below the still water line. III addition, the hydrostatic

restoring stiffness matrices for frame element is also included in this method. The

detailed description of this method can be found in Chapter 6.

B.3 HYDRAS-COMPOSITE

The program HYDRAS-COMPOSITE is for linear 2-D/3-D hydroelastic analysis

of floating structures in the frequency domain. This approach uses a three-dimensional

structural model and a two-dimensional fluid model. The method includes an accurate

description of the structure by a three-dimensional structural model and the

computational efficiency of a two-dimensional fluid model. Therefore, the responses are

not limited to the beam-like response of traditional two-dimensional hydroelasticity. The

detailed description of this method can be found in Chapter 7.

B.4 HYDRAS-BASIC

The program HYDRAS-BASIC is for linear 2-D/3-D hydroelastic analysis of

floating structures in the frequency domain. This approach is identical to the one

implemented in HYDRAS-COMPOSITE, except the deformations of the three­

dimensional structural model is represented by 'basic modes' for the fluid potential

calculations. The computational efficiency of a two-dimensional fluid model is used in

this method. The detailed description of this method can be found in Chapter 7.
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8.5 HYDRAS3D·I

The programHYDRAS3D·I is the first phase of a program for the three-dimensional

hydroelastic analysis of floatingstructures in the frequency domain.The body-boundary

conditions coupling the structure and fluid are calculated in this program. Quadrilateral

fluid panels and quadrilateral thin shell elements are used for structural and fluid

models, respectively. A one-to-one mapping betweenstructural element and fluid panel

is adopted in the program. Further development is necessary. The detailed description of

this method can be found in Chapter 4.

217



REFERENCES

Basehieri, M. and Bellincioni P. (1991). 'Prestressed Concrete Floating Airport,'

Proceedings, First International Workshop on ~ry Large Floating Structures,

University of Hawaii, Honolulu, pp. 421-436.

Bathe, K. J. and Wilson, E. L. (1976). Numerical Methods in Finite Element Analysis,

Prentice-hall, Inc., Englewood Cliffs, New Jersey, 528 pp.

Betts, C. V., Bishop, R. E. D., and Price, W. G. (1977). 'The symmetric Generalized

Fluid Forces Applied to A Ship in A Seaway,' Phil. Trans. Royal Society, London,

A255, pp. 241-280.

Bishop, R. E. D., and Price, W. G. (1974). 'On Modal Analysis of Ship Strength,' Phil.

Trans. Royal Society, London, A255, pp. 241-280.

Bishop, R. E. D., and Price, W. G. (1976). 'On the Relationship between 'Dry Modes'

and Wet Modes' in the Theory of Ship Response,' J Sound and Vibration, Vol. 45,

No.2, 157-164.

Bishop, R. E. D., and Price, W. G. (1979). Hydroelasticity of Ships, Cambridge

University Press, Cambridge, U.K., 423 pp.

Blagoveshchensky, S. N. (1962). Theory of Ship Motion, Dover Publications Co., New

York.

Bretz, G. McAllister, K. and Vaughters, T. (1991). 'Technological Alternatives to

Overseas Basing- Concepts in Naval Offshore Basing,' Proceedings, First

International Workshop on Very Large Floating Structures, University of Hawaii,

Honolulu, pp. 379-395.

Burke, B. G. (1969). 'The Analysis of Semi-submersible Drilling Vessels in Waves,'

Proc. 1st Int. Offshore Tech. Conj., Houston, May, pp i-235 to 1-241.

218



Carlsen, C. A. and Mathisen, J. (1980). 'Hydrodynamic Loading for structural Analysis

of Twin Hull Semi-submersible,' Computational Method for Offshore Structures,

ASME, New York, Vol.37, pp. 35-48.

Chakrabarti S. K. (1987). Hydrodynamics of Offshore Structures, Computational

Mechanics Publications, Southampton Boston.

Che, X. L., Riggs, H. R, Ertekin, R c., Wu, "Y S., and Wang, M. L. (1992a). 'Two­

Dimensional Analysis of Prying Response of Twin-Hull Floating Structures: Proc

2th Int Offshore and Polar Eng Coni, San Francisco, Vol. 1, 187-194.

Che, X. L., Wang, D. Y., Wang, M. L., and Xu, Y. F. (1992b). 'Two-Dimensional

Hydroelastic Analysis of Very Large Floating Structures,' Marine Technology, Vol.

29, No.1, 13-24.

Che, X.L. (1993) 'HYDRAS User Guide: A Computer Program for Hydroelastic

analysis of Floating Structures,' Department of Ocean Engineering, University of

Hawaii, 79 pp.

Chow, P. Y, Lin, T. Y, Riggs, H. R and Takahashi P. K. (1991). 'Engineering Concepts

for Design and Construction of Very Large Floating Structures,' Proceedings, First

International Workshop on Very Large Floating Structures, University of Hawaii,

Honolulu, pp. 97-106.

Cook, R. D., Malkus D. S., and Flesha M. E. (1989). Concepts and Applications of

Finite Element Analysis, John Wiley & Sons, Inc. New York, 630 pp.

Cruickshank, M. J. (1991) 'The Application of Very Large Floating Structures in Marine

Minerals Development,' Proceedings, First International Workshop on Very Large

Floating Structures, University of Hawaii, Honolulu, pp. 397-403.

Curphey, R M. and Lee C. M. (1977). 'Theoretical Prediction of Dynamic Wave Loads

on Small-Waterplane-Area, Twin-hull Ship,' Report No. DTNSRDC 77-0061, Naval

219



Ship R&D Center, Bethesda, Md.

Du, X. S. and Ertekin, R. C. (1991). 'Dynamic Response Analysis of a Flexibly Joined,

Multi-Module Very Large Floating Structure,' Proceedings, OCEANS's 91 Conf.,

IEEE, Honolulu, Oct, 3, 1286-1293.

Ertekin, R. C., Riggs, H. R., Seidl, L. H. and Wu, Y. S. (1990). 'The Design and

Analysis of Very Large Floating Structures (VLFS): Vol. 2-Analysis,' Rep. No.

UHMOE-90106, Dept of Ocean Eng., Univ. of Hawaii at Manoa, June, 1990, 89 pp.

Ertekin, R. C., and Riggs, H. R. Editors, (1991). Proceedings, First International

Workshop on Very Large Floating Structures, University of Hawaii, Honolulu, 436

pp.

Ertekin, R. C. Wang, M. L. and Riggs, H. R. (1991). 'Response of Flexible Floating­

Structure Modules in Regular and Irregular Waves,' Proc. of the Int. Symp. on

Marine Structures, ISMS '91 (ISSC '91 Pre-Congress Symp.) Ed. Xinsen Lu,

September, Shanghai, pp. 75-80.

Ertekin, R. C., Riggs, H. R., Che, X. L. and Du, S. X. (1993). 'Efficient Methods for

Hydroelastic Analysis of Very Large Floating Structures,' Journal ofShip Research,

Vol. 37, No.1, March, pp. 58-76.

Faltinsen, 0. M. and Michelsen, F. C. (1974). 'Motions of Large Structures in Waves at

Zero Froude Number,' Proc. Int. Symp. on the Dynamics of Marine Vehicles and

Structures in Waves Univ. College London, pp. 91-106.

Flax, A. H. (1960). 'Aero and hydroelasticity,' in Structural Mechanics, Eds. J. N.

Goodier & N. 1. Hoff, Pergamon Press, New York, 94-159.

Frank, W. (1967). 'Oscillation of Cylinders in or Below the Free Surface of Deep

Fluids,' NSRDC Report 2375, Naval Ship R&D Center,Bethesda, Md.

Frank, W. and Salvesen, N. (1970). 'The Frank Close-Fit Ship-Motion Computer

220



Program,' NSRDC, Washington D.C., Report 3289, June, Vti+131 pp.

Garrison, C. 1., 'Hydrodynamic Interaction of Waves with a Large Displacement

Floating Body: Rep. No. NPS-69Gm77091, Naval Postgraduate School, Monterey,

August, 157 pp.

Garrison, C. J. (1984). 'Interaction of Oblique Waves with an Infinite Cylinder,' Applied

Ocean Research, Vol. 6, No.1, 1984, pp. 4-15.

Garritsma, J. and Beukelman, W. (1964). 'The Distribution of theHydrodynamic Forces

on a Heaving and Pitching Ship Model in Still Water,' 5th Symposium on Naval

Hydrodynamics, Washington D.C., pp. 219-251.

Georgiadis, C. (1981). 'Wave Induced Vibrations of Continuous Floating Structures,'

Ph.D. Dissertation, University of Washington, Seattle, WA.

Hamida, M. ben and Webster, W. C. (1991). 'The motion of Large Floating Flexible

Structures,' Proceedings, First International Workshop on Very Large Floating

Structures, University of Hawaii, Honolulu; pp.331a-331p.

Hartz, B. J. and Georgiadis, C. (1982). 'A Finite Element Program for Dynamic

Response of Continuous Floating Structures in Short-CrestedWaves,' Proceedings,

International Conf. on Finite ElementMethods, Shanghai, pp. 493-498.

Heller, S. R. and Abramson H. N. (1959). 'Hydroe1asticity: A New Naval Science,' J.

Am. Soc. Naval Engrs., Vol. 71, No.2, pp. 205-209.

Heller, S. R. (1964). 'Hydroelasticity,' in Advances in Hydroscience, Ed. Yen Te Chow,

Vol. 1, Academic Press, New York, 1964,94-159.

Jacobs, W. R. (1958). 'The Analytical Calculation of Ship Bending Moment in Regular

Waves: J ShipResearch. Vol. 2,13-57.

Kallio, J. A. and Ricci, J. J. (1976). 'Seaworthiness Characteristics of A Small

Waterplane Area Twin Hull (SWATH IV) Part II,' Report No. DTNSRDC SPD 620-

221



02, Naval Ship R&D Center, Bethesda, Md.

Katory, M. 'On the motion Analysis of Interlinked Articulated Bodies floating Among

Sea Waves,' The Naval Architect, No.1, pp. 28-29.

Kim, C. H. and Chou, F. (1973). 'Motion of Semi-submersible Drilling Platform in Head

Seas,' Marine Technology, Vol. 1, No.2, pp. 28-29.

Kito, E, Principles ofHydroelasticity, Keio University, Japan, April, 1970, iii+124pp.

Korvin-Kroukovsky, B. V. and Jacobs, W. R (1957). 'Pitching and Heaving Motion of a

Ship in Regular Waves,' Trans SNAME Vol. 65, pp. 3-11.

Langen, I. and Sigbjomesson, R (1983). 'On Stochastic Dynamics of Floating Bridges,'

Engineering Structures, Vol. 2, pp. 209-216.

Lee, C. K. and Lou, J. Y K. (1989). 'The hydroelastic effects on three-dimensional

structural dynamics,' Ocean Engng., Vol. 16, No.4, pp.327-342.

Lemke, E. (1987). 'Floating Airport,' Concrete International, May, pp. 37-41.

Luft, R W. (1981). 'Analysis of Floating Bridges: The Hood Canal Bridge,'

Proceedings, Dynamic Response ofStructures. pp. 1-15.

Morison, J. R, O'Brien, M. P., Johnson, J. W. and Schaff, S. A. (1950) 'The Force

Exerted by Surface Waves on Piles,' Petroleum Transactions, AIME, Vol. 189,1950,

149-154.

Masuda, K., Maeda, H., Usui, M., and Kato, W., (1987). 'Dynamic Response by

Shallow Draft Floating Elastic Structures in Head Waves,' Proc. 6th off. Mech. &

Arc. Eng. Conf., Houston, pp. 337-344.

Newman, J. N. (1977) Marine Hydrodynamics, The MIT press, Cambridge,

Massachusetts and London, England.

Newman, J. N. (1978) 'The theory of Ship Motions,' Advance in Applied Mechanics,

Vol. 18,221-283.

222

-------------- ,------------



Newman, J. N. (1986) 'Distributions of Sources and Normal Dipoles over A

Quadrilateral Panel,' 1. ofEngineering Mathematics, Vol. 20, pp. 113-126.

Nihous, G. C. and Vega L. A. (1993) 'Design of a 100 MWe OTEC-Hydrogen

Plantship,' Marine Structures, Vol. 6, pp. 207-221.

Ogilvie, T. F. and Tuck, E.O, (1969). 'A Rational Strip Theory of Ship Motions, Part I,'

Interim Technical Report No. 013, Dept of Naval Arch. and Marine Eng., University

of Michigan, also AD-682507.

Ogilvie, T. F. (1971). 'On the Computation of Wave-Induced Bending and Torsion

Moments,' J Ship Research, September, 217-220.

Okamoto, K., Masuda, K., and Kato, W. (1985). 'Hydroelastic Response Analysis for

Large Floating Structures,' Proc. Int. Symp. on Ocean Space Util., Tokyo, pp. 275­

281.

Paz, M. (1985). Structural Dynamics, Van Nostrand Reinhold Company, 561 pp.

Price, W. G., and Wu, Y. S. (1985). 'Hydroelasticity of Marine Structures,' Theoretical

and Applied Mechanics, F. I. Niordson and N. Olhoff, eds., Elsevier Science

Publishers RV., 311-337.

Paulling, J. R. (1970). 'Wave Induced Forces and Motions of Tubular Structures,' Proc.

8th Symp. on Naval Hydrodynamics, Pasadena, California, pp. 1083-1110.

Paulling, J. R. and Tyagi, S. (991) 'Multi-Module Floating Ocean Structures,' Marine

Structures, Vol. 6, pp. 187-205.

Rao, S. S. (1989). The Finite Element Method in Engineering, 2nd Edition, Pergamon

Press, 643 pp.

Riggs, H. R., Che, X. L, and Erteldn, R. C. (1991). 'Hydroelastic Response of Very

Large Floating Structures,' Proc 10th Int ConfOffshore Mech Arctic Eng, Stavanger,

ASME, Vol. lA, 291-300.

223



Riggs, H. R. (1991). 'Current Efforts in Technology Development for Very Large

Floating Structures,' Proceedings, OCEANS's 91 Conf. IEEE, Honolulu, Oct., 3,

201-206.

Riggs, H. R. and Ertekin, R. C. (1993). 'Approximate Methods for Dynamic Response

of Multi-Module Floating Structures,' Marine Structures, Vol. 6, 117-141.

Salvesen, N., Tuck, E. 0., and Faltinsen, O. (1970). 'Ship Motions and Sea Loads,'

Trans SNAME, Vol. 78, 250-287.

Seidl, L. H. (1991). 'Iterative Source Distribution Technique,' Proceedings, First

International Workshop on Very Large Floating Structures, University of Hawaii,

Honolulu, pp. 171-190.

Smith, W. E. (1967). 'Computation of Pitch and Heave Motions for Arbitrary Ship

forms,' Int. Shipbldg. Prog., Vol. 14, No. 155, pp. 267-29l.

Smith, W. E. and Salvesen (1970). 'Comparison of Ship Motion Theory and Experiment

for Destroyer with Large Bulb,' 1. ofShip Research, Vol. 14, No.1, pp. 67-76.

Spark, C. P. (1984). 'The influence of Tension, Pressure, and Weight on Pipe and Riser

Deformation and Stresses,' 1. Energy Resources Tech., ASME, 1984, Vol. 106, pp.

46-54.

St Denis, M. and Pierson, W. J. (1953). 'On the Motion of Ships in Confused Seas,'

SNAME Trans., Vol 61, pp. 280-357.

St. Denis, M. (1974). 'The winds, Current and Waves at the Site of the Floating City off

Waikiki,' Report Seagrant-CR-75-01, Technical Report No.1, University of Hawaii

at Manoa, Honolulu, HI.

Takarada, N. (1984). 'Technical Study Results of Floating Runway for Night Landing

Practice of Carrier-Borne Planes,' Report of the Shipbuilders' Association of Japan.

Tasai, F. (1967). 'On the Swaying, Yawing and Rolling Motions of Ship in Oblique

224



Waves,' International Shipbldg. Prog. Vol. 14, No. 153, pp. 216-228.

Vugts, J. H. (1971). 'The hydrodynamic forces and ship motion in oblique waves,'

Netherlands, Ship Research Center TNO, Report No. 150S.

Wang, D. Y., Riggs, H. R. and Ertekin, R. C. (1991). 'Three-Dimensional Hydroelastic

Response of A Very Large Floating Structure,' International 1. ofOffshore and Polar

Engineering, Vol. 1, No.4, December, pp. 307-316

Wang, M. L. (1991). 'A Hybrid Approach to the Hydroelastic Analysis of Very Large

Floating Structures,' MS Thesis, Dept. of Ocean Eng, Univ of Hawaii at Manoa,

Honolulu, 191 pp.

Wang, M. L., Du, S. X., and Ertekin, R. C. (1991). 'Hydroelastic Response and Fatigue

Analyses of a Multi-Module Very Large Floating Structure,' Fatigue and Fracture

in Steel and Concrete Structures, Proc. of ISFF'91, Vol 2, Oxford & ffiH Pub. Co.,

Bombay, 1277-1291.

Wehausen, J. V. and Laitone, E. V. (1960). 'Surface Waves,' Ed. by S. Fliigge,

Handbuch derPhysik, Band 9, Springer Verlag, pp. 446-776.

Wilkins G. A., Erteldn, R. C. and Riggs H. R. editors, (1992). 'Future Directions in

VLFS Research and Development,' Proceedings, First International Workshop on

Very Large Floating Structures, Vol. 2, University of Hawaii, Honolulu, 42 pp.

Winkler, R. S., Seidl, L. H., Riggs, H. R., Erteldn, R. C. and Wilkins, G. A. (1990). 'The

Design and Analysis of Very Large Floating Structures (VLFS): Vol. 1 Design,' Rep.

No. UHMOE-90105, Dept. of Ocean Engng., University of Hawaii, June, 114 pp.

Wu, Y. S. (1984). 'Hydroelasticity of Floating Bodies,' Ph.D. thesis, BruneI University,

430 pp.

Wu, Y. S., Wang, D. Y., Riggs, H.R. and Ertekin, R. C. (1993). 'Composite Singularity

Distribution Method with Application to Hydroelasticity,' Marine Structures, Vol. 6,

225



pp. 143-163.

Yeung, R. W. (1973). 'A Singularity Distribution Method for Free Surface Flow

Problem,' Rep. No. NA-73-6, Dept of Naval Architecture, University of California,

Berkeley, vi+124 pp.

Yoshida, K., Arima, T., Goo. J. S. and Oka N. (1991) 'A Conceptual Design of a Huge

Ring-Like Semisubmersible,' Proceedings, First International Workshop on Very

Large Floating Structures, Vol. 1, University of Hawaii, Honolulu,pp. 397-403.

226


