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ABSTRACT 

 
Genetic isolation-by-distance describes a pattern driven by dispersal-limiting 

processes, whereby genetic variants sampled closer together in space are, on average 

found to be more genetically related than variants sampled at further distances. Many 

studies of population genetic patterns in corals, however, do not fit this pattern. 

Furthermore, increasing evidence on the primacy of local retention of larvae for marine 

systems as well as for the existence of locally adaptive genetic variation in corals 

warranted a new sampling and statistical approach. To gain insight into this “coral 

population genetic paradox”, I present a near-exhaustive (n = 2352) assessment of 

individual-level spatial genetic patterns for the widely-studied, cosmopolitan, pan-Pacific 

coral, Pocillopora damicornis, within a single coral reef (Reef 19; diameter ~40 m) in 

Kāne‘ohe Bay, O‘ahu, Hawai‘i. Genetic and spatial data from three neighboring reefs are 

also included to allow for cross-scale comparisons. As environmental variation could 

potentially be influencing genetic patterns on this scale, I also present a reef-wide 

characterization of environmental heterogeneity in terms of depth, habitat cover, and 

temperature, drawing from a two-year dataset of in situ temperature variation across a 4 

m grid on Reef 19. Overall, I demonstrate: (1) the existence of intra-reef, biologically-

significant environmental heterogeneity, (2) that for this species, spatial patterns of 

individual-level genetic relatedness found within a reef do not scale up to an inter-reef 

level, (3) the importance of intense sampling efforts in assessing genetic diversity and 

revealing spatial genetic patterns in highly clonal species, and (4) the possibility of intra-

reef, depth-dependent adaptation in this species. Throughout, results are discussed within 

the context of past studies of P. damicornis’ genetic diversity as well as within the 

context of global climate change and coral reef conservation.  
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CHAPTER 1. INTRODUCTION 

 The utility of molecular tools for studying the ecology and evolution of species 

has proven essential, particularly in marine systems, where the challenges of tracking the 

dispersal of microscopic larvae and uncovering patterns of connectivity between and 

among populations may not have otherwise been possible. By assessing patterns of 

genetic diversity, scientists are able to infer the genealogical histories between 

individuals, populations, and higher taxa. Inferences, however, can sometimes be 

complicated by the fact that multiple processes (i.e., drift, dispersal, selection, mutation) 

work differently and on different spatial and temporal scales to produce the observed 

genetic patterns. Thus, patterns of genetic diversity observed on one scale do not 

necessarily hold on other scales (e.g., Avolio et al. 2012). This highlights the relevance of 

studies that bridge across scales to investigate how patterns and processes change. In fact, 

it has been argued that “the problem of relating phenomena across scales is the central 

problem in biology and in all of science” (Levin 1992).  

In molecular ecology, researchers often test for a pattern of isolation-by-distance, 

whereby genetic variants sampled closer together in space are, on average, found to be 

more genetically related than variants sampled at further distances. Such a pattern can be 

explained by dispersal processes, whereby the genetic homogenizing effects of migration 

are distance-limited. Several examples from the marine environment, however, do not fit 

this expectation (Selkoe et al. 2010), either because the patterns are anisotropic (i.e., 

geographically asymmetric) or stochastic, leading researchers to give ad hoc explanations 

for the paradoxical pattern. For corals, in particular, geographic patterns of genetic 

variation have often proven difficult to interpret (Adjeroud & Tsuchiya 1999; Ayre & 

Hughes 2000; Magalon et al. 2005; Baums et al. 2006; Severance & Karl 2006; Souter et 

al. 2009). The interest of this dissertation is to gain insight into this coral population 

genetic paradox. 

The original paradigm of dispersal in the sea was one of demographically open 

populations connected by planktonic larvae capable of dispersing long-distances across 

open ocean. Subsequent genetic studies, however, uncovered genetic differentiation on 

much smaller than expected scales. In fact, for corals, several studies demonstrate the 

potential for adaptive genetic variation (e.g., D’Croz & Maté 2004; Vermeij et al. 2007; 
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Barshis et al. 2010). Corals also share several terrestrial plant-like characteristics (e.g., 

dispersing propagule stage, sessile adult stage, and the ability to reproduce clonally) that 

are also believed to enhance the adaptive capacities of plants to small-scale 

environmental heterogeneity (Vekemans & Hardy 2004). Taken together, these 

observations warrant the study of coral genetic and environmental variation on an intra-

reef scale, a scale for which there has been little interest. In ecology, it is widely 

recognized that patterns are scale-dependent. Population genetic sampling designs, 

however, rarely bridge across scales and have only recently been subject to explicitly 

spatial analyses whereby the spatial coordinates of individual sampling units are 

examined alongside genetic data (Storfer et al. 2007). Thus, taking a landscape-genetics 

approach, combining spatial analysis with landscape ecology and population genetics, 

will be important for making inferences on the processes driving patterns of genetic 

variation on an intra-reef scale.  

The dataset for this dissertation is a near-exhaustive assessment of individual-

level spatial genetic patterns for the widely-studied, cosmopolitan, pan-Pacific coral, 

Pocillopora damicornis within a single coral reef as well as a reef-wide characterization 

of environmental heterogeneity. The focal study site, Reef 19, is a single patch reef 

(diameter of ~40 m) in Kāne‘ohe Bay (21.45767°N, 157.80677°W) with a depth of 

between 1 and 5 m. Using a two year temperature dataset taken across a 4 m grid, 

Chapter 2 describes the environmental heterogeneity of Reef 19 in terms of temperature, 

depth, and habitat cover (Gorospe & Karl 2011). Chapter 3 (Gorospe & Karl, accepted) 

introduces the genetic and spatial data for P. damicornis, with an interest in dispersal and 

colonization on this scale. These data included a near-exhaustive (n=2352) genetic 

sampling and spatial mapping of P. damicornis throughout Reef 19, as well as a much 

smaller, stratified random sampling effort on three neighboring reefs. Rarely, however, is 

it practical to sample so intensively. Thus, the consequences of sampling effort and 

design on the characterization of reef genetic diversity are explored in Chapter 4. Finally, 

in Chapter 5, environmental, genetic, and spatial data are combined in a landscape 

genetics approach to tease apart the influence of spatially- versus environmentally-

mediated processes on intra-reef patterns of genetic variation. Throughout, results are 

discussed from the perspective of P. damicornis’ breadth of literature, within the 
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framework of the coral population genetics paradox described above, as well as within 

the context of global climate change and coral reef conservation. 
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CHAPTER 2. SMALL-SCALE SPATIAL ANALYSIS OF IN SITU SEA 

TEMPERATURE THROUGHOUT A SINGLE CORAL PATCH REEF 

 

 

Abstract 

Thermal stress can cause geographically widespread bleaching events, during 

which corals become decoupled from their symbiotic algae. Bleaching, however, also can 

occur on smaller, spatially patchy scales, with corals on the same reef exhibiting varying 

bleaching responses. Thus, to investigate fine spatial scale sea temperature variation, 

temperature loggers were deployed on a 4 m grid on a patch reef in Kāne‘ohe Bay, 

O‘ahu, Hawai‘i to monitor in situ, benthic temperature every 50 minutes at 85 locations 

for two years. Temperature variation on the reef was characterized using several 

summary indices related to coral thermal stress. Results show that stable, biologically 

significant temperature variation indeed exists at small scales and that depth, relative 

water flow, and substrate cover and type were not significant drivers of this variation. 

Instead, finer spatial and temporal scale advection processes at the benthic boundary 

layer are likely responsible. The implications for coral ecology and conservation are 

discussed. 

Introduction 

As one of the most biodiverse ecosystems in the world, coral reefs are generally 

limited to tropical, shallow waters and cover less than 0.1% of the Earth’s surface 

(Spalding & Grenfell 1997). Their restricted distribution, sessile adult stage, and narrow 

habitat preferences all point to corals as being vulnerable to global climate change and 

threatened by projected increases in sea temperature (Baker et al. 2008; Hoegh-Guldberg 

et al. 2007; Hughes et al. 2003). While corals, like many aquatic organisms, have 

physiological mechanisms for dealing with thermal stress (Brown et al. 2002; Shick & 

Dunlap 2002), the fact that they already inhabit waters that often are within a few degrees 

Celsius of their tolerance limits (Berkelmans & Oliver 1999; Jokiel & Brown 2004) 

underscores the scientific and conservation urgency to understand how global climate 

change will affect sea temperatures and how corals will respond. 
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A major response to thermal stress exhibited by corals is the phenomenon known 

as bleaching, whereby intracellular symbiotic algae, Symbiodinium spp., either leave or 

are expelled from the coral host. For corals, bleaching has been shown to result in 

decreased skeletal growth and reproductive output (Mendes & Woodley 2002), reduced 

resistance to disease (Ben Haim et al. 2003; Harvel et al. 1999; Lesser et al. 2007), as 

well as local extirpation and shifts in community composition (Burt et al. 2008; Sheppard 

& Obura 2005). While multiple environmental factors acting in concert result in 

bleaching (Brown 1997), thermal stress causing protein damage and disrupting 

photosynthetic reactions in Symbiodinium spp., has been implicated as the primary 

stressor in recent mass bleaching events (Warner et al. 1999; Jones et al. 1998). It is also 

the most important parameter in predicting when events will occur (Berkelmans 2002). 

One curiosity with regards to bleaching, however, is that it often appears as spatially 

patchy phenomena, such that bleached and unbleached corals of the same species can be 

found adjacent to one another on the same reef (Figure 2.1). Yet, despite observing 

variation among corals on the scale of a single reef, very little is known about how sea 

temperature may vary at the same scale. Thus, while the threat of climate change puts 

corals at risk on a global scale, their narrow range of environmental tolerance implies that 

habitat differences that exist on much smaller geographic scales may also prove to be 

biologically and ecologically significant. Indeed, one of the major challenges in 

understanding ecological processes is the quantification of physical and biological 

patterns at appropriate spatial scales (Fortin & Dale 2005). 

On large geographic scales, mass bleaching episodes have been shown to 

correlate with anomalously high sea surface temperatures (reviewed in Eakin & Lough 

2009). For example, the largest documented coral bleaching event occurred between mid-

1997 and the end of 1998 and affected reefs in the Caribbean, Mediterranean, Persian 

Gulf, Red Sea, Indian Ocean, and throughout the Pacific Ocean. This event coincided 

with elevated sea temperatures caused by a strong El Niño-Southern Oscillation 

(Berkelmans & Oliver 1999). Such macrogeographic scale (e.g., ocean basin wide) 

bleaching events have captured the interests of conservation scientists because they offer 

possible clues as to how reefs will be affected by widespread rising sea temperatures 

caused by global climate change. This interest, combined with technological advances in 
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satellite remote sensing of the marine environment (Mumby et al. 2004), has driven 

scientific focus towards studying these ecosystems on broad geographic scales. 

Unfortunately, while a macrogeographic approach may be appropriate for the prediction 

of mass bleaching events, it may also inadvertently obscure smaller-scale ecological 

processes affecting individual reef organisms that are equally important. 

Some attention has been turned to characterizing environmental variation among 

reefs and reef systems at a more regional scale (Marshall & Baird 2000). This has 

provided insight into explaining mesoscale (i.e., 10s–100s km) patterns of coral bleaching 

in the field. For example, experimental evidence shows that high and intermediate water 

flow environments can help to increase coral resistance to bleaching, presumably by 

increasing diffusion rates between the coral and external environment and thus, 

preventing the build up of toxic free radicals (Nakamura & van Woesik 2001). Some 

field studies, however, point to the opposite effect, whereby low water flow may expose 

corals to greater thermal fluctuations, possibly allowing them to acclimatize to 

temperature extremes (McClanahan et al. 2005; Castillo & Helmuth 2005). Other studies 

have shown that the thermal history of a reef (e.g., lagoon versus fringing reefs) may 

produce colonies better able to cope with high temperature stress (McClanahan et al. 

2005). These studies of regional variability highlight some of the myriad of factors 

contributing to bleaching and point to the need for additional data to tease apart multiple, 

bleaching-related environmental factors. From a conservation standpoint, investigating 

bleaching on a variety of spatial scales may help to identify individual reefs that have 

proven to be more resistant to bleaching. Prioritizing such reefs as marine reserves could 

be the best, preemptive strategy for protecting reefs in the face of global climate change 

(West & Salm 2003). 

Identifying processes that affect individual reef organisms within reefs, however, 

requires that microspatial (i.e., on the scale of meters or centimeters) environmental 

variation be measured. For example, despite the observation that corals of the same 

species separated by just a few centimeters can exhibit variable bleaching responses 

(Figure 2.1), sea temperature variation in the context of bleaching potential has largely 

been ignored at this spatial scale. Furthermore, laboratory methods, from which our 

current models of bleaching thresholds are derived, have primarily been limited to 
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prolonged, shock-based experiments that mimic the conditions of mass-bleaching 

episodes (Berkelmans & Oliver 1999; Warner et al. 1999; Jones et al. 1998). Rarely do 

these experiments take into account the temperature variability that corals are exposed to 

in situ. In addition, while numerous temperature indices have been described as good 

predictors of coral bleaching events (Winter et al. 1998), our understanding of 

temperature-sensitivity in corals has recently become more nuanced with the recognition 

that bleaching susceptibility may also be dependent upon the individual coral colony’s 

past environmental experience and recent thermal history (Brown 1997; Castillo & 

Helmuth 2005; Middlebrook et al. 2008). Thus, characterization of temperature variation 

as it relates to coral bleaching will require an investigation of not only spatial but 

temporal variation over a range of scales. 

Here, I present a spatiotemporal analysis of a two-year, in situ, microspatial scale 

dataset of benthic sea temperature variation in the context of coral bleaching on a single 

patch reef in Kāne‘ohe Bay, O‘ahu, Hawai‘i. While some studies suggest the possible 

existence of microspatial environmental variability on reefs—even as a potential 

mechanism for explaining spatial patterns of bleaching (Penin et al. 2007)—here, I 

describe such variation in detail. Our goal is not to implicate microspatial sea temperature 

variation as the sole or even primary mechanism by which patchy bleaching may occur, 

but instead, to investigate whether or not biologically relevant variation in temperature 

exists on small spatial scales across a reef. 

Materials & Methods 

Study site 

A circular, patch reef in Kāne‘ohe Bay, O‘ahu (Reef 19; 21.45767°N, 

157.80677°W) was selected for its accessibility (snorkeling depth between one and five 

meters), size (~40 m in diameter), and appropriateness to the spatial scale of interest. This 

reef is typical of the type of reefs found in Kāne‘ohe Bay as well as at some of the atolls 

of Northwestern Hawaiian Islands (e.g., Pearl and Hermes). Labeled reinforcing bars 

were placed at 2 m intervals, running north to south down the center of the reef, as well as 

at several points on the reef edge to be used as orientation markers during deployment 

and recovery of temperature data loggers (Figure 2.2).  
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Temperature data collection 

High-Resolution Thermochron iButton temperature and time data loggers (model 

DS1921H; Maxim Integrated Products, Inc., Sunnyvale, CA, USA) were used to monitor 

spatiotemporal temperature at the study site. The iButton has a manufacturer-specified 

temperature range of 15°C to 46°C, an accuracy of +1°C, a resolution of 0.125°C, and a 

lifetime of seven to eight years (when used in 20°C–30°C environments and at a 

sampling rate of 10 minutes). 

A total of 85 sites, situated 4 m apart in a grid pattern, were monitored for 

temperature (Figure 2.2). The loggers were waterproofed using liquid electrical tape and 

secured to the benthic substrate—rock, sand, rubble, or dead coral—using either an 

aluminum wire or nail. Before each deployment, all loggers were time-synchronized and 

programmed to begin to take temperature readings simultaneously at a user-defined time 

delay and sampling rate. Each logger is capable of storing 2048 temperature readings 

after which, data must be downloaded and cleared from memory before redeployment. 

Thus, loggers were collected every two to eight weeks and replaced with newly 

programmed loggers to ensure a virtually continuous time series. Due to the need to 

redeploy loggers on a regular basis throughout the study period, small gaps in the 

temperature time series were inevitably created. In order to minimize the duration of 

these time series gaps, the reef was divided into a western and eastern half, and loggers 

from each half were set to different redeployment schedules. As a result, time series gaps 

due to redeployments only lasted between one and four hours (i.e., from 1 to ~5 

readings). Two other sources of time series gaps in the data resulted from (1) data 

saturation of the loggers occurring in situ before they could be replaced and (2) when 

individual loggers were lost or damaged during deployment. 

Before their first deployment, all loggers were calibrated at room temperature for 

at least 24 hours by placing them in a sealed plastic container, free from air circulation. 

To account for any systematic logger-to-logger differences, I determined a calibration 

coefficient for each logger by dividing the individual logger’s average calibration 

temperature by the global average temperature over all loggers. Field-recorded 

temperatures then, were adjusted by multiplying the raw temperature by the logger-

specific calibration coefficient. As loggers were lost in the field, new loggers were 
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calibrated in batches as described above on an as-needed basis. Midstudy and poststudy 

calibration tests also were conducted on loggers that had previously been deployed. 

Furthermore, each logger has an internal counter that tallies the total number of sampled 

points it has recorded over its lifetime. This data was used to determine if there was any 

significant drift in the loggers’ measurements over the course of the study period. 

Temperature recordings began in June 2007 for the western-half and October 

2007 for the eastern-half of the reef and continued until October 2009. Initially, the 

sampling rate was set to 25 minutes (June 2007 to July 2008 for the western-half and 

October 2007 to May 2008 for the eastern-half). Subsequently, and for the remainder of 

the study period, the sampling interval was increased to 50 minutes to allow for longer 

deployments and greater flexibility in the logger redeployment schedule. 

Other environmental variables 

Depth, relative water flow, and substrate type and cover were measured for each 

of the 85 monitoring sites as potential explanatory variables to be used in modeling 

spatial variation in temperature. For the shallow portions of the reef, a metric-labeled 

PVC pipe and a bubble level were used to measure depth. A standard dive computer 

depth gauge (IQ700, Tabata Co., Ltd., Tokyo, Japan) was calibrated using a pressurized 

instrument test chamber with 0.25% accuracy to 90 m of sea water (no. 48310, Global 

Manufacturing Company, West Allis, WI, USA) and used to measure the deeper portions 

of the reef. 

To obtain estimates of relative water flow, half-sphere casts of plaster of Paris 

(100 mL of water per 250 mg of calcium sulfate hemihydrate) were deployed at each 

temperature-monitoring site and allowed to dissolve. This “clod card” approach 

(Thompson & Glenn 1994), although limited, is an elegant field method that provides 

time-averaged measurements of multidirectional, water flow. Clod cards were deployed 

on the reef for several days on each of two occasions (October 2009 and May 2010). The 

mass of each clod card was weighed before and after deployment in the field, and the 

percent loss in mass due to dissolution, averaged between the two deployments, was used 

as a measure of relative water flow between sites. 

Finally, characterizing benthic coverage was accomplished by taking digital 

photographs of 30 cm X 30 cm quadrats centered at each temperature-monitoring site. 
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The program CPCe (Kohler & Gill 2006) was used to generate 90, spatially stratified 

random points on each photograph and to calculate percent coverage statistics at each 

location. There were four major benthic cover categories: coral, macroalgae, other 

substrates (e.g., dead coral, rubble, or sand), and miscellaneous (Table 2.1). Each 

category was subdivided into subcategories along taxonomic lines or substrate 

composition (Table 2.1). The two miscellaneous subcategories were other invertebrates 

(OINV), which primarily consisted of sponges and feather duster worms (Sabellastarte 

spectabilis), and “unknown” (UNK) for substrates that could not be identified. A 

Shannon diversity index was calculated for each temperature-monitoring site. 

Data analysis 

All spatiotemporal analyses of temperature variation were accomplished using the 

open source computer programming languages, Python (Python Software Foundation, 

http://www.python.org/) and R (R Development Core Team, http://www.R-project.org/). 

After logger calibration, the time series data for each monitoring site was smoothed by 

calculating the average hourly temperature. This created a more consistent dataset since 

the data consisted of both the initial 25- and subsequent 50-minute sampling intervals. In 

addition, this allowed for a simpler comparison of eastern versus western reef data 

loggers, which were not time-synchronized to each other due to different deployment 

schedules. Since temperature generally remained stable over the course of several hours 

(within the 0.125°C resolution of the iButton data loggers), it is unlikely that small-scale 

temporal variation is being lost as a result of smoothing. 

Fourier transforms were used to decompose time series data into a linear 

combination of sinusoids each representing different frequencies present in the original 

signal (Shumway & Storfer 2006). There were a total of 15 monitoring sites that had 

complete time series datasets (see Results for details), thus making it possible to 

investigate the various periodicities of temperature variation and compare across sites. 

Before spectral analysis, each dataset was detrended (i.e., linear trend and mean removed) 

and smoothed by twice applying a modified Daniell kernel (bandwidth [L/n] = 0.000689; 

Shumway & Storfer 2006). The resulting time series was then used to perform a Fourier 

Transform and create a scaled periodogram. The periodogram can be regarded as a 

measure of the squared correlation between the original time series data and sinusoids 
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oscillating at all possible frequencies between 0.0 and 0.5 (here, frequency represents 

cycles per hour). The powers of the dominant frequencies as well as the 95% confidence 

intervals associated with each frequency were calculated. Furthermore, the same 

calculations described above were performed on a time series of standard deviation 

across all monitoring sites. Finally, to increase the resolution at low frequencies (i.e., 

between seasonal and diurnal periods), spectral analysis was repeated after daily 

averaging both the mean temperature and standard deviation across all monitoring sites. 

Since the goal is to look for biologically relevant temperature variation, a series of 

temperature indices were developed to encompass one or more of the following 

temperature characteristics that have previously been implicated as potential thermal 

stress indicators in corals: (1) absolute temperature stress (e.g., temperature above some 

threshold), (2) duration at a particular temperature or cumulative stress, and (3) 

temperature variability or rate of change in temperature. In addition, some of the analyses 

performed here were modeled after techniques developed by the National Oceanic and 

Atmospheric Administration as part of Coral Reef Watch’s satellite observation and coral 

bleaching monitoring program. Two products developed by them—Hotspots and Degree 

Heating Weeks (Gleeson & Strong 1995)—were modified slightly in my analysis. I 

define relative Hot- and Coldspots as any monitoring site whose temperature is more than 

one standard deviation above or below, respectively, the average temperature for the 

entire reef at a given hour. I define relative Hot- and Coldhours for each site as any hour 

the temperature is one standard deviation above or below, respectively, the average 

temperature experienced at that particular location in the past twelve hours. Twelve hours 

were chosen because this was the smallest cyclical period of temperature variation 

indicated in the spectral analysis. Thus, relative Hot- and Coldspots are based on spatially 

averaged temperatures, while relative Hot- and Coldhours are based on site-specific 

temporally averaged temperatures. The number of times that each site was a Hot- or 

Coldspot or a Hot- or Coldhour was tallied and normalized by the total number of logged 

hours for that site. Furthermore, the dataset was truncated to exactly two years (31 

October 2007 to 31 October 2009) to minimize any seasonal bias by avoiding the pre-

October 2007 (i.e., summer) data. 

The approach described above of summarizing temperature variation over two 
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years effectively obscures my ability to look for temporal variation. Thus, to assess 

temporal variation, the Hot- and Coldspot and Hot- and Coldhour analyses were repeated 

for the following seasonal subsets: Winter 2007 (22 November 2007 to 13 January 2008), 

Summer 2008 (13 June 2008 to 13 August 2008), Winter 2008 (22 November 2008 to 13 

January 2009), and Summer 2009 (13 June 2009 to 13 August 2009). Sites whose loggers 

were lost or broken during these seasonal data subsets were excluded from subsequent 

analysis and small, redeployment gaps linearly interpolated. In addition, the seasonal 

subsets were used in calculating average daily maximum and minimum temperatures, 

average daily temperature ranges, as well as overall average temperature. 

Finally, the Degree Heating Hours (DHHs in units of °C-hour) were used to 

simultaneously characterize both the duration and intensity of heating. DHHs are 

calculated by tallying the number of hour equivalents the temperature at a site exceeds 

the maximum monthly mean (MMM) sea surface temperature of 27°C (as defined for 

Hawai‘i by Coral Reef Watch’s Degree Heating Weeks Index; 

http://www.osdpd.noaa.gov/ml/ocean/cb/virtual_stations.html). Thus, for example, 2°C-

hours are equivalent to two hours at 28°C or one hour at 29°C. The number of DHHs was 

summed per monitoring site for Summer 2008 and Summer 2009. 

Overall, there were a total of 9 temperature indices: Hotspot, Coldspot, Hothour, 

and Coldhour (two-year and four seasonal subdatasets); overall, daily minimum, daily 

maximum, and daily range temperature averages (four seasonal subdatasets); DHHs 

(Summer 2008 and Summer 2009). 

Ordinary kriging using gstat (Pebesma & Wesseling 1998), an extension package 

of R, was used to create spatially interpolated maps of the various temperature summary 

indices and environmental predictors. Kriging is a geostatistical spatial interpolation 

method that models the relationship between distance and variance of sampled points to 

predict values at unsampled locations. Depth, water flow, and benthic coverage data were 

tested for correlation with each temperature summary index using Dutilleul’s modified t-

test. The modification corrects for spatial autocorrelation in the data by adjusting the 

variance of the test statistic as well as the degrees of freedom. This correction is 

necessary because tests of significance using an unmodified t-test are subject to inflated 

rates of type I error when both the response and explanatory variables are spatially 
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autocorrelated (Legendre et al. 2002). 

Furthermore, in order to explain spatial variation in each temperature summary 

index, spatial filters were generated by performing principal coordinates of neighbor 

matrices analysis (PCNM, also known as spatial eigenvector mapping or SEVM) on the 

distance matrix of the temperature monitoring sites. The resulting eigenvectors serve as 

spatial descriptors of the temperature monitoring sites (Borcard et al. 2004). Finally, the 

eigenvector-based spatial filters that were statistically significant at a P < 0.1 level were 

used, along with the potential explanatory environmental variables as part of a partial 

regression model in determining the relative contributions of pure environmental, pure 

spatial, and shared (i.e., environmental and spatial) variation in explaining temperature 

variation on the reef. Incorporating location as an explanatory variable in the partial 

regression model also reduces or eliminates spatial autocorrelation among the residuals, 

thus minimizing type I error rates. For each of the temperature summary indices, five 

models were tested: (1) a regression of the temperature summary index on depth, (2) 

temperature on location, (3) temperature on depth and location, (4) temperature on depth 

and substrate, and (5) temperature on depth, location, and substrate. Models were chosen 

based on minimizing Akaike’s Information Criterion. Both the principal coordinates and 

the partial regression analyses were performed in the computer program, Spatial Analysis 

in Macroecology (SAM, ver. 3.1; Rangel et al. 2006). 

Results 

Calibration data 

Over the course of the study period, a total of 201 loggers, or approximately 

16.5% of the data, were lost in the field. For any given location on the reef, the percent of 

missing data (not including saturation or redeployment gaps) ranged from 0.3% to 49.1%. 

Fifteen of the sites, however, had only 0.3% missing data entirely due to the unavoidable 

gaps during redeployment and are considered to be complete data sets. 

Calibration tests revealed that among logger variation in recorded temperatures 

ranged from 0.79 to 1.35°C (  = 0.80°C) and calibration coefficients ranged from 

0.97868 to 1.01991 (  = 1.00004). Comparing pre-, mid-, and poststudy calibration tests 

showed that the mean change in calibration coefficients across 171 possible comparisons 

was 0.00021, indicating that loggers did not show significant drift in their calibration 
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coefficients. A linear regression, however, indicated a small but significant relationship 

between the magnitude of the change in calibration coefficient (i.e., with no regard to the 

direction of change) and the number of sampled points between calibration tests (r2 = 

0.03; P < 0.05). The amount of change, however, is negligible with a regression slope of 

2.666 X 10-8. Thus, the maximum possible calibration drift a logger could have 

experienced (i.e., 10 data-saturated deployments with 2048 sampled points per 

deployment) would be 0.00287. To put this into perspective, using the maximum 

observed calibration coefficient of 1.01991, the difference in pre- and postdrift 

calibration of a 25°C raw data point would only be 0.07°C. Therefore, drift can be safely 

ignored. 

Spectral analysis 

Figure 2.3 shows the temperature time series, averaged daily and across all 

monitoring sites, with shaded bars indicating the various data subsets used in creating the 

temperature summary indices described above. Figure 2.4 shows a representative scaled 

periodogram for the hourly averaged temperature time series at a single monitoring site. 

The periodograms point to five dominant frequencies corresponding to both solar- and 

lunar-driven periodicities: seasonal (365 days), principal lunar diurnal or O1 (24.83 

hours), principal solar diurnal or P1 (24 hours), principal lunar semidiurnal or M2 (12.42 

hours), and principal solar semidiurnal or S2 (12 hours). Peaks at eight- and six-hour 

periods (between 0.1 and 0.2 cycles per hour) most likely are harmonics of the principal 

lunar (O1) and solar diurnal (P1) components. Most notable, an expected ~28 day lunar 

monthly periodicity (between the seasonal and O1 peaks) is not present. Repeating the 

spectral analysis for the daily averaged temperature across all monitoring sites revealed 

no additional periodicities. Furthermore, comparing the periodograms for each of the 15 

monitoring sites with complete time series datasets revealed that the relative distribution 

of power over the major driving periodicities was the same across the reef (seasonal 

signal P1 >> S2 >> O1 > M2). Finally, the scaled periodogram for the hourly standard 

deviation time series revealed the same five periodicities as well as an additional 

periodicity at 2.5 hours (frequency = 0.4 cycles per hour; see Figure 1S in APPENDIX A) 

Smoothing by calculating daily averages, as above, failed to reveal additional 

periodicities. 
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Modeling spatial variation 

Ordinary kriging interpolation of depth (Figure 2.2) shows a smooth transition 

from the center, shallow areas of the reef to the outer, deeper areas and, as such, can be 

regarded as a representation of the reef’s bathymetry. The map of water flow shows 

broad similarities with depth such that high and low relative flows correspond to shallow 

and deep sites, respectively (Figure 2.5A). In fact, depth also correlated with many of the 

substrate variables (discussed below). On the other hand, maps for the various 

temperature summary indices ranged from being visually consistent with depth, such as 

the proportion of time spent as a Coldhour and Winter 2008 range in daily temperature 

(Figures 2AS and 2BS in APPENDIX!A), to being strikingly patchy as is seen for the 

proportion of time spent as a relative Hotspot and Summer 2008 DHHs (Figures 2.5B and 

2.5C, respectively). 

Tukey boxplots of the temperature summary indices reveal considerable 

microspatial temperature variation on the patch reef. For example, sites ranged from 

spending 0% to nearly 60% of the two years of temperature monitoring as a relative 

Hotspot (Figure 2.6A). In addition to the expected temporal variation seen in average 

daily minimum and maximum temperatures (Figure 3S in APPENDIX A), the boxplots also 

indicate seasonal and annual variation with regards to Hothours and Coldhours (Figure 

4S in APPENDIX A), with a greater proportion of time being spent as a Hothour or 

Coldhour in the summer as opposed to the winter months (Figures 4S in APPENDIX A). 

Finally, Summer 2008 resulted in a considerably larger number of DHHs as compared to 

Summer 2009 (Figure 2.6B). 

Spatial correlation analyses of substrate type using Dutilleul’s modified t-test 

revealed that depth was significantly correlated (P < 0.1) with PCO, EKSP, RUB, SAN, 

and OINV (Table 1S in APPENDIX A). In addition, depth correlated with all coral (all 

subcategories combined) and all macroalgae (all subcategories combined). Variables that 

correlated significantly with depth were excluded from the PCNM and partial regression 

analyses to avoid colinearity among variables. The results of the partial regression 

analyses—reported as the percent of variation explained by location, environment (i.e., 

depth and/or substrate), and shared environment and location—can be found in Table 2S 

(APPENDIX A). For each temperature summary index, only the best model (i.e., the one 
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with the lowest AIC value) is reported. Thus, if a standard linear regression model (i.e., 

models with no shared component) fits better than a partial regression model (i.e., models 

that include a shared environmental and location component), then only the standard 

linear regression model is reported. Among the competing models, location, as described 

by the PCNM-generated eigenvector filters, was a component of the best model in 35 out 

of the 38 temperature index regressions and was the dominant (i.e., greatest explanatory 

power) component in 25 (Table 2S in APPENDIX A). The percent of temperature variation 

explained by purely spatial factors ranged from 4.6% to 48.9% (Table 2S in APPENDIX A). 

On the other hand, environmental variables (i.e., depth, substrate, etc.) were included in 

the model for 22 regressions (Table 2S in APPENDIX A). Compared with location, 

environmental variables had a much greater range in explanatory power (from 2.3% to 

75.5%) when comparing across temperature datasets, but was a dominant component 

only five times (Table 2S in APPENDIX A). Finally, while depth was always included 

among the 22 regressions with environmental variables, AIC-based model comparisons 

only included substrate as part of the best model for two temperature summaries: DHHs 

and average daily temperature range for Summer 2009. 

Discussion 

Temperature variation in time and space 

It is often stated that the environment is neither perfectly regular nor entirely 

random and that spatial patterns are, therefore, a common characteristic of the natural 

world (Legendre & Fortin 1989). Visual inspection of the spatially interpolated maps of 

water flow, depth, and by extension, most substrate variables, which correlated 

significantly with depth, reveal that my choice of environmental variables cannot by 

themselves account for the observed variation in temperature across the reef. 

Furthermore, results from the regression analyses indicate that location was the most 

ubiquitous statistically significant explanatory variable and, when compared to the 

environmental variables, was more commonly found to be the dominant component. 

Thus, location was the most important explanatory variable in accounting for temperature 

variation at the spatial scale of this study. To many, my finding that location was a 

significant predictor of observed temperature will not be surprising. What is unexpected, 

however, is how the explanatory power of location compared with that of the other 
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environmental variables were tested. Depth, water flow, and substrate were chosen 

specifically because they incorporate one or several processes and characteristics that 

should affect benthic sea temperature (i.e., advection, insolation, light absorption and 

reflection of the substrate, etc.). Yet, most of the temperature summary indices were not 

significantly predicted by these environmental explanatory variables or, when they were 

included in the model, were only a small fraction. In other words, these results indicate 

that at microspatial scales, two locations as little as 4 m apart on a reef may have similar 

depth, water flow, and substrate coverage and yet still exhibit different temperature 

profiles. Conversely, two locations that differ with respect to depth, water flow, and 

substrate coverage may in fact have very similar temperature profiles. Thus, while 

temperature variation at large spatial scales might be explained by certain intuitive 

environmental variables, the importance of these variables at much smaller spatial scales 

is diminished and in fact eclipsed by microspatial considerations. 

It is important to note, however, that even though the calibrations applied were 

small (i.e., no more than 0.07°C), calibration can only correct any systematic bias 

present. The reported accuracy of the loggers is +1.0°C, and it is possible that some of the 

among site temperature differences that were found were due to poor logger accuracy. 

This is unlikely to be a major factor because all sites had at least two different loggers 

due to alternating deployments and logger loss. It is also difficult to imagine a stochastic 

process favoring specific sites and asymmetrically erring either too high or too low for 

long periods of time (e.g., up to 60% of the two-year recording period for the relative 

Hotspot analysis). The absolute temperature also is unimportant to many of my 

temperature indices because they are relative measures. If spatially patchy temperature 

variation were being caused by stochastic, among logger inaccuracies, one would expect 

all of my temperature indices to be affected equally by this. Each temperature index, 

however, exhibited distinct overall spatial patterns, with some indices (e.g., Coldhour and 

Winter 2008 range in daily temperature; Figures 2AS and 2BS in APPENDIX A, 

respectively) even exhibiting nonpatchy patterns. 

Although I present data from only a single reef, I have no reason to suspect that 

these findings are particular to my field site. Overall diversity and coral cover vary from 

reef to reef in Kāne‘ohe Bay (as elsewhere), but the monitored reef is typical of what is 
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found in the bay and at some of the atolls in the Northwestern Hawaiian Islands. It is 

located in the center of the bay and does not appear to be uniquely influenced by external 

inputs (e.g., river outflow, oceanic currents, etc.). Even so, further testing on other reefs is 

necessary to indicate how universal these results are. 

Interpreting location as an explanatory variable can be abstract. Environmental 

variables themselves have an inherent spatial structure, which is why in a partial 

regression analysis, there is a distinction made between pure environment, pure location, 

and shared environment and location components. In other words, the pure location 

component is separate from the common spatial structure that is shared by the 

environment and response variable (i.e., the shared environment and location 

component). This does not exclude the possibility, however, that the pure location 

component in my analysis is comprised of other environmental features that were not 

captured by my choice of explanatory variables (Borcard et al. 2004). It is also possible 

that my choice of environmental variables is sound, but that the spatiotemporal scale at 

which they were measured was too large, and thus, limited their explanatory power. This 

is most likely to be true for my measurement of water flow, since relative depth and 

substrate cover measurements are less likely to significantly change at finer 

spatiotemporal scales. That location helps to explain sea temperature variation at a 

microspatial scale simply means that locations that are close together in space have more 

similar temperature characteristics than points farther apart. Thus, the most parsimonious 

explanation here is that location, in this study, likely refers to microscale water flow 

processes that were not captured by the clod card measurements. 

Relative water flow was negatively correlated with depth (high flow in the 

shallow portions of the reef and low flow in the deeper portions)—a pattern that is 

consistent with the decay of oscillatory wave-driven flow with increasing depth. Water 

flow in the benthic boundary layer, or the layer of water at which flow is influenced by 

reef structure (Shashar et al. 1996), can be very different from wave- or tide-driven flow 

seen in the water column in terms of direction and magnitude as well as net transport, and 

these microscale differences can be lost as a result of time-averaging (Koehl & Hadfield 

2004; Reidenbach et al. 2007). Thus, finer-scale processes (spatial or temporal) not 

captured by clod card measurements should not be excluded as a driver of temperature 
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variation at this scale. For example, water flow velocity influences the thickness of the 

coral thermal boundary layer, which in turn influences the rate of heat transfer between 

the substrate and the surrounding water (Jimenez et al. 2008). Coral pigmentation can 

also affect temperature such that darker-pigmented corals experience greater 

temperatures, but the effect is mediated by differences in water flow (Fabricius 2006). 

Furthermore, temporally stable temperature variation, such as that observed in this study, 

points to the possible influence of reef bathymetry in channeling warm or cold water 

across a reef (e.g., from internal waves; Leichter et al. 2005). Finally, small-scale 

temperature heterogeneity may be influenced by the movement of water into and through 

the interstitial structure of whole reefs, as evidenced by dye transport experiments 

(Koehl, Cooper, and Hadfield, unpublished data). All of these studies suggest that fine-

scale water flow heterogeneity could be a potential driver of fine-scale temperature 

heterogeneity. That the observed temperature differences could not be explained by 

wave-driven water flow as measured by clod cards highlights the need for future research 

to focus on even finer spatial and temporal scale flow patterns across reefs in explaining 

microspatial temperature variation at the benthos. 

The results of spectral analysis also lend insight into the temporal scale of the 

processes that are driving temperature variation. Scaled periodograms of the 15 

monitoring sites with complete time series datasets reveal the same power distribution 

pattern across the same lunar- and solar-associated periodicities. This suggests that large 

temporal scale processes such as tides are not causing the observed temperature 

difference among sites. Interestingly, in addition to the lunar- and solar-associated 

signals, the periodogram for the time series of standard deviation of temperature data 

revealed a high frequency peak at 0.4 cycles per hour corresponding to 2.5-hour 

periodicity. Unfortunately, it is beyond the scope of this study to identify the specific 

processes involved, but other studies have pointed to high-frequency internal waves and 

internal tides as being potential drivers of high-frequency, subsurface temperature 

variation (Leichter et al. 2005; Leichter et al. 2006). 

If depth, relative water flow, and substrate composition are not significant 

predictors of temperature variation within a single coral reef, then what is? These results 

suggest that benthic temperature differences on microspatial scales are likely due to finer 
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spatial and temporal scale advection processes. Specifically, these advection processes 

are on a spatial scale finer than oscillatory wave-driven flow and a temporal scale finer 

than tide-associated frequencies. Furthermore, my finding that biologically significant, 

benthic temperature variation exists on a microspatial scale demonstrates the need for 

future research to further explore the physical drivers of this variation as well as its 

ecological significance for benthic organisms. 

Implications for corals 

Since the 1970s, research on coral reef ecosystems has been shifting from small-

scale research focused on ecological processes (e.g., competition and herbivory) to large-

scale conservation and management driven research. This expansion in spatial scale was 

also accompanied by a paradigm shift, from one that viewed coral reefs as stable 

ecosystems to one that began to emphasize the vulnerability and decline of coral reefs 

due to a host of environmental stressors (Mumby & Steneck 2008). As our understanding 

of coral reefs progresses, it is important to acknowledge the rapid pace of these shifts and 

consider the possibility that coral reef scientists may have been pushed to scale up 

prematurely, obscuring the importance of ecological processes that may be occurring 

more locally and creating a knowledge gap in our understanding of these threatened 

ecosystems. It should be acknowledged, however, that high-density studies at much 

smaller geographical scales may involve a considerable amount of effort and expense and 

in some cases prohibitively so. It also is important to note that reliable, accurate data 

loggers for other important and interesting parameters (salinity, current, irradiance, etc.), 

which are necessary for this type of study, often do not exist. Even so, it is clear from this 

study that even reasonable outputs of money and effort can result in interesting and 

unexpected findings and deepen our understanding of coral reefs. 

This study demonstrated the existence of microscale temperature heterogeneity on 

a single patch reef based on temperature summary indices that were developed 

specifically to investigate different aspects (e.g., absolute temperature, duration of 

temperature, and temperature variability) of coral thermal stress. But what relevance do 

microscale studies have in helping conservationists to better understand coral biology? 

For example, remotely sensed sea surface temperature (SST) data have been crucial to 

providing the first evidence of thermal stress as a primary environmental driver of 
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bleaching. Even so, satellite-derived SST data are spatially and temporally averaged and 

are based on the reflective properties of just the top few mm of the water column. They 

therefore do not reflect thermal stress levels experienced by individual coral colonies 

(Manzello et al. 2009).  

As mentioned above, our current understanding of coral bleaching thresholds are 

based on either correlations between macrogeographic bleaching episodes and SST data 

or on laboratory-based experiments that ignore the actual temperature variability 

experienced by corals in situ. The former hides finer-scale variability that may be 

important for refining our bleaching models, while the latter suffers from temporal 

isolation that may obscure the importance of long-term acclimatization of corals to 

environmental conditions. In both cases, in situ temperature data at the scale of the 

individual colony can provide the environmental context for interpreting results and 

gaining a more comprehensive understanding of the spatial heterogeneity seen in 

bleaching patterns and thresholds of thermal stress for coral. 

A full understanding of the spatial patterns of bleaching is further obscured by the 

biological complexity of the coral holobiont (a term used to describe the coral animal 

host, intracellular Symbiodinium spp., as well as associated bacterial and viral 

communities). For example, it is now well known that the genus Symbiodinium spp. is 

composed of several evolutionarily distinct clades and that these different clades have 

distinctive physiological tolerances and ecological roles (Baker 2003; Stat et al. 2008). 

The patchy distribution and zonation of Symbiodinium spp. have been implicated as a 

possible explanation for patchy bleaching (Rowan & Knowlton 1995; Rowan et al. 1997). 

Some evidence also points to the possibility that symbiont communities can be reshuffled 

after recovering from bleaching events to include more heat-tolerant clades (Baker et al. 

2001; Berkelmans & van Oppen 2006). Other studies, however, report stable algal 

symbiont communities before and after bleaching episodes (Goulet & Coffroth 2003) or 

after transplant experiments (Iglesias-Prieto et al. 2004). Some evidence has pointed to 

Symbiodinium spp. clade D to be heat tolerant (reviewed in Baker 2003), but as with our 

understanding of coral bleaching patterns, this conclusion is based on data following 

severe bleaching episodes. Uncovering finer-scale differences in the physiological roles 

and tolerances of the remaining Symbiodinium spp. clades may require a consideration of 



 31!

more finer temporal and spatial scale environmental differences. Nevertheless, what is 

clear is that there are other sources of small spatial scale or even individual-level 

variation on a reef. This study allows me to conclude that temperature variation can exist 

on the scale of meters and that this environmental heterogeneity is yet another source of 

individual-level variation that could explain why bleaching is patchy. My finding that a 

significant amount of temperature variation was not explained by depth also is consistent 

with the fact that patchy bleaching is not generally described as a depth-associated 

phenomenon. 

It is possible that temperature is acting as an organizing force at small spatial 

scales, influencing the distribution of individuals and species within a single reef. Thus, 

while climate change is a global-scale phenomenon, the appropriate spatial scale at which 

coral reefs should be managed to cope with this threat remains an open question and 

underscores the need for coral studies to proceed at multiple scales. As genetic or species 

diversity is thought to lend stability and resilience to communities (Hooper et al. 2005), 

habitat heterogeneity may likewise structure reefs in ways that increase their ability to 

respond to climate change. In such a scenario, reefs that offer more intra-reef 

microhabitat heterogeneity may also harbor heterogeneous communities acclimated to a 

range of environmental conditions and might therefore be prioritized as marine reserves. 

Microspatial scale environmental heterogeneity is information that probably should be 

incorporated into evolving coral reef management strategies. This study demonstrates 

that while corals continue to be threatened on a global scale, integrating across multiple 

spatial scales is essential to understanding the ecological processes relevant to their 

survival.
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Table 2.1. Categories and abbreviations used in benthic characterization. 

Category! ! Abbreviation!

Coral! ! !

Porites(compressa( ! PCO!

Montipora(sp.( ! MSP!

Pocillopora(damicornis( ! PDA!

other!coral! ! OCOR!

Macroalgae! ! !

Dictyosphaeria!sp.! ! DSP!

Eucheuma!sp.!or!Kappaphycus!sp.! ! EKSP!

other!macroalgae! ! OMAC!

Other!substrate! ! !

dead!coral!with!algae! ! DCA!

recently!dead!coral! ! RDC!

rubble! ! RUB!

sand! ! SAN!

Miscellaneous! ! !

other!invertebrate! ! OINV!

unknown! ! UNK!
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Figure 2.1. Microspatial heterogeneity in degree of coral bleaching seen in Pocillopora 

sp. (photograph by K. Gorospe) (A) and P. meandrina (photograph by K. Tice) (B) on a 

reef at Kure Atoll, Hawai‘i. 
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Figure 2.2. Ordinary kriging interpolation of depth across the reef. Small black dots are 

the locations of 85 temperature data loggers. Red stars are the locations of rebar placed 

for orientation. Scale bar in the lower right is 4 meters. Green areas are shallow, and 

peach ones are deep. 
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Figure 2.3. Average time series for the entire temperature data set (June 2007 to October 2008). Dashed vertical lines indicate 

deployment days when temperature data loggers in the field were collected and replaced. Bars above graph indicate the two-year and 

seasonal subsets that were used in the analyses. 
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Figure 2.4. Fourier transform scaled periodogram of two years of temperature data at one monitoring site. Principal frequencies are 

marked with vertical, dashed lines and correspond to (from left to right) seasonal (365 days), lunar (O1, 25.82 hours), solar (P1, 24 

hours), lunar semidiurnal (M2, 12.42 hours), and solar semidiurnal (S2, 12 hours). Other peaks between 0.1 and 0.2 cycles per hour 

are likely echoes of O1 and P1. Scale bar in the upper right corner is the 95% confidence limit. 
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Figure 2.5. Ordinary kriging interpolation of water flow (A), percent of time spent as a 

relative Hotspot over two years (B), and number of Degree Heating Hours for Summer 

2008 (C). 
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Figure 2.6. Tukey boxplots of the seasonal and annual variation in the proportion of time 

spent as a relative Hotspot (A) and total Degree Heating Hours for Summer 2008 and 

2009 (B). The rectangle represents the interquartile range (i.e., the 25th percentile, 

median, and 75th percentile), the “whiskers” represent all values that are within 1.5 times 

the interquartile range, and the open circles represent outliers, defined as data points that 

lie outside the whiskers. Paired Welch’s -tests were used to test for statistically 

significant temperature differences between seasonal subdatasets. One-tailed tests were 

used for comparing winter versus summer or two-year versus summer or winter datasets. 

Two-tailed tests were used for comparing winter versus winter or summer versus summer 

datasets. 
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CHAPTER 3. GENETIC RELATEDNESS DOES NOT RETAIN SPATIAL 

PATTERN ACROSS MULTIPLE SPATIAL SCALES: DISPERSAL AND 

COLONIZATION IN THE CORAL, POCILLOPORA DAMICORNIS 

 

Everything is related to everything else, but near things are more related than distant 

things: Tobler’s first law of geography (Tobler 1970) 

 

Abstract 

Patterns of isolation-by-distance are uncommon in coral populations.  Here, I 

depart from historical trends of large-scale, geographic genetic analyses by scaling down 

to a single patch reef in Kāne‘ohe Bay, Hawai‘i, and map and genotype all colonies of the 

coral, Pocillopora damicornis.  Six polymorphic microsatellite loci were used to assess 

population genetic and clonal structure and to calculate individual colony pairwise 

relatedness values. My results point to an inbred, highly clonal reef (between 53 and 116 

clonal lineages out of 2352 genotyped colonies) with a very skewed genet frequency 

distribution (over 70% of the reef was composed of just seven genotypes).  Spatial 

autocorrelation analyses revealed that corals found close together on the reef were more 

genetically related than corals further apart.  Spatial genetic structure disappears, 

however, as spatial scale increases and then becomes negative at the largest distances.  

Stratified, random sampling of three neighboring reefs confirms that reefs are 

demographically open and inter-reef genetic structuring was not detected.  Attributing 

process to pattern in corals is complicated by their mixed reproductive strategies. 

Separate autocorrelation analyses, however, show that the spatial distribution of both 

clones and non-clones contribute to spatial genetic structure. Overall, I demonstrate 

genetic structure on an intra-reef scale and genetic panmixia on an inter-reef scale 

indicating that, for P. damicornis, the effect of small- and large-scale dispersal processes 

on genetic diversity are not the same. By starting from an inter-individual, intra-reef level 

before scaling up to an inter-reef level, this study demonstrates that isolation-by-distance 

patterns for the coral P. damicornis are limited to small scales and highlights the 

importance of investigating genetic patterns and ecological processes at multiple scales. 
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Introduction 

Scale is of central concern in ecology because it sets the spatial and temporal 

context of the natural phenomenon being described (Wiens 1989; Levin 1992) . The 

importance of scale can be illustrated by the phenomenon of coral bleaching whereby 

corals and the symbiotic algae from which they derive most of their nutrients become 

decoupled.  On a large-scale, mass-bleaching events affecting whole reefs and atolls can 

be explained by large-scale (e.g., ocean basin wide) elevated sea temperatures.  On a 

smaller scale (e.g. meters or centimeters), however, bleaching can manifest itself as a 

patchy phenomenon, affecting some colonies on a reef but not others.  Explanations of 

small scale bleaching, therefore, cannot be based on large-scale measurements of sea 

temperature increase, but instead require a reassessment of biological and environmental 

variation that might also occur at small scales (Gorospe & Karl 2011).  The issue of scale 

originates from the fact that patterns and processes observed on one scale do not 

necessarily hold at other scales. 

Ultimately, the potential to relate processes occurring on different spatial or 

temporal scales is what allows scientists to integrate across seemingly separate 

disciplines, arguably making scale a “fundamental conceptual problem in ecology, if not 

in all of science” (Wiens 1989; Levin 1992).  In molecular ecology and evolution, the 

issue of scale has primarily been viewed in a temporal context whereby ecological and 

evolutionary time scales are bridged by employing molecular markers with different rates 

of evolution, thus allowing for varying degrees of genetic resolution between related 

individuals, populations, and taxa. Alternatively, spatial scale is addressed in genetic 

studies mostly in terms of isolation-by-distance analyses between populations using 

sample estimates of parameters (e.g., allele frequencies). Analyses that bridge across 

multiple spatial scales and that use spatially explicit data (i.e., spatial coordinates and 

genotypes of individuals), however, also have tremendous potential for explaining spatial 

patterns of genetic diversity (Storfer et al. 2007). As molecular ecologists set out to 

describe patterns in nature, it is important that their data be spatially contextualized just 

as with any other ecological variable. 

Patterns of neutral genetic diversity typically are explained by processes of 

mutation, migration and drift, such that populations that are geographically distant are 
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genetically more differentiated than populations that are geographically proximate (i.e., 

Tobler’s first law of geography).  Although this pattern should hold equally well for 

corals, it appears to be an elusive one to capture empirically (Adjeroud & Tsuchiya 1999; 

Ayre & Hughes 2000; Magalon et al. 2005; Baums et al. 2006; Severance & Karl 2006; 

Souter et al. 2009; however, see Polato et al. 2010). Instead, these studies and many other 

studies of marine organisms (e.g., Selkoe et al. 2010 and references therein) reveal a 

genetic patchiness, such that connectivity among populations is anisotropic (i.e., 

geographically asymmetric) or stochastic. The uncoupling of the correlation between 

genetic and geographic distances is what I coin here as the coral population genetic 

paradox. Explanations for this paradox have ranged from an examination of local 

oceanographic anomalies that may alter the expected pattern of gene flow (Baums et al. 

2006; Severance & Karl 2006) to speculation on historical, ecological events, such as 

widespread bleaching and local extirpation or recruitment history, that could undo the 

evolutionary equilibrium required to make inferences about spatial patterns in gene 

dispersal (Magalon et al. 2005; Maier et al. 2005).  

As we look for patterns in population genetic differentiation, however, the 

specific process driving these patterns may change depending on the spatial scale under 

consideration. This contrasts with recent trends in the coral population genetic literature 

that implicitly assume genetic differentiation to be patterned by larval dispersal processes 

at all spatial scales and require ad hoc explanations for instances when the data do not 

support these assumptions.  Here, I emphasize that causative processes that generate 

patterns of genetic differentiation may not necessarily bridge across spatial scales and 

suggest that coral population geneticists may, in fact, be scaling up too broadly in their 

attempt to attribute pattern to process. In other words, observed spatial inconsistencies in 

patterns of genetic differentiation may be due to inappropriately attributing processes that 

operate at one spatial scale to patterns that are produced on a different spatial scale.  I 

think a logical strategy to address this, therefore, would be to first consider coral genetic 

diversity on a small scale (i.e., intra-reef scale) before scaling up to broader scales (i.e., 

inter-reef and beyond). 

 The ability to characterize spatial genetic patterns is enhanced by using the 

individual (defined here as a physically-discrete, coral colony) as the fundamental unit of 
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focus and not the sample (i.e., collection of individuals from a single geographical 

location).  Doing so allows me to address how genetic patterns may differ between 

individual colonies.  For example, what contributions, if any, do clonal versus non-clonal 

coral colonies have on spatial genetic patterns?  On what spatial scale or scales are these 

patterns found?  Another advantage of assessing individual as opposed to population 

data, is a more unbiased description of spatial genetic structure (SGS) without having to a 

priori decide the boundaries of populations, as has often been done in population genetic 

analyses (Heywood 1991; Manel et al. 2003; Karl et al. 2012). To provide a 

comprehensive description of both clonal structure and spatial genetic patterns, I near 

exhaustively sampled and mapped all coral individuals within a single patch reef.  

Here, I present a small-scale spatial analysis of genetic relatedness of the widely-

studied, cosmopolitan coral, Pocillopora damicornis. Some of the first studies of fine-

scale coral population genetics were pioneered using allozyme markers on this species 

(e.g., Stoddart 1983a; Benzie et al. 1995). Interest in P. damicornis has been perpetuated 

by the apparent geographic variation in genetic diversity reported throughout its range 

(Stoddart 1984; Benzie et al. 1995; Ayre et al. 1997; Adjeroud & Tsuchiya 1999; Miller 

& Ayre 2004; Sherman et al. 2006; Whitaker 2006; Yeoh & Dai 2009; Starger et al. 

2010). P. damicornis also was one of the first species to reveal inconsistencies in the 

relationship between geographic and genetic distances (Stoddart 1984). Furthermore, the 

use of allozymes in these previous studies apparently does not appear to be the root cause 

of these inconsistencies, as subsequent development of microsatellite markers for P. 

damicornis (Starger et al. 2008) did not resolve the coral population genetic paradox for 

this species (e.g., Souter et al. 2009). Other studies have found strong genetic 

differentiation at small (10 km) (Miller & Ayre 2004) as well as large (900 km) scales 

(Whitaker 2006), but genetic distance did not appear to scale with geographic distance, 

thus limiting the ability to make generalizations regarding spatial genetic patterns from 

the literature. Production of asexual planulae (Stoddart 1983a; Adjeroud & Tsuchiya 

1999; Yeoh & Dai 2009) and their limited dispersal ability (Tioho et al. 2001), both of 

which have been suggested for P. damicornis, warrants that a more in-depth study of 

intra-reef patterns of genetic variation be conducted for this species. My interests are 

three-fold: (1) What can be learned from studying the genetic resources of a single reef? 
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(2) What spatial patterns of genetic relatedness, if any, exist at the scale of a single reef?  

(3) What insight into the coral population genetic paradox can be gained by analyzing 

genetic relatedness at an individual-based, small-scale level before scaling up to a larger 

scale? 

Materials and methods 

Study sites and sample collection 

For this study, I focus on the same reef described in Chapter 2 (Reef 19; Figure 

3.1 and Table 3.1). Labeled rebar rods were installed every 2 m, running north to south 

down the center of the reef, as well as at several points on the reef edge to be used as 

orientation markers during coral sampling and mapping (Figure 3.2). This was the reef 

where near complete sampling of all P. damicornis colonies occurred (see below). In 

addition to Reef 19, three additional patch reefs within Kāne‘ohe Bay (Reefs 12, 16, and 

20; Figure 3.1 and Table 3.1) were chosen based on their similarity to Reef 19 in depth, 

size, P. damicornis density, and overall coral cover.  In contrast to Reef 19, however, 

these neighboring sites were not exhaustively sampled (see below). 

Coral sampling and genotyping 

The location of each coral colony on Reef 19 was recorded as X-Y coordinates 

using standard line transect methods. A small sample of each colony was collected and 

preserved in DMSO buffer (20% dimethylsulfoxide, 0.25 M EDTA, NaCl to saturation, 

pH 8.0). Coral colonies less than 2 cm in diameter were not sampled to minimize 

sampling-related mortalities, although these were relatively few in number. In addition, 

coral fragments that were unattached to the reef substrate, also an uncommon occurrence, 

were avoided. All mapping and sampling for Reef 19 was completed between June 2007 

and June 2008.   

At the three neighboring reefs, colonies of P. damicornis were sampled using a 

stratified-random method (Baums et al. 2005). Briefly, a transect tape was secured to a 

rebar positioned near the center of the patch reef. Random compass headings and 

distances from the center were generated using the open source computer programming 

language, R (http://www.R-project.org, R Development Core Team), and used to locate 

approximately 20 colonies within each of three nested circles (between 0 and 2 m, 2 and 

4 m, and 4 and 6 m) for a target total of 60 individuals. If no P. damicornis colony was 
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found at a particular compass heading and distance, the nearest colony was sampled and 

its coordinates recorded. Compass headings were rounded to the nearest 5˚ and distances 

to the nearest 5 cm. If only a single coral colony was found closest to two or more of the 

randomly generated coordinates, the colony was only sampled once and new random 

coordinates were chosen. This primarily happened at the outer most sampling distances 

(between 4 and 6 m), where the density of P. damicornis was noticeably lower.  Neighbor 

reef collections were completed within the month of June 2010.  

DNA was extracted from all coral samples using a HotSHOT protocol (Meeker et 

al. 2007).  For each sample, a 4 mm3 fragment was placed in 200 µl of 50 mM NaOH, 

heated (95° C), pH-neutralized with 1 M Tris-HCl, pH 8.0 and centrifuged. Extracts were 

diluted 1:20 with water.  Generally, final DNA concentrations were between 1 and 10 ng 

µl-1 (based on NanoDrop ND-1000, Thermo Fisher Scientific, Waltham, MA). For each 6 

µl PCR reaction, 1 µl of the diluted DNA solution was used as template. 

QIAGEN® Multiplex PCR Kits (QIAGEN, Hilden, Germany) and fluorescently-

labeled primers were used to amplify five published microsatellite loci (Starger et al. 

2008); Pd2-001, Pd3-004, Pd3-005, Pd2-006, and Pd3-010) and an additional locus, Pd2-

AB79 (F: 5’-GGAGATGGATGGAGACTGCT-3’, R: 5’-

CGAGTGCACGCACTAGATAGA-3’) taken from GenBank (accession number 

AB214379, unpublished).  For Pd3-010, I used a different primer annealing region from 

that published in (Starger et al. 2008) based on the sequence deposited in GenBank 

(accession number EF120465).  Thus, in this study, I refer to the Pd3-010 locus as Pd3-

EF65 (F: 5’-TGTGCAGGTGTTGTGACTGA-3’, R: 5’-

TGTCTTTTTCACTTTTGCTTCAA-3’). In addition, extractions of Symbiodinium clade 

C DNA were used to verify that all primers were coral-specific.  The thermocycling 

protocol was 15 min at 95˚ C then 27 cycles of 94˚ C for 3 sec, 57˚ C for 3 min and 72˚ C 

for 30 sec with a final 30 min at 60˚ C.  Alleles were scored on a 3100 Genetic Analyzer 

with GENEMAPPER 4.0 software (Applied Biosystems, Foster City, CA).  Furthermore, in 

light of the recent debate of species delineation within P. damicornis (Pinzón & 

LaJeunesse 2010; Combosch & Vollmer 2011), I used the program GENODIVE (Meirmans 

& van Tienderen 2004) to perform a Principal Components Analysis (PCA) on the matrix 

of covariance between pairs of allele frequencies to see if this would suggest the presence 
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of cryptic species in my dataset. Furthermore, one ramet from each genet group was 

randomly selected and sequenced at a recently discovered mtDNA open reading frame of 

unknown function (Flot & Tillier 2007) to check for conspicuously divergent haplotypes. 

Lastly, I should clarify here my use of the terms ramet and genet. I use the term 

genet to refer to a group of individuals with identical multi-locus genotypes (MLGs) and 

ramet to refer to each individual coral colony, irrespective of their MLG.  Likewise, I 

define clones as individuals with identical MLGs and non-clones as individuals with 

different MLGs (Harper 1977; Arnaud-Haond et al. 2007).  The terms genet, ramet and 

clone, therefore, are not interchangeable, as genet refers to a group of individuals with 

identical MLGs, while two ramets may have identical MLGs (i.e., clones) or different 

MLGs (i.e., non-clones). 

Data analysis 

Hardy-Weinberg equilibrium and locus-level analyses 

The program, GENCLONE 2.0 (Arnaud-Haond & Belkhir 2007), was used to 

determine the number of different alleles between each genet pair. If genet pairs were 

found to have only one or two allelic differences between them (i.e., 236 out of 3003 

comparisons; 8%), the chromatograms of all ramets belonging to these genets were 

double checked for scoring errors and were re-extracted, re-amplified and re-scored as 

necessary.   

Both single and multi-locus data were used to perform Hardy-Weinberg 

equilibrium (HWE) exact tests. In addition, for each pair of loci, I tested the null 

hypothesis that alleles at one locus are independent from alleles at the other locus (i.e., 

linkage equilibrium). A Markov chain algorithm (Guo & Thompson 1992; Raymond & 

Rousset 1995) was used to compute the log likelihood ratio statistic (G-test) and test for 

statistically significant linkage disequilibrium between loci. Sequential Bonferroni 

adjustments (Rice 1989) were applied to account for false positives due to multiple, non-

independent comparisons. I also calculated traditional population genetic parameters, 

including: allele frequencies and Wright’s inbreeding coefficient (FIS) for each locus 

(Weir & Cockerham 1984), as well as observed and expected heterozygosities. Tests for 

linkage equilibrium were performed both before and after the removal of repeated MLGs. 

All computations were made using the web-based version of GENEPOP 4.0 (Raymond & 
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Rousset 1995; Rousset 2008), based on only unique MLGs (i.e., one ramet per genet), 

and reported separately for each reef. 

Individual-level spatial genetic patterns 

I used the program, Spatial Pattern Analysis of Genetic Diversity version 1.3 

(SPAGeDi: Hardy & Vekemans 2002) to conduct spatial autocorrelation analyses, a 

technique that calculates a genetic relatedness coefficient for all pairs of individuals and 

bins individuals into a set of predefined distance intervals to test for spatial dependency 

in the distribution of individual genotypes (Epperson & Li 1996). The resulting 

correlogram defines the relationship between genetic relatedness and physical distance 

between coral colonies. The Hardy and Vekemans coefficient of relationship (Hardy & 

Vekemans 1999), based on Moran’s I measurement of spatial autocorrelation (Moran 

1950), is reported here. This particular index was chosen because it is not based on an 

assumption of HWE, thus allowing me to compare spatial genetic structure between my 

sampled reefs while accounting for potentially different inbreeding levels (Hardy & 

Vekemans 1999).   

Three different spatial genetic autocorrelation analyses were performed.  The first, 

which I refer to as the ramet-level analysis, included all individuals (i.e., all genets and all 

ramets in each genet), thus describing the overall pattern of SGS without regard to clonal 

versus non-clonal relationships. The second, which I refer to as the genet-level analysis, 

only allowed for pairwise comparisons between ramets from different genets, thus, if 

present, removing the effect of spatially-clumped clones on SGS and thus, focusing only 

on the effect of SGS patterns due to non-clonal pairs (Alberto et al. 2006).  Finally, for a 

third analysis, a new dataset was created to address the potential spatial genetic 

structuring driven specifically by spatially-clumped clones.  Here, I convert the MLG of 

each individual into a haploid, single-locus genotype whose allelic identity was unique 

for each genet group. For example, all colonies in MLG 1 were assigned the genotype 

“01” and all colonies in MLG 2 were assigned the genotype “02” and this was done for 

all MLGs (i.e., MLGs 1 to 78 were assigned the genotypes “01” to “78”, respectively). In 

contrast to the original dataset, where positive spatial genetic autocorrelation can be 

attributed to both clones and closely related non-clonal genotypes, the haploid dataset 

contains only completely identical pairs of genotypes (ramets within genets) and 
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completely different pairs of genotypes (ramets among genets). Thus, by removing the 

effect of closely related genotypes, this analysis, which I refer to as the clonal distribution 

analysis, describes the spatial genetic autocorrelation due primarily to clonality. 

Furthermore, comparisons between the clonal distribution and other analyses are possible 

because Hardy & Vekemans' relationship coefficients are not influenced by ploidy level 

(Hardy & Vekemans 1999).  Together, the three analyses are meant to describe, 

respectively, the SGS due to all ramets (i.e., clones and non-clones), ramets between 

genets (i.e., non-clones), and ramets within genets (i.e., clones).   

For the neighboring reef dataset, polar coordinates were first transformed into X-

Y coordinates, but due to their smaller sample sizes, only the ramet-level analysis was 

performed.  Finally, to allow for comparisons of the SGS analyses on Reef 19 with those 

performed separately for the neighboring reefs, I simulated subsampling Reef 19 using 

the same stratified-random methodology used for the neighboring reefs and repeat spatial 

autocorrelation analysis on this subsampled dataset. 

The dataset was binned into 12 distance classes such that the number of pairwise 

comparisons within each distance interval was approximately equal.  This was also done 

for the neighboring reefs, but due to the smaller sample sizes and the smaller spatial 

scales at these sites, there were only six distance classes.  Statistical significance was 

based on permuting individual locations among all individuals 200 times and calculating 

upper and lower 95% confidence intervals for each distance class. Note, however, that for 

the genet-level analysis, significance values based on spatial permutations are invalid 

because by randomizing locations the spatial structures both between and within each 

clonal group are broken down, when in fact, within-group spatial structures should be 

retained (Hardy & Vekemans 2009). Thus, for these analyses, jackknifing across loci was 

used to calculate one standard error around relationship coefficients as an approximation 

of statistical significance. 

Lastly, in a two-dimensional model of isolation-by-distance, kinship coefficients 

between individuals are expected to have a linear relationship with the logarithm of 

distance (Rousset 2000). While the genetic relationship coefficient described above for 

my spatial autocorrelation analyses are based on the proportion of genes shared between 

individuals, the Loiselle kinship coefficient used here is based on probabilities of identity 
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in state for randomly sampled genes between individuals (Loiselle et al. 1995; Hardy & 

Vekemans 2002). Using the slope of this linear relationship (Rousset 2000; Vekemans & 

Hardy 2004), I use SPAGeDi to estimate both gene dispersal distance, σ (defined as ½ the 

average parent-offspring distance) and neighborhood size, Nb,  (defined as Nb = 4πDeσ2, 

where De is the effective population density accounting for variance (σ2) in reproductive 

success among individuals; Wright 1943).  

Population-level spatial genetic patterns 

In order to perform a population-level, isolation-by-distance analysis, pairwise 

genetic distances (FST) based on unique MLGs for each reef were first calculated using an 

analysis of molecular variance (AMOVA; Excoffier et al. 1992) as implemented in 

GENODIVE (Meirmans & van Tienderen 2004). Each reef’s GPS coordinates were then 

used to calculate pairwise geographic distances. Finally, in order to test for a significant 

relationship between the genetic and geographic distance matrices, a Mantel test was 

performed using the web-based program, IBDWS (http://ibdws.sdsu.edu/~ibdws/; Jensen 

et al. 2005). Tests were performed both pre- and post-logarithmic transformation of raw 

genetic and geographic distances. 

Clonality 

Maps of the locations of all corals sampled on each of the four reefs were 

produced in R (http://www.R-project.org; R Development Core Team).  A custom R-

script also was written to create maps that highlight the locations of all ramets within 

each genet among the four sampled reefs (e.g., Figure 3.3). 

Due to my intensive sampling effort and use of highly variable markers, I used 

my dataset to estimate the levels of various reproductive strategies in my study area.  

First, I estimate the rate of selfing for this species by using the program RMES (David et 

al. 2007), which models this based on among-locus correlations independent of 

inbreeding levels.  Next, I use the program GENODIVE (Meirmans & van Tienderen 2004) 

to calculate a variety of clonal diversity indices, including: clonal richness, NG/N, 

(Ellstrand & Roose 1987) where NG is the total number of unique multi-locus genotypes 

and N is the number of genotyped samples; genotypic diversity, GO/GE (Stoddart 1983b), 

where GO and GE are observed and expected genotypic diversities, respectively; as well 

as Simpson’s (Simpson 1949; Pielou 1969) and Shannon’s (Pielou 1966; Chao & Shen 
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2003) diversity indices, both corrected for sample size (Table 3.1). Lastly, I estimate 

clonality using a probability-based framework, thus enhancing my ability to discriminate 

between true clonal lineages. Unfortunately, the terms genet and ramet, become 

ambiguous here so I use the term multi-locus lineage (MLL; Arnaud-Haond et al. 2007) 

to refer to individuals that were statistically determined to be derived from the same 

clonal lineage (i.e., originated from the same ancestral zygote), regardless of their MLG. 

For example, individuals having identical MLGs may in fact have originated from 

distinct sexually-produced zygotes (i.e., not clonal reproduction) simply due to 

insufficient resolving power of the genetic markers used. To address this, I used the 

program MLGSIM 2.0 (http://www.rug.nl/fmns-research/theobio/downloads; updated by 

A.B.F. Ivens from Stenberg et al. 2003) to calculate the probability that the same MLG of 

two or more colonies was the result of sexual reproduction (Psex) assuming Hardy-

Weinberg equilibrium. Statistical significance of each Psex value was determined by 

simulating a randomly mating population based on observed allele frequencies to serve as 

the null distribution. Thus, instead of presumptively equating identical MLGs to be the 

result of clonal reproduction, I conclude only those samples with statistically, significant 

low Psex to be the result of clonal reproduction (i.e., part of the same MLL). Otherwise, 

identical MLGs that do not pass these criteria are considered to be the result of sexual 

reproduction. This procedure results in an upper bound for the number of distinct MLLs 

on the reef.  Conversely, two individuals originating from the same ancestral zygote (i.e., 

clonal reproduction) may have distinct MLGs due to somatic mutation (i.e., cryptic 

clones; van Oppen et al. 2011). To address this, I used the program GENCLONE 2.0 

(Arnaud-Haond & Belkhir 2007) to identify pairs of MLGs that differed by a single 

microsatellite repeat unit, removed this locus from the analysis, and recalculated new Psex 

values.  If the new Psex value, as recalculated by MLGSIM 2.0, was low and statistically 

significant, then the two MLGs were lumped into a single MLL, thus resulting in a lower 

bound for the number of distinct MLLs on the reef.  
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Results 

Coral sampling and genotyping 

A total of 2882 individual colonies were sampled and mapped considering all 

reefs (Figures 3.2 and 3.3 and Table 3.1). Of these, 2493 (86.5%) had complete, six-locus 

genetic data (Table 3.1) and could be assigned to a genet based on sharing identical 

MLGs. Due to the small allelic distances between many of the samples, I was unable to 

confidently assign individuals with incomplete genotypes to a genet, so these individuals 

were dropped from most of the analyses. Furthermore, repeated multiplex amplifications 

and re-extraction and re-amplification of these individuals failed to recover the missing 

locus data.  

One locus in particular, Pd3-EF65, presented problems with allele scoring.  Out of 

the 2882 genotyped samples, 199 (~6.9%) revealed three alleles with similar peak heights 

(i.e., fluorescence intensity, which is proportional to amplicon concentration).  A 189 

base pair allele was shared among all 199 of the three peaked samples.  This allele at this 

locus also was common among the rest of the samples (present in 2143 samples or 74.3% 

of the entire dataset).  Excluding or including this allele changes neither the total number 

of MLGs found in the dataset nor the distribution of individuals among those genotypes.  

Interestingly, similar findings of more than two copies of a gene per individual (although 

not for the same locus reported here) have been described by others working with P. 

damicornis (Flot et al. 2008). 

Finally, an open reading frame of unknown function in the mtDNA (Flot & Tillier 

2007) was sequenced and revealed two haplotype clusters within my dataset separated by 

~10 bp.  Nearly all (79 of 81; 98.8%) of the genets in my dataset belong to the same P. 

damicornis haplotype cluster revealed by Flot et al. (2008). Furthermore, based on the 

results of PCA, the entire dataset of microsatellite MLGs appears to be a single cluster 

(Figure S1 in APPENDIX B).  Thus, all samples, were retained in my analyses, as molecular 

delineation for this species (Pinzón & LaJeunesse 2010; Combosch & Vollmer 2011; 

Schmidt-Roach et al. 2012), and indeed, for many coral species (Stat et al. 2012), is still 

undergoing debate.  

 

 



 51!

Hardy-Weinberg equilibrium and locus-level analyses: 

The overall FIS value for Reef 19 based on unique MLGs only was 0.17, but the 

variance among loci was high (Table 3.2). Concordant results were found for each of the 

neighboring reefs.  For Reef 19, significant heterozygote deficits were seen at four loci 

(Pd3-005, Pd2-006, Pd2-AB79, Pd3-EF65), and heterozygote excesses at two loci (Pd2-

001 and Pd3-004). When all ramets are used in the analysis, all 15 pairwise locus 

comparisons revealed significant linkage disequilibrium and 12 comparisons were 

significant after sequential Bonferroni adjustment (Rice 1989). After removal of repeat 

MLGs, however, linkage equilibrium was restored to three of the pairwise locus 

comparisons. Lack of recombination, non-random mating in inbred populations, or 

admixture of genetically-distinct populations (i.e., Wahlund effect) can cause loci to 

appear statistically linked. Given the small spatial scale of my study, however, 

disequilibrium at my study site is likely due to inbreeding rather than Wahlund effect, 

physical linkage among loci or admixture. Thus, all loci were retained for analyses. Note 

that the results reported here include samples with incomplete genotypes, as excluding 

them did not change the overall interpretation of the data. 

Individual-level spatial genetic patterns 

In the tests for spatial autocorrelation of relatedness, I used only those samples 

with complete six-locus genotypes so that ramets could be assigned to genet groups 

without ambiguity. Furthermore, my original analysis based on equalizing the number of 

pairwise comparisons among distance classes revealed that positive spatial 

autocorrelation extended only up to the first few distance classes, prompting a reanalysis 

based on new distance classes that would allow for higher resolution at smaller scales.  

This did not affect the overall pattern of spatial autocorrelation, so I only report on the 

latter set of distance classes here (Figure 3.4). When all individuals are included (i.e., 

ramet-level analysis), Reef 19 showed statistically significant, positive genetic spatial 

autocorrelation at small distances and negative genetic spatial autocorrelation at larger 

distances (Figure 3.4A). Correlograms using the genet-level (Figure 3.4B) and clonal 

distribution (Figure 3.4C) datasets show the same overall pattern but the magnitude is 

smaller than the ramet-level analysis.  This is expected since both the genet- and clonal-

level distribution datasets are components of the ramet-level dataset. Interestingly, for the 
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three neighboring reefs, intra-reef SGS was not detected (i.e., genetic relatedness was 

spatially random). Furthermore, SGS was no longer detectable on Reef 19 after sub-

sampling from the dataset using the simulated stratified random strategy approach 

implemented on the neighboring reefs (data not shown).  

Lastly, for the estimation of Nb and σ, I used two different approximations for the 

effective population density of Reef 19. My upper limit (2.34 corals per m2) assumes 

equal reproductive success among all coral and thus, is based on the total census size, 

while my lower limit (1.42 corals per m2) assumes that only the seven most common 

genets are reproductively successful and thus, is based on the total number of individuals 

(1657) in common genets (see Clonality results below). Using these approximations, I 

report a range of neighborhood sizes of between 240 and 257 corals and a σ of between 

2.86 and 3.80 meters.  

Population-level spatial genetic patterns 

All pairwise reef FST values were not statistically significantly different from zero 

(0.441<P<0.984). Concomitantly, all Mantel tests based on 1000 permutations failed to 

show a significant relationship between geographic and genetic distances both pre- and 

post-logarithmic transformation (0.74<P<1.00). 

Clonality 

Based on an analysis that takes inbreeding into account (see Materials and 

Methods), I rule out the possibility of selfing in my dataset. Next, I calculated indices of 

clonal diversity for all four reefs (Table 3.1) and indicate both a high clonal input and 

highly skewed clonal frequency distribution. For Reef 19, a total of 78 unique genets was 

found in the dataset of complete six-loci genotypes. The frequency distributions of genets 

for Reef 19 (Figure 3.5A) and the three neighboring reefs (Figure 3.5B) indicate broadly 

similar genet compositions for all four reefs with the neighboring reefs revealing three 

novel MLGs not seen on Reef 19. Seven of the genets on Reef 19 were numerically 

dominant having between 125 and 362 ramets per MLG.  Together, these dominant 

MLGs accounted for 70.45% of the colonies on the reef.  Ramets of all seven common 

genets were found throughout reef 19 (e.g., Figure 3.3A). On the other hand, 24 MLGs 

(genets 1 to 24 in Figure 3.5A) were only represented by a single colony.  Randomly 

stratified sampling of the neighboring reefs did not produce any samples that correspond 



 53!

with any of the 24 genetically unique corals on Reef 19. All seven of the most common 

MLGs on Reef 19, however, were also found on, at least, one of the neighboring reefs 

(e.g., Figure 3.3). 

Based on the probability framework described above I found the lower and upper 

bounds for the number of multi-locus lineages (MLLs) to be 53 and 116, corresponding 

to a clonal richness index of between 0.023 and 0.049. It should be noted, however, that 

inbreeding at my study site may cause an underestimation of the lower and upper bounds 

for the number of MLLs, because the calculation of Psex values are based on the 

assumption of random mating (Arnaud-Haond et al. 2007).  

Discussion 

What can be learned from studying a single reef?   

Given that ~70% of Reef 19’s coral cover was dominated by just seven MLGs, 

my data point to the importance of clonal recruitment in maintaining coral cover for this 

species in Hawai‘i.  This, however, was not surprising as similar patterns were found in 

Kāne‘ohe Bay, Hawai‘i previously (Stoddart 1988). While this study confirms the 

extremity of this species’ clonal nature, it also points to a highly skewed distribution of 

genet recruitment. Why are some MLGs so numerically dominant on the reef while 

others are represented by just one or two ramets? It is possible that the frequency of 

MLGs present in the population fluctuates through time such that abundant genets 

outnumber rare ones simply due to recruitment history (i.e., early recruits that 

subsequently reproduced asexually). Alternatively, it may be due to differential fitness of 

the genets. Local adaptation of corals has been proposed both inferentially as indicated by 

the spatial scale of genetic population differentiation (van Oppen & Gates 2006) as well 

as experimentally (D’Croz & Maté 2004; Vermeij et al. 2007; Baums 2008). 

These data also suggest that P. damicornis at my study site is characterized by 

populations of highly clonal individuals that occasionally reproduce sexually. For 

example, after the removal of repeat MLGs, I observed a decrease in linkage 

disequilibrium among loci, which is predicted for populations of mixed reproductive 

strategies where some clones have become widespread (Smith et al. 1993; Halkett et al. 

2005). Furthermore, I observe high among-loci variance in FIS values, which is expected 
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for a species with mixed sexual and asexual reproductive strategy as the accumulation of 

mutations in clonal lineages affect loci randomly (Balloux et al. 2003).  

When averaged across loci, however, FIS values for each of the four reefs are 

positive, indicating an overall reduction in heterozygosity at the individual level. I rule 

out the Wahlund effect as a potential source given the small spatial scale of my study site. 

My genetic data also allows me to rule out the possibility of selfing as the cause of 

inbreeding (see results). Null alleles, on the other hand, could potentially account for a 

portion of the observed inbreeding levels. The putative complex mating system of this 

species, however, does not meet many of the assumptions of the available statistical 

frameworks for the detection of null alleles. While I cannot rule out the possibility of null 

alleles, their presence would likely only cause one or a few loci to appear inbred, and not 

four loci, as observed here. Another explanation is that inbreeding levels are derived from 

the highly skewed genet composition of these reefs. Although there are 78 unique genets 

on the reef, any sexual reproduction that might occur is likely to involve the common 

genets as parents resulting in the production of half-sibs. Whatever the case, random 

mating in such a system is highly unlikely.   

While this study focused on just a few localized reefs, corals are being threatened 

worldwide by rising sea temperatures and ocean acidification (Hughes et al. 2003).  What 

role, therefore, do small-scale studies have in the face of global threats? Data have shown 

the importance of genetic diversity in increasing the ability of populations to persist in the 

face of environmental change (reviewed in Jump et al. 2009). While genetic variation in 

P. damicornis has been studied extensively, predicting this species’ response to climate 

change requires a better understanding of the adaptive versus acclimating physiological 

capacities of corals and their symbionts (Brown et al. 2002; Baker et al. 2004; 

Berkelmans et al. 2006; Chown et al. 2010). In addition to predictive modeling 

approaches, however, monitoring programs that not only assess genetic diversity, but 

track changes in genetic diversity over time may also become an important management 

strategy in the future (Schwartz et al. 2007). This, coupled with the mounting data 

indicating that recruitment of coral propagules may be occurring primarily on a local-

scale (Cowen et al. 2000, Palumbi 2003, Hellberg 2007, Cowen & Sponaugle 2009), 

underscores the need for investigating the baseline genetic resources of individual reefs 
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so that future studies can monitor their genetic response to rising threats. It is still 

uncertain if corals will be able to adapt to future stresses (Hughes et al. 2003), but 

ignoring small-scale genetic diversity may result in missed opportunities for better 

understanding how to manage coral reef resilience. 

Spatial patterns of clonality and genetic relatedness on a single reef 

Interpreting spatial genetic patterns in corals is complicated by their complex 

reproductive strategies where they reproduce both sexually and asexually (Hall and 

Hughes 1996).  More importantly, the ability to make inferences on what specific 

processes are driving spatial genetic patterns is limited due to the multiple dispersal 

alternatives available to corals, including polyp-bailout, propagative fragmentation, 

gamete broadcasting, and larval brooding. An important first step, however, is to address 

how genetic patterns may differ between clonal and non-clonal colonies. Previous studies 

that have attempted to tease apart the effects of reproductive mode on spatial genetic 

patterns tended to either average the spatial locations of identical MLGs (Calderón et al. 

2007; Billingham et al. 2007; Blanquer et al. 2009) or removed identical MLGs from the 

dataset all together (Alberto et al. 2005).  Here, I retained all samples with complete 

spatial and genetic data to give a comprehensive description of SGS for my study site.   

My analyses point to significant SGS for P. damicornis on an intra-reef scale, 

indicating that, on average, coral colonies that are close together on the reef are more 

genetically related to each other than coral colonies that are farther apart. As seen in my 

genet-level analysis (Figure 3.4B), this is true even after removing clonal comparisons. 

Although all the correlograms have the same basic shape, the spatial autocorrelation for 

clone distribution (Figure 3.4C) shows a more positive association over a greater distance 

than the correlogram for the genet-level analysis (Figure 3.4B). In terms of magnitude 

and spatial extent, therefore, the main process leading to SGS on Reef 19 is likely 

spatially-dependent recruitment of asexually derived planulae or fragmentation. That 

significant SGS is retained in the dataset in the genet-level analysis (Figure 3.4B), 

however, indicates that part of the observed SGS is also due to the spatial distribution of 

non-clones. Dependence on spatial distance for the genetic relatedness of non-clones 

means that sexually produced planulae tend to recruit near their brooding parent and that 

sperm is dispersal limited (i.e., non-random mating is occurring).  
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In general, the direct interpretation of correlograms can be limited because they 

can be sensitive to the sampling scheme and the information content of the markers 

(Vekemans & Hardy 2004).  Here, however, I have nearly exhaustively sampled a single 

reef and used highly variable (i.e., informative) microsatellite markers. By sampling so 

intensively, my estimates of population parameters, therefore, are not technically 

estimates but are a measure of the true, population value. In other words, due to my 

sampling strategy, my calculated genetic relationship values are the actual population 

statistic, making these results less susceptible to over-interpretation (Vekemans & Hardy 

2004).   

It should also be noted, that intensively sampling a single reef allowed me to 

detect SGS on Reef 19, but not on the three neighboring reefs where I used much smaller 

sample sizes that are typical of coral genetic studies (~50 individuals). I also did not find 

SGS on Reef 19 when I subsampled this dataset in a similar fashion as the neighboring 

reefs. While it is true that other studies have found variability in SGS among different 

sites (Miller 1998), it is unlikely that the SGS pattern observed on Reef 19 is unique to 

that reef.  The neighboring reefs were chosen not only because of their proximity to Reef 

19, but also because of their similar size, coral cover, and depth. In addition, the inability 

to detect SGS after reducing the Reef 19 dataset to match the sampling effort on the 

neighboring reefs further indicates that sampling strategy, and not site-specific 

considerations, is likely accounting for the observed differences in SGS. This highlights 

the importance of decreasing spatial scale and increasing sample size in order to reveal 

ecological patterns that would otherwise be missed. One implication of these results to 

future population genetic studies, therefore, is that fine-scale sampling is necessary, at 

least in part, to detect the full extent of genotypic diversity present for this species.  To 

avoid underestimating levels of genetic diversity, patterns of SGS, and other population 

level parameters, I recommend a combination of stratified random sampling across a reef 

and intensive, exhaustive sampling of a portion of the area.   

The coral population genetics paradox: a matter of scale 

Coral population genetic research has primarily focused on explaining reef 

connectivity and spatial genetic patterns in terms of larval dispersal potential and clonal 

distributions and these are unquestionably important issues. Indeed, many studies have 
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attributed patterns of genetic diversity to local or small-scale recruitment in coral reefs 

(Stoddart 1988; Hellberg 1995; Palumbi 2003 and reviewed in Hellberg 2007). When 

interpreting multi-scale patterns of genetic diversity, however, local patterns of genetic 

diversity are often framed as being at odds with larger scale patterns. Perhaps a more 

appropriate paradigm would be to consider that multiple processes are at work 

simultaneously and on different scales (Cowen & Sponaugle 2009).  

Here, I observe SGS for both clonal and non-clonal colonies of P. damicornis 

within the scale of a single patch reef.  I also observe that the strength of this SGS begins 

to decay towards spatial randomness within a few meters (Figure 3.4). Furthermore, the 

calculated gene dispersal distance, σ, ranged between 2.86 and 3.80 meters and the 

calculated neighborhood size, Nb, ranged between 240 and 257 corals. These parameters, 

however, primarily describe the balance between drift and gene flow on a local scale and 

do not exclude the possibility of rare, longer distance dispersal events (Fenster et al. 

2003). In fact, similar genet compositions for all reefs (Figure 3.5, AMOVA results, and 

lack of an isolation-by-distance pattern between reefs) indicate that planulae are capable 

of dispersing hundreds of meters between the four sampled reefs. Yet, if planulae are 

dispersing both within and between reefs, why is the same genetic homogeneity found on 

an inter-reef scale not found within Reef 19? In fact, my results are exactly that posed by 

the population genetic paradox described previously: why, if genetic patterns of isolation-

by-distance occur on a small scale, do I not see an extension of the genetic patterns of 

isolation-by-distance on a larger scale?  

If limited dispersal coupled with occasional inter-reef dispersal were the only 

process at work, then I would expect genetic relatedness to decay towards spatial 

randomness (i.e., genetic relationship coefficients not significantly different from zero) 

and remain there throughout the spatial extent of the reef.  Instead, however, I observe a 

continued decay towards negative genetic spatial autocorrelation for the largest distance 

classes on an intra-reef scale, indicating that corals at this scale are more genetically 

unrelated to each other than expected from random. Larval dispersal alone cannot 

account for this observed pattern. One explanation is that this pattern of genetic 

patchiness was created by chance recruitment events, whereby genetically distinct groups 

of coral recruits settled in different parts of the reef. If mating between individuals at this 
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distance is rare and if planulae tend to recruit near the brooding parent, this could 

potentially create the observed negative genetic spatial autocorrelation for extreme 

distances. Indeed, previous studies (Johnson & Black 1982; 1984; Watts et al. 1990; 

Veliz et al. 2006) have implicated larval recruitment history as a major contributor to 

unusually high levels of genetic variation at short distances despite long-distance larval 

dispersal potential.  

Another explanation, however, is that some other process besides larval dispersal 

is at work on this scale. My previous study of Reef 19 found significant microhabitat 

variation in benthic sea temperature on the scale of a single reef (Chapter 2; Gorospe & 

Karl 2011). If microhabitat variation is influencing coral recruitment or survival, it is also 

possible that it is influencing intra-reef patterns of individual-level genetic relatedness but 

not among reefs. Teasing apart the effects of dispersal- (i.e., spatial) versus microhabitat-

influenced (i.e., environmental) processes, however, requires a more landscape genetics-

based approach beyond the scope of this chapter (Storfer et al. 2007).  

Ecological processes such as dispersal and recruitment are important for 

informing conservation efforts, but have sometimes proven difficult to infer from genetic 

data due to paradoxical geographic patterns. Here, my cross-scale, explicitly-spatial 

analyses allowed for a clearer understanding of SGS and demonstrated that the genetic 

patterns produced by larval dispersal and recruitment processes are scale-dependent. In 

ecology, widespread acknowledgement of scale as a fundamental scientific issue 

constituted what some considered to be a paradigm shift (Golley 1989). The appropriate 

scale at which to sample genetic diversity in the sea is also shifting as data from genetic 

studies of natural populations, laboratory studies of larval settlement cues, and 

oceanographic models of larval transport all point to the increasing relevance of local-

scale recruitment events (reviewed in Cowen & Sponaugle 2009). A renewed emphasis 

of small-scale genetic diversity and SGS analyses in marine systems, therefore, may shed 

light on ecological and evolutionary processes occurring at this scale (Alberto et al. 2005; 

Underwood et al. 2007; Calderón et al. 2007; Billingham et al. 2007; Blanquer et al. 

2009; Ledoux et al. 2010; Combosch & Vollmer 2011). I do not necessarily advocate my 

approach of exhaustive sampling: this was an immensely time consuming approach. It is 

possible, however, that having a more explicitly spatial approach to the study of genetic 
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systems that includes multiple scales may allow greater insights and a more nuanced 

view of genetic variation across the seascape.  
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Table 3.1. GPS coordinates, total number of samples (NTOT); number of samples with complete multi-locus genotypes (N); clonal 
richness (NG/N), where NG is the total number of unique multi-locus genotypes; genotypic diversity (GO/GE), where GO is the observed 
genotypic diversity and GE is the expected genotypic diversity; and sample size corrected Simpson’s and Shannon-Wiener diversity 
indices for all reefs. The row labeled 19S refers to the average values for 50 simulated data sets of 50 individuals selected randomly 
from the Reef 19 data. 
 

Reef 
 GPS coordinates NTOT N NG/N GO/GE Simpson’s Shannon’s 

19 21.45767°N, 157.80677°W 2741 2352 0.033 0.005 0.915 1.309 

19S! N/A! 50! 50! 0.37! 0.195! 0.912! 1.104!

12 21.45051°N, 157.79773°W 50 50 0.28 0.102 0.820 1.007 

16 21.45447°N, 157.80390°W 46 46 0.39 0.271 0.940 1.277 

20 21.46063°N, 157.80970°W 45 45 0.40 0.238 0.927 1.255 

!
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Table 3.2. Number of alleles (n), number of individual genets (N), observed (HO) and 
expected (HE) heterozygosity, Weir & Cockerham’s estimator of Wright’s inbreeding 
coefficient (f), and significance level (* P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001) using 
only unique multi-locus genotypes from all four reefs. 

Reef Locus n N HE HO f 

19 Pd2-001 3 104 0.52 0.61 -0.16** 

 Pd3-004 6 104 0.37 0.43 -0.16*** 

 Pd3-005 8 103 0.49 0.47 0.05** 

 Pd2-006 6 88 0.52 0.19 0.63*** 

 Pd2-AB79 7 100 0.64 0.45 0.30*** 

 Pd3-EF65 9 101 0.54 0.36 0.34*** 

 Average 6.50 100 0.51 0.42 0.17 

12 Pd2-001 2 14 0.48 0.71 -0.54 

 Pd3-004 2 14 0.42 0.43 -0.01 

 Pd3-005 6 14 0.66 0.71 -0.09 

 Pd2-006 2 14 0.49 0.07 0.86** 

 Pd2-AB79 4 14 0.63 0.50 0.22 

 Pd3-EF65 4 14 0.59 0.29 0.52* 

 Average 3.3 14 0.54 0.45 0.16 

16 Pd2-001 3 18 0.52 0.61 -0.18 

 Pd3-004 2 18 0.44 0.50 -0.15 

 Pd3-005 6 18 0.57 0.56 0.03 

 Pd2-006 2 18 0.41 0.11 0.77** 

 Pd2-AB79 4 18 0.65 0.39 0.41 

 Pd3-EF65 4 18 0.52 0.28 0.48** 

 Average 3.5 18 0.52 0.41 0.23 

20 Pd2-001 2 18 0.51 0.56 -0.08 

 Pd3-004 2 18 0.39 0.39 -0.01 

 Pd3-005 6 18 0.63 0.61 0.02 

 Pd2-006 2 18 0.51 0.22 0.57* 

 Pd2-AB79 4 18 0.65 0.50 0.23 

 Pd3-EF65 4 18 0.42 0.22 0.48* 

 Average 3.3 18 0.52 0.42 0.20 
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Figure 3.1. Aerial view of Kāne‘ohe Bay, O‘ahu, Hawai‘i showing the locations of Reefs 19, 12, 16, and 20. Inset A – map of O‘ahu, 

Hawai‘i showing location of Kāne‘ohe Bay. Inset B – close up of Kāne‘ohe Bay showing location of reefs. 
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Figure 3.2. Location of the 2741 Pocillopora damicornis colonies on Reef 19. Each 

asterisk depicts the location of a colony. Circles depict the location of rebar markers used 

for orientation while sampling.  
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Figure 3.3. Spatial plots, showing the locations of all corals sampled at A) Reef 19, B) 

Reef 20, C) Reef 16, and D) Reef 12 (dots).  The locations of the most abundant genet 

(i.e., genet 78) are circled. 
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Figure 3.4. Results of spatial autocorrelation analyses for Reef 19 using A) ramet-level, 

B) genet-level, and C) clonal distribution analyses depicted as correlograms.  Distance 

classes were chosen to provide higher resolution at smaller spatial scales.  Dashed lines in 

A and C show 95% confidence intervals based on 200 permutations of individual 

locations among all individuals and in B show one standard error based on jackknifing 

across loci.  
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Figure 3.5. Histograms showing the frequency distribution of ramets for each genet on 

Reef 19 (A) and the neighboring reefs combined (B).  The three novel genets found on 

the neighboring reefs, but not Reef 19, are hatched bars (i.e., genet numbers 79-81).  
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CHAPTER 4. HOW TO SAMPLE A CORAL REEF: THE IMPORTANCE OF 

SAMPLING DESIGN, SPATIAL PATTERNS, AND DEGREE OF CLONALITY 

ON CHARACTERIZING GENETIC DIVERSITY 

 

Abstract 

The interpretation of coral genetic variation on and among reefs has rarely been 

contextualized in an explicitly spatial framework where each individual has both genetic 

and spatial parameters. Here, I explore interactions between sampling effort, sampling 

strategy, and the presence of spatial genetic structure on the ability to effectively 

characterize genetic diversity on a reef. To do this, I take my original dataset of 2352 

genotypes of Pocillopora damicornis, a dataset of near-exhaustive sampling of a single 

patch reef in Kāne‘ohe Bay, Hawai‘i, and subsample from it using two different 

strategies: (1) saturation sampling a portion of the reef and (2) random sampling 

throughout the entire reef. My results demonstrate large variation (e.g., 0.35 to 0.46) in 

estimates of observed heterozygosity (HO) using a more typical sample size of 50 and that 

in the presence of spatial genetic structure, non-random sampling schemes can give 

biased estimates of genetic diversity. Furthermore, my results indicate that over 1000 

samples are required to reveal the true pattern of spatial genetic structure at my site. I also 

demonstrate, by rarefaction analysis, that the bias in estimating clonal richness (i.e., the 

proportion of unique genotypes in a given sampling area relative to the total number of 

samples surveyed) for small sample numbers is due to the predominance of clones (i.e., 

high level of clonality), and not skew in genet frequency distribution. I argue that intense 

to near-exhaustive sampling schemes may be important for uncovering true patterns of 

genetic diversity in highly clonal populations. 

Introduction 

Intraspecific genetic diversity is necessary for evolution and adaptation. 

Characterizing intraspecific variation and preserving processes responsible for it, 

therefore, may be important for predicting how populations will be able to persist in the 

face of global climate change (Pauls et al. 2013). The assessment of genetic diversity, 

however, is particularly difficult for clonal organisms as standardized methods are yet to 

be fully codified (Halkett et al. 2005; Arnaud-Haond et al. 2007). In particular, corals are 
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one example of a clonally reproducing organism for which there is great interest in 

assessing genetic diversity in natural population (van Oppen & Gates 2006). For 

example, hierarchical analyses of genetic diversity are one of the primary methods for 

inferring patterns of connectivity between reefs (Palumbi 2003). While many advances 

have been made in the population genetic theory of clonal organisms (De Meeûs et al. 

2006; Arnaud-Haond et al. 2007), less attention has been paid to the standardization of 

methods regarding the appropriate density, strategy, and scale at which to sample genetic 

diversity of coral in the field. Addressing these issues is an essential component to better 

understanding how corals will be impacted by climate change (van Oppen & Gates 

2006).  

Corals, even predominantly sexually reproducing ones, have the ability to 

reproduce clonally through fragmentation or polyp bailout or as in some species, through 

the production of asexually-derived larvae. One metric for characterizing the diversity of 

a reef is clonal richness (G/N) which is the proportion of unique genotypes in a given 

sampling area (G) relative to the total number of samples surveyed (N). This metric has 

historically been employed to understand the population biology of corals and the relative 

importance of sexual versus asexual reproduction in structuring coral reefs (Hunter 1993; 

McFadden 1997; Baums et al. 2006).  

An important method that many plant population geneticists use to understand the 

clonal structure of populations is spatial autocorrelation analysis. The resulting 

correlogram plots the similarities between pairs of samples at various spatial distance 

classes, thus identifying the spatial scale or scales at which samples are more genetically 

related to each other than random (i.e., positive spatial autocorrelation), less genetically 

related to each other than random (i.e., negative spatial autocorrelation), or simply 

spatially random (i.e., no spatial autocorrelation). The detection of positive or negative 

spatial autocorrelation indicates the existence of spatial genetic structure (SGS). 

Characterizing these patterns can provide insight into the microevolutionary processes 

that cause them (Epperson 1993; Sokal et al 1997). For example, historical recruitment 

factors and natural selection were found to be important processes organizing local 

patterns of SGS in a flowering plant (Kalisz et al. 2001). Furthermore, failure to 

incorporate spatial patterns both in the detection of population structure as well as loci 
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under selection can lead to high rates of type I error (i.e., false positives: incorrectly 

inferring population structure or signals of selection when there is none; Meirmans 2012). 

Yet while standard in population genetic studies of terrestrial plants (Heywood 1991), 

spatial autocorrelation analyses have only recently been employed in the study of genetic 

diversity in marine ecosystems.  

The importance of sampling scheme, while well known among community 

ecologists, is often overlooked by molecular ecologists (Arnaud-Haond et al. 2008; 

Schwartz & McKelvey 2008). Estimates of coral genetic diversity for individual reefs, 

generally, are based on relatively small sample sizes (usually around 50 individuals or 

less) and have often relied on opportunistic as opposed to systematic sample acquisition. 

In fact, one survey (Arnaud-Haond et al. 2008) found that only 35% of genetic marine 

invertebrate studies disclosed their sampling strategy or the spatial scale of the sampling 

area. Yet the characterization of certain types of genetic variation can be highly 

influenced by sampling design and spatial scale. For example, in the presence of genetic 

spatial autocorrelation, the number of distinct genetic populations detected by genetic 

clustering analyses will be different depending on the sampling scheme used (Schwartz & 

McKelvey 2008). As with any ecological variable (Legendre et al. 2002), the 

interpretation of genetic variation should be contextualized in an explicit spatial 

framework and sampling design. 

As described in Chapter 3 (Gorospe & Karl, accepted), I near exhaustively 

sampled colonies of Pocillopora damicornis from a single patch reef in Kāne‘ohe Bay, 

Hawai‘i and uncovered the presence of intra-reef SGS whereby coral colonies closer 

together on the reef were more genetically related to each other than corals at the 

extremes of separation. In addition, I reported a highly clonal reef with a skewed genet 

frequency distribution (i.e., just seven genets accounted for nearly 70% of the reef’s coral 

abundance for this species). My extensive sampling provided greater confidence in my 

description of genetic diversity and spatial genetic patterns on the reef, but rarely is it 

practical to sample this intensively. Here, by subsampling from my original, near-

exhaustive dataset, I investigate the effect of sample size, degree of clonality and genet 

frequency skew on my ability to estimate clonal richness (i.e., G/N). Furthermore, I 

compare the estimates from two different sampling strategies (random sampling 
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throughout the reef versus saturation sampling a portion of the reef) for: (1) several 

Hardy-Weinberg based genetic diversity parameters, of which I focus on observed 

heterozygosity (HO) and (2) spatial autocorrelation (i.e., SGS). Lastly, to explore the 

potential interaction of sampling strategy and spatial patterns, I investigate how the 

estimation of genetic diversity may be affected by the presence of spatial autocorrelation.  

Methods 

Sampling and subsampling 

I used custom R-scripts (R Development Core Team, http://www.R-project.org/) 

to subsample from my original dataset using two different strategies: (1) saturation 

sampling a portion of the reef and (2) random sampling throughout the entire reef. These 

two strategies are meant to represent two common, contrasting approaches that 

researchers choose to sample a population’s genetic characteristics. Saturation sampling a 

portion of the reef provides for a complete inventory of that portion of the reef at the 

expense of potentially overlooking genetic diversity in non-sampled areas. On the other 

hand, randomly sampling throughout the reef broadens the spatial extent of the sampling 

effort while potentially missing finer-scale patterns (e.g., SGS).  

For the saturation sampling strategy, a circular area with a radius of 4 m was 

randomly selected on the reef, and all corals found within the area were used to create a 

single, subsampled genetic dataset (i.e., subset). This was repeated until a total of 20, 

separate, subsets were created in this manner. The sampling area was then systematically 

increased to circles of radii 6, 8, 10, 12, 14, and 16 m, each time repeating the 

subsampling 20 times, for a total of 140 saturation sampled subsets. In all cases, if any 

part of the circle fell outside the edge of the reef (Figure 4.1A), that sampling area was 

discarded and another random location chosen. Next, to simulate a sampling strategy 

using the entire reef, I randomly sampled without replacement 50 and 100 to 2300, in 

increments of 100, colonies from throughout the reef (Figure 4.1B). I generated 20 

subsets for each sample size increment, thus making a total of 480 randomly sampled 

subsets.  

Finally, I wanted to explore whether my overall findings were specific to the 

presence of spatial autocorrelation in my original dataset. To address this, I remove 

spatial autocorrelation from my original dataset by randomizing the locations of corals, 
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thus creating a new, spatially randomized genetic dataset. Using this dataset, I repeat the 

same subsampling process described above, generating an additional 140 saturation 

sampled subsets and 480 randomly sampled subsets. Thus, a total of 1240 subsets were 

analyzed in this study. 

Genetic and clonal diversity 

For each of the 1240 subsets, I calculated several traditional population genetic 

diversity estimates after removing repeated multi-locus genotypes (MLGs) from each 

dataset (i.e., only one ramet from each genet was used). Here, I define a ramet as a single 

coral colony and a genet as a group of ramets with identical MLGs. The genetic diversity 

estimates reported here include: Wright’s inbreeding coefficient (FIS) averaged across all 

six loci (Weir & Cockerham 1984) as well as observed (HO) and expected (HE) 

heterozygosities. All computations were made using the web-based version of GENEPOP 

4.0 (Raymond & Rousset 1995; Rousset 2008). Furthermore, I use the program 

GENODIVE (Meirmans & van Tienderen 2004) to report on additional, widely-used clonal 

diversity indices including: the ratio of observed to expected genotypic diversity (GO/GE), 

evenness (EVE), a corrected Shannon-Wiener diversity index (HSW; Chao & Shen 2003) 

and Nei’s (1987) corrected genetic diversity, also known as Simpson’s diversity index 

(D). 

To compare how sampling strategy (random versus saturation) interacted with 

spatial patterns (spatially autocorrelated versus spatially random data) and affected the 

estimation of genetic diversity, I performed weighted least squares (WLS) linear 

regressions of observed heterozygosity (HO) on the number of samples in each subset 

using the nlme package in R (Pinheiro et al. 2006). An exponential variance function was 

used to improve parameter estimation and account for heteroskedasticity (i.e., unequal 

variances in HO for different sampling intensities). I did this separately for subsets: (1) 

randomly sampled from my original, spatially autocorrelated dataset, (2) saturation 

sampled from my original, spatially autocorrelated dataset, (3) randomly sampled from 

the spatially randomized dataset, and (4) saturation sampled from the spatially 

randomized dataset.  

A custom R-script was written to perform a rarefaction analysis on my original 

dataset’s clonal richness statistic, G/N (Ellstrand & Roose 1987). This was done to allow 
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me to compare the clonal richness of my study site to estimates found in the literature for 

the same species from other locations. This analysis calculates G/N from a subset of 

individuals randomly sampled without replacement from my original dataset. Subsets 

consisted of 1 to 2352 individuals, in increments of 1, with 100 replicates for each subset. 

Lastly, in order to investigate how the estimation of G/N is affected by the predominance 

of clones (i.e., level of clonality) and skewed genet frequency distribution of my study 

site (see Chapter 3; Gorospe & Karl, accepted), I simulated additional datasets of 2000 

individuals with 20, 50, 80, and 250 genets (i.e., different levels of clonality).  Here, it is 

important to note that the dataset with 20 genets (G/N = 0.010) has a higher level of 

clonality (i.e., greater number of clones per genet) than the dataset with 250 genets (G/N 

= 0.125; i.e., fewer number of clones per genet). Furthermore, I varied the genet 

distributions to be either even (i.e., equal number of ramets per genet) or skewed (i.e., 

70% of ramets were distributed evenly among 10% of the genets while the remaining 

30% of ramets were distributed evenly among the remaining 90% of genets). When the 

total number of ramets (i.e., 2000) did not evenly divide into the number of genets, the 

leftover number was divided evenly among the least frequent genets. For each of the 

datasets, rarefaction curves are then generated as described above.  

Spatial autocorrelation analysis 

The program, Spatial Pattern Analysis of Genetic Diversity (SPAGeDi version 

1.3; Hardy & Vekemans 2002), was used to conduct spatial autocorrelation analyses. 

While these analyses are meant to describe the spatial dependency of genetic relatedness 

(i.e., SGS), interpreting the relative contributions of clonal versus non-clonal input to 

these patterns can be challenging. In Chapter 3 (Gorospe & Karl, accepted), I described 

the details of teasing apart these components to the SGS, but here, I focus my attention on 

the overall (i.e., combined clonal and non-clonal) pattern of SGS, referred to as the 

ramet-level analysis. I use Hardy and Vekemans’ (Hardy & Vekemans 1999) coefficient 

of relationship, which is a measurement of pairwise genetic relatedness based on the 

Moran’s I measurement of spatial autocorrelation (Moran 1950). Spatial autocorrelation 

analyses were performed on all subsets taken (n=620) from the original, spatially 

autocorrelated dataset, producing for each, a correlogram of pairwise distances versus 

Moran’s I. For the 480 randomly sampled subsets as well as the original dataset, distance 
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classes for the spatial autocorrelation analyses were set such that the number of pairwise 

comparisons per distance class was equal. Since the spatial scale of these datasets was the 

same (i.e., reef-wide), the distance class bins differed by less than 1 meter, allowing for 

correlogram comparisons between the randomly sampled subsets and the original dataset. 

Varying spatial scales (i.e., circles of 4, 6, 8 m, etc. radii) between my 140 saturation 

sampled subsets, however, means that correlograms across datasets will not be 

comparable if distance bins are set to have equal numbers of pairwise comparisons across 

distance classes. Therefore, I analyze these datasets by setting the distance class bins to 

the same ones used in the original datasets, thus allowing for correlogram comparisons 

across datasets. In all cases, statistical significance at each distance class was determined 

by calculating 95% confidence intervals based on 200 permutations of spatial locations. 

To summarize these analyses, all subset correlograms were then compared to the full 

dataset correlogram using Pearson’s correlation coefficient. Furthermore, I calculate for 

each subset, the proportion of data subsets that correctly detected (i.e., based on the full 

dataset’s correlogram) statistically significant autocorrelation at each distance class when 

it is present.  

Results 

Genetic and clonal diversity 

After removing repeated MLGs, my original dataset of 2352 samples was reduced 

to 78 unique MLGs. Values for all indices (G, N, G/N, FIS, HO, HE, GO/GE, EVE, HSW, and 

D), based on the original dataset and simulated subsets, are in Table 4.1. I also include 

previously published indices from other studies of P. damicornis for comparison. 

Observed heterozygosities for all saturation sampled (Figure 4.2A) and randomly 

sampled (Figure 4.2B) subsets are summarized as Tukey boxplots. In all cases, increased 

sampling intensity led to increased precision (i.e., decreased variance) of the estimate. 

Special attention should be drawn to the datasets of 50 randomly sampled individuals, as 

this size is most characteristic of sampling effort in the literature (Ruzzante 1998; van 

Oppen & Gates 2006). Notice, that when estimating HO with 50 randomly sampled 

individuals, while the median value (0.405) is close to the true value (0.397), there is a 

large range associated with this sampling intensity (0.35 to 0.46). Similar patterns were 

found for HE and FIS and other diversity measures (Table 4.1). 
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Results from the four WLS linear regressions show a significant relationship 

between HO and sample number (Figure 4.3; p=0.0001), but only when saturation 

sampling a portion of the reef in the presence of reef-wide spatial autocorrelation. In 

contrast, randomly sampling, both from the original spatially autocorrelated dataset as 

well as from a spatially-randomized dataset showed no significant relationship between 

HO and sample number.  

The rarefaction curves (Figure 4.4) demonstrated the influence of sampling effort, 

clonal richness, and genet frequency distribution skew on the estimation of the clonal 

richness (G/N) statistic. Displayed in Figure 4.4A are 100 overlaid rarefaction curves, 

each representing the calculated clonal richness statistic for all possible sampling 

intensities between 1 and 2352. Notice that G/N does not come close to the true value 

(0.033) until at least 500 samples are used in the estimation. The rarefaction curves 

comparing the effects of clonal richness (i.e., different levels of G/N) and genet 

distribution (i.e., even versus skewed) are displayed in Figure 4.4B. Here, rarefaction 

curves are normalized to the true G/N value for each dataset such that all curves 

asymptote at 1.0. Notice that datasets with high levels of clonality (e.g., my simulated 

dataset using 20 genets) are more biased (i.e., farther from 1.0) for all sample numbers 

than datasets with low levels of clonality (e.g., my simulated dataset using 250 genets). 

On the other hand, skewed genet distributions are less biased than even genet 

distributions.  

Spatial autocorrelation analysis 

For reference, the true correlogram based on performing a ramet-level spatial 

autocorrelation analysis on all 2352 samples is shown in Figure 4.5. Note that unlike in 

Chapter 3 (Gorospe & Karl, accepted), here I use equal distance classes as opposed to 

finer-scale distance classes presented in that study. The correlations between the resulting 

correlograms of all subsampled datasets to the correlogram of the original dataset were 

calculated and summarized in Figure 4.6. To compare the results from the two 

subsampling strategies, I reflect the results of the saturation sub-sampled sets as average 

sample sizes rather than as radii of the sampling area. In general, as sampling intensity 

increases so do the correlations between the subsampled dataset correlogram and the 

original, true correlogram (Figure 4.6). Random subsampling (Figure 4.6A) reached a 0.9 
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correlation with the true correlogram at 1000 sampled individuals (42.5% of the original 

data), while saturation subsampling (Figure 4.6B) required an average of 1883 sampled 

individuals (80.1% of the original data; i.e., a sampling area of radius 16m) to reach the 

same level of correlation. 

I also summarize my findings based on each dataset’s ability to detect statistically 

significant spatial genetic autocorrelation at each distance class. Here, however, I only 

focus on the results concerning the first and second distance classes, which, for the 

original dataset’s correlogram, were both statistically significant for positive spatial 

autocorrelation (Figure 4.5). Figure 4.7 shows the proportions of datasets, for each 

sampling intensity, that were able to detect statistically-significant spatial autocorrelation 

for the first and second distance classes. For the saturation sampling subsets, the first 

distance class reached ~90% detection for significant spatial autocorrelation once the 

average sample size was 933 ± 134 (40% of the original data; i.e., a radius of 10m).  On 

the other hand, for the randomly sampled subsets, the first distance class reached 90% 

detection once the sampling intensity reached 700 individuals (Figure 4.7A). Overall, 

autocorrelation in the first distance class was the easiest to detect (lowest sampling 

intensity), and in general, the larger the magnitude of Moran’s I in the true correlogram, 

the easier it was to detect statistical significance during subsampling (Figure 4.7A versus 

7B). Saturation sampling, however, reached 90% detection in the second distance class 

(i.e., smaller Moran’s I) before random sampling (Figure 4.7B) 

Discussion 

Caution in interpreting geographic patterns of genetic and clonal diversity 

Patterns of population genetic differentiation and isolation by distance can give 

insight into the spatial scale of dispersal and extent of genetic connectivity (e.g., Polato et 

al. 2010). When spatial patterns fail to arise or conflicting results are encountered, 

however, interpreting these data becomes difficult (see Selkoe et al. 2010). 

Misinterpretation of the data can occur when one attempts to explain patterns of genetic 

differentiation between populations before carefully considering processes that are 

occurring within populations (Chapter 3; Gorospe & Karl, accepted). Here I demonstrate 

a large amount of variance in my estimates of genetic diversity patterns, particularly for 

small sample sizes (Figure 4.2, Table 4.1). Furthermore, my rarefaction curve (Figure 
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4.4A) demonstrates that the oft-reported clonal diversity estimate, G/N, is consistently 

overestimated for small sample sizes and that this is a general symptom of clonal 

populations and not exclusive to those with skewed genet frequency distributions. More 

surprising, however, is what constitutes an appropriate sample size for obtaining a good 

estimate. 

As confirmed by the weighted least squares regression, the estimation of HO when 

considering all sub-datasets, is not strongly affected by sample size as long as a random 

sampling strategy was used. Instead, the main obstacle to characterizing the genetic 

diversity of Reef 19 with small subsamples is the predominance of clones on the reef. 

There is an appreciable amount of variance in estimating HO (Figure 4.2A) for subsets 

consisting of 50 samples. As Hardy-Weinberg based genetic diversity estimates are 

mainly concerned with unique MLGs, however, 50 samples from my study site only 

equates to 18.25 + 2.17 unique MLGs out of a total of 78 (~20%; Table 4.1). Rare 

genotypes are the cause and not until 500 individuals are subsampled, are 50 unique 

MLGs obtained (~67%; Table 4.1) with which to effectively estimate reef-wide allele 

frequencies and reduce the variance associated with estimating HO (Figure 4.2A). Note 

that this same pattern would hold for any genetic parameter that relies on accurate 

estimation of allele frequencies. 

Similarly, 500 individuals are needed to come within an order of magnitude of the 

true clonal richness (G/N) value for the reef (Figure 4.4A, Table 4.1). Based on the 

rarefaction curves calculated from simulated datasets of varying clonal richness and genet 

frequency distributions (Figure 4.4B), the calculation of G/N is more biased for datasets 

characterized by high levels of clonality than those with lower levels of clonality. Bias in 

G/N estimates, however, was actually reduced by genet frequency distribution skew 

(Figure 4.4B). Recall that G represents the number of distinct MLGs, while N represents 

the total number of samples. Therefore, sampling a new MLG increases both G and N, 

and causes the estimate of G/N to decay only gradually to the actual value. On the other 

hand, sampling a previously sampled MLG only increases N, and the estimate of G/N 

decays more rapidly to the actual value. The latter scenario (i.e., sampling a previously 

sampled MLG) is more likely to occur when the genet frequency distribution is skewed 

and the reef is dominated by just a few MLGs. Thus, the difficulty in sampling rare 
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genets, which is primarily a characteristic of skewed genet frequency distributions, 

actually facilitated my ability to estimate G/N. It is important to note, however, that in all 

but the most extreme case (i.e., having a low level of clonality and a highly skewed genet 

frequency distribution), large sample sizes (i.e., >100) are needed to accurately estimate 

G/N.  

In summary, hundreds of coral colonies are needed to accurately estimate both 

genetic (e.g., HO) and clonal (e.g., G/N) diversity. Overall, these results suggest that 

studies for this species that have not sampled near-exhaustively, as I did, may have also 

inaccurately estimated genetic diversity (Table 4.1). 

SGS, an elusive yet biologically important pattern 

My results indicate that SGS likely would not have been found at my study site 

had I not embarked on such an intense sampling effort. While random sampling 

throughout the reef was more efficient than saturation sampling a portion of the reef in 

detecting the whole SGS pattern (Figure 4.6), both strategies required an extremely 

intense sampling effort before the true spatial autocorrelation pattern emerged. If I set a 

correlation level of 0.9 as my threshold for detecting the true pattern, then uncovering this 

pattern required sampling over 900 individuals for random sampling and even more for 

saturation sampling. Even when I relax this criterion and consider only the number of 

samples needed to have a 90% detection success at the first distance class (Figure 4.7), I 

still find that a large sampling effort (i.e., ~750 randomly sampled individuals or ~900 

saturation sampled individuals) is needed. Given the presence of fine-scale SGS at my 

site, it may seem counterintuitive that saturation sampling outperformed random 

sampling. For example, saturation sampling performed nearly equally as well as random 

sampling when considering only the first distance bin (Figure 4.7A) and outperformed 

random sampling in the second distance bin where the signal of SGS was weaker (Figure 

4.7B). The SGS pattern, however, is reef-wide (i.e., positive relatedness for the smallest 

distance classes and negative relatedness for the largest distance classes). Thus, by 

focusing on only a small portion of the reef, saturation sampling misses these larger-scale 

patterns. Saturation sampling, however, appears to be better able to detect lower levels of 

SGS than random sampling.  
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While other studies have simulated the effect of increasing loci and sample 

numbers in the detection of SGS (Sokal et al. 1997; Cavers et al. 2005), computer 

simulations may not be realistic of patterns found in natural populations. My study places 

these past studies in context using an empirical approach. For terrestrial plants, patterns 

of SGS arise largely due to their sedentary nature and dispersal-limited gametes 

(Vekemans & Hardy 2004). Reports of SGS, however, for benthic marine organisms are 

less common (but see Alberto et al. 2005; Underwood et al. 2007; Calderón et al. 2007; 

Billingham et al. 2007; Blanquer et al. 2009; Ledoux et al. 2010; Combosch & Vollmer 

2011). The fact that many benthic marine species have long-distance dispersal 

mechanisms that may preclude them from small-scale patterns of genetic diversity 

(however, see Weersing & Toonen 2009) and the intense sampling effort required to 

detect SGS are both likely explanations for why SGS has only rarely been reported in 

marine systems. 

If SGS is weak or rare, particularly in marine systems, why study it? What is the 

biological relevance, after all, of weak patterns that require large datasets in order to be 

detected (Björklund & Bergek 2009)? Even for plants with limited gene dispersal, where 

population genetic theory predicts spatial genetic patterns to be widespread, empirical 

results tend to show only weak SGS when it is found (Heywood 1991). Likely, the reason 

for this is that SGS is affected by several sources of variation stemming from both 

population genetic, stochastic, and spatial processes (Slatkin & Arter 1991). Yet despite 

the fact that multiple processes are involved in organizing patterns of SGS, spatial 

autocorrelation analysis is still a powerful tool for providing evidence for or against 

different alternative hypotheses regarding microevolutionary processes (Sokal et al. 

1997). Weak spatial genetic signals, therefore, are not weak for being biologically 

irrelevant, but merely, subtle for being the cumulative result of multiple drivers. For 

example, if multiple, strong drivers act in opposite directions they could theoretically 

result in a weak overall SGS pattern. Understanding these drivers requires an 

understanding of the SGS they produce. 

What is the best strategy of sampling a coral reef? 

One important consideration that I investigate here is the effect of spatial 

autocorrelation on the ability to accurately characterize genetic diversity. When spatial 
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autocorrelation was removed from my dataset, random sampling and saturation sampling 

of a portion of the reef were equivalent and non-biased in estimating heterozygosity for 

small sample sizes. On the other hand, in the presence of spatial autocorrelation, 

saturation sampling appeared to be upwardly biased in the estimation of heterozygosity 

(Figure 4.3) while random sampling remained unbiased. In both cases, however, there 

remains a considerably wide range of estimates (i.e., high variance) for small sample 

sizes. My finding that, in the presence of spatial autocorrelation, non-random sampling 

methods are biased in estimating genetic diversity agrees with similar studies looking at 

other diversity indices (Fager 1972; Baltanás 1992; but see Brose et al. 2003).  

The interaction between sampling strategy and spatial autocorrelation is well 

known in ecology, but largely overlooked in molecular studies (however, see Schwartz & 

McKelvey 2008). Ecologists are trained to sample randomly, particularly when there is a 

lack of a priori information about the spatial patterns in a system. This is often done to 

maintain statistical independence between sampling points, and thus, avoid non-

independence (i.e., autocorrelation; Legendre et al. 2002). A distinction must be made, 

however, between sampling in order to avoid the occurrence of autocorrelated data and 

sampling in order to fully characterize the genetic diversity of a population and detect 

weak, but potentially biologically important patterns of spatial autocorrelation. It is also 

important to note, although commonly known (e.g., Jost 2008), that some diversity 

measures (e.g., Shannon-Wiener, Nei’s diversity) performed well in all of my simulations 

resulting in accurate estimates with small variance (Table 4.1). 

As I have demonstrated, coral genetic diversity estimates may be inaccurate for 

small sample sizes if populations have a moderate to high levels of clonality. 

Unfortunately, this inaccuracy is likely not inconsequential. The variance associated with 

these estimates may prove problematic for studies that attempt to interpret patterns of 

connectivity or diversity among populations. Other studies that have failed to produce 

obvious spatial patterns of genetic diversity (i.e., chaotic genetic patchiness) may simply 

be revealing the underlying variance associated with small samples sizes. For example, 

for the smallest sample size in Figure 4.3, one population’s estimate could be the largest 

simulated HO estimate (0.46) and another the smallest (0.36) even though the real values 

were identical. Clearly, conclusions about population genetic diversity in clonal 
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organisms can be quite misleading when what was traditionally considered to be a large 

sample (i.e., 50) is actually a quite small one.
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Table 4.1. Diversity estimates for the complete and permuted dataset of Pocillopora damicornis and from the literature 
Number of individuals (N), umber of unique multi-locus genotypes (G), Wright’s inbreeding coefficient (FIS; Weir & Cockerham 
1984), expected (HE) and observed (HO) heterozygosities, observed genotypic diversity (GO), the ratio of observed to expected 
genotypic diversities (GO/GE) genotypic diversities, evenness (EVE), corrected Shannon-Wiener index (HSW; Chao & Shen 2003), Nei’s 
genotypic diversity (D), equivalent to Simpson’s diversity index (Nei 1987). Values reported from this study are averaged across 
resampled datasets. Values reported from previous studies are averaged across sites. NR = Not reported; S = See original manuscript 
because data are available but inconsistent with this table (e.g., FIS only calculated per locus or calculated based on pooling entire 
dataset instead of per site. 
 

N  G  G/N  FIS  HE  HO  GO  GO/GE EVE  HSW  D Reference 

50  18.25 
(2.17)  0.37 

(0.04)  0.19 
(0.06)  0.50 

(0.03)  0.40 
(0.03)  9.75 

(1.72)  0.20 0.53 
(0.07)  1.23 

(0.08)  0.91 
(0.02) This study 

100  26.00 
(2.97)  0.26 

(0.03)  0.20 
(0.03)  0.51 

(0.02)  0.41 
(0.02)  10.70 

(1.27)  0.11 0.41 
(0.05)  1.28 

(0.06)  0.91 
(0.01) This study 

500  49.00 
(2.83)  0.10 

(0.01)  0.21 
(0.02)  0.51 

(0.01)  0.40 
(0.01)  11.67 

(0.49)  0.02 0.24 
(0.02)  1.31 

(0.02)  0.92 
(0.00) This study 

1000  60.75 
(2.94)  0.06 

(0.00)  0.22 
(0.02)  0.51 

(0.01)  0.40 
(0.01)  11.78 

(0.37)  0.01 0.19 
(0.01)  1.31 

(0.01)  0.92 
(0.00) This study 

1500  66.90 
(3.02)  0.05 

(0.00)  0.22 
(0.02)  0.52 

(0.01)  0.40 
(0.01)  11.71 

(0.28)  0.01 0.18 
(0.01)  1.30 

(0.01)  0.92 
(0.00) This study 

2000  74.45 
(1.19)  0.04 

(0.00)  0.22 
(0.01)  0.52 

(0.01)  0.40 
(0.01)  11.72 

(0.13)  0.01 0.16 
(0.00)  1.31 

(0.00)  0.92 
(0.00) This study 

2352  78  0.03  0.22  0.52  0.40  11.72  0.01 0.15  1.31  0.92 This study 

33.60 
(15.30)  12.00 

(4.4)  0.40 
(0.17)  NR  NR  NR  6.096 

(2.62)  0.27 
(0.15) NR  NR  NR Stoddart 1984 

49.20 
(1.72)  44.00 

(3.20)  0.89 
(0.05)  0.022 

(0.04)  NR  NR  39.22 
(6.11)  0.91 

(0.099) NR  NR  NR Benzie et al. 1995 

45.20 
(2.95)  36.00 

(6.00)  0.80 
(0.14)  NR  NR  NR  29.72 

(9.27)  0.88 
(0.16) NR  NR  NR Ayre et al. 1997 
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48.00 
(0.00)  29.00 

(4.40)  0.61 
(0.09)  S  NR  NR  NR  0.42 

(0.11) NR  NR  NR Adjeroud & Tsuchiya 
1999 

28.60 
(1.81)  21.00 

(3.30)  0.72 
(0.01)  S  S  S  S  0.73 

(0.13) NR  NR  NR Miller & Ayre 2004 

29.50 
(0.58)  24.00 

(2.90)  0.81 
(0.10)  S  NR  NR  20.08 

(3.73)  0.81 
(0.09) NR  NR  NR Ayre & Miller 2004 

54.10 
(16.40)  42.00 

(5.90)  0.81 
(0.12)  S  S  S  33.67 

(8.13)  0.77 
(0.19) NR  NR  NR Sherman et al. 2006 

63.60 
(34.20)  15.00 

(9.40)  0.27 
(0.12)  S  NR  NR  4.70 

(2.28)  0.44 
(0.26) NR  NR  NR Whitaker 2006 

41 
(0.00)  15.00 

(3.5)  0.38 
(0.09)  NR  NR  NR  1.96 

(0.01)  0.05 
(0.00) NR  NR  0.50 

(0.00) Yeoh & Dai 2009 

16.60 
(7.86)  16.00 

(7.80)  0.97 
(0.09)  S  S  S  NR  NR NR  NR  0.54 

(0.12) Starger et al. 2010 



 83!

 

 
Figure 4.1. (A) Example of 20 saturation sampled subsets. Each black circle has a 

diameter of 8 m and the black dots within the circle are the locations of coral colonies, 

representing a subset. Red circles represent areas that could not be used as the center of a 

sampling area due to proximity to the edge. (B) Example of one randomly sampled subset 

of 50 individuals.  Sampled colonies are circled. 
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Figure 4.2. Estimated observed heterozygosity values (HO) for increasing sampling 

numbers with random sampling (A) or increasing spatial area and exhaustive sampling 

(B). The rectangle represents the interquartile range (i.e., the 25th percentile, median, and 

75th percentile), the whiskers represent all values that are within 1.5 times the 

interquartile range. Open circles represent outliers, defined as data points that lie outside 

the whiskers. The horizontal dashed line is the actual value. 
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Figure 4.3. Weighted least squares linear regressions of observed heterozygosities (HO) on the number of saturation sampled 

individuals taken from the original, spatially-autocorrelated dataset. Similar regressions based on randomly sampling from the original 

dataset as well as randomly sampling or saturation sampling from a spatially-randomized dataset were not statistically significant.
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Figure 4.4. (A) 100 overlaid rarefaction curves, each representing the calculated clonal 

richness statistic (G/N) for all possible sample sizes between 1 and 2352. The horizontal, 

dashed line is at the actual value for the population. (B) Rarefaction curves based on the 

means of 100 replications of simulated datasets of 2000 ramets split evenly (solid lines) 

among 20 (blue), 50 (green), 80 (red), and 250 (black) genets or split unevenly (dashed 

lines) such that 70% of the ramets were distributed evenly among 10% of the genets 

while the remaining 30% of ramets were distributed evenly among the remaining 90% of 

the genets.  
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Figure 4.5. Spatial autocorrelation analysis of my complete dataset depicted as a correlogram of Moran’s I relationship coefficient 

versus geographic distance. Dashed lines represent 95% confidence intervals based on permutating individual locations. Open circles 

on the graph highlight distance classes with statistically significant autocorrelation.
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Figure 4.6. Average correlation coefficient with the original dataset’s correlogram (Pearson’s R) of all randomly sampled (top) and 

saturation sampled (bottom) subsets. Y axis error bars reflect one standard deviation in Pearson’s R. 
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Figure 4.7. Percent of subsets, for each sampling intensity, that are able to detect statistically significant spatial autocorrelation for the 

first (A) and second (B) distance classes, respectively. Solid lines represent random sampling and the dashed lines represent 

exhaustive sampling.  
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CHAPTER 5. DEPTH AS AN ORGANIZING FORCE IN POCILLOPORA 

DAMICORNIS INTRA-REEF SPATIAL GENETIC STRUCTURING 

 

 

Abstract 

Relative to terrestrial plants, and despite similarities in life history characteristics, 

the potential for corals to exhibit intra-reef local adaptation in the form of genetic 

differentiation along an environmental gradient has received little attention. The potential 

for natural selection to act on such small scales is likely increased by the ability of coral 

larval dispersal and settlement to be influenced by environmental cues. Here, I combine 

genetic, spatial, and environmental data for a single patch reef in Kāne‘ohe Bay, O‘ahu, 

Hawai‘i in a landscape genetics framework to uncover environmental drivers of intra-reef 

genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) 

of the coral, Pocillopora damicornis at my study site and genotyping at six microsatellite 

loci. In addition, three environmental parameters – depth and two depth-independent 

temperature indices – were collected on a 4 m grid across 85 locations throughout the 

reef. I use ordinary kriging to spatially interpolate my environmental data and estimate 

the three environmental parameters for each coral individual. Partial Mantel tests indicate 

a significant correlation between genetic relatedness and depth while controlling for 

space. These results are also supported by multiple regression of distance matrices as well 

as multi-model inference. Furthermore, spatial Principle Component Analysis was used 

to visualize spatial genetic patterns by optimizing spatial autocorrelation and genetic 

variance in the dataset. The results indicate a statistically significant genetic cline along a 

depth gradient. Binning the genetic dataset based on size-class information revealed that 

the correlation between genetic relatedness and depth was significant for new recruits and 

increased for larger size classes, suggesting a possible role of larval habitat selection as 

well as selective post-settlement mortality in structuring intra-reef genetic diversity. That 

both pre- and post-recruitment processes are involved points to the adaptive role of larval 

habitat selection in increasing adult survival. The conservation importance of uncovering 

intra-reef patterns of genetic diversity is discussed. 
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Introduction 

Local adaptation occurs when populations become fine-tuned to their 

environment through the process of natural selection. Locally adapted genotypes, 

however, can be swamped out by the arrival of immigrants from populations differently 

adapted. This paradigm has served as the dominant one in terrestrial systems where 

physical isolation is considered important, if not essential for populations to diverge 

(Mayr 1942). In contrast, since many marine organisms begin their lives as planktonic 

larvae, it was believed that the diversifying effects of natural selection would be 

countered by the homogenizing effects of high gene flow connecting populations in the 

ocean (discussed in Hellberg 2009). This has since been largely abandoned as numerous 

examples from fish (Conover et al. 2006, Rocha & Bowen 2008) and various marine 

invertebrates (Bird et al. 2011, Sanford & Kelly 2011) demonstrate that not only can 

marine populations become locally-adapted, but that ecological differences between 

populations can, in some cases, be strong enough to foster speciation events in sympatry 

(Bowen et al. 2013).  

In marine systems, indication of local adaptation comes from both experimental 

studies involving reciprocal transplant experiments (e.g., Sherman & Ayre 2008, Barshis 

et al. 2010) as well as from statistical inferences based on correlating population genetic 

data with environmental variables (e.g., Jørgensen et al. 2005) or in the detection of 

outlier loci that deviate from neutral expectations (e.g., Oetjen & Reusch 2007). 

Recently, researchers have uncovered both environmental (e.g., Gorospe & Karl 2011) 

and genetic heterogeneity (reviewed in Palumbi 2004) in marine systems at small spatial 

scales. As a result, local adaptation in marine systems has begun to receive increasing 

attention (Sotka 2005, Conover et al. 2006, Sanford & Kelly 2011). 

The term “local adaptation” implies the existence of a pattern on a small spatial 

scale. This is often interpreted to mean adaptive differences between discreet demes 

existing in distinct habitats. It is important to note, however, that local adaptation can also 

refer to differences within continuous populations along a continuous environmental 

gradient (Kawecki et al. 2004). Small-scale, local adaptation in plants often can be found 

in the form of genetic differentiation being structured along environmental gradients 

(Vekemans & Hardy 2004, Leimu & Fischer 2008). This characteristic is believed to be 
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common in plants because they are: (1) sessile, and thus more susceptible to small-scale 

environmental heterogeneity (Linhart & Grant 1996) and, in some cases, (2) able to 

reproduce clonally, allowing selective factors to act on identical genotypes over multiple 

generations (van Kleunen et al. 2001; Knight et al. 2004). For both fish and marine 

invertebrates, experimental studies have found evidence of adaptive genetic divergence at 

spatial scales ranging from tens to thousands of kilometers (Sanford & Kelly 2011), 

however, this is likely biased by the fact that marine local adaptation has largely been 

viewed from a population standpoint. For example, while local adaptation has been 

demonstrated for corals on an inter-reef level, (e.g., D’Croz & Maté 2004; Vermeij et al. 

2007), the potential for local adaptation on an intra-reef scale has rarely been investigated 

(however, see Barshis et al. 2010). Investigating patterns of individual-level genetic 

variation, as is advocated for in landscape genetic analyses (Storfer et al. 2007), may hold 

insight into the potential for natural selection to influence patterns of genetic diversity.  

Corals share the same sessile and reproductive traits that predispose plants to local 

adaptation. Yet, while investigations that look at individual-level genetic variation across 

an environmental gradient are common in the terrestrial plant literature (e.g., Kalisz et al. 

2001), similar investigations are rare for corals. Furthermore, it could be argued that 

corals may have an increased potential to exhibit similar patterns because unlike plants, 

the dispersing propagules of corals engage in active site selection. The ability of larvae in 

sessile marine invertebrates to sense and be attracted to specific settlement cues has been 

shown to be intra-specifically variable and heritable (Toonen & Pawlik 2001, Baums 

2008, Meyer et al. 2009) as well as resulting in an increased probability of survival 

(Hurlbut 1993, Raimondi & Morse 2000) indicating an evolutionary potential for natural 

selection to act on this trait. Indeed, a variety of biotic and abiotic settlement cues are 

known to act on a range of spatial scales from long-distance cues (e.g., open ocean 

currents) that influence larval transport towards islands to those that influence larval site 

selection within a reef (e.g., sedimentation) to still others (e.g., depth, temperature, light 

intensity, and chemical cues) that likely influence larvae throughout their dispersing stage 

(McEdward 1995; Gleason & Hofmann 2011). Therefore, it is possible that adaptive 

genetic divergence in corals may be found on an intra-reef scale. It has long been 

recognized that reefs exhibit zonation patterns in the distribution of coral species (Goreau 
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1959) largely driven by environmental heterogeneity and inter-specific larval behavioral 

differences (Raimondi & Morse 2000, Baird et al. 2003), but it remains to be tested 

whether intra-specific, individual-level genetic variation at this scale can also be 

explained by similar processes.  

As described in Chapter 3, (Gorospe & Karl, accepted) I genotyped and mapped 

nearly every individual of the coral, Pocillopora damicornis, within a single reef. I found 

non-random spatial patterns of genetic relatedness (i.e., spatial autocorrelation) and 

attributed intra-reef positive spatial autocorrelation of genetic relatedness to larval 

dispersal processes whereby both clonally and sexually produced planulae of P. 

damicornis tend to settle nearby their brooding parent. What remained speculative, 

however, was the causes of negative spatial autocorrelation whereby at extreme 

distances, corals were more unrelated to each other than expected from random. Indeed, a 

major question remaining unanswered is to what extent are geographic patterns 

maintained by drift (i.e., restricted dispersal and spatial processes) versus environmental 

heterogeneity (i.e., natural selection and larval recruitment behavior). In other words, 

there is a need to disentangle the contributions of spatial and environmental processes 

that underlie the observed pattern of genetic variation. By allowing for the control of 

spatial dependence in environmental variables, landscape genetic analyses move beyond 

simply describing patterns of genetic and environmental variation and attempt to 

elucidate the processes that are responsible for generating them (McIntire & Fajardo 

2009, Schoville et al. 2012). Here, I integrate my spatial and genetic datasets (Gorospe & 

Karl, accepted) with depth and temperature datasets collected for the same reef (Gorospe 

& Karl 2011) to examine how environmental characteristics may be influencing intra-reef 

spatial genetic patterns.  

Methods 

Genetic, spatial, and size data collection 

 Coral sampling and mapping and microsatellite genotyping are described in 

Chapter 3 (Gorospe & Karl, accepted). In addition, the image analysis software, ImageJ 

(ver. 1.45s; Rasband 1997) was used to measure the surface area of each individual coral 

based on size-standardized photographs taken in the field. For my measure of genetic 

relatedness, I use Hardy and Vekemans’ (Hardy & Vekemans 1999) coefficient of 
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relationship, which is a measurement of pairwise genetic relatedness based on the 

Moran’s I measurement of spatial autocorrelation (Moran 1950). Finally, it should be 

noted that Hardy-Weinberg equilibrium and locus-level analyses as well as spatial and 

clonal structure analyses are highlighted elsewhere (Gorospe & Karl, accepted) such that 

I can focus on the landscape genetics analyses here.  

Environmental data collection 

High-Resolution Thermochron iButton temperature and time data loggers (model 

DS1921H; Maxim Integrated Products, Inc., Sunnyvale, CA, USA) were deployed on a 4 

m grid across 85 locations throughout Reef 19 and depth measurements were made as 

described in Chapter 2 (Gorospe & Karl 2011). 

Many characteristics of sea temperature are indeed correlated with depth (e.g., 

average daily temperature, average daily temperature range, average monthly 

temperature, etc.) and therefore, are not included in subsequent analyses to avoid 

colinearity among variables. As described in Chapter 2 (Gorospe & Karl 2011), however, 

I found two temperature indices that in fact could not be explained by depth based on 

partial regression analyses. The two temperature indices were Relative Hotspots and 

Relative Hothours (Gorospe & Karl 2011) and are included in this study. The Relative 

Hotspots Index is defined as the proportion of time over two years during which a 

location was one standard deviation hotter than the average temperature for the whole 

reef.  The Relative Hothours Index, on the other hand, is defined as the proportion of time 

spent over the course of two years during which the temperature at a location was one 

standard deviation hotter than the average temperature for that same location in the past 

twelve hours. Thus, areas of the reef that have a high Relative Hotspots Index are 

frequently warmer than spatially averaged temperatures for the entire reef, while areas of 

the reef that have a high Relative Hothours Index are frequently warmer than site-specific 

temporally averaged temperatures.  

I then combine the Hotspots and Hothours indices information of the 85 

temperature monitoring sites with their individual spatial locations to spatially interpolate 

a Hotspots and Hothours map for the entire reef. To do this, I use the gstat package 

(Pebesma & Wesseling 1998) in R to perform ordinary kriging, a geostatistical spatial 

interpolation method that models the relationship between distance and variance of 
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sampled points to predict values at unsampled locations. My dataset of coral spatial 

coordinates was then layered on top of these maps to obtain an estimate for each coral 

colony’s Hotspot and Hothour index. Lastly, the same statistical techniques were applied 

to my depth measurements to generate a bathymetric map of the reef (Gorospe & Karl 

2011) and estimate the depth at which each coral colony resides.  

Data analysis 

First, I calculated pairwise Euclidean distances for each individual coral’s spatial 

coordinates and environmental data (i.e., depth as well as Hothours and Hotspots 

indices). For the genetic data, coefficients of relationship based on Moran’s I (Hardy & 

Vekemans 1999) were calculated using the program Spatial Pattern Analysis of Genetic 

Diversity (SPAGeDi; Hardy & Vekemans 2002) for all pairs of coral individuals. These 

five measures (i.e., spatial, Hothours, Hotspots, and depth distances as well as genetic 

relatedness) were then used for subsequent analyses investigating the relationship, if any, 

between genetic relatedness and one or a combination of the spatial or environmental 

variables.  

In order to account for spatially autocorrelated environmental data, I performed 

separate partial Mantel tests (Mantel 1967, Smouse et al. 1986) to calculate the ranked 

correlation (i.e., analogous to a Spearman’s correlation) between genetic relatedness and 

each of the three environmental variables (i.e., Hothours, Hotspots, depth), while 

controlling for the effect of spatial distances. The partial Mantel test calculates the 

correlation between two distance matrices, A and B, while controlling for the effect of a 

third, C, by calculating the correlation between the matrices of residuals between A and C 

and A and B. Furthermore, statistical significance is based on creating a null distribution 

by Monte Carlo randomization, whereby one of the matrices is unmanipulated and the 

other is randomly permuted (Smouse et al. 1986). While past attention has criticized the 

use of the permutation procedure for the partial Mantel test (Raufaste & Rousset 2001, 

Castellano & Balletto 2002), studies confirm that for sample sizes greater than 50, 

permutation procedures remain valid (Anderson & Robinson 2001, Legendre & Fortin 

2010). In addition to treating depth as an environmental variable in which spatial 

autocorrelation must be controlled for, I also tested for the relationship between genetic 
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relatedness and spatial distance, while controlling for the effect of depth. This allows me 

to tease out the influence that depth may have on spatial location and vice versa.  

Furthermore, to investigate how the genetic correlation with space and each of the 

environmental variables may have changed over time, I repeated the partial Mantel test 

analyses on several subsets of coral samples after incorporating each coral individual’s 

size data (i.e., surface area) as a proxy for age. Note that while issues of partial mortality 

and individual variation in growth rate make the correlation between surface area and age 

less than perfect in P. damicornis, it is still true that older corals tend to be larger than 

younger corals (Hughes and Connell 1987), thus allowing me to bin corals into various 

size classes. Corals with surface area < 10 cm2 (i.e., max diameter ~3.5 cm) were placed 

into the smallest size class and are considered to be relatively recent recruits on the reef 

(i.e., less than 2 years old; Harriott 1985). Defining a bin size for the oldest size class, 

however, is complicated by the fact that colonies may suffer from partial mortality or 

may be the result of fusion between two originally separate colonies (i.e., larger size 

classes will likely have a larger variance in age; Hughes & Connell 1987). To reflect this 

uncertainty, I vary the lower bound of the largest size class and define the oldest recruits 

on the reef to be those with surface areas greater than 30, 40, 60, or 90 cm2. Partial 

Mantel tests investigating the relationship between genetics and depth versus space were 

then rerun separately for each bin. I also calculate pairwise genetic distances (FST) 

between all size class bins based on an analysis of molecular variance (AMOVA; Excoffier 

1992) as implemented in the program, GENODIVE (Meirmans & van Tienderen 2004). For 

this analysis, I remove all repeated MLGs within each size class bin and calculate 

significance based on 9999 permutations.  

Next, I used an information theoretic approach (Burnham & Anderson 2001) to 

decide which environmental variables to interpret further by modeling genetic relatedness 

as a function of each variable described above (i.e., spatial, depth, Hothours, and 

Hotspots distances) as well as all possible linear combinations of them. To do this, I use 

the package MUMIN (Bartón 2009) in R. Akaike weights (i.e., normalized likelihood 

values; w) were calculated for each model and all models were ranked based on Akaike’s 

(1992) information criterion (AIC). For each model, i, if AICi – AICmin > 10 this model 

was considered to be poorly supported and therefore not considered further (Burnham & 
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Anderson 2001). Finally, for each predictor variable, the AIC weights are summed for all 

models containing that variable. A predictor weight (w+) is thus calculated for each 

variable, allowing the variables to be ranked in order of their importance. Thus, in 

contrast to simply selecting those variables that are contained in the single best model, 

inference is based on the entire set of models (i.e., multi-model inference; Burnam & 

Anderson 2001, Anderson et al. 2000).  

To analyze the relationship of all variables simultaneously, I performed a multiple 

regression of distance matrices (MRDM; Manly 1986) using package ECODIST (Goslee & 

Urban 2007) in R. Unlike multiple regression on raw data, the parameter estimates of 

MRDM do not depend on the order of predictors inputted in the model, but only on 

which specific predictor variables are used (Legendre et al. 1994). In this analysis, the 

matrix of coefficients of genetic relationship is considered as a function of multiple 

independent distance matrices (predictor variables), and the statistical significance of 

regression coefficients for each predictor variable is tested based on matrix permutations 

(Legendre et al. 1994). Here, I perform MRDM using the four spatial and environmental 

distances described above as predictor variables, but then repeat the analysis selecting 

only those predictor variables that emerged from my multi-model inference framework. 

Finally, as standard genetic differentiation analyses (i.e., FST) are too coarse for 

the fine-spatial scale patterns in which I am interested, I perform a spatial principal 

components analysis (sPCA; Jombart et al. 2008) using the adegenet package in R 

(Jombart 2008). Unlike PCA, which seeks new axes (i.e., principal components) to 

summarize the data based on maximizing the genetic variance among individuals, sPCA 

seeks new axes that optimize the product of genetic variance and their spatial 

autocorrelation as measured by Moran’s I. The calculation of Moran’s I requires that 

neighboring entities in the dataset be defined by a connection matrix. Here, I define 

neighbors as any set of coral individuals within a certain distance from one another (i.e., a 

neighbor by distance connection network). I use the program, SPAGeDi, to calculate the 

mean of the largest distance bin to exhibit positive autocorrelation and use this as the 

upper distance limit of neighbors. For the distance classes, I use bins that create equal 

numbers of pairwise comparisons per distance bin and use 200 permutations of the spatial 

locations to define statistically significant autocorrelation. 
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Using both the connection matrix and a matrix of individual allele frequencies, 

sPCA results in both positive and negative eigenvalues, corresponding to global (i.e., 

clines where neighbors tend to be genetically similar) and local (i.e., patches where 

neighbors tend to be genetically different) spatial structures, respectively (Thioulouse et 

al. 1995). Each principal component axis represents a different spatial structure, and the 

decision of which axes to retain for interpretation is based on inspection of the scatter 

plot of all eigenvalues decomposed into their genetic variance and spatial autocorrelation 

components (i.e., screeplot). The mean PC scores of each individual’s neighbors (i.e., 

lagged or de-noisified scores) are then plotted back to that individual’s spatial coordinates 

to reveal the genetic spatial structure of the reef. To test for significance of overall global 

and local structures, I use the Jombart et al. (2008) method involving spatial filters 

created by decomposing the connection matrix into a set of Moran’s eigenvector maps (as 

is done in principal components of neighbor matrices; Griffith et al. 2006, Dray et al. 

2006, see Gorospe & Karl 2011 for an example). The matrix of individual allele 

frequencies is then correlated separately for global and local filters and statistical 

significance based on a Monte Carlo randomization procedure in which I use 9999 matrix 

permutations to generate a null distribution. Here, the null hypothesis is that individual 

allele frequencies are randomly distributed throughout the neighbor by distance 

connection network, while the alternative hypothesis is that individual allele frequencies 

display at least one global or local spatial structure (Jombart et al. 2008).  

Results 

To highlight the small scale of my landscape genetic dataset, I provide boxplots 

(Figure 5.1) of all pairwise coefficients of genetic relationship as well as all spatial and 

environmental variables. A total of 2352 individuals had complete six-loci genotypes as 

well as spatial and environmental data and were included in these analyses. Notice for all 

datasets, there is a concentration of small distances with larger distances as outliers. For 

genetic relatedness (Moran’s I), this indicates a concentration of closely related pairs of 

individuals, as was previously discussed in Chapter 3 (Gorospe & Karl, accepted). For 

spatial distances, this pattern of mostly small distances is expected for any sampling 

scheme as larger distances are confined to pairs of the relatively fewer outer sampling 

points (i.e., the number of individual separated by a certain distance decreases with 
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increasing distance). For the environmental distances of depth, Hotspots and Hothour 

indices, the pattern noted in the boxplots simply is a reflection of normally-distributed 

data, with points around the mean characterizing most of the small distances and outlying 

points characterizing the relatively fewer larger distances. 

The results of all partial Mantel tests are shown in Tables 5.1 and 5.2. Here, a 

significant and negative Mantel r indicates a weak relationship between that variable and 

genetic relatedness, whereby closely related corals (high genetic relationship coefficients) 

tend to be found in similar environments (small environmental distance). In fact, all 

environmental variables displayed this relationship, but only depth and space were found 

to be statistically significant (Table 5.1). It should be noted, however, that partial Mantel 

tests are based on distances and not raw data values, and therefore Mantel r values cannot 

be interpreted as the percent of variance in the response variable explained by the 

predictor variable (i.e., the coefficient of determination; r2) as is done in regression 

analyses (Legendre & Fortin 2010). Of the 2352 genotypes, 2229 also had surface area 

data based on size-standardized photographs taken in the field, and could therefore be 

binned into size classes. The results of partial Mantel tests comparing smaller (< 10 cm2) 

versus larger (> 30, 40, 60, or 90 cm2) corals are reported in Table 5.2. Once again, only 

depth and space were significantly correlated with genetic relatedness for smaller corals. 

For depth, the correlation with genetic relatedness increased for larger corals (-0.020 to -

0.030) when compared to smaller corals (-0.014). In contrast, spatial distance and genetic 

relatedness was only significantly correlated for the smallest size class. Lastly, based on 

the AMOVA, all estimates of genetic differentiation (FST) between pairs of size class bins 

were not significantly different from zero (0.948 < p < 1.00), indicating a lack of genetic 

differentiation among recruiting cohorts.  

After model ranking based on AIC, only eight models had AICi – AICmin < 10, 

and were thus selected for further consideration (Table 5.3). The model with the most 

support (i.e., lowest AIC) only contained depth and space as predictors of genetic 

relatedness. The AIC values for many of the models including Hotspots and/or Hothours, 

however, were relatively close (ΔAIC < 2) and thus hold considerable support of their 

own. Predictor weights calculated by multi-model inference for each environmental and 

spatial variable (w+) are reported in Table 5.1. Based on multi-model inference of 
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predictor weights, only space and depth were highly supported variables. Furthermore, 

when using all four spatial and environmental variables, results of MRDM also indicated 

that only the regression coefficients for space (p=0.001) and depth (p=0.001) were 

statistically significant. Thus, MRDM was repeated using just depth and space as 

predictor variables, and results of this analysis are reported in Table 5.1. 

In the sPCA analysis, since space and depth both appear to be significant drivers 

of genetic variation, I perform two separate analyses: one using each coral’s depth 

coordinates and another using spatial (x, y) coordinates. Thus, for the connection 

networks, I performed two separate spatial autocorrelation analyses comparing genetic 

relatedness with spatial distances (Figure 5.2A) and genetic relatedness with depth 

distances (Figure 5.2B) to define the upper distance limit of neighbors. Although 

theoretically possible, it should be noted that I do not perform a three dimensional sPCA 

using x, y, and depth coordinates because in this study I consider depth and space as 

separate, potential drivers of genetic variation. In the interpretation of sPCA, I consider 

depth-driven genetic variation as an environmental process and space-driven genetic 

variation as a dispersal process, and thus analyze them separately. 

Based on the Monte Carlo randomization test, the sPCA based on depth 

coordinates showed significant global structures (p=0.019), while the sPCA based on 

spatial coordinates did not (p=0.102). Neither analysis, however, showed significant local 

structures (p=0.936 for space and p=0.840 for depth), and therefore I only consider the 

global structures further. Based on the screeplot for the depth-based sPCA (Figure S1A in 

APPENDIX C), it appears that all global and local principal components contain relatively 

similar amounts of spatial autocorrelation, but only display results for the first global 

principal component (λ1), as this contained most of the genetic variance in the data. 

Mapping the PC scores of each individual back to their x, y coordinates revealed a depth 

cline in genetic variation with corals in the shallow, center portion of the reef and corals 

on the outer and deeper edges of the reef generally showing negative and positive PC 

scores, respectively (Figure 5.3A). The pattern becomes even more pronounced when the 

lagged (i.e., de-noisified) PC scores are plotted (Figure 5.3B). Global structures of other 

components exhibited similar spatial structures (not shown). I also express the 

contribution of each allele to this first principal component as squared loadings (Figure 
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S2 in APPENDIX C), and notice appreciable loadings from five out of six loci, although 

alleles from two loci in particular (PD2-006 and PD2-AB79) were the largest 

contributors. I do not include the sPCA results based on spatial coordinates since neither 

global nor local structures in this analysis were statistically significant. For exploratory 

purposes, however, I translate each of the first three global components of my sPCA 

based on spatial coordinates into a color intensity (red, green, and blue) to visualize them 

simultaneously (Figure S3 in APPENDIX C). The resulting map displays what also appears 

to be a depth cline in genetic variation with colonies in the center portion of the reef 

appearing to have different combined PC scores from corals on the outer edges of the reef 

(Figure S3 in APPENDIX C). 

Discussion 

Depth as a selective factor 

Uncertainty in explaining patterns of genetic diversity can originate from multiple 

processes converging, particularly at small-scales (e.g., Johnson & Black 1982, Johnson 

& Black 1984, Selkoe et al. 2010). I have attempted to reduce this uncertainty through 

my intense characterization of my study site as well as through the use of spatially-

explicit analyses. Depth and spatial location are correlated such that corals found at the 

same location will also tend to have similar depths and vice versa. Furthermore, my 

relative Hotspot and Hothour temperature indices are correlated with space (Chapter 2; 

Gorospe & Karl 2011). I tease apart the effects of depth, temperature and space using my 

partial Mantel tests, and find only depth and space to be significantly correlated with 

genetic relatedness. This is also confirmed by multi-model inference as well as by the 

results of multiple regression on distance matrices. Since spatial processes were discussed 

previously (Chapter 3; Gorospe & Karl, accepted), here I focus on the causes and 

consequences of genetic diversity patterned along a depth gradient. This study joins only 

a few (Bongaerts et al. 2010; Carlon & Budd 2002) that have focused on the depth-

associated distribution of the host coral’s genetics. 

Based on the Monte Carlo randomization procedure of the sPCA, allele 

frequencies at my study site show positive autocorrelation (p = 0.019) with regards to 

depth. In other words, genetic diversity exhibits a depth cline whereby individuals at 

similar depths tend to have more similar genotypes than individuals at different depths. 
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When I restrict the partial Mantel tests to the smallest size class, I see that this is true 

even for likely recent coral recruits. Planulae of P. damicornis have the ability to remain 

in the plankton for more than 100 days after release (Richmond 1987). While this might 

point to the potential for P. damicornis to disperse over long distances, it has also been 

shown that planulae are competent (i.e., able to respond to settlement cues and begin 

metamorphosis) as soon as 12 h after release (Isomura & Nishihira 2001). Given the 

weak, but significant correlations between genetic relatedness and depth distances 

(Tables 5.1 and 5.2), these data point to a detectable role for depth in larval habitat 

selection at this scale. 

In addition to genetics and depth being correlated for the smallest size class, I also 

find that the magnitude of this correlation increases for increasing size classes (Table 

5.2). Furthermore, based on the AMOVA, groups of corals in different size classes were 

genetically not different, thus ruling out the possibility that the temporal change in 

genetic-depth correlation could be due to genetic differences between recruiting cohorts 

(i.e., chance recruitment events). Put another way, since there are no genetic differences 

between newer and older coral recruits, the increasing correlation between genetic 

relatedness and depth for increasing size classes is being driven by differences in the 

depth distribution between older and younger corals, thus pointing to depth as a post-

recruitment, selective factor. In particular, increased environmental dependence of 

genetic relatedness for larger size classes may be explained by selective mortality (e.g., 

Tonsor et al. 1993, Kalisz et al. 2001). Indeed, pre- and post-recruitment processes are 

linked for marine larvae as metamorphosis is seen as irreversible and behavioral selection 

of a settlement site is meant to increase adult survival. While depth has been shown to 

influence larval swimming behavior (Stake & Sammarco 2003), it is difficult to explain 

how depth alone (i.e., hydrostatic pressure) could play a selective role in structuring intra-

reef genetic diversity.  

It should be emphasized, that my Hotspot and Hothour temperature indices were 

specifically chosen for this analysis because they were independent of depth (Gorospe & 

Karl 2011). The use of depth as an explanatory variable, however, may potentially be 

serving as a proxy for other temperature characteristics that are in fact depth-dependent. 

For corals, temperature appears to be an important environmental selective factor, with 
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different populations exhibiting different bleaching responses (D’Croz & Maté 2004, 

Smith-Keune & van Oppen 2006), growth rates (Smith et al. 2007), or stress protein 

expression levels (Barshis et al. 2010) in different temperature regimes. The importance 

of temperature in adult survival, therefore, makes it a likely candidate as an important 

settlement cue. On the other hand, another potential cause of depth-dependent genetic 

structuring to consider is the role of light in affecting coral larval settlement (Mundy & 

Babcock 1998). Selecting a habitat with a suitable light regime is important for adult 

coral survival, especially given the role of their intracellular, photosynthetic 

Symbiodinium spp. from which they derive considerable energy. Indeed, the marine 

environment experiences considerable spatio-temporal variation in spectral quality and 

light intensity (Zepp et al. 2008), particularly at shallow depths where the need for light 

within the photosynthetically-active spectrum must be balanced by the potential damages 

of increased UV irradiance (Dunne & Brown 1996) as well as the potential for 

desiccation during exceptionally low tidal phases. In fact, it also has been shown that 

larvae originating from deeper colonies have lower survivorship when exposed to light 

spectra more typical from shallow depths (Gleason & Wellington 1995). Thus, while my 

results indicate a correlation between genetic relatedness and depth, it is important to 

keep in mind that the proximal, causative factor responsible for these patterns may in fact 

be any number of depth-dependent environmental variables. Confirmation of the specific 

mechanism by which depth could influence patterns of genetic diversity on an intra-reef 

scale requires further experimentation.  

Conservation implications 

That the environmental heterogeneity found within a reef is enough to structure 

genetic diversity patterns along a depth cline has important conservation implications. 

Recall that the lagged PC scores (Figure 5.3B) are obtained by averaging for each 

individual the scores of its neighbors as defined by the connection network. In this sense, 

the lagged sPCA map represents average spatio-genetic variance throughout the reef, 

while the non-lagged sPCA map (Figure 5.3A) represents the non-averaged, individual 

data. If the depth cline observed at my study site is due to the selective factors discussed 

above, then a comparison of the non-lagged versus lagged maps could help to identify 

individuals whose PC scores grossly differ from their neighbors. If the selective factor is 
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strong enough, then these individuals will eventually be weeded out by selective 

processes. This may even explain the occurrence of highly patchy phenomena, such as 

bleaching, whereby the coral host and Symbiodinium spp. relationship is broken down 

(i.e., bleaching) due to a combination of thermal and irradiance stress (Brown 1997, 

Jones et a. 1998, Warner et al. 1999). The occurrence of bleached and unbleached coral 

individuals of the same species found adjacent to one another may be explained by 

environmental heterogeneity (Figure 2.1) or due to selective mortality. This, however, is 

only conjecture as no phenotypic data was collected in this study. 

Studying adaptation in the face of climate change has been difficult due to the 

uncertainty of how corals will respond to environmental differences. Conservation efforts 

have largely focused on maximizing population connectivity, however, connectivity 

refers not just to the transport of larvae but also their ability to recruit, survive, and seed 

the next generation in their new home. In other words, habitat unsuitability can decrease 

levels of connectivity even in the face of considerable population mixing. This has been 

termed phenotype-environment mismatch (Conover et al. 2006, Nosil et al. 2005, 

Marshall et al. 2010), and could potentially serve as a biological barrier to gene flow for 

organisms where the scale of environmental heterogeneity is smaller than the scale of 

larval transport and non-random mortality occurs after dispersal. Here, I show that this 

process may be occurring at the intra-reef scale as well. Predicting how species will 

respond to climate change, therefore, will require the incorporation of habitat suitability 

alongside studies of genetic connectivity.  

A new paradigm for intra-reef coral genetic diversity 

Marine genetic adaptive divergence can be seen as a continuum, with populations 

being pulled apart by selective forces to species whose reproductive isolation is 

maintained by ecological boundaries (Rocha et al. 2005, Bird et al. 2011, Bird 2011). 

What I suggest here is a new paradigm for individual-level, intra-reef patterns of coral 

genetic diversity. Selection-driven genetic divergence has historically been viewed as 

difficult to occur if gene flow is high. Here, however, I demonstrate that despite genetic 

homogeneity on an inter-reef scale (Chapter 3; Gorospe & Karl, accepted), genetic 

relatedness patterns within a reef are not random and instead, driven by both 

environmental and spatial factors. In other words, genetic differentiation may still arise 
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among populations connected by high gene flow (Nosil 2008). Unlike plant dispersal, 

marine larvae exhibit active microhabitat settlement choice and a renewed emphasis on 

the causes and consequences of larval retention has emerged (Levin 2006, Jones et al. 

2009). In understanding the scale of gene flow in marine environments, therefore, one 

must move beyond purely spatial factors, and consider the influence of larval settlement 

behavior as well as post-recruitment selective mortality due to phenotype-environment 

mismatch.  

It should be emphasized, however, that I only focus on inferring processes that 

can explain my observed depth cline in genetic diversity and multiple processes are likely 

co-occurring. Since most larval settlement studies have been conducted in the laboratory, 

it is still unknown how larvae in the field would respond to a suite of cues acting 

synergistically and on a variety of spatial scales (Levin 2006, Gleason & Hofmann 2011). 

Just as population genetic studies attempt to infer processes of population connectivity, 

landscape genetic studies that focus on explaining processes of diversification within a 

continuous landscape may help to explain patterns of recruitment and larval behavioral 

responses to multiple cues acting simultaneously.  
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Table 5.1. Various landscape genetic analyses comparing the relationship between genetic relatedness and each of four spatial 
or environmental predictor variables. Reported for each variable are Mantel r correlation coefficients from partial Mantel tests, 
predictor weights (w+) from multi-model inference, and regression coefficients from multiple regressions on distance matrices 
(MRDM). Significant tests are only available for the partial Mantel tests and MRDM. Statistics with p-values < 0.05 are in 
bold.  
 

Variable  Mantel r (p-value)  w+  MRDM (p-value) 

Depth (controlling for space)  -0.011 (0.002)  1.00  -0.012 (0.002) 

Space (controlling for depth)  -0.008 (0.001)  0.97  -0.001 (0.001) 

Hotspot Index (controlling for space)  -0.004 (0.07)  0.46  NA 

Hothour Index (controlling for space)  -0.002 (0.13)  0.30  NA 
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Table 5.2. Mantel r correlation coefficients between genetic relatedness and each of four spatial or environmental variables for 
different size class bins based on surface area. N indicates the number of coral individuals. NS indicates non-significant 
correlations (* p < 0.05; ** p <0.01; NS = not significant). 
 

Size  N  Depth  Space  Hotspots  Hothours 

< 10 cm2  1037  -0.014**  -0.004*  NS  NS 

> 30 cm2  486  -0.020*  NS  NS  NS 

> 40 cm2  370  -0.022*  NS  NS  NS 

> 60 cm2  207  NS  NS  -0.027*  NS 

> 90 cm2  95  -0.030*  NS  NS  NS 
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Table 5.3. Model selection results on the response of genetic relatedness to all possible linear combinations of depth, space, 
Hotspots, and Hothours. Only those models with ΔAIC = AICi – AICmin < 10 for model i are shown. Number of parameters 
(K), log likelihood [log(L)], Akaike’s information criterion (AIC), and Akaike weights (w) are reported for each model. 
 

Landscape Model  K  log(L)  AIC  ΔAIC  w 

β0 + β1 (Depth) + β2 (Space)  4  -1832529  3665067  0  0.362 

β0 + β1 (Depth) + β2 (Space) + β3 (Hotspots)  5  -1832529  3665067  0.27  0.317 

β0 + β1 (Depth) + β2 (Space) + β3 (Hothours)  5  -1832529  3665068  1.64  0.159 

β0 + β1 (Depth) + β2 (Space) + β3 (Hotspots) + β4 (Hothours)  6  -1832528  3665069  1.96  0.136 

β0 + β1 (Space)  3  -1832534  3665074  7.05  0.011 

β0 + β1 (Space) + β2 (Hotspots)  4  -1832533  3665074  7.74  0.008 

β0 + β1 (Space) + β2 (Hothours)  4  -1832534  3665076  8.99  0.004 

β0 + β1 (Space) + β2 (Hotspots) + β3 (Hothours)  5  -1832533  3665076  9.64  0.003 
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Figure 5.1. Boxplots of pairwise coefficients of genetic relationship as well as spatial and environmental distances. The rectangles 

represent the interquartile range (i.e., lower 25th percentile, median, and upper 75th percentile), the whiskers represent 1.5 times the 

interquartile range, and points represent outliers. 
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Figure 5.2. Results of spatial (A) and depth (B) autocorrelation analyses. Distance classes 

in both analyses are based on equalizing the number of pairwise comparisons across 

distance bins. Dashed lines represent 95% confidence intervals based on 200 

permutations of individual spatial or depth coordinates among all individuals.  
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Figure 5.3. Spatial map of non-lagged (A) and lagged (B) scores from the first global 

principal component of sPCA based on depth. Each coral colony is represented by a box. 

The size of the box indicates the magnitude and filled boxes are positive and open boxes 

are negative PC scores, respectively.
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CHAPTER 6. FINAL DISCUSSION 

Diverging from past studies of coral genetic diversity, this dissertation intensely 

studied a single patch reef to fully characterize intra-reef patterns of coral genetic 

diversity and environmental heterogeneity. Chapter 2 (Gorospe & Karl 2011) emphasized 

the importance of biologically significant environmental variation on this scale. In 

Chapter 3 (Gorospe & Karl, accepted), using a cross-scale sampling approach and 

explicitly spatial analyses, allowed for a clearer understanding of dispersal and 

colonization processes for P. damicornis on this scale. It also demonstrated that for this 

species, spatial-driven processes (i.e., dispersal) only create non-random patterns of 

genetic relatedness within a reef and that these patterns do not scale up to an inter-reef 

level. The intense sampling effort of this study was in fact necessary, as discussed in 

Chapter 4, particularly for uncovering spatial patterns of genetic diversity, and highlights 

the importance of near-exhaustive sampling studies. These simulations also demonstrated 

a considerable amount of variance in the characterization of coral genetic diversity with 

small (~50) sample sizes (Chapter 4). Lastly, Chapter 5 revealed a genetic cline along a 

depth gradient, inferred to be created by a combination of depth-associated settlement 

behavior and selective mortality, and thus demonstrating local adaptation on an intra-reef 

scale.  

This dissertation demonstrated that much can be gained from scaling down to a 

single reef and investigating inter-individual, cross-scale patterns of coral genetic 

diversity. In some cases, the coral population genetic paradox, therefore, may only be 

paradoxical within the context of broad-scale studies. Spatial analyses indicate that while 

P. damicornis was genetically homogenous on an inter-reef scale, non-random patterns of 

genetic relatedness could be found on an intra-reef scale, and that therefore, the effects of 

dispersal-driven patterns of genetic diversity are not retained across scales. On the other 

hand, it is clear that past studies using smaller sample sizes may have inaccurately 

estimated coral genetic diversity, thus potentially complicating the interpretation of 

geographic variation while also implicating sampling factors as another potential cause of 

the coral population genetic paradox. Furthermore, landscape genetic analyses described 

the organization of intra-reef coral genetic diversity along spatial and depth gradients, 
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and highlighted the importance of considering environmental heterogeneity in explaining 

spatial patterns of coral genetic diversity. 

Coral reefs are threatened on a global scale by both rising sea surface 

temperatures and ocean acidification (Hughes et al. 2003). Studies that focus on coral 

genetic diversity on larger scales are important for understanding the evolutionary and 

ecological connectivity between populations, and thus the potential to maintain genetic 

diversity, the source of evolutionary change and adaptive capacity, through demographic 

processes. Understanding the impact of global climate change on intra-species genetic 

diversity, however, will require information on multiple processes occurring on multiple 

scales (Pauls et al. 2013). Here, the intense characterization of the genetic and 

environmental heterogeneity of a single reef allowed for the inference of processes of 

dispersal, recruitment, local adaptation, and selection occurring on an intra-reef scale. 

Gaining a better understanding of coral demographic processes occurring on different 

scales will be crucial to our ability to predict, and thus potentially mitigate, how global 

climate change will affect coral population persistence. Overall, while there is no one 

correct scale at which to study a species (Levin 1992), inattention to any one particular 

scale may inhibit our ability to understand how processes and patterns change across 

scales.  
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APPENDIX(A(

Table 1S – Degree of correlation of depth with biotic and abiotic factors and diversity. Bolded values are considered significant. 

! ! Coefficient! ! Corrected!

Test! ! Pearson’s! ! Spearman’s! ! df! ! P"

Relative!Water!Flow! ! )0.837( ( )0.912( ! 9.789! ! <!0.001!

All!coral!combined! ! )0.548( ( )0.402( ! 24.951! ! 0.003!

Porites"compressa!(PCO)! ! )0.625( ( )0.550( ! 19.561! ! 0.002!

Montipora!sp.!(MSP)! ! 0.168! ! 0.316! ! 49.622! ! 0.237!

Pocillopora"damicornis!(PDA)! ! M0.164! ! M0.303! ! 58.867! ! 0.207!

Other!coral!(OCOR)! ! M0.086! ! 0.027! ! 56.913! ! 0.519!

All!macroalgae!combined! ! )0.344( ( )0.416( ! 29.825! ! 0.055!

Dictyosphaeria"sp.!(DSP)! ! M0.120! ! M0.132! ! 72.709! ! 0.306!

Eucheuma"sp."and"Kappaphycus"sp.!(EKSP)! ! )0.308( ( )0.532( ! 29.580! ! 0.089!

Other!Macroalgae! ! M0.068! ! M0.213! ! 87.026! ! 0.526!

All!abiotic!substrates!combined! ! 0.621( ( 0.481( ! 23.953! ! <!0.001!

Dead!coral!with!algae!(DCA)! ! M0.189! " M0.189! ! 54.562! ! 0.161!

Recently!dead!coral!(RDC)! ! M0.097! " 0.223! ! 84.304! ! 0.373!

Rubble!(RUB)! ! 0.564( ! 0.524( ! 33.448! ! <!0.001!

Sand!(SAN)! ! 0.744( ! 0.690( ! 15.917! ! <!0.001!

Other!invertebrates!(OINV)! ! 0.448( ( 0.346( ! 30.101! ! 0.010!

Unknown!(UNK)! ! M0.127! " M0.031! ! 54.259! ! 0.350!

Shannon!Diversity!Index! ! )0.280( ( )0.225( ! 32.998! ! 0.103!
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Table 2S – Percent of the variance in the index explained by environmental variables (i.e., depth and/or substrate), location, and 
shared (environmental variables and location) in the regression of: (1) temperature on depth, (2) temperature on location, (3) 
temperature on depth and location, (4) temperature on substrate and depth, and (5) temperature on substrate, depth, and location. 
Dominant factors are bolded. 

! Data!Set!

Index Two!Years Summer!2008 Summer!2009 Winter!2008 Winter!2009 

Relative!
Hotspots location( 19.1 location(( 13.1 location(( 29.5 location(( 35.4 location(( 15.7 

Relative!
Coldspots 

depth!! 2.1!
location(( 29.6(
shared!! 6.6 

depth!! 5.4!
location(! 38.2!
shared! 0.0 

location(( 28.9 location(( 39.9 location(( 17.4 

Relative!
Hothours location(( 28.1(

 

depth!! 11.4!
location( (33.9(
shared! 0.0 

location(( 30.9 location(( 48.9 location(( 9.3 

Relative!
Coldhours 

depth!! 24.1!
location!! 4.6!
shared(( 61.9 

depth! !23.1!
location!! 15.2!
shared(( 39.4 

depth!! 9.7!
location!! 17.9!
shared(( 49.6 

depth!! 19.2!
location!! 5.8!
shared(( 57.2 

depth!! 20.5!
location!! 6.7!
shared(( 49.1 

Overall!Average! NA 
depth!! 7.1!
location(( 17.0(
shared!! 7.2 

depth!! 2.3!
location(( 34.9(
shared!! 1.9 

location(( 39.7 location(( 17.5 

Average!Daily!
Minimum NA location(( 25.9(

 
location(( 36.4(
 

depth!! 4.2!
location(( 24.6(
shared!! 20.9 

depth!! 4.1!
location(( 19.6(
shared!! 10.9 

Average!Daily!
Maximum NA 

depth(( 21.4(
location!! 10.1!
shared!! 15.7 

depth!! 8.7!
location(( 25.4(
shared!! 15.1 

depth!! 11.3!
location(( 33.4(
shared!! 19.2 

depth(( 21.5(

Average!Daily!
Range NA 

depth! !24.0!
location! !9.7!
shared( (29.7 

substrate((
and(depth((68.9 

depth!! 19.4!
location!! 9.9!
shared(( 57.6 

depth(( 75.5(

Total!Heating!
Hours NA 

depth!! 14.3!
location! 15.4!
shared( 15.8 

substrate((
and(depth(((25.9(
location!!!!!!!!!21.2!
shared!!!!!!!!!!!21.0 

NA NA 
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!
Figure 1S  – Fourier transform scaled periodogram of the standard deviation in temperature for the two years of data. Principal 

frequencies are marked with vertical, dashed lines and correspond to seasonal (365 days), lunar (O1, 24.83 hours), solar (P1, 24 

hours), lunar semi-diurnal (M2, 12.42 hours), and solar semi-diurnal (S2, 12 hours). Other peaks between 0.1 and 0.2 cycles per hour 

are likely echoes of O1 and P1. Scale bar in the upper right corner is the 95% confidence limit.  

!
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!
Figure 2S – Ordinary kriging interpolation of the proportion of two-year data set that 

were Coldhours (A) and the average daily temperature range for winter 2008 (B). 
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!
Figure 3S – Tukey boxplots of the seasonal and annual variation seen in daily minimum 

(A) and maximum (B) temperatures. The rectangle represents the interquartile range (i.e., 

the 25th percentile, median, and 75th percentile), the “whiskers” represent all values that 

are within 1.5 times the interquartile range, and the open circles represent outliers, 

defined as data points that lie outside the whiskers.  
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!
Figure 4S – Tukey boxplots of the seasonal and annual variation in percent of time sites 

spent as Hothours (A) and Coldhours (B). The rectangle represents the interquartile range 

(i.e., the 25th percentile, median, and 75th percentile), the “whiskers” represent all values 

that are within 1.5 times the interquartile range, and the open circles represent outliers, 

defined as data points that lie outside the whiskers.!
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APPENDIX B 
 

 
Figure S1. Principle component analysis of the microsatellite data. Each circle represents a 

genet and the filled circles are the ones with the uncommon mitochondrial DNA haplotypes. 
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APPENDIX C 
 

 
 
Figure S1. Screeplots representing the genetic variance and spatial autocorrelation 

components of each eigenvalue from spatial-based (A) and depth-based (B) sPCA. 
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Figure S2. Squared loadings (i.e., contribution) of each allele to the first component of sPCA based on depth. Alleles with loadings in 

the upper third quartile are labeled on the graph.  
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Figure S3. Spatial map of the lagged scores from the first three global principal 

components of sPCA based on spatial locations. Here, the three principal components are 

visualized simultaneously by translating each into a color intensity (red, green, or blue) 

and displaying the combined mixed colors.
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