INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Cloning of the pmh gene encoding a basic amino acid transport protein in *Neurospora crassa*

Han, Hyo-Young, Ph.D.

University of Hawaii, 1993
CLONING OF THE *pmb* GENE ENCODING A BASIC AMINO ACID TRANSPORT PROTEIN IN *Neurospora crassa*

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

BIOMEDICAL SCIENCES (GENETICS)

AUGUST 1993

By

Hyo-Young Han

Dissertation Committee:

W. Dorsey Stuart, Chairperson
David S. Haymer
Y. Edward Hsia
Morton Mandel
Bruce G. Adams
ABSTRACT

Neurospora crassa is known to possess at least six genetically and biochemically distinct amino acid transport systems; three constitutive amino acid permeases and three specialized amino acid permeases. The constitutive permeases include a neutral amino acid-specific system (N system), a basic amino acid-specific system (B system), and a general system (G system) that can transport neutral, basic, and acidic amino acids.

We have cloned the *pmb* gene which codes for a component of the B system. A *Neurospora crassa* triple mutant (*pmn:pmb:his-2*) was constructed from previously described mutants. This strain is suitable for use as a host strain in a transformation procedure for selecting DNA from the wild type *pmb* locus. Protoplasts of the *pmn:pmb:his-2* strain were prepared and transformed by sib selection with DNA fragments from cosmid library pools of wild type *Neurospora crassa*. One cosmid (pMOcosX-X7:5E) complemented the *pmb* mutant allele and was confirmed to be tightly linked to RFLP (Restriction Fragment Length Polymorphism) markers flanking the *pmb* locus on linkage group IV. A subclone of the pMOcosX-X7:5E cosmid, pB22-22 (3.2Kb), complemented the *pmb* mutant allele and was mapped with restriction enzymes. The subclone hybridizes to RNA transcripts 3.5Kb in size on Northern blot experiments. The subclone pB22-22 has been sequenced and the *pmb* portion of the sequence containing a promoter initiation site has been analysed; it
has two CAAT motifs at -166 and -155 when positions are given in base pairs (bp) from the A(+1) of the proposed translational start: a TATA motif is located at -123. There are two CT-rich regions; one is from -117 to -106 (12bp length) and the other is from -50 to -23 (28bp length) containing 83% of and 75% of pyrimidine bases each.

The promoter site of the pmb locus contains sequences for binding motifs of CPC-1 (cross-pathway control protein) at upstream and downstream of the translation start point. This suggests that the pmb gene is regulated by the cpc-1 gene.
TABLE OF CONTENTS

Abstract. ... iii
List of Tables. ... ix
List of Figures. .. x
Chapter 1: Introduction. ... 1
 1.1 Features of Neurospora. ... 1
 1.1.1 What is Neurospora? ... 1
 1.1.2 Taxonomy. .. 2
 1.1.3 Lifecycle ... 2
 1.1.4 Neurospora Culture. ... 4
 1.1.5 Byproducts of Filamentous Fungi 6
 1.2 A Brief History of Neurospora Research 7
 1.2.1 Pre-Recombinant DNA Period 7
 1.2.2 Modern Molecular Genetic Period 9
 1.3 Chromosome Mapping of Neurospora 11
 1.3.1 Classical Genetic Method ... 11
 1.3.2 Molecular Genetic Method ... 12
 1.4 Fungal Membrane ... 14
 1.4.1 Membrane Transport in Fungi 14
 1.4.2 Membrane Proteins ... 15
 1.4.3 Spheroplasts .. 17
 1.5 Amino Acid Transport Proteins in Fungi 18
 1.6 What is the \textit{pmb} Locus? ... 20
 1.7 The Current Research of the Basic Amino Acid Transport
 Protein. .. 22
Chapter 2: Materials and Methods................. 24

2.1 Common Reagents Used for Experiments........... 29

2.2 Selection of New Strains......................... 30

2.2.1 Crossing..................................... 30

2.2.2 Isolation of the pmn:pmb:his-2 strain........ 31

2.3 Generation of Spheroplasts....................... 32

2.3.1 Materials.................................. 32

2.3.2 Methods................................... 33

2.4 Plasmid DNA Extraction.......................... 34

2.4.1 Materials.................................. 34

2.4.2 Methods................................... 35

2.5 Transformation by Sib-Selection.................. 36

2.5.1 Materials.................................. 37

2.5.2 Methods................................... 37

2.6 RFLP Southern Hybridization..................... 38

2.6.1 Preparation of Genomic DNA................... 38

2.6.2 DNA Transfer and Detection.................... 40

2.7 Subcloning.................................. 44

2.7.1 Preparation of Vector and Insert DNA........ 44

2.7.2 Preparation of Competent Cells............... 46

2.7.3 Ligation................................... 47

2.7.4 Transformation............................... 47

2.7.5 Selection for Transformants by Blue-White Color Screening............................. 48

2.8 Restriction Mapping............................... 49
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sensitivity to PFPA</td>
<td>66</td>
</tr>
<tr>
<td>2. Sensitivity to Canavanine</td>
<td>68</td>
</tr>
<tr>
<td>3. Dry Weight of the pmn:pmb:his-2 Strain.</td>
<td>69</td>
</tr>
<tr>
<td>4. Transformation Efficiency Test.</td>
<td>71</td>
</tr>
<tr>
<td>5. Transformation of pmn:pmb:his-2 Spheroplasts</td>
<td>73</td>
</tr>
<tr>
<td>6. Transformation by Uptake of X7:5E</td>
<td>74</td>
</tr>
<tr>
<td>7. RFLP of X7:5E 18 Segregants</td>
<td>76</td>
</tr>
<tr>
<td>8. RFLP of X7:5E 38 Segregants</td>
<td>76</td>
</tr>
<tr>
<td>9. RFLP of Other Cosmids</td>
<td>77</td>
</tr>
<tr>
<td>10. Genotype Testing of the Transformants</td>
<td>79</td>
</tr>
<tr>
<td>11. Transformation Efficiency</td>
<td>81</td>
</tr>
<tr>
<td>12. Transformation Efficiency</td>
<td>81</td>
</tr>
<tr>
<td>13. Dry Weight of the Transformants</td>
<td>82</td>
</tr>
<tr>
<td>14. Consensus Sequences</td>
<td>93</td>
</tr>
<tr>
<td>15. DNA Fragments</td>
<td>97</td>
</tr>
<tr>
<td>16. Transformation Efficiency</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sensitivity to Canavanine</td>
<td>.68</td>
</tr>
<tr>
<td>2. Restriction Map of pB22-22</td>
<td>.83</td>
</tr>
<tr>
<td>3. Northern Blot</td>
<td>.84</td>
</tr>
<tr>
<td>4. Nested set of Deletion Cloning</td>
<td>.86</td>
</tr>
<tr>
<td>5. Sets of Nested Deletions</td>
<td>.87</td>
</tr>
<tr>
<td>6. Nucleotide Sequence of the Partial pmb Locus</td>
<td>.88</td>
</tr>
<tr>
<td>7. Secondary Structure of a Portion of the PMB protein</td>
<td>.95</td>
</tr>
<tr>
<td>8. Restriction Map of X7:5E</td>
<td>.98</td>
</tr>
<tr>
<td>9. Full Restriction Map of the Partial pmb Sequence</td>
<td>.121</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 FEATURES OF *NEUROSPORA*

1.1.1 WHAT IS *NEUROSPORA*? (25, 46)

Neurospora was first named and described by Shear and Dodge (1927). *Neurospora* is a eukaryotic, heterotrophic organism with an absorptive mode of nutrition. *Neurospora* cells contain normal mitochondria, an endoplasmic reticulum with ribosomes, nuclei with typical nuclear membranes, nucleoli, and various inclusions, such as ergosterol crystals, oil droplets, and glycogen bodies. *Neurospora* is both multicellular and multinucleate, and cells are bounded by a double-layered plasma membrane, and a strong cell wall composed of glucose polymers, a peptide-polysaccharide complex, chitin, and polygalactosamine. The *Neurospora* species is found in tropical or subtropical areas growing on trees and cellulosic plant remains. Recently, it has found another habitat as a laboratory organism because of its simple nutrient requirements and its straightforward biochemistry and genetics.

Neurospora has a number of properties which make it important both scientifically and economically. Its haploid genomes, rapid life cycles, cell differentiation, highly regulated metabolic pathways and efficient secretion of proteins make *Neurospora* attractive as a model system for basic biological research of eukaryotic organisms. Since the initial development of recombinant DNA technology in bacteria in
the early 1970s, the approach and techniques of molecular biology enable us to approach fundamental questions about many aspects of fungal biology, by providing the way to directed manipulation of fungal metabolism. The general economic importance of fungi is a reflection of their diverse life forms and metabolic virtuosity.

All fungal strains are inherently unstable as a result of the natural process of spontaneous mutation. While some strains are more stable than others, the effects of genetic instability can be mitigated by regular re-isolation and by reducing the number of subcultures between re-isolation steps to a necessary minimum.

1.1.2 TAXONOMY (24)

The filamentous fungus *Neurospora crassa* is a member of the fungal class Ascomycetes. As an ascomycete, *Neurospora* is related to yeasts, and as a fungus, *Neurospora* is more distantly related to mushrooms. Recently, in recognition of the unique nutritional and morphological attributes of fungi, taxonomists have elevated their taxonomic ranking to a separate kingdom, the fifth kingdom. Fungi are classified in the subkingdom Eumycota of the kingdom Fungi. Eumycota are eukaryotic, uni- to multicellular heterotrophic organisms with absorptive nutrition.

1.1.3 LIFE CYCLE (13, 25, 46)

Reproduction of *Neurospora* is either asexual or sexual. *Neurospora* grows as a branched tubular filament known as hypha
that originates from the germination of a single reproductive spore. The hypha grows at the tip and becomes multicellular by incomplete cross-walls, or septa, which have pores about 0.5um in diameter in their centers. The pores allow cytoplasm to flow along the hyphae, carrying nuclei, mitochondria, and other inclusions for some distance, usually in the direction of growth. In most hyphae there are more than one nucleus in each cell (i.e., between successive septa), ranging from about three to as many as 100 in certain unusual strains. Nuclei divide most actively near hyphal tips, and it appears that chromosomes remain in groups comprising entire sets during the division cycle. Such grouping may prevent chromosome loss during division in rapidly flowing cytoplasm. *Neurospora* has three spore forms, two asexual (microconidia and macroconidia) and one sexual (ascospores). Under appropriate conditions, the vegetative mycelium gives rise to a reproductive mycelium that supports the production of reproductive spores. The type of sporulation as well as the morphology of the spores and spore-bearing structures are key characteristics in fungus identification.

Similar to *Sacharomyces cerevisiae*, *N. crassa* has two mating types, designated A and a. A normal strain of either mating type can produce male gametes (macro- or micro-conidia) and female gametes (ascogonia, enclosed in a protective sheath, the whole known as a protoperithecium). Macroconidia are used to inoculate vegetative cultures, and they serve as the fertilizing (male) parent in sexual crosses. Microconidia are formed late in growth by a process quite
distinct from macroconidial formation. Microconidia are smaller, almost always uninucleate, and have poor viability. Gametic fusion is accomplished by spreading conidia of one mating type over the surface of a culture of the other mating type which has protoperithecia. Prior to nuclear fusion, parental nuclei divide many times as a network of ascogenous hyphae develops in the growing perithecium. At the termini of this hyphal system, nuclei of the two mating types associate in pairs in the ascus initials, where nuclear fusion occurs. The resulting diploid nucleus is immediately resolved into haploid products by two meiotic divisions and one mitotic division, which take place in the elongating ascus initial. The final product of each meiotic event is an ascus, containing eight ascospores. From each ascospore, a haploid vegetative culture is obtained. *N. crassa* ascospores can be stored in sterile water sealed in small vials without apparent loss of viability for at least a year at room temperature and 18 months at 4 degrees. A convenient feature of the *Neurospora* sexual system is that dormant ascospores must be treated at 60 degree temperature for germination. The activation treatment kills parental cells and other contaminants at the same time and this allows crosses to be analyzed and selected at any time in unambiguously pure form after they are mature.

1.1.4 *NEUROSPORA CULTURE*

Filamentous fungi are able to grow on a wide variety of carbon and nitrogen sources. *Neurospora* can use acetate, succinate, glycerol,
glucose, and other monosaccharides, and a number of oligo- and poly-saccharides as carbon sources. Nitrogen can be supplied as nitrate, nitrite, ammonium, and amino acids. Besides carbon and nitrogen, Neurospora requires only a few simple salts, trace elements, and a single vitamin, biotin, for vigorous growth. In addition, a number of species can carry out specific modifications of, for example, aromatic compounds and steroids in so-called bioconversion processes. The chemical diversity of the natural environment (i.e., soil and organic waste) in which these organisms live and have to compete with other (micro) organisms probably underlies their extraordinary metabolic diversity.

Despite its multicellular vegetative condition, when grown in submerged culture, filamentous fungi exhibit the growth pattern quite similar to those of unicellular microorganisms that reproduce by binary fission. The lag phase represents a period during which the fungal cells or spores adapt to a new environment. Adaptation includes formation of enzymes and intermediates to support resumption of growth. The exponential phase of fungal growth is characterized by a significant increase in cell mass. A reduction in the specific growth rate occurs when the microfungus begins to experience an unfavorable growth environment such as the limitation of a required nutrient, the development of an adverse pH value, or the accumulation of end products of metabolism that are inhibitory. These fungi exhibit different morphological forms, ranging from dispersed mycelial filaments to intricately interwoven,
mycelial masses referred to as pellets. The particular form exhibited is determined not only by the fungal species, but also by the nature of the inoculum as well as the chemical (medium constituents) and physical (pH, temperature, etc.) culturing conditions.

There are several methods for the measurement of growth in *Neurospora*. These are 1) measurement of the rate of mycelial elongation in race tubes, 2) measurement of the amount of growth in stationary or shaken liquid culture after selected time intervals, 3) measurement of the doubling time in logarithmically growing culture. Growth in stationary culture usually appears at the surface of the medium within a day, and growth up the walls of the flask should be submerged by swirling the flasks twice each day. Growth of conidia in the form of a mat is usually complete within 3-4 days. For most strains, a slow loss of weight follows the attainment of maximal weight. Moreover, the rate of growth changes with time. Thus, while no difference in dry weight will be noted between a wild type and a leaky mutant if they are incubated long enough, the leaky mutant may not have initiated visible growth by the time that of wild type is maximal.

1.1.5 BYPRODUCTS OF FILAMENTOUS FUNGI (46)

In addition to their scientific importance, despite the fact that fungi secrete only a limited range of proteins naturally, filamentous fungi can be engineered genetically to secrete significant amount of recombinant proteins. The economic importance can be illustrated
by the large variety of products that are made by filamentous fungi, such as organic acids (e.g. gluconic acid and citric acid), antibiotics (e.g. penicillin and cephalosporin) and numerous industrial enzymes (e.g. glucoamylase and lipase). Filamentous fungi are also used as food (mushroom), food additives (e.g. the meat extender Quorn) and condiments (e.g. soy sauce).

1.2 A BRIEF HISTORY OF *NEUROSPORA* RESEARCH.

1.2.1 PRE-RECOMBINANT DNA PERIOD (46, 47)

A number of filamentous fungi have been used for genetic research as general genetic models, because the fungal genetic apparatus (such as nucleus, chromosomes, and genes) is typically eukaryotic, and fungal meiosis, including recombination, is essentially identical to that of plants and animals.

Fungal genetics has been mostly laboratory bound since its inception. Most genetic investigations depend directly or indirectly on information from crosses, and among individuals within the same local population, thousands of nucleotide differences are known to exist among *Neurospora crassa* strains. Almost all the variants used in genetic, biochemical, and molecular studies have been obtained as single-gene mutants that were induced and selected in the laboratory. Most of our information on genetic polymorphisms in fungi has come from isozyme differences.
The classic studies of genetics and biochemistry by Lindegren (1931), Winge (1942), and Beadle and Tatum (1941) demonstrated both the utility and advantages of fungi and, in part, directed their development into the analysis of cellular function. B. McClintock and J. R. Singleton showed in the 1940s that chromosome morphology and behavior during meiosis and mitosis in the ascus resemble those in higher eucaryotes. The first genetic evidence of chromosome rearrangements was obtained in this period, and translocations were confirmed and described cytologically. The publication of the one gene-one enzyme hypothesis with Neurospora crassa in 1941 by Beadle and Tatum introduced many of the basic techniques of microbial genetics, which later became usual in the bacteria Escherichia coli.

Auxotrophic mutants were used to elucidate biosynthetic pathways. Complementation between alleles was demonstrated both in vivo and in vitro. Temperature-sensitive conditional mutants that were irreparable by supplementation were obtained. Studies of meiosis in the ascus provided important information about genetic recombination and its control because each ascus contains all the haploid nuclei resulting from a single meiotic division. Gene conversion was demonstrated, and its important characteristics were delineated. Meiotic recombination within genes was shown to be polarized. Genes that regulate the frequency of locally specific recombination events within and between other genes were discovered and characterized. The complete meiotic karyotype was
reconstructed in three dimensions for the synaptonemal complex, with its associated recombination nodules.

1.2.2 MODERN MOLECULAR GENETIC PERIOD (4, 47)

During the 1980s, modern molecular genetic techniques have been applied to many fungal species, especially those that have a good background of classical genetics such as *Neurospora crassa* and *Aspergillus nidulans*. Gene cloning is now commonplace, and the genes for many unique fungal products have been sequenced, expressed, and engineered. Numerous plasmids for fungal transformation and genomic libraries have been constructed and are readily available for a number of fungal species. The basic components of these plasmids are; a gene that can be used for selection of fungal transformants, bacterial plasmid sequences that can be used for selection and propagation of the plasmid in *E. coli*. The number of different selective markers available for fungi is now fairly large, and these selective genes often can be used in many different species, thus providing substantial flexibility in designing plasmids for specific purposes.

Mishra and Tatum (1973) first reported transformation of a filamentous fungus: in these experiments, the investigators treated an inositol-requiring *N. crassa* strain with DNA from a wild-type strain and obtained inositol-independent colonies. Although it seems likely that these colonies indeed arose by transformation, at the time molecular techniques were lacking to prove that the strains had
incorporated exogenously added DNA. Direct demonstration of fungal transformation came from the experiments of Case et al (1980) with *N. crassa*.

To date, the technology for introducing vectors into fungal cells has been restricted primarily to systems based on polyethylene glycol promotion of DNA uptake into protoplasts. Methods utilizing plasmids for recombinant DNA techniques in fungal experiments are similar to those developed for *E. coli*. Plasmids can be removed from the cell, segments removed by restriction enzymes, and a new piece of foreign DNA inserted. The restructured circular plasmids can be used to transform other cells. The DNA may become integrated into one of the chromosomes and the course of events whether homologous integration or non-homologous integration depends on the nature of the new DNA and the strain used.

With virtually all filamentous fungi, when transformation occurs by integration most nonabortive transformants are mitotically stable. In a practical test of the mitotic stability of fungal transformants, Finkelstein et al (1989) subjected a number of *A. niger* transformants, carrying extra copies of the glucoamylase gene, to eight serial conidial transfers in the absence of selective pressure. At the end of this period, no modification could be detected in either gene dosage or in enzyme yield. The implication of such mitotic stability is that recombinant filamentous fungi can be grown at production scale without the need to apply selective pressure to maintain the transformed phenotype (Skatrud et al. 1989).
The primary value of *Neurospora* in research at present is that *Neurospora* is eukaryotic, can be handled as easily as bacteria, and thus provide a valuable basis of comparison between prokaryotes and eukaryotes in molecular biology.

1.3 CHROMOSOME MAPPING OF *NEUROSPORA*

1.3.1 CLASSICAL GENETIC METHOD (13, 25, 78)

The DNA content of *Neurospora* is 27,000 kilobases which reveals a haploid genome that is about 10 times larger than that of *E. coli* (Krumlauf, R., Marzluf, G. A. 1979 Biochemistry 18, 3705-3713). *Neurospora* has seven cytologically distinct chromosomes having left and right arms connected through the centromere. The genetic counterparts of these are referred to as linkage groups I-VII, and represented as formal maps. *Neurospora* chromosomes are large enough during ascus development to permit conventional analysis by light microscopy. Shear and Dodge (1927) showed that mating type is determined by a single pair of alleles that show 4:4 segregation among unordered asci which were shot from the perithecia. Morphological differences of spontaneous origin were soon discovered and shown by Dodge to segregate in Mendelian fashion. The linear array of ascospores in the ascus was shown cytologically by M. S. Wilcox to reflect events in meiosis, and genes were shown by Wilcox and by Dodge to segregate sometimes at the first and sometimes at the second division of meiosis. C. C. Lindegren
proposed that second division segregations, as reflected in ascospore order, measured the frequency of crossing-over in the segment between a gene locus and its centromere. Lindegren discovered linked genes and constructed the first linkage maps. The predominantly auxotrophic mutants obtained by G. W. Beadle, E. L. Tatum, and their associates, beginning in 1941, were used to construct more complete maps.

The *Neurospora* genetic maps have been estimated to total about 1000 map units (centimorgans). This gives on average 27 kilobases per map unit. Molecular characterization of *Neurospora* chromosomal DNA is mostly unique-sequence, but with 2% foldback and 8% repetitive sequences. Most of the repetition is accounted for by approximately 200 ribosomal RNA genes, arranged tandemly in the nucleolus organizer region. 5S ribosomal RNA genes are not clustered but are dispersed through the genome as single copies. The apparent paucity of extraneous DNA may be partly due to natural selection for individuals that grow rapidly.

1.3.2 MOLECULAR GENETIC METHOD (25, 39)

Mapping has not been limited to conventional gene markers or to conventional methods based on crossing over frequencies. At the DNA level, Restriction Fragment Length Polymorphisms (RFLP) appear to be ubiquitous in *Neurospora crassa* strains from nature. Any cloned DNA fragment can be genetically mapped if a restriction
fragment length difference is found in the homologous genomic DNA (Metzenberg, Stevens, Selker, Morzycka-Wroblewska, 1984). Two RFLP mapping kits of Neurospora crassa are available. To produce RFLP mapping kits a cross of a laboratory strain with a nominally "Oak Ridge" genetic background and carrying several conventional markers (FGSC#4411, al-2; nuc-2; arg-12; cot-1; inl-a or FGSC #4488, multicent-2-a, un-2) was made to a wild-collected strain (Mauriceville-1c-A, p538, FGSC#4416) which has not been inbred with laboratory strains. Such a cross is marked not only by the conventional markers, but by thousands of nucleotide differences scattered throughout the genome. The resulting restriction fragment differences can be used as markers for determining linkages of cloned DNA segments in the genetic maps. The random progeny spores, presumably all from different asci, were isolated from ordered tetrads and cultures were prepared from them. These progeny cultures were sorted for these markers by nutrition, color and morphology so that about half the progeny included in the experiment would be of each allele. The allele assignments are then compared with the allele segregation of markers that have already been mapped and ultimately deposited in the Fungal Genetics Stock Center (FGSC).
1.4 FUNGAL MEMBRANES.(23, 26, 65)

1.4.1 MEMBRANE TRANSPORT IN FUNGI

Underlying the rather simple-looking structure of membranes is the vast diversity of chemical constituents indicative of the diverse roles these membranes serve in the lives of cells. Fungi are heterotrophic and enzymes are released from the hyphae on to the substrate for the external hydrolysis of potential nutrients. Solubilized materials are subsequently absorbed, by transport through the membrane, and used for the metabolic processes involved in growth and development. The passage of materials into, and out of, fungal hyphae is mediated by the selective permeability of the plasma membrane which lies on the inner surface of the cell wall and is a highly effective barrier to many molecules. Sugars, amino acids, ions and vitamins pass through the membrane down an electrochemical gradient, but are aided by carrier proteins. These carriers, also known as permeases, act as regulators for both the uptake and release of molecules and are located on the plasma membrane. These are generally highly specific and there are different carriers for different groups of molecules (facilitated diffusion). The rate of transport of a given polar substance through a particular kind of membrane protein is determined by the number of copies of the protein present in each unit area of membrane and the turnover number for transport through each copy. Differences in the numbers of different types of transport proteins reflect differences in the expression of the various corresponding genes. Moreover,
localization of transport proteins to the several kinds of bilayers within a particular cell (e.g., plasma membrane, mitochondria, nuclei) is directed by signal sequences that are genetically determined. Genes thus play a crucial role in the regulation of membrane transport.

1.4.2 MEMBRANE PROTEINS

Proteins and lipids are the major components of biological membranes. While the structural and dynamic properties of lipids are quite well characterised, the understanding of the structure and function of membrane proteins is at a much more primitive stage. Proteins associated with biological membranes can be classified into two groups: peripheral or extrinsic proteins, associated with the membrane surface but not penetrating into the hydrophobic core of the lipid bilayer, and integral or intrinsic proteins which are membrane spanning. Extrinsic proteins are more loosely attached to the cell membrane. They can be removed by treatment with solutions of low ionic strength, often containing EDTA (Ethylene Diamine Tetraacetic Acid), to chelate divalent cations. The peripheral membrane proteins have amino acid compositions and properties similar to those of the soluble proteins normally found in the cytoplasm. Most extrinsic proteins seem to be held to the membrane by being bonded to the intrinsic proteins. Intrinsic proteins are firmly bound to the membranes and can be removed only by treatment with detergents, suggesting that, within the lipid matrix,
they are bound to the lipid hydrocarbon chains. The detergent, in fact, replaces the hydrocarbon of the lipid. The amino acid composition of these integral proteins appears to include a large number of apolar residues (amphipathic). Examples of such proteins include the ATPases, glucose transporter, ion channels, light-transducing proteins, cytochrome oxidases and several families of membrane spanning receptors. Some of these proteins, like glycophorin, span the membrane, extending all the way across it, from one aqueous face to the other. Some, like the proteins involved in transmembrane transport of their substrates, extend only halfway across the bilayer, embedded either in the cytoplasmic face or in the extracellular face of the membrane. Others span it many times as the polypeptide chain of the protein winds back and forth between the two faces of the membrane. These different architectural motifs are associated with different functions of the proteins. A protein destined to be an intrinsic membrane protein bears, in addition to its signal sequence, a sequence or sequences consisting of a 20-25 long chain of hydrophobic residues, which will become and remain embedded in the membrane lipids. A protein that spans the membrane once always appears to have its N-terminal signal sequence outside the membrane, a direct consequence of this mode of synthesis where the membrane-spanning sequence appears after a sequence of membrane-leaving residues.
1.4.3 SPHEROPLASTS

Fungi like plants and bacteria have rigid, mainly polysaccharide cell walls that give a characteristic morphology to the cells and provide support and protection to the enclosed protoplast. The wall is composed largely of polysaccharides, with some protein and lipid. The two polymers (chitin and cellulose) form the fibrils that make the rigid component of most fungal walls. The rigid cell wall can be partially or totally removed by enzymatic digestion, leaving a protoplast that, provided conditions are suitably stabilized with an osmoticum, will remain intact. The term protoplast is normally used to describe a naked cell completely devoid of cell wall residues, while spheroplast is used when some wall material could be present. In general, the criteria used for the absence of wall material are osmotic fragility and formation of a spherical shape. The regeneration of protoplasts to normal cells capable of reproduction is a prerequisite for experiments employing genome manipulation in fungal cells. It has been proven that the protoplast of any fungal species, supposing it contains a nucleus, is capable not only of regenerating the missing cell wall as an active biostructure, but it also can repair all other alterations, producing a complete and functional cell.

Protoplasts have had a major impact on two recent advances in the methodology of fungal genetics: in the mid 1970s through fusion techniques and in the last decade through their use in transformation-mediated recombination. Transformation has been reported for a wide range of filamentous fungal species, and the
general characteristics of these systems are very similar. Firstly, it is necessary to remove the permeability barrier represented by the cell wall either by treatment with lithium acetate (Dhawale et al., 1984) or, more commonly, by enzymic digestion with crude extracts of snail gut (Case et al., 1979) or a Trichoderma extract commercially available as Novozym 234 (Novo Biolabs Ltd. Bagsvaerd, Denmark, Binninger et al., 1987). Then, DNA is added to the protoplasts suspension in the presence of calcium chloride. The addition of a solution of polyethylene glycol results in the uptake of the DNA. The treated protoplasts are then plated on a medium that permits the regeneration of cells that have acquired the transforming DNA by recombination. Transformation of Neurospora crassa generally results in nonhomologous, multiple integration of transforming sequences at random sites as well as homologous integration in the genome.

1.5 AMINO ACID TRANSPORT PROTEINS IN FUNGI (20, 30, 49, 74)

The specificities of the biological activities of the cell membranes reside primarily in their protein constituents. The nature and types of proteins associated with the various membranes appear to vary widely, reflecting differences in the functional activities of the membranes. Proteins can be covalently modified in a number of ways. The most complex and evolved modification is glycosylation.
Most of the integral membrane proteins including amino acid transport proteins are glycoproteins. The carbohydrate residues found on glycoproteins are exposed only to the external surface of the plasma membranes. This asymmetric disposition of the carbohydrate moieties reflects the functional anisotrophy of the two membrane surfaces. The cell surface carbohydrates have a role in cell adhesion, cell-cell interaction, and receptor function-processes which are involved in external communication. The carbohydrate moiety of glycoproteins generally amounts to about 20%, of the total molecular mass but in extreme cases can be 90%. (30)

Nitrogen is essential for the biosynthesis of complex molecules in cells, such as amino acids, proteins, nucleic acids and some vitamins. Most fungal species can use inorganic nitrogen sources as well as organic nitrogen-containing compounds (proteins and amino acids) for growth. There are very specific carrier systems allowing amino acids to be effectively transported from environment. Much of the understanding of membrane transport has been derived from the study of transport mutants in microorganisms. The study of genetic mutants which ablate a single transport system can define the organization of membrane transport functions. A number of genes encoding membrane proteins that are known to promote the transport of specific amino acids have been isolated, sequenced, and partially characterized. Each provides a regulated pathway for movement of specific substances through the membrane.
Neurospora crassa is known to possess at least six genetically and biochemically distinct amino acid transport systems; three constitutive amino acid permeases and three specialized amino acid permeases. The constitutive permeases include a neutral amino acid-specific system (N system), a basic amino acid-specific system (B system), and a general system (G system) that can transport neutral, basic, and acidic amino acids. Three additional systems which are inducible have been proposed. These are systems for the transport of: the imino acid proline, the acidic amino acids during nitrogen limitation, and, the sulfur-containing amino acid methionine during sulfur starvation (Wolfinbarger, 1980; DeBusk, Ogilvie, 1984).

1.6 WHAT IS THE \textit{pmb} LOCUS? (68, 77)

The \textit{pmb} locus is a gene coding for a component of the basic amino acid transport system (B system) which is one of the three major constitutive amino acid transport systems of \textit{Neurospora crassa}. The carrier system for basic amino acids was shown by Baurle and Garner (1964) to be specific for transport of arginine, lysine, and arginine analogue canavanine sulphate. The \textit{pmb} mutants were selected as resistant to canavanine which is toxic to the cells. Several mutants lacking basic amino acid permease activity have been isolated and characterized (Woodward, C. K., Read, C. P., Woodward, V. W., 1967, Wolfinbarger, 1971; Perkins, Radford, Newmeyer, Bjorkman, 1982). Roess and DeBusk (1968) examined basic amino
acid transport in greater detail and reported a mutant, Cr-10 which was deficient in transport of basic amino acids by the basic amino acid transport system. Wolfinbarger and DeBusk (1972) further evaluated the Cr-10 mutant, renaming it pmb. Thwaites and Pendyala (1969) isolated a further mutant, bat, as deficient in basic amino acid transport. Each of these mutants, Cr-10, pmb, and bat was separately isolated and identified in several laboratories, and they are presumed to be allelic mutants lacking pmb gene product activity. The pmb mutation was located on the right arm of chromosome IV. This basic amino acid transport system was shown to be highly active in mycelia as compared to a low activity in conidia. Active transport results in the accumulation of arginine and lysine against a concentration gradient. The presence of a mutation at the pmb locus reduces the total arginine accumulated by approximately 45-50%. The remaining 50-55% arginine transport in pmb mutant has been attributed to the general transport system.

Stuart and DeBusk described that pmb locus controls a glycoprotein involved in transport of basic amino acids, indicating that pmb transport system contains a glycoprotein (Stuart, W. D. and DeBusk, A.G. (1971) Arch. Biochem. Biophys. 144, 512-518). Transport activity in N. crassa conidia seems to be quite analogous in many respects to that activity present in other organisms. Analogous systems to the reported basic amino acid transport system are known in E. coli, yeast, Ehrlich cells, and mammalian intestine cells.
Future reports may well indicate an even wider distribution of systems analogous to the \(pmb \) transport system.

1.7 THE CURRENT RESEARCH OF THE BASIC AMINO ACID TRANSPORT PROTEIN

Investigation of the molecular mechanism of transport across biological membranes involves the complete physicochemical description of each transport protein. Identifying such motion requires describing in atomic detail the dynamic, three-dimensional structure of the molecule, the reactions catalyzed by these enzymes and their regulation by transcriptional, translational, and posttranslational mechanisms.

In filamentous fungi genes can often be identified by the interesting properties of strains carrying their mutant alleles. Thus, there is frequently an opportunity to clone a gene that has been detected by mutation. This cloning can be accomplished in many species by genetic complementation of mutations with recombinant DNA clones containing wild-type DNA sequences. Since 1985, in our laboratory, a research project directed towards cloning amino acid transport related genes from \(\textit{Neurospora crassa} \) has been developed to establish the non-mammalian model system of amino acid transport through the cell membrane. The first work cloned and characterized the \(mtr \) gene sequence of \(\textit{Neurospora crassa} \). This gene codes for a membrane protein involved in transporting neutral
aliphatic and aromatic amino acids (N system) (Stuart, Koo, 1988). Stuart and Koo used the mtr sequence to predict the amino acid sequence of the gene product. The most recent data suggests that the gene product contains twelve transmembrane helixes and also include an amino acid octomer reported to be conserved in RNA binding sites in many species. In current research, we expand this work into another major transport system. We describe the procedure of identifying and cloning of the pmb gene which codes for a component of the basic amino acid transport system (B system) from an ordered cosmid library of genomic DNA of Neurospora crassa by complementation of pmb mutants. We have been cloned the pmb gene by transforming pmb mutant cells with DNAs of pMO cosX cosmid library. The cosmid which complements the pmb mutant allele and was confirmed to be tightly linked to RFLPs flanking the pmb locus on linkage group IV has been subcloned, partially sequenced, and analyzed. The cloned pmb DNA fragments can be used as probes in hybridizing with genomic DNA from other organisms for identifying the homology between two organisms.
CHAPTER 2
MATERIALS AND METHODS

The genetic and microbiological procedures of handling *Neurospora crassa* is following the methods described in the Genetic and Microbiological Research Techniques for *Neurospora crassa* (Davis, Serres, 1970). The procedures for constructing multiple mutant strains of *Neurospora crassa*, for preparation of spheroplasts, for DNA preparation from pMOcosX cosmid library and for transformation with exogenous DNA sequences from an ordered library were done as described in several papers (Perkins, Radford, Newmeyer, Bjorkman, 1982; Vollmer, Yanofsky, 1986; Stuart, Koo, Vollmer, 1988). The general procedures for carrying out the DNA blotting and hybridization experiments have followed the standard methods in Molecular Cloning, A Laboratory Manual (Sambrook, Fritsch, Maniatis, 1989). For hybridization, nonradioactive DNA labeling and detection kit was purchased from Boehringer Mannheim. For sequencing, non-radioactive Uniplex DNA sequencing kit was purchased from Millipore.

NEUROSPORA TRANSFORMATION

A number of filamentous fungal genes have been cloned by the generally applicable techniques such as differential hybridization (Hynes et al., 1983; Lockington et al., 1985), use of synthetic probes based on protein sequence data (Kinnaird et al., 1982; Boel et al.,
1984), or use of antibodies raised against the purified protein (Viebrock et al., 1982; Shoemaker et al., 1983). Since the above approaches are limited in their application, much effort has been put into the development of methods for isolating genes by transformation of a filamentous fungus with DNA from gene libraries. Such systems enable the identification and cloning of any gene for which there is a discernible phenotype by relief of a mutation or a change in the appearance of the fungus. A transformant with the appropriate phenotype is expected to contain the selected DNA integrated into the genome.

Despite the fact that there are reports of successful recovery of transforming sequences from *N. crassa* by using an *E. coli* strain which is deficient in the two methylcytosine systems (Orbach, 1988; Nelson, Morelli, Carattoli, Romano, Macino, 1989), the recovery of freely replicating plasmids from *Neurospora crassa* is currently neither faithful nor frequent enough to make this a practical strategy for use in gene cloning. Common complications include plasmid rearrangements, recovery of plasmids not containing the desired sequence, and cotransformation, i.e., more than one plasmid type can integrate in the same nucleus during transformation. The problems encountered with DNA rearrangements in recovered clones are, in part, because the bacterial recipient cells used restrict methylated DNA, thereby, especially sequences introduced by transformation, are frequently methylated. To overcome this problem, Akins and Lambowitz (1985) developed a procedure termed sib selection. This
alternative to direct selection and recovery involves use of ordered collections of genomic clones constructed with drug resistance cosmids. DNA from divided pools of clones is tested for its ability to complement a mutation until a single complementing clone is identified. Due to the high transformation frequencies achievable with \textit{N. crassa} drug resistance plasmids, only small amounts of DNA (around 1 ug each time) are needed to conduct these screens. Once DNA has been isolated from the many subcollections required for this approach, the method is straightforward and efficient. For any clone isolated by mutation complementation, the cloned DNA sequence is presumed to correspond to the target gene.

pMOcosX LIBRARY

The recombinant plasmid clone bank containing inserts of \textit{Neurospora crassa} wild type DNA sequences in the pMOcosX vector was constructed by Orbach and Sachs. In the recombinants, the genes for hygromycin resistance and ampicillin resistance were incorporated into the parental vector as dominant selectable markers for fungi (hygromycin resistance) and for \textit{E. coli} (ampicillin resistance). The pMOcosX cosmid genomic library is composed of 50 plates (96 colonies in each plate; 50 X 96 = 4800 colonies). This configuration has greatly facilitated the use of the library for the rapid cloning of genes in sib selection and colony hybridization procedures. (75)
VECTORS

pTZ vectors were used for genetic manipulation such as subcloning of a gene by complementation of a mutation with restriction enzyme fragments, and amplifying the gene for restriction mapping and sequencing. pTZ18R and pTZ19R are small (2.87kb), high copy number E. coli plasmids, versatile cloning vectors. They contain a gene encoding resistance to ampicillin as a selective marker for additional selection for plasmid containing colonies. The pTZ plasmids DNA encoding the N-terminal alpha peptide of the beta galactosidase gene carries a 54 base pair multiple cloning site polylinker with many restriction endonucleases from pUC vectors to facilitate cloning while still retaining blue/white colony screening. DH5alpha MCR™ strain was used as a competent cell which provides alpha-complementation of the beta-galactosidase gene of the pTZ vectors.

NON-RADIOACTIVE METHODS

Non-radioactive DNA labeling and detection

Most of the hybridization experiments have traditionally relied on a radioactively labeled DNA hybridization probe. As an alternative, a nonradioactive DNA labeling and detection method was developed. The standard procedure in the nonradioactive DNA labeling and detection method used consists of three parts. 1) The probes are labeled with a nucleotide analog, digoxigenin-11-dUTP, by the random primed labeling technique. 2) The digoxigenin-labeled
probes are hybridized to immobilized DNA. 3) The digoxigenin-labeled probes are detected with an antibody-enzyme conjugate, anti-digoxigenin-alkaline phosphatase. The location of the antibody-antigen conjugate is visualized by an enzyme-linked color reaction.

Non-radioactive sequencing

Sequencing was done by using a Uniplex DNA Sequencing Kit which is the basic product for Sanger dideoxy DNA sequencing procedures in which a biotinylated primer is annealed to the template prior to the sequencing reactions. The biotinylated primers provide the sites for the chemiluminescent reactions for detection on X-ray film. A standard sequencing gel is run and then the DNA sequence pattern is transferred and bound to a membrane. In the detection process, the membrane is incubated with a solution containing streptavidin, which binds to the biotinylated primer. After washing, a solution containing a biotin/alkaline phosphatase complex is added; this complex binds to the streptavidin resulting in the creation of a conjugate between the alkaline phosphatase and the DNA on the membrane. Finally the chemiluminescent substrate (a dioxetane compound) is added; the alkaline phosphatase catalyzes the light reaction by cleavage of a phosphate group, resulting in destabilizing the substrate which then emits photons as it decomposes. The emitted light is detected by exposing the membrane to an X-ray film.
2.1 COMMON REAGENTS USED FOR EXPERIMENTS

E. coli culture LB medium (1L): Bacto-Tryptone 8.0g, Bacto-Yeast Extract 5.0g, Sodium chloride 2.5g, Sodium hydroxide drops (--->pH 7.5), Bacto-Difco Agar 15g, 25mg/ml Ampicillin 2ml

Neurospora culture conidial growth medium (100ml): Vogel's 50X 2ml, Sucrose 2.0g, Bacto-Difco Agar 1.5g

Neurospora culture colony formation plating bottom agar medium (1L): Vogel's 50X 20ml, Bacto-Difco Agar 15g, 10X FIGS 100ml, plus any supplements needed for specific conditions

Neurospora culture colony formation regeneration top agar medium (1L): Vogel's 50X 20ml, sorbitol182g, Bacto-Difco Agar 28g, 10X FIGS 100ml

50X Vogel's stock solution: dissolve the ingredients below in order in 750ml of distilled water. Ingredients; Sodium citrate 150g, Potassium phosphate 250g, ammonium nitrogen 100g, Magnesium sulfate 10g, Calcium chloride 5g, Trace element 5ml, Biotin solution 2.5ml, bring volume to 1.0 liter and add 2ml chloroform

10X FIGS carbon source (1L): Sorbose 200g, Fructose 5g, Glucose 5g, Inositol 2g

Trace element stock solution: dissolve the ingredients below in order in 95ml of distilled water. Ingredients: Citric Acid 1H2O 5.00g, ZnSO4 7H2O 5.00g, Fe(NH4)2(SO4)2 6H2O 1.00g, CuSO4 5H2O 0.25g, MnSO4 1H2O 0.05g, H3BO3 anhydrous 0.05g, Na2MoO4 2H2O 0.05g. Bring volume to 100ml and add 1ml chloroform.

29
Biotin solution: dissolve 5mg of biotin in 100ml of 50% ethanol and store at 4 degrees. Prepare every 6 months.

2.2 SELECTION OF NEW STRAINS

2.2.1 CROSSING

We used the genetic construction of strains by crossing for selection of pmb transport defective mutant before using this strain for transformation. A strain defective in basic amino acid transport system (#1683-bat um 535 "A"), was crossed with a double mutant strain defective in neutral amino acid transport and histidine production (mtr6r:his-2 "a") on Synthetic Crossing (SC) media containing histidine.

2.2.1.1 Materials

Synthetic Crossing (SC) medium (1L): Vogel's 50X 20ml, K₂HPO₄ 0.7g, KH₂HPO₄ 0.5g, sucrose 2%, Bacto-Difco Agar 2%, trace elements 0.1 ml, Histidine 2%

2.2.1.2 Methods

0.2ml of suspension of the first parental conidia was transferred onto 8ml of SC slants containing histidine in a 18X150mm tube as a female parent, using cotton or sponge plugs. Incubate for a week in the dark at room temperature (25 degrees). 0.2ml of conidial suspension of second parent was spread over the surface of the
female culture. At approximately 10 days after fertilization, ascospores were collected by picking up ejected ascospores on the wall of the tube opposite the agar surface with a wet loop and suspended into a drop of water.

2.2.2 ISOLATION OF THE pmn:pmb:his-2 STRAIN

A Neurospora crassa strain suitable for detecting transformation at the pmb locus was isolated from the crossing of two existing mutant strains.

2.2.2.1 Materials

Neurospora colonial medium containing Para-Fluoro-Phenylalanine (PFPA) and canavanine (25ml): 50X Vogel's medium 0.5ml, Bacto-Difco-Agar 0.375g, 100mg/ml Histidine 125ul, 5mg/ml

Canavanine 1ml, 5mg/ml PFPA 0.5ml, 10X FIGS 2.5ml

Conidial growth medium containing canavanine (25ml): 50X Vogel's 0.5ml, Sucrose 0.5g, 100mg/ml Histidine 125 ul, 5mg/ml

Canavanine 0.5ml

Conidial growth medium containing histidine (25ml): 50X Vogel's 0.5ml, Sucrose 0.5g, 100mg/ml Histidine 125 ul

2.2.2.2 Methods

Ten days after fertilization the ascospores were picked up by a loop formed from 70% platinum and 30% iridium wire with a 0.02 inch diameter from a cross tube and suspended in 1ml of water. The
ascospore suspension was incubated at 60 degrees for 30 minutes. The germinating spores were distributed evenly over a plate of 25 ml of FIGS medium containing PFPA and canavanine using a sterile glass spreader flamed in 95% ethanol. Avoid spreading the spore suspension to the extreme edge of the plate and scratching the surface. The germinating progenies were selected for both resistance to PFPA and canavanine.

A plug of cells from each colony was cored with the tip of a sterile, disposable pipette and transferred onto slants of minimal N media and minimal plus histidine media. The selected \textit{pmn:pmb:his-2} strain was confirmed by showing 100% growth in 1X Vogel's conidial growth liquid media and in 1X Vogel's media containing histidine at 30 degrees for 2-3 days.

2.3 GENERATION OF SPHEROPLASTS (52, 55, 75)

2.3.1 Materials

Conidial medium containing histidine (25ml): 50X Vogel's 0.5ml, Sucrose 0.375g, 100mg/ml Histidine 125ul, Bacto-Agar 0.375g Novozym 234
1M sorbitol
1M STC (1M sorbitol, 50mM Tris-HCl pH8.0, 50mM CaCl2)
40% polyethylene glycole 4000
50mM Tris-HCl pH8.0/ 50mM CaCl2
Dimethyl sulfoxide (DMSO)
2.3.2 Methods

The conidia of \textit{pmn:pmb:his-2} strain were transferred on minimal N medium containing histidine with flamed inoculation loops or wires, cooled and wetted in the medium to which the transfer is to be made. Incubate at 30 degrees for 2 days, and then move to 25 degrees in well-lighted conditions for 3-5 more days. Spheroplasts were prepared according to the procedure described in Vollmer, Yanofsky, 1986.

Conidia were harvested from 7-day-old cultures (2 days at 30 degrees, 5 days at 25 degrees) which had been grown on complete medium containing histidine. Conidia were suspended by carefully introducing 10-15 ml of 1X Vogel's media containing 1.5% sucrose and histidine to the growth flask, which is plugged and swirled. After airborne conidia were allowed to settle, the conidial suspension was filtered through one or two layers of sterile cheesecloth, held as a bag with a rubber band in the mouth of a 125ml flask (approximately 10ml of conidial suspension). The conidia were washed twice with sterile water, and the conidial densities were measured directly with a spectrophotometer at 530nm by diluting the filtered conidial suspension in 10-, 100-, or 1000-fold steps in sterile water. Conidia were germinated at 30 degrees for 4-6 hours in flasks containing 150ml of 1X Vogel's minimal N medium with 1.5% sucrose and histidine and were shaken at 150-200 rpm. Germinated conidia were harvested at room temperature in a swinging bucket centrifuge for 5 minutes at 1500-2000 rpm, and
washed 3 times with 30 ml of sterile double distilled water. The germinated conidia were suspended in 10 ml of 1M sorbitol and were placed in a 250 ml flask containing 50 mg of solid Novozym 234. After carrying out the cell wall digestion for a 1 hour incubation at 30 degrees with gentle agitation at 100 rpm, the spheroplasts were centrifuged for 5 minutes at 500 rpm, washed twice in 50 ml of 1M sorbitol and once in 50 ml of 1M STC. The spheroplasts were brought up to a 16 ml volume with 1M STC and 4 ml of 40% polyethylene glycol 4000. 4 ml of 50 mM Tris-HCl pH 8.0/50 mM CaCl₂ and 200 µl of dimethyl sulfoxide were then added. 1 ml of suspension contains, nominally, 10⁸ spheroplasts. Spheroplasts were stored at this stage at -80 degree in 1 ml of aliquots.

2.4 PLASMID DNA EXTRACTION (19)

DNAs were extracted by the rapid isolation of plasmid DNA procedure which was developed by Vollmer and Yanofsky and modified by Stuart and Koo.

2.4.1 Materials

2XYT medium: 2% tryptone, 1% yeast extract, 0.5 % NaCl, 0.2% glucose, 50 µg/ml ampicillin

GTE solution: 50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM NaEDTA

Lysozyme: 10 mg/1 ml GTE

0.2 N NaOH/1% NaDodeSO₄

34
"5M" KOAc (14.6ml): 9ml 5M KOAc, 4.23ml water, 1.37ml glacial

HOAc

TE: 10 mM Tris-HCl pH8.0, 1mM EDTA

7.5M Ammonium acetate

5M LiCl

2.4.2 Methods

The colonies on each vertical row of eight wells of the library were individually streaked onto 100-mm petri dishes containing 25ml of 2XYT LB medium containing 50ug/ml concentration of ampicillin. The petri dishes were incubated overnight and the cells on the plate were resuspended in 1ml of water and amplified in the 40ml of liquid 2XYT medium containing 50ug/ml concentration of ampicillin. 40ml of late-log or stationary phase bacterial culture in 2XYT medium was harvested by centrifugation for 10 minutes at 4000 rpm in a Sorval and the pellet was resuspended in 1ml of GTE solution. The suspension was transferred to a 30ml corex tube and incubated at room temperature for 5 minutes. 100ul of Lysozyme was added and the mixture was placed on ice for 20 minutes. 2ml of freshly prepared 0.2 N NaOH/ 1% NaDodSO4 was added and mixed gently into the cell suspension and the mixture was returned to ice for 2-5 minutes. Acidification was achieved by addition of 1.5ml of 0 degree "5M" KOAc and mixing vigorously on voltex. After an additional 10 minutes incubation on ice, the precipitated material was removed by centrifugation at 10,000rpm for 5 minutes at 4
degrees. Transfer 4.5ml of supernatant to a fresh 15ml corex tube. Nucleic acids were precipitated by the addition of 9ml of -20 degree ethanol to the supernatant, mixed, and incubated on ice for 2-5 minutes, then centrifuged for 5 minutes. The pellet was dissolved in 250ul of TE, mixed with an equal volume of 5M LiCl, and placed on ice for 10 minutes. After centrifugation for 5 minutes at 4 degrees, transfer supernatant to a fresh tube. To remove precipitated material, the DNA was recovered by treatment of the supernatant with 1ml of -20 degree ethanol, mixing, incubation on ice for 5 minutes and centrifugation. The pellet was dissolved in 50ul of TE. Plasmid DNA was precipitated by adding 25ul of 7.5M ammonium acetate with 150ul ethanol, mixing, putting on ice, and spinning for 5 minutes. The pellet of cosmid DNA from this procedure was dissolved in 100ul of TE, resulting in a final concentration of 0.1ug per ul of TE. The 12 portions of each of the eight-clone pools were used to assemble fifty 96-clone pools that represented the cosmids contained in each microtiter dish.

2.5 TRANSFORMATION BY SIB-SELECTION

The transformation procedure of Neurospora crassa with cosmid DNAs was adapted from the method described by Vollmer and Yanofsky, 1986.
2.5.1 Materials

50 mM spermidine

STC: 1M sorbitol, 50mM Tris-HCl pH8.0, 50mM CaCl2

Heparin: 5mg/ml in STC

PTC: 40% polyethylene glycole 4000, 50mM Tris-HCl pH8.0, 50mM CaCl2

Neurospora culture colonial bottom agar medium (1L): Vogel's 50X 20ml, Bacto-Difco Agar 15g, 10X FIGS 100ml, 0.5mg/ml Histidine, 5mg/ml Phenylalanine, 200 ug/ml Hygromycin

Neurospora culture colonial regeneration top agar medium (1L): Vogel's 50X 20ml, sorbitol182g, Bacto-Difco Agar 28g, 10XFIGS 100ml

2.5.2 Methods

Transformation were carried out at ratios of 0.2 - 5.0ug of DNA per 10^7 spheroplasts. The highest ratios of DNA to protoplasts were used with the first-round sib banks to obtain higher numbers of transformants. The first rounds of the sib selections were generally carried out with 5ug of DNA. The second rounds were carried out with 1ug of DNA, and subsequent rounds were carried out with 0.2 ug of DNA.

5ul of cosmid DNAs were mixed with 2ul of 50mM spermidine, 5ul of heparin and 50ul of spheroplasts (10^7 cells). After incubation on ice for 30 minutes the transformed cells were mixed with 1ml of PTC and incubated at room temperature for 20 minutes. After incubation
with DNA, the spheroplasts were suspended in 14ml of minimal regeneration medium, and the cells were plated on minimal media supplemented with 1X Histidine, 10X Phenylalanine and 200ug/ml concentration of hygromycin. The plates were incubated for 3 days at 30 degrees. The transformants were further tested for growth on minimal media to eliminate the his\(^+\) class.

2.6 RFLP SOUTHERN HYBRIDIZATION.

2.6.1 PREPARATION OF GENOMIC DNA

2.6.1.1 Materials

RFLP Mapping Kits: purchased from FGSC (Fungal Genetics Stock.Center, Kansas City)

1X Vogel's medium with supplements (100ml): Vogel's 50X 2ml, Sucrose 2.0g, Bacto-Difco Agar 1.5g1mM L-Arginine, 50ug/ml Inositol, 1mM L-Citrulline, 2ug/ml Thiamine HCl, 1mM Uridine, 1mM L-Lysine, 2ug/ml Nicotinamide, Aryl sulfatase

Lysis buffer: 50mM Tris-Cl pH8.0, 2%SDS, 62.5mM EDTA

5M KoAc

2.6.1.2 Methods

Each strain from the RFLP mapping kit was incubated at 25 degrees in 100ml of 1X Vogel's medium with supplements in a 250ml flask. Cells were harvested by filtration with Whatman No.1 filter circles and rinsed 2-3 times with double distilled water. Cells
were collected and frozen at -80 degrees. Grind the frozen cells with sand, put cells and sand mixture in a 30ml corex tube and add 5ml of lysis buffer to it. Incubate the mixture for 60 minutes at room temperature with gentle mixing. Centrifuge the mixture at 3,000 rpm at 4 degrees for 10 minutes. Decant supernatant in a 15ml corex tube and add 3.3ml of 5M KoAc. Mix the solution by inversion and place on ice for 30 minutes. Centrifuge at 10,000g at 4 degrees for 10 minutes. Transfer the supernatant in a 30ml corex tube, add an equal volume of isopropanol, and put the mixture at -20 degree overnight. After centrifugation at 10,000g at 4 degrees for 10 minutes, dissolve the pellet with 1.5ml of TE and transferred the nucleic acid solution in a 15ml corex tube. Perform phenol-chloroform extraction procedure which is followed by ammoniumacetate-ethanol precipitation. After rinsing with 70% ethanol, dissolve the pellet with 1ml of TE. For RNA digestion, mix the nucleotide solution with 20ul of 500ug/ml RNAsese A and incubate the mixture at 37 degrees for 60 minutes. Perform phenol-chloroform extraction, followed by twice of chloroform extraction. After ammoniumacetate-ethanol precipitation, rinse the DNA pellet twice with 70% ethanol and dissolve the pellet with 1ml of TE. Store the DNA solution at 4 degrees.
2.6.2 DNA TRANSFER AND DETECTION

2.6.2.1 Production of probes

Each cloned plasmid DNA is labeled with Klenow polymerase by random-primed incorporation of DIG-dUTP (digoxigenin-labeled deoxyuridine triphosphate) according to the supplier's protocol.

2.6.2.1.1 Materials

Genius labeling and detection kit: purchased from Boehringer Mannheim Biochemicals

Gene Clean Kit: purchased from Bio 101

2.6.2.1.2 Methods

The cloned plasmid DNA (2ug) was purified by using Gene Clean Kit. Suspend the pellet in 14ul water, spin it for 30 seconds, and take the supernatant. Denature the DNA by heating at 95 degrees for 10 minutes, and place it on ice for 10 minutes. Add 2ul of hexanucleotide mixture primer, 2ul of dNTP labeling mixture containing DIG-dUTP, and 2ul of Klenow enzyme. Mix gently and incubate at 37 degrees for 3-4 hours. Purify the DNA by using Gene Clean Kit. Suspend the pellet in 50ul of TE, spin it for 30 seconds, and take the supernatant. Store the DNA solution at -20 degree.
2.6.2.2 Southern blot transfer

2.6.2.2.1 Materials

10X TBE buffer for electrophoresis (1L): Tris base 108g, Boric acid 55g, 0.5M EDTA (pH 8.0) 40ml

1XTBE with ethidium bromide (EtBr): 50ul of 10mg/ml EtBr in 1L of 1X TBE

0.1M HCl

1.5M NaCl/ 0.5M NaOH

2.5M Ammonium acetate

Magna Nylon Transfer Membrane, 0.45 micron: purchased from Micron Separations inc., Westboro, MA

6XSSPE: 900mM NaCl, 60mM NaH₂PO₄H₂O, 6mM EDTA pH7.4

2.6.2.2.2 Methods

2ug each of the prepared genomic DNAs of Neurospora crassa strains from 18- or 38-segregation RFLP Kit were digested with a restriction enzyme which shows a usable RFLP overnight at an appropriate temperature. The digested genomic DNA fragments were electrophoresed in the 0.8% agarose gel (15X20cm) for 20 hours at 1.5 voltage per cm of a gel in 1XTBE buffer with ethidium bromide. Transfer the DNA digests on agarose gel electrophoresis as follows. Depurinate the DNA in the gel in 500ml of 0.1M HCl for 45-60minutes on shaker. Denaturate the DNAs in 500ml of 1.5M NaCl/ 0.5M NaOH for 30-45 minutes on shaker. Neutralize the DNAs in 500ml of 2.5M ammonium acetate for 30-60 minutes at 4 degrees.
Transfer the DNA to the nylon blotting membrane with 2L of 1M ammonium acetate at 4 degrees overnight. Soak the membrane in 100ml of 6X SSPE for 10-15 minutes. Crosslink the DNA on membrane in UV Stratalinker™1800 at 120X10³ujoules, and use the transfer in hybridization experiments with labeled probes.

2.6.2.3 Hybridization

2.6.2.3.1 Materials

Hybridization solution: 5XSSC, 50% (v/v) formamide, 0.1% (w/v) N-laurylsarcosine, 0.02% (w/v) SDS, 5.0% (w/v) blocking reagent

Wash solution I: 2XSSC/0.1% (w/v) SDS
Wash solution II: 0.1XSSC/0.1% (w/v) SDS

2.6.2.3.2 Methods

The filters are prehybridized in a sealed plastic bag with 20ml of hybridization solution per 100cm² of filter at 37 degrees for at least an hour. Redistribute the solution over the filter from time to time. Discard the prehybridization solution and replace with 2.5ml hybridization solution containing freshly denatured DNA per 100cm² of filter paper. Incubate the filters for at least 6 hours at 42 degrees, redistributing the solution occasionally. Wash filters twice for 5 minutes each at room temperature with 50ml of 2XSSC/ 0.1% SDS per 100cm² of filter and twice for 15 minutes each at 68 degrees with 50ml of 0.1XSSC/ 0.1% SDS per 100cm² of filter. Filters can be used
directly for detection of hybridized DNA or air-dried and stored for later detection.

2.6.2.4 Detection of probes
2.6.2.4.1 Materials
Buffer1: 100mM Tris-HCl, 150mM NaCl, pH 7.5
Buffer2: 0.5% (w/v) blocking reagent in buffer I
Buffer3: 100mM Tris-HCl, 100mM NaCl, 50mM MgCl₂, pH 9.5
Buffer4: 10mM Tris-HCl, 1mM EDTA, pH 8.0
Color solution: 45ul NBT (Nitroblue Tetrazolium Salt) solution, 35ul X-phosphate (5-bromo-4-chloro-3-indolyl phosphate) solution, 10ml of buffer3
Antibody-conjugate <DIG>-AP: anti-digoxigenin alkaline phosphatase conjugate

2.6.2.4.2 Methods
Wash filters briefly for a minute in buffer1. Incubate the filters for 30 minutes in 100ml of buffer2 per 100cm² at room temperature by shaking. Wash filters for a minute with buffer1. Incubate filters for 30 minutes in 20ml of diluted antibody-conjugate solution (150mu/ml buffer1) at room temperature by shaking. Remove unbound antibody-conjugate by washing twice for 15 minutes each with 100ml buffer1. Equilibrate membranes for 2 minutes with 20ml of buffer3. Incubate the filter in the dark with 10ml of freshly prepared color solution sealed in a plastic bag. When the desired
spots or bands are detected, stop the reaction by washing the membrane for 5 minutes with 50ml of buffer4. The filter may be dried at room temperature. The color can be restored by wetting the membrane with buffer4. Compare the RFLP pattern of the probe DNA detected by enzyme immunoassay to RFLP segregation data and localize the probe DNA on a linkage group.

2.7 SUBCLONING

The selected cosmid clone which has been identified to have the required gene has a large insert (average is 40 kb). Thereby, it is necessary to locate the gene within the insert, which might be just a few kilobases. To localize the gene in a cosmid, aliquots of plasmids were digested separately with restriction enzymes. These digests were tested for the ability to transform the strain to prototrophy. The active fragments were purified and cloned into a vector.

2.7.1 PREPARATION OF VECTOR AND INSERT DNA

2.7.1.1 Materials

pTZ18R or pTZ19R: available at several companies including SIGMA
CIAP (Calf Intestinal Alkaline Phosphatase)
CIAP 10X buffer: 500mM Tris-HCl pH9.0, 10mM MgCl2, 1mM ZnCl2, 10mM spermidine
7.5M Ammonium acetate.
2.7.1.2 Methods

A sufficient amount of DNA should be prepared to allow for control reactions for the digestion, ligation, and transformation steps. 5 ug of plasmid or insert DNA was digested with an appropriate restriction enzyme by incubation at the appropriate temperature for 1-3 hours. The DNA was treated with CIAP by adding the following components directly to the digested DNA: 10 ul of CIAP 10X buffer, CIAP 0.01 u/ pm ends, deionized water to final volume 100 ul. Incubate for 60 minutes at 37 degrees. To stop the reaction, add 2 ul of 0.5M EDTA. Add 1 volume of TE- saturated phenolchloroform, vortex for 1 minute, and centrifuge at 12,000 X g for 2 minutes. Transfer the upper, aqueous phase to a fresh tube and add 1 volume of chloroform: isoamyl alcohol(24:1). Vortex for 1 minute and centrifuge as in a former step. Repeat this step. Transfer upper aqueous phase to a fresh tube. Add 0.5 volume of 7.5M ammonium acetate. Add 2 volumes of ethanol and leave at -70 degree for 30 minutes. Collect the DNA pellet by centrifugation at 12,000 X g for 5 minutes. Carefully pour off the supernatant, wash the pellet with 1 ml of 70% ethanol, dry briefly in a vaccum desiccator. Resuspend the pellet in 15-20 ul of nuclease-free water. Check that the reaction has gone to completion by electrophoresis of a sample on a 0.8% agarose minigel. To ensure that the correct restriction fragment is cloned, the insert DNA can be eluted and purified from the gel after electrophoresis.
2.7.2 PREPARATION OF COMPETENT CELLS

These competent cells are prepared using GIBCO BRL's patented modification of the procedure of Hanahan.

2.7.2.1 Materials

Library Efficiency DH5alpha MCR™ Competent Cells (GIBCO BRL, 8289SA)

Trituration buffer:
80% glycerol
LB medium

2.7.2.2 Methods

Streak the bacterial strain on selective 1XYT plates overnight. Inoculate 25ml of LB medium with a single colony and incubate at 37 degrees overnight with vigorous shaking. Shake the culture at 150-200 rpm at 37 degrees until reaching stationary stage, chill the cells in ice water for 2 hours and collect by centrifugation at 2,500X g for 15-20 minutes at 4 degrees. Resuspend the cells in 10-20 ml of ice-cold trituration buffer and dilute to 500ml with the same solution. Incubate the cells on ice for 45 minutes. Centrifuge the cells at 1,800X g for 10 minutes and gently resuspend in 50ml of ice-cold trituration buffer. Pool the cells and add 80% glycerol dropwise with gentle swirling to a final concentration of 15% (v/v). Aliquot the cells in 0.2-1.0 ml quantities, freeze on dry ice, and store at -80 degree.
2.7.3 LIGATION

2.7.3.1 Materials
T4 DNA ligase
Ligase 10X buffer:

2.7.3.2 Methods
Set up a ligation reaction by adding 100 ng of vector DNA, 17 ng of insert DNA, 1 unit of T4 DNA ligase, 1 ul of ligase 10X buffer, and deionized water to final volume of 10 ul. Ligation reactions should be performed according to the incubation temperature and time; 4 degrees, overnight or 15 degrees 4-6 hours or 25 degrees 1 hour. Following the ligation reaction, transform the plasmid DNA into competent cells of an appropriate host strain.

2.7.4 TRANSFORMATION
To obtain maximum transformation efficiency, the experimental DNA must be free of phenol, ethanol, protein and detergents.

2.7.4.1 Materials
DMSO (dimethyl sulfoxide)
S.O.C. medium: 2% Bactotryptone, 0.5% Yeast extract, 10 mM NaCl,
2.5 mM KCl, 20 mM MgCl₂ MgSO₄, 20 mM Glucose
LB medium
2.7.4.2 Methods

Prepare a dry ice/ethanol bath and maintain at -70 degree. Remove competent cells from -70 degree freezer, thaw on ice. Add 3ul of DMSO to the competent cells, mix briefly, and add 10-20ng of plasmid DNA. Incubate the cells on ice for 30 minutes. A heat shock at 42 degrees for 1-2 minutes after the incubation on ice has been reported to increase transformation efficiency. Following a heat shock, cool the tube on ice for 1 minute. Add 2ml of S.O.C. medium and shake gently at 37 degrees for 1 hour to allow the cells to recover. The cells can be plated directly or concentrated before plating. To concentrate the cells, centrifuge the culture for 1 minute in a microcentrifuge. Pour off the supernatant and resuspend the cells in each tube in 100-200ul of S.O.C. medium. Plate the cells on an LB plate containing 50ug/ml ampicillin and incubate at 37 degrees for 12-14 hours.

2.7.5 SELECTION FOR TRANSFORMANTS BY BLUE-WHITE COLOR SCREENING

2.7.5.1 Materials

LB plates containing 50ug/ml ampicillin.

0.1M Isopropyl-B-D-thiogalactoside (IPTG) stock solution (50ml):

1.2g IPTG, filter-sterilize, store at 4 degrees.

5-bromo-4-chloro-3-indolyl beta-D-galoctopyranoside (X-gal) stock solution: 50mg per ml of N,N' dimethyl formamide, filter-sterilize, store at 4 degrees.
2.7.5.2 Methods

Plate transformed cells on LB plates containing 50ug/ml ampicillin, 0.5mM IPTG, and 40ug/ml X-Gal. Incubate the plates overnight at 37 degrees. An alternative to preparing plates containing IPTG and X-Gal is to spread plates with 20 ul of 50mg/ml X-Gal and 100ul of 100mM IPTG and allow these components to absorb for 30 minutes at 37 degrees prior to plating cells.

2.8 RESTRICTION MAPPING

To construct a restriction map in a subcloned DNA various enzymes that recognize 6 bp sequences (cut on average once every 4096 bp) were used.

2.8.1 Materials

Class II Restriction Enzymes
Restriction Enzyme Buffers

2.8.2 Methods

For analytical purposes the following mixture was used in a 1.5ml microcentrifuge tube: 8ul of DNA solution, 1ul of 10X buffer, 1ul of enzyme. The amount of DNA was in the range 0.1 to 1ug. The tube is then vortexed, briefly spun in a microfuge and incubated at appropriate temperature. Restriction enzyme digests are analyzed on agarose gels with size marker DNA. For double digest a buffer
providing reaction conditions that are amenable to both restriction endonucleases was selected. When no single buffer could be found to satisfy the buffer requirements of both enzymes, the reactions were done sequentially. First, cleaved with the restriction endonuclease that requires the lower salt reaction conditions, then adjust the salt concentration of the reaction by using a small volume of a concentrated salt solution to approximate the reaction conditions of the second restriction endonuclease. Added the second enzyme and incubated to complete the second reaction. Incubated the reaction at 65 degrees for 20 minutes to inactivate the majority of restriction endonucleases that have an optimal incubation temperature of 37 degree.

2.9 NORTHERN BLOT (19, 39, 79)

2.9.1 ISOLATION OF POLY(A)+ RNA BY OLIGO (dT) CELLULOSE

The following protocol describes a method for isolation of poly (A)+RNA from total RNA by binding to oligo (dT) cellulose. Oligo (dT) beads bind poly (A)+ mRNA at a ratio of 0.5mg RNA per 0.3g resin.

2.9.1.1 Oligo (dT) cellulose preparation

2.9.1.1.1 Materials

Oligo (dT)- cellulose (new England Bio Labs 1401)

Binding 2X buffer: 0.02 M Tris-HCl pH7.5, 1M NaCl, 2mM EDTA, 1.0% SDS

50
Wash buffer: 0.01M Tris-HCl pH 7.5, 0.1 M NaCl, 1mM EDTA
Elution buffer: 0.01M Tris-HCl pH 7.5, 1mM EDTA
0.05% Sodium azide

2.9.1.1.2 Methods

Add 2ml of binding 1X buffer to 0.6g of oligo (dT)- cellulose. Add 2ml of 0.1N NaOH to the resin and mix gently for a few minutes. Centrifuge at 1,500xg for 2 minutes. Centrifugation greater than 1,500xg may result in damage to the oligo (dT) beads. Remove supernatant and discard. Repeat this procedure 8-10 times. Add 2ml of binding 1x buffer to the resin and mix gently. Centrifuge at 1,500xg for 2 minutes. Remove the supernatant and discard. Repeat the procedure 8-10 times. Resuspend gently in 2ml of binding 1x buffer. Transfer 1ml of the slurry to each of 2 microcentrifuge tubes. One of these may be stored, for future use, at 4 degrees with the addition of 0.5ml of binding 1x buffer and 0.05% sodium azide.

2.9.1.2 RNA extraction and purification

2.9.1.2.1 Materials

Denaturing solution: 25g guanidine thiocyanate (4M final) per 33ml CSB buffer
CSB buffer: 42mM Sodium citrate, 0.83% N-lauryl sarcosine, 0.2 mM Beta-mercaptoethanol.
2.9.1.2.2 Methods

Prepare fungal cultures in sterile 125ml flask in 25ml of liquid media. After several days, harvest the cultures by using Buchner funnels covered with Whatman No.1 filter circles (a typical yield is 1-2 grams of mycelia per flask). Transfer the mycelia to a mortar and pestle, freeze them and grind them with sands to a fine powder. Transfer the mycelial powder to a homogenizing flask containing 12ml of denaturing solution pre-cooled on ice for 5 minutes for tissue disruption. Add 1.2 ml of 2M sodium acetate, pH 4.0 and mix thoroughly by inversion. Add 12ml of phenol:chloroform:isoamyl alcohol mixture, mix by inversion and shake vigorously for 10 seconds. Chill on ice for 15 minutes. Transfer this mixture to a 50ml thick-walled polypropylene tube and centrifuge at 10,000xg for 20 minutes at 4 degrees. Carefully remove the top aqueous phase which will contain the RNA and transfer it to a fresh tube. DNA and proteins will remain in the organic phase and at the interface. Add an equal volume of isopropanol and incubate the sample at -20 degree for at least 30 minutes to precipitate the RNA. Pellet the RNA by centrifugation at 10,000xg for 15 minutes at 4 degree. Resuspend the RNA pellet in 5ml of denaturing solution and vortex until the RNA is dissolved. Add an equal volume of isopropanol and precipitate the RNA as described in step, above. Pellet the RNA by centrifugation at 10,000xg for 15 minutes at 4 degree. Wash the pellet with ice-cold 75% ethanol and centrifuge as above. A minimum of 10ml of 75% ethanol should be used. Dry the pellet in a
vacuum desiccator for 15-20 minutes. Resuspend the RNA in 1-3 ml of RNAse-free deionized water and store at -20 degree.

2.9.1.3 mRNA isolation
2.9.1.3.1 Materials
Binding 2x buffer: 1M NaCl, 20mM Tris-Cl pH7.5, 2.0mM EDTA 1% SDS
Wash buffer: 0.01M Tris-Cl pH7.5, 0.1M NaCl, 1mM EDTA
Elution buffer: 0.01M Tris-Cl pH7.5, 1mM EDTA

2.9.1.3.2 Methods
Add 1 volume of binding 2x buffer to 100-300ul of the total RNA prepared. Heat the mixture for 10 minutes at 65 degrees and then allow to cool to room temperature. Add the RNA mixture to the 1ml slurry of oligo (dT) in binding 1x buffer. Shake gently for 15 minutes at room temperature to allow the RNA to bind to the resin. Centrifuge at 1,500xg for 5 minutes and discard the supernatant. Add 500ul of wash buffer to the resin. Shake gently for a few seconds. Centrifuge at 1,500xg for 2 minutes. Discard the supernatant. Repeat this procedure 3 more times. Add 200 ul of elution buffer to the resin and shake gently for a few minutes. Centrifuge at 1,500xg for 5 minutes. Transfer the supernatant to a fresh tube. Repeat this procedure 2 more times, saving the supernatants each time. Add 0.1 volume of 3M sodium acetate and 2.5 volumes of ethanol to the pooled supernatants. Mix and leave at
-20 degree overnight. Centrifuge at 12,000xg for 15 minutes. Wash the RNA pellet with 1ml of 70% ethanol. Dry the pellet under vacuum and resuspend in an appropriate volume of TE buffer. Store at -70 degree.

2.9.2 NORTHERN BLOTTING TRANSFER

2.9.2.1 RNA preparation

2.9.2.1.1 Materials

10X gel buffer: 60% formaldehyde
Loading dye: 50% (v/v) glycerol, 1mM EDTA, 0.4% (w/v) Bromphenol blue, 0.4% (w/v) Xylene Cyanol.

2.9.2.1.2 Methods

The frozen RNA in water at -70 degree was thawed on ice. 5ug (4.5ul) of thawed RNA was incubated for 15 minutes at 55 degrees in a mixture of 2ul of 10X gel buffer, 3.5ul of formaldehyde, 10ul of formamide, and 2ul of loading buffer.

2.9.2.2 Gel preparation

2.9.2.2.1 Materials

10X MOPS electrophoresis buffer: 400mM MOPS, 100mM sodium acetate, 10mM EDTA
RNA marker 0.3-7.4 kb (molecular SIGMA biology R-7885 Lot 62H-0160)
2.9.2.2 Methods

30 ml of 1.5% formaldehyde gel is made of 22 ml of 2% agarose in water which is melted, 3 ml of 10X gel buffer, and 5 ml of formaldehyde. Electrophoresis was done at 60-80 voltage in 1X electrophoresis buffer. RNA marker sample solutions were prepared for electrophoresis by mixing following ingredients: 10 ul of 1 mg/ml RNA marker, 2.5 ul 10X MOPS electrophoresis buffer, 3.5 ul 37% formaldehyde, and 10 ul Deionized formamide. The sample solution was incubated at 65 degrees for 10 minutes and immediately cooled on ice. 2 ul of loading dye was added to the sample solution. All 29 ul of the RNA marker sample solution was run with appropriate RNA samples on a 10 mm thick denaturing (formaldehyde) agarose gel. Electrophoresis was performed in a mini submarine -type apparatus at 4.5 V/cm in 1X MOPS electrophoresis buffer. The gel was stained in 5 ug/ml ethidium bromide for 15 minutes and destained 1 hour with shaking in water. Nine bands were resolved as size markers which were used for identifying the sample RNA message size.

2.9.2.3 Transfer

2.9.2.3.1 Materials

0.05N NaOH/0.15M NaCl

0.1M tris pH 7.5/0.15 M NaCl

Transfer buffer: 10X SSC

PosiBlot Pressure Blotter and Pressure Control Station: Stratagene, La Jolla, CA 92037
2.9.2.3.2 Methods

Following electrophoresis, stain a gel in 5ug/ml ethidium bromide in water for 15 minutes, destain in water for an hour and photograph the gel. Denature the RNAs by treating a gel in 0.05N NaOH/ 0.15M NaCl solution for 30 minutes to 1 hour. Neutralization was done by pouring off the denaturing solution and replacing 0.1M tris pH 7.5/ 0.15 M NaCl solution for 30 minutes to 1 hour. Pre-wet the membrane by first soaking in water for 20 minutes and then soak for an additional 10 minutes in transfer buffer. PosiBlot was used for 1 hour.

2.9.2.4 Hybridization and detection

These procedures were performed in the same way as done for Southern transfer procedure except prewetting a membrane in 5XSSC for 5-10 minutes before prehybridization.

2.10 SEQUENCING AND DNA ANALYSIS
2.10.1 NESTED DELETION CLONING
2.10.1.1 Materials

10X ExoIII buffer: 660mM TrisCl pH8.0, 66mM MgCl2
10X S1 buffer: 5ml of5M NaCl, 1.1ml of 3M KOAc pH4.5, 5ml of glycerol, 20ul of 1M ZnSO4
S1 mixture: 172ul of water, 27ul of 10X buffer, 60 units of S1 nuclease
S1 stop mixture: 0.3M TrisCl pH7.6, 0.05M EDTA pH8.0
Klenow mixture: 20ul of water, 6ul of 1M MgCl2, 3ul of 0.1M TrisCl pH7.6, 3units of Klenow enzyme
Ligase mixture: 650ul of water, 100ul of 10X T4 ligase buffer, 250ul of 30 % w/v PEG 8000, 5 units of T4 ligase

2.10.1.2 Methods

10ug of purified DNA was cut with two enzymes the cutting sites of which are not adjacent: for pTZ18R vector insert _NcoI_ as a 5' overhang cutting enzyme and _SphI_ as a 3' overhang cutting enzyme were used: for pTZ19R vector insert _XbaI_ and _KpnI_ were used for each cutting. It was ensured that the DNA was linear by running a mini gel. The DNA was purified by phenol-chloroform extraction, transferred to fresh tubes, and added 3M NaOAc (pH5.2) to 0.3M concentration. After EtOH precipitation, the pellet was dissolved in 60ul of 1X ExoIII buffer. The DNA solution was incubated for 5 minutes at 37 degrees. In the meantime, prepare 25 0.5ml tubes on ice containing 7.5ul of S1 mixture in each tube. 2.5ul of solution is transferred to the first tube containing 7.5ul of S1 mixture. Mix the rest of the DNA solution (57.5ul) with 600 units of ExonucleaseIII, voltex and put on 37 degrees waterbath. In 45 seconds remove 2.5ul of the mixture to the second tube. Continue to the last tube and incubate all the tubes at 30 degrees for 30 minutes. Add 1ul of S1 stop mixture to each and incubate for 10 minutes at 70 degrees. Run a mini gel with 2ul of each sample. Pool the samples of same size,
add 1ul of Klenow mixture to each 10ul sample, and incubate at 37 degrees for 5 minutes. To each 10 ul sample add 1ul of dNTPs mixture (0.5mM concentration each) and incubate them for 15 minutes at room temperature or for 5 minutes at 37 degrees. Add 40 ul ligase mixture to each sample, mix them , and incubate at room temperature for 2 hours. Transform competent cells with equal volume of sample as described before and spread on ampicillin supplied 2X YT medium plate. After overnight incubation at 37 degrees select colonies for sequencing that differ in size by 150-200bp.

2.10.2 DNA SEQUENCING
2.10.2.1 DNA preparation
2.10.2.1.1 Materials
The UniPlex Sequencing Kit purchased from Millipore

2.10.2.1.2 Methods
DNA is denatured by mixing with equal volume of solution (0.4N NaOH, .4mM EDTA) and incubating for 5 minutes at 85 degrees. Neutralize the DNA by adding 2 ul of 2.5M NH$_4$OAc and vortexing the mixture. After EtOH precipitation dissolve it in 8ul of water. In a 0.5ml tube mix the 8ul DNA solution with 1ul of M13 primer and 1ul of 10X buffer and incubate for 20 minutes at 42 degrees. Prepare 4 tubes (A,C,G,T: add 3ul of dNTP/ddNTP mixture in each tube. Add 2ul of extension mixture and 1ul (5units) of Klenow enzyme to DNA
samples and incubate at 42 degrees for 5 minutes. Transfer 3ul of sample to each of the 4 tubes. Incubate 10 more minutes at 42 degrees and add 3ul of stop solution/loading dye to each tube. Store at -20 degree until loading.

2.10.2.2 Electrophoresis of sequencing gel

2.10.2.2.1 Materials

6% Acrylamide gel
1X TBE buffer

2.10.2.2.2 Methods

After incubating the DNA sample for 2 minutes at 80 degree load half of the sample in each well of 6% acrylamide gel in 1X TBE buffer. Electrophoreses the sequencing gel at 40 voltage per 1cm of gel until bromophenol blue dye is run off the gel. Transfer the separated DNA in the gel onto nylon filter paper by Southern blotting. Crosslink the DNA to the filter paper at 33X10³ uJoule and store the filter paper at room temperature in a plastic bag until the detection procedure is performed.

2.10.2.3 Detection of DNA

2.10.2.3.1 Materials

The UniPlex Detection Kit purchased from Millipore
2.10.2.3.2 Methods

Add 0.1ml blocking solution per cm² of the membrane in a plastic bag. After 5 minutes incubation drain it. Add 0.05ml/cm² streptavidin solution, incubate for 5 minutes and drain it. Wash it in 0.5ml/cm² of wash solution I for 10 minutes. After draining repeat washing procedure. Incubate the membrane in 0.05ml/cm² of biotinylated alkaline phosphatase solution for 5 minutes. Wash twice with 0.5ml/cm² of wash solution II for 10 minutes each. Incubate the filter membrane with 0.025ml/cm² of 1X Lumigen PPD reagent for 5 minutes. After draining keep the membrane in a sealed plastic bag. Expose the membrane in a bag to X-ray film for 10 minutes. Develop the film and identify the sequence of the sample on a light box.

2.10.3 DNA ANALYSIS

Analysis of sequence data and amino acid sequence prediction were carried out with software package DNA strider™ 1.0 which was written by Christian Marek. DNA sequences for protein coding regions by looking for an initiator codon in frame with a chain termination codon (ORF) were searched. DNA sequence alignments was performed with Wisconsin program using the GenEMBL DNA databases to search for homologous sequences. Computer graphics visualization of deduced secondary structure of the polypeptide was made using TEKPLT01 software package by translating a cloned DNA.

60
sequences theoretically into an amino acid sequence and predicting secondary and tertiary structures of the polypeptide.

2.11 OVERLAPPING CLONING

2.11.1 RESTRICTION MAPPING AROUND THE SUBCLONE DNA

2.11.1.1 Materials

Class II Restriction Enzymes

Genius labeling and detection kit: purchased from Boehringer Mannheim Biochemicals

Nylon Blotting Membrane: purchased from Micron Separations inc., Westboro, MA

2.11.1.2 Methods

The cloned cosmid insert DNA was mapped by digestion with restriction enzymes followed by separation of the DNA fragments by gel electrophoresis and Southern blotting (the method of DNA digestion with restriction enzymes is same as described in restriction mapping of cosmid insert section). DNA transferred to a membrane were hybridized with the labelled subclone DNA as a probe (the methods of DNA labeling and detection are same as described in RFLP Southern Blotting section). Sizes of detected bands were estimated relative to Hind III lambda DNA size markers. According to the sizes of bands detected in hybridization experiments, a preliminary restriction map around subclone insert was constructed.
2.11.2 OVERLAPPING SUBCLONES

2.11.2.1 Materials

pTZ18R: available at several companies including SIGMA
CIAP (Calf Intestinal Alkaline Phosphatase)
CIAP 10X buffer: 500mM Tris-HCl pH9.0, 10mM MgCl₂, 1mM ZnCl₂,
10mM spermidine
7.5M Ammonium acetate.
LB plates containing 50µg/ml ampicillin.
0.1M Isopropyl-B-D-thiogalactoside (IPTG) stock solution (50ml):
1.2g IPTG, filter-sterilize, store at 4 degrees.
5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-gal) stock
solution: 50mg per ml of N,N' dimethyl formamide, filter-sterilize,
store at 4 degrees
Genius labeling and detection kit: purchased from Boehringer
Mannheim Biochemicals)
Nylon Blotting Membrane: purchased from Micron Separations inc.,
Westboro, MA

2.11.2.2 Methods

The method used here is same as described in subcloning section
and RFLP Southern transfer section. A DNA fragment partially
overlaps the subclone insert fragment was inserted into the pTZ18R
vector and used for transformation of E. coli competent cells. Insert
bearing colonies were picked on blue-white screening plates and
inoculated in 2XYT medium for amplification. The plasmid DNA was
extracted, cut with \textit{BamH}I and DNA fragments were separated by gel electrophoresis. The DNA fragments were transferred by Southern blotting and hybridized with the 1.82Kb \textit{Pst}I +\textit{Pvu}II fragment as a probe to confirm that the clones have an insert of the overlapping fragment in the pTZ18R vector.

2.11.3 THE EXTENT OF THE \textit{pmb} LOCUS

2.11.3.1 Materials

50 mM spermidine

STC: 1M sorbitol, 50mM Tris-HCl pH8.0, 50mM CaCl$_2$

Heparin: 5mg/ml in STC

PTC: 40% polyethylene glycole 4000, 50mM Tris-HCl pH8.0, 50mM CaCl$_2$

\textit{Neurospora} culture colonial bottom agar medium (1L): Vogel's 50X 20ml, Bacto-Difco Agar 15g, 10X FIGS 100ml, 0.5mg/ml Histidine, 5mg/ml Phenylalanine, 200 ug/ml Hygromycin

\textit{Neurospora} culture colonial regeneration top agar medium (1L):

Vogel's 50X 20ml, sorbitol182g, Bacto-Difco Agar 28g, 10XFIGS 100ml

2.11.3.2 Methods

The procedure is same as described in transformation section. Transformation of \textit{pmn:pmb:his-2} strain was done with the X7:5E cosmid DNA, the 13Kb \textit{Sal}I fragment and the 3.2 Kb \textit{Pst}I fragment to identify the extent of the \textit{pmb} locus in the X7:5E cosmid insert.
0.5ug of DNA was used for transformation with X7:5E. For transformation with the 13Kb SalI fragment and the 3.2 Kb PstI fragment, 1ug each of X7:5E DNA was used for fragment purification. The colonies were counted on Histidine plus 10X phenylalanine plates in four days after transformation.
CHAPTER 3
RESULTS

3.1 SELECTION OF pmn:pmb:his-2 STRAIN

A pmn:pmb:his-2 strain which can be used as a host cell for transformation with wild type library DNA was produced by crossing pmb strain to pmn:his-2 strain. The pmn:pmb:his-2 strain was identified by selection for growth on histidine plates containing PFPA and canavanine in media followed by testing for growth on minimal and minimal plus histidine plates. The pmn:pmb:his-2 strain grew on selection media and on minimal plus histidine media, but did not grow on minimal alone.

3.1.1 SENSITIVITY OF NEUROSPORA TO AMINO ACID ANALOGS PFPA AND CANAVANINE

3.1.1.1 Sensitivity to PFPA

A conidial suspension was incubated in a conidial growth medium containing histidine and PFPA. Conidia were filtered, dried and weighed.

In the data of Table 1, wild type strain 74a shows sensitivity to PFPA at concentration 50ug/ml and decreased the growth rate abruptly. mtr10r and mtr6r strains which are mutants defective in N system were resistant to PFPA at concentration of up to 200ug/ml.

#1683 bat um535 and #2275 bat cam-37(r) which have a wild type N system showed very little growth in the presence of PFPA at
50ug/ml concentration. A 50ug/ml concentration of PFPA was identified as suitable in experiments for selection of a strain defective in N system.

Table 1 Sensitivity test of Neurospora to amino acid analogue PFPA

<table>
<thead>
<tr>
<th>PFPA (ug/ml)</th>
<th>74a</th>
<th>#1683</th>
<th>#2275</th>
<th>mtr6r</th>
<th>mtr10r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>0.13</td>
<td>0.12</td>
<td>0.21</td>
<td>84.90</td>
<td>98.40</td>
</tr>
<tr>
<td>100</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>80.80</td>
<td>94.30</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>78.40</td>
<td>89.60</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>75.00</td>
<td>83.90</td>
</tr>
</tbody>
</table>

* The percentage of dry weight of each strain relative to control (0ug/ml PFPA). The conidial suspension of each strain was incubated in liquid minimal N medium containing histidine (500ug/ml) and PFPA. At stationary stage (after 4 days) conidia were filtered, dried, and weighed. 74a is a wild-type strain. #1683 and #2275 are pmb- strains. mtr6R and mtr10R are pmn:his-2 strains. The dryweight of each strain grown in media without PFPA is considered to be 100%.
3.1.1.2 Sensitivity to canavanine

Table 2 and Figure 1 show the sensitivity of *Neurospora* strains to amino acid analogue canavanine. A wild type strain 74a shows high sensitivity to canavanine and decreases the growth rate rapidly in the media containing over 100ug/ml concentration of canavanine. #1683 (pmb) and mtr6r (pmn:his-2) are strains used as parents in the cross for selecting pmn:pmb:his-2 strain. The #1683 strain is resistant to canavanine and shows over 75% growth at 200ug/ml concentration of canavanine. The mtr6r strain which is pmb + is quite sensitive to canavanine. According to the data 200ug/ml concentration of canavanine is suitable to use in experiments for selection of a strain which is defective in B system.
Table 2. Sensitivity test of Neurospora to amino acid analogue canavanine

<table>
<thead>
<tr>
<th>canavanine (ug/ml)</th>
<th>74a</th>
<th>#1683</th>
<th>mtr6r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>100</td>
<td>58.7</td>
<td>73.2</td>
<td>27.9</td>
</tr>
<tr>
<td>200</td>
<td>28.1</td>
<td>75.7</td>
<td>10.4</td>
</tr>
<tr>
<td>300</td>
<td>20.2</td>
<td>74.7</td>
<td>9.1</td>
</tr>
<tr>
<td>400</td>
<td>15.6</td>
<td>59.6</td>
<td>5.1</td>
</tr>
<tr>
<td>500</td>
<td>9.2</td>
<td>64.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>

* The percentage of dry weight of each strain relative to control (0ug/ml canavanine). The conidial suspension of each strain was incubated in liquid conidial growth N media containing histidine (500ug/ml) and canavanine. At stationary stage conidia were filtered, dried, and weighed. 74a is a wild-type strain. #1683 is a pmbl strain. mtr6R is a pmn:his-2 strain. The dryweight of each strain grown in media without canavanine is considered to be 100%.

Figure 1. Sensitivity test of Neurospora to amino acid analogue canavanine
3.1.2 pmn:pmb:his-2 STRAIN

A pmn:pmb:his-2 strain was selected among the progeny colonies from crosses between pmb and pmn:his-2 parental strains on plates containing 50ug/ml PFPA, 200ug/ml canavanine, and 500ug/ml histidine in media, followed by culturing on 1X Vogel's cololial media with or without histidine for discarding a pmn:pmb strain. The pmn:pmb:his-2 strain was selected from colonies which grow only on histidine containing media.

The pmn:pmb:his-2 strain was verified as a host strain in transformation experiments by culturing in 1X Histidine plus 10X Phenylalanine media. The data of Table 3 show very little growth (1.3%) of the pmn:pmb:his-2 strain in histidine plus phenylalanine media. Thereby, this data confirm that the selected pmn:pmb:his-2 strain is useful as a host strain in transformation experiments for selection of transformants with pmb+ DNA fragments.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Minimal+His</th>
<th>Minimal+His+Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>74a</td>
<td>0.0231g</td>
<td>0.0229g</td>
</tr>
<tr>
<td>pmn:pmb:his-2</td>
<td>0.0237g</td>
<td>0.0003g</td>
</tr>
</tbody>
</table>

* 74a is a wild type strain and used as a control. Minimal+His. media are 1X Vogel's conidial growth media containing 0.5mg/ml histidine. Minimal+His.+Phe. media are 1X Vogel's conidial growth media containing 0.5mg/ml histidine and 5mg/ml phenylalanine.
3.2 CLONING OF THE pmb LOCUS

Tests of osmotic stability showed that more than 99% of the conidia were converted to spheroplasts. Between 60% and 100% of the spheroplasts were capable of regenerating to form viable colonies. The competent spheroplasts were stored frozen in the transformation buffer at -70 degree. Such spheroplasts showed no decrease in transformation frequency for at least 1 month and usually much longer. The use of frozen spheroplasts conserves Novozym 234 and facilitates the multiple transformation steps required for the sib selection procedure.

3.2.1 TRANSFORMATION EFFICIENCY OF SPHEROPLASTS

For purposes of computing transformation efficiency of spheroplasts of the pmn:pmb:his-2 strain we defined stable transformants as those which are capable of growing in slants with selection media after being picked from the initial selection plates. In different transformations, between 50 and 100% of the colonies picked from plates continued to grow in slants. The experiments for testing transformation efficiency of pmn:pmb:his-2 spheroplasts were performed with his+ and mtr+ DNAs. Table 4 shows the transformation efficiency of pmn:pmb:his-2 strain with the genes already cloned as exogenous DNA sequences in the transformation experiments by former researcheres. The pSV50-6:11E clone contains a wild-type his-2 gene sequence and the pSV50-5:4H clone has a wild-type mtr gene sequence (Stuart, Koo, and Vollmer, 1988).
In each experiment, 1ug of DNA was used for transformation of 10^7 spheroplasts of the `pmbn:pmb:his-2` strain. In the experiments with the 6:11E DNA sequence, minimal medium with no supplements was used for selection. In the experiments with the 5:4H DNA sequence, histidine plus 10X arginine medium was used for selection. The number of transformants was variable, and transformation efficiencies of `pmbn:pmb:his-2` strain with `his-2+` and `mtr+` DNA ranged from 40 to 80 transformants per ug of exogenous DNA. The average number was 55 per ug of DNA.

Table 4. Transformation efficiency test of `pmn:pmb:his-2` strain with `his-2+` and `mtr+` DNA

<table>
<thead>
<tr>
<th>DNA sequences</th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>6:11E</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>6:11E</td>
</tr>
<tr>
<td>Experiment 3</td>
<td>6:11E</td>
</tr>
<tr>
<td>Experiment 4</td>
<td>6:11E</td>
</tr>
<tr>
<td>Experiment 5</td>
<td>6:11E</td>
</tr>
<tr>
<td>Experiment 6</td>
<td>5:4 H</td>
</tr>
<tr>
<td>Experiment 7</td>
<td>5:4 H</td>
</tr>
</tbody>
</table>

* pSV50-6:11E cosmid contains the `his-2+` gene sequence. pSV50-5:4H contains the `mtr+` gene sequence. In each transformation experiment 1ug of DNA and 10^7 spheroplasts of `pmn:pmb:his-2` strain were used. In the experiments with 6:11E DNA sequence, minimal colony formation medium was used as a bottom agar. In the experiments with 5:4H DNA sequence, minimal medium containing histidine plus 10X arginine was used.
3.2.2 SIB SELECTION

When the triple mutant strain was transformed with the DNA sequences of pSV50 cosmid vector library, the cosmid DNAs rescuing the \textit{pmb} phenotype did not map to linkage group IV by RFLP mapping \((11:1H, \text{linkage group III, } trp-1)\) \((17:10A, \text{linkage group I, } nit-2)\). A screen of a second \textit{Neurospora} cosmid library (pMOcosX) was performed using the technique of sib-selection. 50 pools of DNA, each containing 96 different cosmid clones of \textit{Neurospora} genomic wild-type DNA, were tested for their overall frequencies in transforming \textit{pmn:pmb:his-2} spheroplasts. Among 50 pools positively transforming pools (X7, X9, X11, X23, X24, G10, G21) were divided into 12 subpools of 8 cosmids each and the transformation repeated. Finally all subpools which demonstrated transformation of the \textit{pmb} locus were divided into the individual cosmids and the transformation repeated a third time.

Table 5 and Table 6 shows the number of transformants obtained by using cosmid DNAs. In Table 6 the number of transformants recovered with X7:5E ranged from 20 to 50 per ug of input DNA. The average number of transformants is 36 per 1ug of X7:5E DNA and make it a good candidate as a clone containing wild-type \textit{pmb} locus."
Table 5. Transformation of pmn:pmb:his-2 spheroplasts by uptake of cosmid DNAs

<table>
<thead>
<tr>
<th>Cosmids</th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DNA</td>
<td>0</td>
</tr>
<tr>
<td>X7:5E</td>
<td>37</td>
</tr>
<tr>
<td>X7:10F</td>
<td>11</td>
</tr>
<tr>
<td>X9:7C</td>
<td>15</td>
</tr>
<tr>
<td>X9:7H</td>
<td>17</td>
</tr>
<tr>
<td>X11:12A</td>
<td>30</td>
</tr>
<tr>
<td>X11:12B</td>
<td>18</td>
</tr>
<tr>
<td>X11:12C</td>
<td>14</td>
</tr>
<tr>
<td>X23:9A</td>
<td>9</td>
</tr>
<tr>
<td>X23:9C</td>
<td>33</td>
</tr>
<tr>
<td>X24:7D</td>
<td>17</td>
</tr>
<tr>
<td>X24:7E</td>
<td>11</td>
</tr>
<tr>
<td>G10:8F</td>
<td>14</td>
</tr>
<tr>
<td>G21:3C</td>
<td>16</td>
</tr>
<tr>
<td>G21:9D</td>
<td>40</td>
</tr>
</tbody>
</table>

* pmn:pmb:his-2 spheroplasts were plated on histidine:phenylalanine =1:10 colonial medium after transformation procedure with cosmid DNAs. The medium contains 0.5mg/ml histidine, 5mg/ml phenylalanine, 200ug/ml hygromycin. 1ug of DNA and 10^7 spheroplasts were used per plate in each experiment.*
Table 6. Transformation of *pmn:pmb:his-2* spheroplasts by uptake of X7:5E cosmid DNA

<table>
<thead>
<tr>
<th>Transformants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>37</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 3</td>
<td>45</td>
</tr>
<tr>
<td>Experiment 4</td>
<td>24</td>
</tr>
<tr>
<td>Experiment 5</td>
<td>23</td>
</tr>
</tbody>
</table>

* *pmn:pmb:his-2* spheroplasts were plated on histidine: phenylalanine=1:10 colonial medium after transformation procedure with X7:5E DNA. The medium contains 0.5mg/ml histidine, 5mg/ml phenylalanine, 200ug/ml hygromycin. 1ug of X7:5E DNA and 10^7 spheroplasts were used per plate in each experiment.
3.3 RFLP SOUTHERN HYBRIDIZATION

RFLP mapping kits have been developed to map DNA fragments onto the seven linkage groups of *Neurospora crassa* with many polymeric differences. The segregation pattern in one linkage group is different from that of other linkage group. The pattern also differs within a linkage group depending on the distance between markers. The allele assignment of a cloned gene is used to confirm the identity of the putative clone by comparing with the allele segregation data of markers that have already been mapped (Metzenberg, R.L. and J. Grotelueschen Fungal Genetics Newsletter 36, June 1989 51-57).

Procedures for gel electrophoretic analysis of DNA and Southern hybridization were used for RFLP mapping. 0.8% agarose gels were used for electrophoresis to separate DNA isolated from the RFLP kits and digested with *EcoRl*. Southern blots were hybridized with selected recombinant plasmids that had been labeled by random priming method with Digoxigenin-dUTP.

3.3.1 RFLP MAPPING OF X7:5E

Table 7 shows 18 segregants RFLP pattern of X7:5E: X7:5E DNA is tightly linked to the genes *nit-3* and *Fsr-4* on linkage group IV. For more accurate information about the location of X7:5E, 38 segregants RFLP technique was adopted to map X7:5E clone. The 38 segregants RFLP pattern of X7:5E is shown in Table 8: X7:5E DNA is tightly linked to *Fsr-4* position on the linkage group IV. From the 18- and 38-segregants RFLP patterns, the X7:5E clone is confirmed to map to the *pmb* locus on linkage group IV.
Table 7. RFLP of X7:5E 18 Segregants

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>-</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

nit-3
X7:5E

* 10 ug of the genomic DNA of each of the 18 segregants (#4411-#4430) was digested with 20 units of EcoR1 enzyme for 16 hours at 37 degrees. The digested DNAs were loaded into 0.8 % agarose gel and electrophoresed for 20 hours at 1.5 voltage per cm of agarose gel in 1XTBE buffer containing 500ug/L concentration of ethidium bromide. The DNAs in the gel were transferred to a nylon sheet by Southern blotting, and hybridized with X7:5E probe. The segregants of nit-3 and Fsr-4 were picked up from data in Fungal Genetics Newsletter 36, June 1989.

Table 8. RFLP of X7:5E 38 Segregants

| AA | BB | CC | DD | EE | EE | FF | GG | HH | JJ | KK | LL | MM | NN | OO | PP | QQ | RR |
| | 1 | 4 | 67 | 14 | 57 | 13 | 57 | 13 | 14 | 57 | 68 | 14 | 14 | 58 | 23 | 24 | 14 | 14 | 14 |

MO MM MO OO MO OM OM OO -M OM OO OM MM OM OO MO MO MO MM 00034
MO MO MO OO MO OM OM OO OM OM OM OO OM OM OM OM OM OM MM X7:5E
MO MO MO MO OM OM OM OM OO OM OO OM OM OM OM 0- MO OM MM MO Fsr4

* 10ug of the genomic DNA of each of the 38 segregants (#4450-#4488) was digested with 20 units of EcoR1 enzyme for 16 hours at 37 degrees. The digested DNAs were loaded into 0.8 % agarose gel and electrophoresed for 20 hours at 1.5 voltage per cm of agarose gel in 1X TBE buffer containing 500ug/L concentration of ethidium bromide. The DNAs in the gel were transferred to a nylon sheet by Southern blotting, and hybridized with X7:5E probe. The segregants of 00034 and Fsr-4 were picked up from data in Fungal Genetics Newsletter 1992.
3.3.2 RFLP MAPPING OF OTHER COSMIDS

Table 9 shows the list of cosmids which also complement \textit{pmb} mutant phenotype but do not map to \textit{pmb} locus. When these cosmid DNAs were cross-hybridized with X7:5E DNA sequence as a probe, only the vector sequence was detected, indicating that there is no common homologous sequence except vector DNA between X7:5E and any of these clones. Therefore, it is presumed that X7:5E contains the unique functional \textit{pmb} locus in the library.

<table>
<thead>
<tr>
<th>cosmids</th>
<th>RFLP mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>X9:7C, X11:12B</td>
<td>LGI, al-2 met-6</td>
</tr>
<tr>
<td>G21:9D</td>
<td>LGII, arg-12</td>
</tr>
<tr>
<td>X9:7H</td>
<td>LGIV, Tel IVL</td>
</tr>
<tr>
<td>G21:3C, G10:8F</td>
<td>LGV, con4-a</td>
</tr>
<tr>
<td>X24:7E, X7:10F</td>
<td>LGV, inl</td>
</tr>
<tr>
<td>X11:12A, X23:9C</td>
<td>LGVI, Bml con-3</td>
</tr>
<tr>
<td>X24:7D, X11:12C, X23:9A</td>
<td>LGVII, un-10</td>
</tr>
</tbody>
</table>

* Each cosmid was mapped by RFLP analysis. Each cosmid DNA was labeled with Digoxigenin-dUTP and used as a probe in Southern hybridization procedure for RFLP mapping.
3.3.3 GENOTYPE OF TRANSFORMANTS WITH X7:5E DNA

The transformants with X7:5E which were picked from a plate with histidine plus 10X phenylalanine selective medium were further analysed to confirm their genotype(s) by the measurement of the growth in liquid culture (Table 10). Neither the \textit{pmn:pmb:his-2} strain nor the transformants grew in minimal media, indicating that the transformants retained the \textit{his-2} genotype. The \textit{pmn:pmb:his-2} strain grows fully in media containing histidine and canavanine, but does not grow well in media containing histidine and 10X phenylalanine. Conversely, the transformants grew fully in histidine plus 10X phenylalanine media and did not grow well in canavanine media, indicating that the genotype of transformants is \textit{pmb}^+ (\textit{pmn:his-2}). These data prove that the transformants contain the wild-type \textit{pmb} gene which is presumed to originate from X7:5E cosmid DNA.
Table 10. Genotype testing of the transformants with X7:5E

<table>
<thead>
<tr>
<th></th>
<th>Minimal</th>
<th>Min+His+Phe</th>
<th>Min+His+Can</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmn:pmb:his-2</td>
<td>0</td>
<td>3.4mg</td>
<td>32.9mg</td>
</tr>
<tr>
<td>Transformant 1</td>
<td>0</td>
<td>28.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Transformant 2</td>
<td>0</td>
<td>29.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Transformant 3</td>
<td>0</td>
<td>34.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Transformant 4</td>
<td>0</td>
<td>30.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* 200ul of conidial suspension of pmn:pmb:his-2 strain and each transformant was cultured in liquid conidial growth media 1) minimal N medium 2) minimal medium containing 0.5mg/ml histidine plus 5mg/ml phenylalanine 3) minimal medium containing histidine plus 1mg/ml canavanine. The filtered dried conidia were weighed out to the nearest 0.1 mg.
3.4 SUBCLONING OF THE pmb GENE

To localize the specific region of the pmb locus from the X7:5E insert, X7:5E DNA was digested into smaller size pieces with different restriction enzymes and using them in transformation procedures. Transformation efficiency with the digested DNA fragments were inspected (Table 11). The transformation efficiency with PstI cut DNA yielded highest and about 80% efficiency of that with uncut X7:5E DNA. The individual PstI cut fragments were separated, isolated and purified from agarose gels. Each fragment was cloned into pTZ18R vector and used in transformation in testing for the ability to rescue the pmb mutant phenotype (Table 12). 3.2Kb PstI subclone had the highest transformation frequency. The transformants were further cultured in liquid media. Table 13 shows the dry weight of cultures. According to the data of Table 13 the transformants with 3.2Kb fragment shows pmb+ genotype indicating that 3.2Kb fragment is presumed to harbor pmb+ locus.
Table 11. Transformation efficiency

<table>
<thead>
<tr>
<th></th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7:5E</td>
<td></td>
</tr>
<tr>
<td>uncut X7:5E</td>
<td>34</td>
</tr>
<tr>
<td>PstI cut</td>
<td>27</td>
</tr>
<tr>
<td>NsiI cut</td>
<td>23</td>
</tr>
<tr>
<td>SacI cut</td>
<td>18</td>
</tr>
<tr>
<td>BamHI cut</td>
<td>19</td>
</tr>
<tr>
<td>no DNA</td>
<td>4</td>
</tr>
</tbody>
</table>

pmn:pmb:his-2 spheroplasts were plated on histidine: phenylalanine=1:10 colonial medium after transformation with X7:5E DNA. The medium contains 0.5mg/ml histidine and 5mg/ml phenylalanine.

Table 12. Transformation efficiency

<table>
<thead>
<tr>
<th>PstI cut</th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7:5E</td>
<td></td>
</tr>
<tr>
<td>uncut X7:5E</td>
<td>39</td>
</tr>
<tr>
<td>10.0Kb fragment</td>
<td>5</td>
</tr>
<tr>
<td>4.5Kb fragment</td>
<td>3</td>
</tr>
<tr>
<td>3.2Kb fragment</td>
<td>18</td>
</tr>
<tr>
<td>2.5Kb fragment</td>
<td>2</td>
</tr>
<tr>
<td>0.8Kb fragment</td>
<td>1</td>
</tr>
<tr>
<td>no DNA</td>
<td>2</td>
</tr>
</tbody>
</table>

pmn:pmb:his-2 spheroplasts were plated on histidine: phenylalanine=1:10 colonial medium after transformation with DNA. The medium contains 0.5mg/ml histidine and 5mg/ml phenylalanine.
Table 13. Dry weight of *PstI* cut transformants

<table>
<thead>
<tr>
<th>DNA Size</th>
<th>Minimal</th>
<th>His+Phe</th>
<th>His+Can</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DNA</td>
<td>0</td>
<td>0.1 mg</td>
<td>4.1 mg</td>
</tr>
<tr>
<td>X7:5E</td>
<td>0</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>0.65Kb</td>
<td>0</td>
<td>0.2</td>
<td>3.9</td>
</tr>
<tr>
<td>0.70Kb</td>
<td>0</td>
<td>0.3</td>
<td>3.4</td>
</tr>
<tr>
<td>0.80Kb</td>
<td>0</td>
<td>0.4</td>
<td>3.2</td>
</tr>
<tr>
<td>3.20Kb</td>
<td>0</td>
<td>2.5</td>
<td>0.4</td>
</tr>
<tr>
<td>4.50Kb</td>
<td>0</td>
<td>0.5</td>
<td>3.3</td>
</tr>
<tr>
<td>10.00Kb</td>
<td>0</td>
<td>0.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

* The X7:5E cosmid DNA was digested with *PstI* and electrophoresed in 0.8% agarose gel overnight at 20 voltage. Each DNA band was cut, purified, recombined into pTZ18 vector. After amplification DNAs were used for transformation of *pmn:pmb:his-2* strain on histidine plus 10X phenylalanine plates. The transformants were innoculated in 25ml of liquid conidial growth media 1) minimal N medium 2).minimal medium containing 0.5mg/ml histidine plus 5mg/ml phenylalanine 3) minimal medium containing histidine plus 1mg/ml canavanine. The filtered dried conidia were weighed out to the nearest 0.1 mg.
3.5 RESTRICTION MAPPING

Restriction mapping was done by digestion of a subclone pB22-22 harboring the 3.2Kb PstI fragment in pTZ18R vector with restriction enzymes whose restriction sites are located inside the polylinker of pTZ18R vector: Scal, BamHI, HindIII, XbaI, Ncol, PvuII, PstI, ApaI, BglII, HpaI, XhoI, HindII, SmaI, SphI, SalI, KpnI, NsiI, ClaI, EcoRV, AccI, and EcoRI. The 3.2 Kb insert has restriction sites of PvuII, Scal, BamHI, and Ncol. Ncol site is located about 200 bps away from PstI end. The position of BamHI restriction site is right next to Ncol site. Scal site is 340 bps away from PstI end. PvuII restriction site is located in the right half of the insert: it is about 1470 bps away from Scal site.

* Restriction mapping was performed in standard methods. 3.2 Kb insert has restriction sites for PvuII, Scal, BamHI, Ncol. There is no restriction site for the enzymes ApaI, BglII, HpaI, XhoI, HindII, SmaI, XbaI, HindIII, SphI, SalI, KpnI, NsiI, ClaI, EcoRV, AccI, and EcoRI in pB22-22 subclone insert. H: HindIII, Ps: PstI, B: BamHI, N: Ncol, S: Scal, PvuII: PvuII, X: XbaI

Figure 2. Restriction map of pB22-22 subclone
3.6 NORTHERN BLOT

The rRNA (28S, 18S, and 5S) molecules are easily distinguished. The mRNA molecules are seen as a smear that extends broad range.

The pB22-22 subclone DNA fragment was labeled and hybridized to *Neurospora* poly(A)+ RNA which was previously separated by agarose gel electrophoresis and blotted onto the nylon sheets. pB22-22 hybridized to a 3.5Kb fragment on the Northern blot (Figure 3). The size of *pmb* message is presumed to be 3.5 kb.

![Northern Blot](image)

Figure 3. Total RNA obtained from *Neurospora crassa* and Northern Blot

* Lane 1, RNA molecular weight markers Lane (0.24-9.5 Kb RNA ladder, GIBCO BRL). Lane 2, RNA Marker (0.3-7.4Kb, SIGMA)
3.7 SEQUENCING

3.7.1 CREATION OF DELETION SUBCLONES

The subclones containing 3.2Kb PstI cut insert in pTZ 18R plasmid or pTZ 19R plasmid were used for generation of nested sets of deletions with ExonucleaseIII. The ExonucleaseIII digested DNAs showed a continuous ladder with 150-200 bp intervals after separation by electrophoresis. After amplifying colonies differing in size by 150-200bp were selected for sequencing. Figure 4 and Figure 5 show the set of deletion clones that are used for sequencing.
The 3.2Kb fragment in pTZ18R vector (subclone pB22-22)

\[
\begin{align*}
5' & \text{NB S} \quad \text{HSP}\quad \text{PSXBSKSE} \quad 3' \\
& \text{HS}\quad \text{PSXBSKSE} \\
& \text{HS}\quad \text{PSXBSKSE} \\
& \text{HS}\quad \text{PSXBSKSE} \\
& \text{HS}\quad \text{PSXBSKSE} \\
& \text{HS}\quad \text{PSXBSKSE}
\end{align*}
\]

The 3.2Kb fragment in pTZ19R vector (subclone pB22-30)

\[
\begin{align*}
3' & \text{NB S} \quad \text{HSP}\quad \text{PSXBSKSE} \quad 5' \\
& \text{HSP}\quad \text{PSXKSE} \\
& \text{HSP}\quad \text{KSE} \\
& \text{HSP}\quad \text{KSE} \\
& \text{HSP}\quad \text{KSE} \\
& \text{HSP}\quad \text{KSE}
\end{align*}
\]

Figure 4. Nested set of deletion cloning

* 10ug of purified DNA was cut with two enzymes: for pTZ18R vector insert \textit{NcoI} as a 5' overhang cutting enzyme and \textit{SphI} as a 3' overhang cutting enzyme were used: for pTZ19R vector insert \textit{XbaI} and \textit{KpnI} were used for each cutting. The DNA solution is incubated with \textit{ExonucleaseIII}. A mini gel was run with 2ul of each sample. The samples of same size were pooled, amplified, and colonies were selected differing in size by 150-200bp for sequencing.
Figure 5. Sets of nested deletions used for sequencing

* Thick lines indicate double strands of 3.2Kb insert in subclones pB22-22 and pB22-30. Arrows show the positions covered by deletion clones. The size of arrows is not accurate.
3.7.2 DNA SEQUENCES

Nested deletion subclones (33 subclones) were used for sequencing of 3.2 Kb PstI cut insert. Figure 6 shows the partial nucleotide sequence of pmb locus from 3.2Kb insert, including upstream of translation start site of pmb locus.

Figure 6. Nucleotide sequence and deduced amino acid sequence of pmb locus

*Sequencing was done by Sanger's standard chain termination method with non-radioactive material. In the promoter region there are two CAAT sites(-166, -155), one TATA motif(-123) and two CT-rich regions(-117-->-106, -50-->-23). The designated sites of restriction enzymes in pmb locus are PvuII (-73), SacI (1404), BamHI (1537), NcoI (1541) and PstI (1744).
Figure 6. (continued) Nucleotide sequence and deduced amino acid sequence of *pmb* locus
Figure 6. (continued) Nucleotide sequence and deduced amino acid sequence of pmb locus
3.7.3 SEQUENCE ANALYSIS

Analysis of sequence data and amino acid sequence prediction were performed with the DNA strider™ 1.0 program written by Christian Marck. Nucleotide sequence comparison was done with Wisconsin program in GenEMBL (European Molecular Biology Laboratory) Data Library. Computer graphics visualization of deduced secondary structure of the polypeptide was made using TEKPLT01 software package.

Full restriction map of partial pmb sequence is in Appendix. Enzyme names are listed above the double stranded DNA sequence with the positions of the recognition sequence listed below symetrically.

3.7.3.1 Initiation of transcription

The pmb promoter sequence has the promoter elements conserved in higher eukaryotic promoter regions, CAAT, TATA and in fungi the CT block. The promoter region of pmb gene is identified to locate in the middle of the subclone. An open reading frame extends 1.7Kb to the end of the subclone, indicating that the subclone contains a partial sequence of the pmb gene. Because the transcriptional start point (tsp) has not been determined, positions are given in base pairs (bp) from the A(+1) of the translational start. The promoter region has two CAAT motif at positions -166-->-163 and -155-->-152, one TATA box at -123-->-120, and two CT rich pyrimidine blocks. One CT block is located at -117-->-106 (12bp...
length) and contains 83% pyrimidine bases. The other one is at -50--
>-23 (28bp length) and contains 75% pyrimidine bases.

3.7.3.2 Initiation and termination of translation

The -3 position in pmb sequence is G: at which a purine is nearly
always present (97%) in filamentous fungi (Kozak, 1987).

The 1.7Kb sequence from the pmb promoter site to the end of the
cloned contains a long open reading frame and no significant
polyadenylation signal is present in the sequence, indicating that the
pmb locus extends beyond pB22-22 subclone insert.

3.7.3.3 Consensus sequences

Nucleotide sequence was entered into computer data bases so that
homologous regions or controlling site similarities could be picked up
from a variety of sequences. Table 14 shows sizes and identity rates
of consensus sequences between the pmb sequence and other gene
sequences. The overlapping size ranges from 30bp to 260bp and the
identity rate is from 55% to 94%. N. crassa cpc-1 gene encodes a
transcriptional activator that is the major cross-pathway control
regulator of amino acid biosynthetic genes. The overlapping size
between pmb sequence and cpc-1 sequence is 186bp and the
homology between them is 89.2%.

92
Table 14. Consensus sequences

<table>
<thead>
<tr>
<th>pmb sequence</th>
<th>compared genes</th>
<th>size of overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-220(R)</td>
<td>Streptomyces Rnase P</td>
<td>101 bp (58.4%)</td>
</tr>
<tr>
<td>140-200</td>
<td>N. crassa qa-2</td>
<td>52 (94.2)</td>
</tr>
<tr>
<td>150-260</td>
<td>Mouse GDP-1</td>
<td>115 (60)</td>
</tr>
<tr>
<td>160-200(R)</td>
<td>Human mRNA</td>
<td>31 (74.2)</td>
</tr>
<tr>
<td>290-320(R)</td>
<td>O. cuniculus mRNA</td>
<td>32 (81.3)</td>
</tr>
<tr>
<td>300-450</td>
<td>E. coli osmC</td>
<td>154 (55.8)</td>
</tr>
<tr>
<td>500-540</td>
<td>E. coli sucB</td>
<td>35 (77.1)</td>
</tr>
<tr>
<td>660-720(R)</td>
<td>X. laevis SeCys-tRNA</td>
<td>56 (82.1)</td>
</tr>
<tr>
<td>660-900(R)</td>
<td>Human Cytomegalovirus</td>
<td>260 (56.9)</td>
</tr>
<tr>
<td>780-860</td>
<td>Mouse integ. site for CMV</td>
<td>59 (84.7)</td>
</tr>
<tr>
<td>1240-1320</td>
<td>Mycobacterium AT103</td>
<td>70 (65.7)</td>
</tr>
<tr>
<td>1380-1430(R)</td>
<td>Schistosoma mansoni GST</td>
<td>50 (68)</td>
</tr>
<tr>
<td>1400-1585</td>
<td>N. crassa cpc-l</td>
<td>186 (89.2)</td>
</tr>
<tr>
<td>1510-1630(R)</td>
<td>Mouse amelogenin</td>
<td>131 (60.3)</td>
</tr>
</tbody>
</table>

* Nucleotide sequence comparison was done with the Wisconsin program by using GenEMBL (European Molecular Biology Laboratory) Data Library. The numbers in the first row indicate the locations of consensus sequence in *pmb* locus. The percentages in the third row indicate the identity of consensus sequences. R: reverse strand.
3.7.3.4 Secondary structure

Computer graphics visualization of deduced secondary structure of the polypeptide of the partial PMB protein was made using TEKPLT01 software package (Figure 7). The two-dimensional conformation of a protein molecule is determined using its amino acid sequences by predicting alpha helices, beta strands and turns of each sequences separately by two standard prediction algorithms and averaged at homologous sequences' position.
Figure 7. Secondary structure of a portion of PMB protein

* Deduced amino acid sequence from 1.7 Kb nucleotide sequence was inputted for getting secondary structure using TEKPLT01 program. The arrow indicates the location of consensus sequence with CPC-1 protein.
3.8 OVERLAPPING CLONES

3.8.1 RESTRICTION MAPPING AROUND THE pB22-22 SUBCLONE

The X7:5E cosmid insert DNA was mapped by digestion with restriction enzymes followed by separation of the DNA fragments by gel electrophoresis. DNA was transferred to a membrane by the Southern blotting procedure and hybridized with the labelled pB22-22 subclone as a probe. Table 15 shows the sizes of bands detected in hybridization experiments with the pmbr subclone. According to the data of Table 15, a preliminary restriction map around the pB22-22 subclone insert was constructed (Figure 8).
Table 15. DNA fragments

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Detected bands (Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pstl</td>
<td>3.20</td>
</tr>
<tr>
<td>BamHl</td>
<td>1.80 3.65</td>
</tr>
<tr>
<td>SalI</td>
<td>13.00</td>
</tr>
<tr>
<td>SacI</td>
<td>3.85 19.00</td>
</tr>
<tr>
<td>EcoRI</td>
<td>4.20</td>
</tr>
<tr>
<td>NsiI</td>
<td>15.00</td>
</tr>
<tr>
<td>NcoI</td>
<td>4.40 5.30</td>
</tr>
<tr>
<td>NsiI +SacI</td>
<td>2.00 3.85</td>
</tr>
<tr>
<td>NsiI +Pstl</td>
<td>3.20</td>
</tr>
<tr>
<td>BamHl +SacI</td>
<td>1.80 3.52</td>
</tr>
<tr>
<td>EcoRI +Pstl</td>
<td>3.20</td>
</tr>
<tr>
<td>BamHl +SalI</td>
<td>1.80 3.65</td>
</tr>
<tr>
<td>Pstl +SalI</td>
<td>3.20</td>
</tr>
<tr>
<td>BamHl +NsiI</td>
<td>1.80 3.65</td>
</tr>
<tr>
<td>NsiI +SalI</td>
<td>7.00</td>
</tr>
<tr>
<td>EcoRI +SalI</td>
<td>4.20</td>
</tr>
<tr>
<td>Pstl +SacI</td>
<td>2.86</td>
</tr>
<tr>
<td>EcoRI +SacI</td>
<td>3.57</td>
</tr>
<tr>
<td>BamHl +Pstl</td>
<td>3.00</td>
</tr>
<tr>
<td>EcoRI +NsiI</td>
<td>4.20</td>
</tr>
<tr>
<td>NcoI +SacI</td>
<td>3.85 4.40</td>
</tr>
</tbody>
</table>

* X7:5E cosmid DNA was digested with *Pstl, BamHl, SalI, SacI, EcoRI, NsiI, NcoI, NsiI +SacI, NsiI +Pstl, BamHl +SacI, EcoRI +Pstl, BamHl +SalI, Pstl +SalI, BamHl +NsiI, NsiI +SalI, EcoRI +SalI, Pstl +SacI, EcoRI +SacI, BamHl +Pstl, EcoRI +NsiI,* and *NcoI +SacI.* Separated DNA fragments were transferred and hybridized with a labelled pB22-22 probe. Sizes of detected bands were estimated relative to *Hind III* lambda DNA size markers.
3.8.2 OVERLAPPING SUBCLONES

A 1.8Kb BamHI fragment partially overlaps a 3.2 Kb PstI fragment and extends downstream to the pmb locus. It was inserted into the pTZ18R vector and used for transformation of E. coli competent cells. Insert bearing colonies were picked on blue-white screening plates and cultured in 2XYT ampicillin media. The plasmid DNAs were extracted, cut with BamHI and DNA fragments were separated by gel electrophoresis. The DNA fragments were transferred by Southern blotting and hybridized with the 1.82Kb PstI +PvuII fragment as a probe to confirm that the clones have an insert of the 1.8Kb BamHI fragment in the pTZ18R vector. The detected bands on the lanes of pB-4C, pB-6A and pB-12B clones were sized at 1.8Kb. Therefore, the pB-4C, pB-6A and pB-12B clones were

Figure 8. Restriction map of X7:5E

* Preliminary restriction maps constructed according to data from Table 15.

<table>
<thead>
<tr>
<th>Sac</th>
<th>Sal</th>
<th>Nco</th>
<th>Nsi</th>
<th>B</th>
<th>E</th>
<th>NB</th>
<th>Sac</th>
<th>Pvu</th>
<th>BE</th>
<th>Sac</th>
<th>Sal</th>
<th>Nco</th>
<th>Nsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4.46</td>
<td>2.54</td>
<td>.12</td>
<td>1.39</td>
<td>21</td>
<td>1.48</td>
<td>1.38</td>
<td>.66</td>
<td>.28</td>
<td>1.15</td>
<td>.16</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

identified as overlapping clones which contain the 1.8Kb BamHI fragment insert in pTZ18R and can be used for further sequencing of the pmb locus.

3.8.3 THE EXTENT OF THE pmb LOCUS

Transformation of pmn:pmb:his-2 spheroplasts with X7:5E DNA, a 13Kb SalI fragment, and a 3.2Kb PstI fragment was performed to identify the extent of the pmb locus in the X7:5E cosmid insert. 0.5ug of DNA was used for transformation with X7:5E. For transformation with the 13Kb SalI fragment and the 3.2 Kb PstI fragment, 1ug each of X7:5E DNA was used for fragment purification. Table 16 shows the number of colonies counted on Histidine plus 10X phenylalanine plates in four days after transformation. The data suggests that the 13Kb SalI DNA fragment contains the whole pmb locus. On the other hand, the 3.2Kb PstI DNA fragment contains only a part of the pmb locus.
Table 16. Transformation efficiency

<table>
<thead>
<tr>
<th>DNAs</th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7:5E</td>
<td>63</td>
</tr>
<tr>
<td>Sall 13Kb</td>
<td>69</td>
</tr>
<tr>
<td>Pstl 3.2Kb</td>
<td>24</td>
</tr>
<tr>
<td>NoDNA</td>
<td>3</td>
</tr>
</tbody>
</table>

* Transformation of $pmn:pmb:his-2$ strain was done with X7:5E cosmid DNA, Sall cutting 13Kb DNA fragments, and Pstl cutting 3.2Kb DNA fragments. The transformation efficiency of 13Kb sequence is equal to that of X7:5E DNA. On the other hand, the transformation efficiency of 3.2Kb sequence is much lower (38%) than that of X7:5E DNA, indicating that 13Kb sequence contains the whole pmb locus and 3.2Kb DNA contains a portion of pmb locus.
4.1 CHARACTERIZATION OF THE \textit{pmb} GENE

A large number of genes of filamentous fungi have now been cloned and information on their primary structure is accumulating. The most extensively studied in this respect are \textit{Neurospora crassa} and \textit{Aspergillus nidulans}. In general, the characteristics of filamentous fungal genes seem very similar. A preliminary determination of the DNA sequence of the \textit{pmb} gene and an analysis of the genomic DNA sequence was conducted in order to predict the primary amino acid sequence of the gene products and to elucidate the primary structure of the proteins.

4.1.1 INITIAL SCREENING FOR THE \textit{pmb} GENE

It is known that there are three constitutive amino acid transport systems in \textit{Neurospora} (Wolfinbarger, 1980; DeBusk, Ogilvie, 1984). Among them, the basic amino acid transport system (B system) is under the genetic control of the \textit{pmb} gene. The basic amino acid transport system is specific for transport of arginine, lysine, histidine and the arginine analogue canavanine sulphate.

A strain mutant at both the \textit{pmb} locus and the \textit{his}-2 locus was constructed by crossing a \textit{pmb}- strain to a \textit{pmn: his}-2 strain. Selection was accomplished by plating the progeny spores on medium containing histidine and the arginine analogue canavanine.
Canavanine is toxic to the cell by incorporating in the protein synthesis instead of arginine and disrupting the protein structure. One selected strain with the genotype \textit{pmn:pmb:his-2} was used as the host strain in transformation experiments.

DNA from a wild type \textit{Neurospora} genomic library was used in transformation experiments as a source of exotrophic DNA. These libraries were composed of 50 microtiter plates, and each plate contains 96 different cosmid clones. Pools of DNA(50) were tested for their overall frequencies in transformation. The positively transforming pools were divided into 12 subpools of 8 cosmids and the transformation was repeated. Finally subpools which demonstrated complementation of the \textit{pmb} mutation were divided into the individual cosmids and the transformation was repeated a third time. This procedure identified 14 cosmid clones which were able to transform the host strain.

4.1.2 LINKAGE ASSIGNMENTS

The \textit{pmb} gene is known to be located on the right arm of linkage group IV (Metzenberg, Stevens, Selker, Morzycka-Wroblewska, 1984). We used two RFLP mapping reference sets to confirm the linkage of the putative clones identified as described in the previous section. The RFLP segregation pattern of the cosmid clone X7:5E using the first reference set ("18") shows that it is tightly linked to the genes \textit{nit-3} and \textit{Fsr-4} on linkage group IV. Using the second reference set ("38"), the segregation pattern of the X7:5E DNA shows
that it is tightly linked to $Fsr-4$, also on linkage group IV. Based on the 18- and 38-segregants RFLP patterns, the X7:5E clone was confirmed to map to the pmb locus on linkage group IV. Several other clones also appeared to complement the pmb mutation. The transformation efficiencies of the G21:9D, X11:12A, and X23:9C cosmids were as high as the X7:5E cosmid. However, these clones did not map to linkage group IV. G21:9D maps to the $arg-12$ locus on LGII, one of the genes of arginine biosynthetic pathway. Cosmid clones X11:12A and X23:9C map to the Bml (Benomyl resistant gene) locus on LGVI. The Bml locus is tightly linked to the $cpc-1$ locus on LGVI.

Because of the correct linkage relationship of X7:5E, further work was done on this clone. The transformants derived from the X7:5E cosmid DNA were cultured in liquid media. The dry weight of strains showed that the $pmn:pmb:his-2$ strain grows fully in a medium containing histidine and canavanine, but does not grow well (1.3%) in a medium containing histidine and 10X phenylalanine because the excess phenylalanine in the medium blocks histidine uptake via the G system. These phenotypes result from the fact that histidine is transported via all three major amino acid transport systems (the B, the N, and the G system) and phenylalanine is transported by the N and the G system (Wolfinger, DeBusk, 1971). On the other hand, strains transformed with X7:5E grew fully in a histidine plus 10X phenylalanine medium and did not grow well in a histidine plus canavanine medium, suggesting that the transformed strain is pmb^+.

103
This strongly suggests that the X7:5E cosmid contains the wild type pmb gene.

4.1.3 FINE SCALE LOCALIZATION OF THE pmb GENE

The X7:5E cosmid has a 40Kb insert. To localize the specific region containing the pmb gene within the X7:5E insert, this cosmid DNA was digested into smaller size pieces with different restriction enzymes. These were used in transformation procedures. The transformation efficiency with PstI cut DNA yielded the highest success rate (80%). Among the individual PstI cut fragments, a 3.2Kb fragment showed the most positive transformation efficiency. Stable transformants derived from the 3.2Kb fragment showed the pmb+ phenotype in liquid culture, indicating that the 3.2Kb fragment is presumed to harbor the pmb+ locus. This 3.2Kb fragment also hybridized to transcripts 3.5Kb in size on a Northern Blot, indicating that it makes an mRNA transcript.

The 3.2Kb fragment DNA was cloned using pTZ vectors. These vectors were also used for the construction of nested sets of deletions using ExonucleaseIII. The deletion clones were used for DNA sequencing. Analysis of DNA sequence data and amino acid sequence predictions were performed with the DNA strider™ 1.0 program written by Christian Marck. A 1.7Kb sequence extending from the putative pmb promoter site to the end of the clone contains a long open reading frame. Also both the transcriptional termination and polyadenylation signals required for cleavage in most fungal genes
were not seen in this region. This, in conjunction with the Northern Blot data indicates that the pmb locus extends beyond the 1.7Kb sequenced region.

A 1.8Kb BamHI fragment partially overlaps the 3.2 Kb PstI fragment (about 200bp) and extends further downstream. This was also cloned as an insert in the pTZ18R vector as an overlapping clone which can be used for further sequencing of the pmb locus.

4.1.4 pmb LOCUS GENE STRUCTURE

Sequences close to the AUG translational initiation triplet codon are very conserved in filamentous fungi. The most important position would appear to be the -3 position, at which a purine is nearly always present (97%) (Kozak, 1987). In the case of pmb sequence, the -3 position is G.

The fungal genes also show little bias in their use of stop codons (UAA 42%, UAG 28%, UGA 30%) and like other eukaryotes they have a preference (70%) for a purine at the position following the stop codon. Filamentous fungal mRNAs tend to have heterogeneous 3' ends with several apparent polyadenylation sites for cleavage of the primary transcript. The higher eukaryotic polyadenylation signal AATAAA is seen in an intact or degenerate form preceding polyadenylation sites in fungal genes.

The 1.7Kb sequence extending from pmb promoter site is a long open reading frame. Both the transcriptional termination and polyadenylation signals required for cleavage in most fungal genes is
not seen in this region of the pmb sequence, suggesting that the pmb locus extends beyond the 1.7Kb pB22-22 subcloned insert.

Hybridization of labeled DNA to RNA is a strong indication that the DNA corresponds to a gene producing mRNA to be translated into a protein. It also can identify the possible gene product size. To determine that the pmb gene codes for a messenger RNA, the DNA fragment in subclone pB22-22 was labeled and hybridized to Neurospora poly(A)+ RNA. The size of a putative pmb message detected and assessed by a Northern blot is 3.5Kb, suggesting that the size of pmb locus is at least 3.5Kb.

Restriction mapping around the pB22-22 subclone (Figure 8) shows that the 13Kb Sall fragment encompasses the 3.2Kb Pstl fragment, extending 8.7Kb further from the end of the 3.2Kb Pstl fragment. Transformations of pmn:pmb:his-2 spheroplasts with the X7:5E DNA, the 13Kb Sall fragment, and the 3.2Kb Pstl fragment were performed to identify the extent of the pmb locus in the X7:5E cosmid insert. According to the data in Table 16, the transformation efficiency of the 13Kb sequence is equal to that of X7:5E DNA. On the other hand, the transformation efficiency of the 3.2Kb sequence is much lower (38%) than that of the X7:5E DNA, suggesting that the 13Kb Sall DNA sequence contains the whole pmb locus and the 3.2Kb Pstl DNA fragment contains a partial pmb locus.
4.1.5 PROMOTER SEQUENCE OF THE \textit{pmb} GENE

Initiation of transcription and its regulation have been extensively studied in many organisms, and this is also true for filamentous fungi. The promoter regions of eukaryotes can be described as being composed of the promoter elements, CAAT, TATA and in fungi the CT block, which act as the basic transcriptional signals to determine the start site and efficiency of transcription. Sequences conserved in higher eukaryotic promoters, CAAT and TATA boxes are sometimes evident in filamentous fungal 5'-nontranscribed regions, but there are many instances where they are absent, though functional equivalents may be present.

In higher eukaryotes the conserved sequence \textit{GC(C/T)CAATCT} is often found around 80bp upstream from the tsp (transcription start points). In the filamentous fungi, sequences similar to this consensus lie 100-200bp from the tsp but some, such as those of \textit{A. oryzae amy} and \textit{T. reesei pgk}, are more than 300bp distant. The conserved sequence TATAAA common in eukaryotic promoters is thought to be involved in binding of a component of the general transcription machinery. Similar motifs can be found in most of the fungal genes. Most fungal TATA motifs are found 50-150bp from the translation initiation site and 40-100bp from the tsp. Pyrimidine-rich tracts or CT-rich regions have been described in the promoters of yeast and filamentous fungal genes often immediately before the major tsp. Deletion analysis of CT boxes in \textit{A. nidulans gpdA} and \textit{oliC} genes has shown them to be important for determining the position of
transcription initiation. CT motifs from 10 to 60bp (average 20bp) can be found in most genes, but some of the positions of these tracts have been shown to occur immediately upstream from the tsp. However, CT-rich regions can also occur between the tsp and translation start as in the amylase genes of A. niger or between the CAAT and TATA as in glaA of A. shirousami or even further upstream as in A. niger ald A. The significance of these CT block is therefore unclear.

The characteristics of the promoter region of the pmb locus can be described as typical. The promoter region of the pmb sequence has two CAAT motifs (-166, -155 site each) and one TATA box at -123 when the positions are given in base pairs(bp) from the A(+1) of the putative translational start. There are two CT rich pyrimidine blocks (-117-->-106, -50-->-23) containing 83% of and 75% of pyrimidine bases each.

4.1.6 CONTROL SEQUENCES

Nucleotide sequence comparisons were done using the Wisconsin program in GenEMBL (European Molecular Biology Laboratory) Data Library. Among homologies found between the pmb sequence and other gene sequences, the cpc-I gene has significant sequence homology. The overlap between the pmb sequence and the cpc-I sequence is 186bp, and the DNA sequence homology between them presents 89.2% identical nucleotides. The Neurospora cross-pathway control cpc-I gene is regulated in response to amino acid starvation
and encodes a transcriptional activator that is the major cross-pathway control regulator of amino acid biosynthetic genes. The CPC1 protein binds most avidly to the DNA fragment containing the hexanucleotide sequence 5'-TGACTC-3'. There are 5'-TGACTC-3' sequences at both upstream (-408-->-403) and downstream (+65-->+70) of the translation start site of \emph{pmb} sequence, suggesting that \emph{cpc-1} may be involved in the regulation of \emph{pmb} gene expression. The strong homology in the extensive region may implicate that these homologous regions are also related to regulatory function of the CPC-1 protein in interaction with the \emph{pmb} sequence.

4.1.7 FUTURE WORK

4.1.7.1 Further sequencing of \emph{pmb} locus

Inside the 13Kb \textit{SalI} fragment, a 1.8Kb \textit{BamH1} fragment partially overlaps a 3.2 Kb \textit{PstI} fragment (about 200bp) and extends downstream to the \emph{pmb} locus (Figure 9, restriction map around the pB22-22 subclone). The 1.8Kb \textit{BamH1} fragment was inserted into the pTZ18R vector. The overlapping clones pB-4C, pB-6A and pB-12B were identified to contain the 1.8Kb \textit{BamH1} fragment insert in the pTZ18R vector and can be used for further sequencing of the \emph{pmb} locus. The presence of both a transcriptional termination stop codon and polyadenylation signal AATAAA required for cleavage of the primary transcript preceeding polyadenylation sites will be searched for in this sequence to confirm that we have cloned and sequenced the entire \emph{pmb} gene.
4.1.7.2 The transcriptional start point of the \textit{pmb} gene

Relatively few transcriptional start points have been determined for filamentous fungal genes, but there are frequently a number of possible transcription initiation points, often spread over some distance. There is no evidence of preference for the sequences around these start points. However, in many instances the sites of initiation are in regions that are rich in pyrimidines. Preliminary deletion analysis of the \textit{A. nidulans trpC} promoter has indicated that the TATA box and the pyrimidine-rich tracts may be important in positioning the sites of transcription initiation by the ribosomal subunits (Hamer and Timberlake, 1987). As with mammalian transcripts, any base can be used as a transcript cap site for filamentous fungal genes with a preference of A\textgreater{}U\textgreater{}G\textgreater{}C. The 5' nontranslated mRNA may range from 5bp (\textit{A. niger trpC}) to 305bp (\textit{P.blakesleeanus leu1}) but more commonly is around 30-70bp.

The precise site of initiation of transcription of \textit{pmb} gene can be located by S1 nuclease mapping. This method involves hybridization of RNA with a labelled DNA probe and the subsequent digestion of the overhanging single-stranded DNA with S1 nuclease. The total unlabeled mRNA from a cell can be hybridized to a pure labeled DNA sample that includes all or part of the region of DNA that is transcribed to produce one particular mRNA. The labeled DNA-RNA hybrid is then digested with S1, which removes unpaired nucleic acid strands. The reaction products can be electrophoresed on a DNA sequencing gel alongside a DNA sequencing ladder. The size of the
DNA protected from S1 is then determined from the known size of the sequencing reaction products and, as the 5' end of the DNA has not been degraded, the extent of hybridization to the mRNA is known. An alternative method of mapping the 5' ends of mRNA molecules is primer extension. A synthetic oligonucleotide primer is hybridized to the RNA, is then used together with reverse transcriptase to prime synthesis of a complementary DNA molecule which will extend until it reaches the end of the RNA template. If the same oligonucleotide is used to prime a DNA sequencing reaction which runs alongside the primer-extended fragment on a denaturing acrylamide gel, the position of the base at the 5' end of the mRNA molecule can be read directly from the DNA sequencing reaction.

4.1.7.3 Intervening sequence(s) of the pmb gene

The majority of filamentous fungal genes sequenced thus far (68% figured by Gurr et al) contain intervening sequences, or introns and the sequences at the 5' and 3' splice junctions of introns are highly conserved. The average length is 70bp, with a range in size from 36bp (A. niger niaD intron1) to 256bp (A. niger pacA intron2), though most are less than 100 bp. All the introns are positioned within the coding sequences of the genes with the exception of the first intron of T. reesei egl3 which occurs in the 5' non-translated region. Sequences present at the 5' and 3' splice sites are highly conserved and are similar to those observed in yeast (Langford and Gallwitz, 1983) and in higher eukaryotes (Mount, 1982). In addition,
a conserved internal site for lariat formation similar to the yeast conserved internal lariat sequence TACTAAC (Langford and Gallwitz, 1983) is present. According to the data from Orbach et. al. (1986), the consensus sequence at 5' intron splice site in *Neurospora crassa* is GTA(A/C)GT and the consensus sequence at 3' splice sites is CAG. The consensus internal lariat formation sequence is \((A/G)CT(A/G)AC(A/T)\) which is on average 19 bp away from the 3' end of the intron.

The proposed open reading frame of the *pmb* gene may contain one possible intron site at position from +599 to +654 (56bp length). This contains the sequence GTAGGC at 5' intron splice site, the sequence CAG at the 3' intron splice site and the internal lariat formation sequence TCTCACG. Since this does not exactly match the consensus sequences required for accurate intron excision in nuclear genes of *N. crassa*, further study with cDNA cloning and S1 nuclease mapping work will be necessary to determine presence of an intron in this region.

4.2 CLONES THAT COMPLEMENT *pmb* MUTANT PHENOTYPES

Confirmation of clone identity usually involves demonstration that the mutant phenotype is complemented by the cloned fragment to give the expected wild-type phenotype and that the cloned DNA fragment is exclusively linked to the target locus. Table 5 and Table 9 show the cosmid clones which somehow complement *pmb* mutant
phenotypes and yet are not linked to \textit{pmb} locus by RFLP analysis. Among them the G21:9D, X11:12A, and X23:9C cosmids are of interest since their transformation efficiencies are as high as the X7:5E cosmid containing the \textit{pmb} locus. G21:9D cosmid maps \textit{arg-12} locus on LGII: \textit{arg-12} designates one of the genes of arginine biosynthetic pathway. X11:12A and X23:9C cosmids map \textit{Bml} (Benomyl resistant gene) locus on LGVI and the \textit{Bml} locus is tightly linked to \textit{cpc-l} locus on LGVI.

This phenomenon may be explained in several ways. Mechanistically it is generally assumed that translocation of a substrate amino acid across the plasma membrane involves a variety of molecular components (proteins or glycoproteins) which may or may not be directly involved in binding with the transported molecule. Therefore gene products may not interact directly, but may be somewhat functionally related and may affect the phenotype by changing the physiological condition of the cell, perhaps through more efficient transport. For example, one might consider the possibility that binding proteins, rather than being involved in the actual translocation process, may serve to increase the effective concentration of substrate molecules within a restricted binding sphere of a mobile membrane carrier molecule which has a rather low affinity for that substrate molecule. Once the substrate was bound, the membrane carrier would shift orientation towards the membrane interior where, due to its low affinity for the substrate molecule, the latter would simply diffuse into the cell interior. Such
a mechanism could help explain the seemingly rather loose
association of the binding protein with the membrane, and provide a
convenient means of altering specificity of a given translocation
mechanism simply by changing the associated binding proteins, and
permit the isolation of a mutant or mutants reduced in transport
activity of multiple transport systems.

Another possible explanation for the phenomenon is expression
suppressors of various sorts which may be cloned instead of the gene
itself. For example, Mann et al. (1988, 1989) inadvertently cloned
the N. crassa pho-4+ gene, encoding a phosphate-repressible
phosphate permease, because of the ability of that gene to suppress a
mutation in the nuc-1 regulatory gene. Incubation of conidia with
ribonuclease (RNase A) reduced the initial rate of amino acid
transport, indicating that glycoprotein subunits of amino acid
transport systems in Neurospora are sensitive to RNase A. This
result suggested that Neurospora transport systems are composed, in
part, of ribonucleoprotein (RNP) particles or there is a regulatory
molecule such as a suppressor of transcription(18, 77).

4.3 CONSENSUS SEQUENCE OF pmb LOCUS WITH cpc-1
SEQUENCE (17, 44)

Computer data base analysis shows consensus sequences picked
up from a variety of sequences. Those sequences could indicate
homologous regions or controlling site similarities. Table 14 shows
sizes and identity rates of consensus sequences between \textit{pmb} and other gene sequences. Among consensus sequences in the data, the \textit{cpc-1} gene has a significant sequence homology. The overlapping size between \textit{pmb} and \textit{cpc-1} is 186bp and the DNA sequence homology between them presents 89.2\% identical nucleotides.

In \textit{N. crassa}, \textit{Saccharomyces cerevisiae}, and \textit{Aspergillus nidulans} starvation for single amino acid leads to increased synthesis of enzymes for many amino acid biosynthetic pathways. In \textit{Saccharomyces cerevisiae}, this response is termed general control resulting in increased synthesis of \textit{GCN4}, the polypeptide products of the gene \textit{GCN4}. \textit{GCN4} then binds to its specific recognition sequences preceding each regulated gene and activates transcription. In \textit{N. crassa} this global activation of amino acid biosynthetic genes in response to amino acid starvation is referred to as cross-pathway control, or general amino acid control. \textit{N. crassa cpc-1} gene is transcriptionally regulated in response to amino acid starvation and encodes a transcriptional activator that is the major cross-pathway control regulator of amino acid biosynthetic genes. \textit{CPC-1} protein binds to target sites in the flanking regions of the associated genes regulated by cross-pathway control and stimulates their transcription. Sequence identity between \textit{CPC-1} DNA-binding protein and \textit{GCN4} was most pronounced in the DNA-binding and transcriptional activation domains of \textit{GCN4}. Preliminary DNA sequence analysis of \textit{cpc-1} DNA indicates that it likely encodes cytoplasmic phenylalanyl tRNA synthetase and the hypothesis is that
uncharged tRNA is the signal for the induction of cross-pathway control and cpc-1 expression. It has been shown that the levels of as many as 20% of the total detectable mRNA species in *N. crassa* are influenced directly or indirectly by the presence of a functional *cpc-1* gene in amino acid-starved mycelium. This differential expression of *cpc-1* may also indicate that CPC1 protein plays other roles in addition to activation of genes for amino acid biosynthesis.

The two domains most critical to CPC-1 protein function are its DNA-binding domain and transcription activation domain. CPC1 bound most avidly to the DNA fragment containing the hexanucleotide sequence 5'-TGACTC-3'. There is an exact copy of this hexanucleotide upstream of the *cpc-1* tsp. TGACTC or related sequences are found flanking regions of *Neurospora* genes under cross-pathway control, *arg-2, trp-1, trp-3,* and *his-3*. These sites are located both upstream and downstream of the transcription start sites for these genes. There are 5'-TGACTC-3' sequences both upstream (-408-->-403) and downstream (+65-->+70) of the translation start site of *pmb* sequence, which are required for the positive regulation of the expression under cross-pathway control. Considered together, these data suggest that *cpc-1* may be involved in the regulation of *pmb* gene expression.

The sequence of homology between *pmb* and *cpc-1* bears extensive regions (186bp) and the long stretch of overlapping sequences between them encompasses from +1400 to +1585 of *pmb* sequence and +100 to +285 of *cpc-1* sequence. The strong similarity
(89.2\%) of these regions may implicate that these homologous regions are also related to regulatory function of the CPC-1 protein on \textit{pmb} gene expression in interaction with the \textit{pmb} sequence in addition to the nucleotide binding component \textit{5'-TGACTC-3'}.

4.4 CLONING GENES BY SEQUENCE SIMILARITY (18, 46, 52, 59)

Once the genes are cloned, they have in many cases been used as cross-species hybridization probes, usually at low stringency, for Southern blots or filter replicas of clone banks to isolate the equivalent genes from a heterologous organism, since nucleotide sequences of cognate genes of related function are often similar. The DNA segments that reveal sequence conservation are then tested in RNA hybridization for deciding the presence of the gene expression and identifying the possible gene product size. As the number of genes cloned increases, the probability that a gene related to a new target gene will already be available becomes higher and higher. As might be expected, this similarity is roughly related to the phylogenetic relationship of the organisms concerned. The degree of relatedness between two nucleic acid segments is measured by the ability of their component single strands to hybridize under appropriate conditions to form complementary double helices. Calculation of sequence homology is based on the formula for nucleic acids melting temperature on the basis of the G+C content. Stringent
conditions (high temperature, low salt, high formamide concentrations) are used when probe and target DNA are totally or almost totally homologous (greater than 90%). Non-stringent conditions (low temperature, high salt) are chosen in cases of lower homology (70-75% DNA homology). (1, 71)

A number of filamentous fungal genes were isolated by making use of previously cloned genes. Initial success has come when using genes that encode highly conserved proteins over a wide range of species such as ribosomal RNA, histone and tubulin genes. For example, the initial isolation of a fungal beta-tubulin gene was accomplished by probing a *A. nidulans* gene bank with a chicken beta-tubulin gene probe (May et al. 1987). Despite the differences in base composition, yeast genes have proven to be a good resource for the isolation of cognate genes from filamentous fungi. Among the fungal genes so isolated have been a number of genes encoding glycolytic enzymes which are highly conserved. As they have become available, genes from the filamentous fungi have also been used as probes for gene isolation.

The cloned *Neurospora pmb* sequence is able to be used as a probe in hybridizing with genomic DNAs from heterologous organisms for detecting the functionally homologous gene(s) on the assumption that specific domains of protein comprising *pmb* transport system will be originated from the same gene sequence conserved between *Neurospora* genome and genomic DNAs of other organisms. The regions of especially high similarity presumably reflect a well
conserved nucleotide motif with common structure and function. This work will contribute toward studying multiple transport systems and identifying transport related gene products in all eukaryotes including mammals, considering the situations that mutations in amino acid accumulation process in mammal cells have proven difficult to obtain and study in a similar manner as in microorganisms and the activities of several genes which control amino acid transport in mammals resemble those of transport genes found in other organisms. For example cystinuria and dibasicaminoaciduria of men mimics a transport mutation affecting basic amino acid in *Neurospora*. The Hartnup mutation of men mimics a transport mutation affecting neutral amino acids in *Neurospora*. (Scriver, 1970; Scriver 1985; Christensen, 1989).

In summary, this dissertation has presented evidence that strongly suggests the presence of the wild-type *pmb* locus in cosmid X7:5E DNA. The *pmb* gene is probably fully contained in a 13Kb *SalI* fragment of the cosmid insert. A smaller subclone, pB22-22 hybridizes to a 3.5Kb poly-A RNA suggesting that the *pmb* gene product could be a protein of approximately 100Kd molecular weight. Strong homology with a specific region of the *Neurospora cpc-1* gene implies that the *pmb* gene may be regulated by the *cpc-1* gene product. This is a surprising and intriguing finding as earlier work failed to reveal any regulation of the *pmb* transport system.
However this new finding is supported by the observation that cosmids tightly linked to the cpc-I gene can also rescue the pmb- phenotype. Further information about the nature of the pmb gene may come from the completion of the DNA sequence. This work is in progress.
APPENDIX
FULL RESTRICTION MAP OF 1.7Kb SEQUENCE

Figure 9. Full restriction map of partial pmb sequence

* Enzyme names are listed above the double stranded DNA sequence with the positions of the recognition sequence listed below symmetrically.
Figure 9. (continued) Full restriction map of partial *pmb* sequence
Figure 9. (continued) Full restriction map of partial *pmb* sequence
Figure 9. (continued) Full restriction map of partial *pmb* sequence
Figure 9. (continued) Full restriction map of partial pmb sequence
Figure 9. (continued) Full restriction map of partial \textit{pmb} sequence
Figure 9. (continued) Full restriction map of partial pmb sequence
Figure 9. (continued) Full restriction map of partial *pmb* sequence
Restriction Endonucleases site usage

<table>
<thead>
<tr>
<th>Restriction Enzyme</th>
<th>Site Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aat II</td>
<td>1 BspM I</td>
</tr>
<tr>
<td>Acc I</td>
<td>1 BspM II</td>
</tr>
<tr>
<td>Afl II</td>
<td>1 BstB II</td>
</tr>
<tr>
<td>Afl III</td>
<td>3 BstB I</td>
</tr>
<tr>
<td>Age I</td>
<td>2 BstE II</td>
</tr>
<tr>
<td>Ahe II</td>
<td>2 BstN I</td>
</tr>
<tr>
<td>Alu I</td>
<td>12 BstU I</td>
</tr>
<tr>
<td>Alw I</td>
<td>10 BstX I</td>
</tr>
<tr>
<td>Alw II</td>
<td>1 BstY I</td>
</tr>
<tr>
<td>Ape I</td>
<td>- Bsu36 I</td>
</tr>
<tr>
<td>ApeL I</td>
<td>1 Cfr10 I</td>
</tr>
<tr>
<td>Apo I</td>
<td>- Cla I</td>
</tr>
<tr>
<td>Apy I</td>
<td>6 Dde I</td>
</tr>
<tr>
<td>Asc I</td>
<td>- Dpn I</td>
</tr>
<tr>
<td>Ase I</td>
<td>- Dra I</td>
</tr>
<tr>
<td>Asp718</td>
<td>- Dra III</td>
</tr>
<tr>
<td>Ava I</td>
<td>- Drd I</td>
</tr>
<tr>
<td>Ava II</td>
<td>3 Dsa I</td>
</tr>
<tr>
<td>Aven I</td>
<td>3 Ece I</td>
</tr>
<tr>
<td>Avr II</td>
<td>- Eaq I</td>
</tr>
<tr>
<td>Bail</td>
<td>- Ecl 136II</td>
</tr>
<tr>
<td>BamHI</td>
<td>1 Ecl XI</td>
</tr>
<tr>
<td>Bam I</td>
<td>3 Eco47 III</td>
</tr>
<tr>
<td>Ban II</td>
<td>2 EcoM I</td>
</tr>
<tr>
<td>Bbe I</td>
<td>- EcoO109 I</td>
</tr>
<tr>
<td>Bbr PI</td>
<td>1 EcoR I</td>
</tr>
<tr>
<td>Bbv I</td>
<td>12 EcoR II</td>
</tr>
<tr>
<td>Bbv II</td>
<td>- EcoR V</td>
</tr>
<tr>
<td>BcI I</td>
<td>- Ksp I</td>
</tr>
<tr>
<td>Bcl I</td>
<td>- Ksp I</td>
</tr>
<tr>
<td>Bcn I</td>
<td>3 Fnu4H I</td>
</tr>
<tr>
<td>Bgl I</td>
<td>- Fok I</td>
</tr>
<tr>
<td>Bgl II</td>
<td>- Fsp I</td>
</tr>
<tr>
<td>Bsa AI</td>
<td>3 Gdi II</td>
</tr>
<tr>
<td>Bsa BI</td>
<td>2 Hae I</td>
</tr>
<tr>
<td>Bsi BI</td>
<td>4 Hae II</td>
</tr>
<tr>
<td>Bsi EI</td>
<td>4 Hae II</td>
</tr>
<tr>
<td>Bsi YI</td>
<td>12 Hae III</td>
</tr>
<tr>
<td>Bsm I</td>
<td>- Hga I</td>
</tr>
<tr>
<td>BspI2086 I</td>
<td>5 HgiA I</td>
</tr>
<tr>
<td>BspHI I</td>
<td>1 Hha I</td>
</tr>
</tbody>
</table>

Figure 9. (continued) Full restriction map of partial pmb sequence

129
<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Site</th>
<th>Use</th>
<th>Site position (Fragment length)</th>
<th>Fragment order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aat II</td>
<td>gacgt/c</td>
<td>1</td>
<td>1(1735) 1</td>
<td></td>
</tr>
<tr>
<td>AlwN I</td>
<td>cgacn/c</td>
<td>1</td>
<td>1(933) 2</td>
<td>934(1222) 1</td>
</tr>
<tr>
<td>ApaI I</td>
<td>g/tgac</td>
<td>1</td>
<td>1(242) 2</td>
<td>243(1913) 1</td>
</tr>
<tr>
<td>BamHI I</td>
<td>g/gatcc</td>
<td>1</td>
<td>1(1947) 1</td>
<td>1948(203) 2</td>
</tr>
<tr>
<td>Bbr PI</td>
<td>cac/tg</td>
<td>1</td>
<td>1(1759) 1</td>
<td>1760(396) 2</td>
</tr>
<tr>
<td>BspH I</td>
<td>t/acatga</td>
<td>1</td>
<td>1(712) 2</td>
<td>713(1443) 1</td>
</tr>
<tr>
<td>BspMI I</td>
<td>accggt 4/8</td>
<td>1</td>
<td>1(1525) 1</td>
<td>1526(630) 2</td>
</tr>
<tr>
<td>BspXI I</td>
<td>t/cggga</td>
<td>1</td>
<td>1(916) 2</td>
<td>917(1339) 1</td>
</tr>
<tr>
<td>BssH II</td>
<td>g/gcgc</td>
<td>1</td>
<td>1(933) 2</td>
<td>934(1222) 1</td>
</tr>
<tr>
<td>Cia I</td>
<td>acl/cpaat</td>
<td>1</td>
<td>1(1647) 1</td>
<td>1648(503) 2</td>
</tr>
<tr>
<td>Dra III</td>
<td>cacnnn/tgta</td>
<td>1</td>
<td>1(519) 2</td>
<td>520(1636) 1</td>
</tr>
<tr>
<td>Dsa I</td>
<td>c/crygg</td>
<td>1</td>
<td>1(1951) 1</td>
<td>1952(204) 2</td>
</tr>
<tr>
<td>Eco47III</td>
<td>agg/tcgtg</td>
<td>1</td>
<td>1(916) 2</td>
<td>917(1339) 1</td>
</tr>
<tr>
<td>EcoNI I</td>
<td>cctmn/mngagg</td>
<td>1</td>
<td>1(2068) 1</td>
<td>2069(87) 2</td>
</tr>
<tr>
<td>Esp I</td>
<td>gc/tmnncc</td>
<td>1</td>
<td>1(1634) 1</td>
<td>1635(521) 2</td>
</tr>
<tr>
<td>Hae I</td>
<td>wgg/cccw</td>
<td>1</td>
<td>1(1831) 1</td>
<td>1832(324) 2</td>
</tr>
<tr>
<td>Nco I</td>
<td>ccatgg</td>
<td>1</td>
<td>1(1647) 1</td>
<td>1648(503) 2</td>
</tr>
<tr>
<td>NcoI I</td>
<td>c/catgg</td>
<td>1</td>
<td>1(1951) 1</td>
<td>1952(204) 2</td>
</tr>
<tr>
<td>Pvu I</td>
<td>c/gtac</td>
<td>1</td>
<td>1(836) 2</td>
<td>837(1319) 1</td>
</tr>
<tr>
<td>PvuII I</td>
<td>cag/tcgg</td>
<td>1</td>
<td>1(338) 2</td>
<td>339(1817) 1</td>
</tr>
<tr>
<td>Sac I</td>
<td>gacgt/c</td>
<td>1</td>
<td>1(1814) 1</td>
<td>1815(341) 2</td>
</tr>
<tr>
<td>Sca I</td>
<td>aagttc</td>
<td>1</td>
<td>1(447) 2</td>
<td>448(1708) 1</td>
</tr>
</tbody>
</table>

No Sites found for the following Restriction Endonucleases

Acc I	gt/nkac			
Afl II	c/teag			
Apa I	gggcc/c			
Apo I	r/gaattt			
Asc I	ggccggc			
Ave I	at/taat			
Asp718	gt/qac			
Avo I	c/ycrg			
Avr II	c/tcctg			
Bal I	tgg/ctca			
Bba I	ggtggt/c			
Bcl I	t/gatca	2/6		
Bgl I	ggccnnn/nggc			
BglII I	a/gatct			
Dom I	gaatgc	1/1		
EcoF I	t/cga			
EcoR I	g/aattc			
EcoR V	gaz/tcc			
HinC II	gty/acc			
HinCIII	e/gatcc			
HpaI I	gtt/aac			
Hph I	ggtga	8/7		
Kos I	g/ggcccc			
Kpn I	gtt/tac/c			
Mbo II	gaaga	8/7		
Mlu I	a/cggcg			
Mun I	c/aattg			
Nor I	gg/cgcc			
Not I	gc/ggccg			
Nru I	tccg/cga			
Nsi I	atgcg/e			
Pac I	ttaat/tgg			
PaelR I	c/tcga			
Pcal I	ccctnn/ntgg			
Pfu I	eg/gwccy			
Pst I	tcgca/g			

No Sites found for the following Restriction Endonucleases

Acc II	gt/nkac			
Afl II	c/teag			
Apa I	gggcc/c			
Apo I	r/gaattt			
Asc I	ggccggc			
Ave I	at/taat			
Asp718	gt/qac			
Avo I	c/ycrg			
Avr II	c/tcctg			
Bal I	tgg/ctca			
Bba I	ggtggt/c			
Bcl I	t/gatca	2/6		
Bgl I	ggccnnn/nggc			
BglII I	a/gatct			
Dom I	gaatgc	1/1		
EcoF I	t/cga			
EcoR I	g/aattc			
EcoR V	gaz/tcc			
HinC II	gty/acc			
HinCIII	e/gatcc			
HpaI I	gtt/aac			
Hph I	ggtga	8/7		
Kos I	g/ggcccc			
Kpn I	gtt/tac/c			
Mbo II	gaaga	8/7		
Mlu I	a/cggcg			
Mun I	c/aattg			
Nor I	gg/cgcc			
Not I	gc/ggccg			
Nru I	tccg/cga			
Nsi I	atgcg/e			
Pac I	ttaat/tgg			
PaelR I	c/tcga			
Pcal I	ccctnn/ntgg			
Pfu I	eg/gwccy			
Pst I	tcgca/g			

Figure 9. (continued) Full restriction map of partial *pmb* sequence
REFERENCES

daenine phosphoribosyltransferase gene: Presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc. Natl. Acad. Sci. USA 82, 2731-2735.

54. Rommens, J., Zengerling, S., Burns, J., Melmer, G., Kerem, B., Plavsic N., Zsiga, M., Kennedy, D., Markiewicz, D., Rozmahei, R., Riordan, J.,

