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Abstract 

Volcanic eruptions impact human lives in a multitude of ways, mainly dependent on 

eruption intensity and style. Broadly speaking, powerfully explosive eruptions produce large 

plumes of ash and pyroclastic density currents, whereas effusive to weakly explosive eruptions 

can produce scoria cones and ramparts, as well as lava domes and flows, depending on the 

fluidity of the lava. On either end of this explosivity spectrum, unique hazards exist that disaster 

management agencies must mitigate to keep nearby populations safe. As our understanding of 

volcanic eruptions and their underlying processes has been refined, our ability to forecast 

volcanic hazards has begun to improve. In this dissertation, I examine two key processes that are 

used to forecast impacts of volcanic eruptions: magma decompression and lava flow 

propagation. Magma decompression rate is a critical parameter that influences whether a magma 

will erupt explosively, and thus it requires accurate determination. A new, promising technique 

to calculate magma decompression rate utilizes small pockets of magma trapped within crystals 

that remained open to the host magma, called melt embayments. These embayments develop 

concentration gradients in dissolved volatiles (e.g., H2O, CO2) during decompression that can be 

measured. Assuming the concentration gradients are formed purely through diffusive loss of the 

volatiles from the embayment to the host magma, the decompression timescale (and by extension 

decompression rate) that the embayments experienced can be calculated. This technique is 

gaining use due to its relative ease of implementation, the prevalence of embayments, and the 

wide range of decompression rates that can be resolved, provided an appropriate diffusing 

volatile species is present and measured. However, this technique has not undergone any testing 

to verify that the current modeling standard is not introducing its own error. Therefore, I quantify 

the amount of error introduced into calculated timescales by modeling simplifications 



iv 
 

numerically. Other decompression rate meters can be used in conjunction with diffusion 

modeling to quantify the range of decompression rates during the course of a volcanic eruption. 

However, this is a relatively new approach, so I conduct decompression experiments that use two 

decompression rate meters in the same experimental charge to evaluate whether these meters are 

compatible with each other. Additionally, the experiments provide insights into the assumptions 

needed to recover a known decompression rate. Once lava erupts on the surface, it can produce 

lava flows that are destructive to nearby communities, as in the 2018 eruption of Kīlauea, HI. 

Forecasting the path and velocity of lava flows is a crucial step to issue accurate warnings and 

implement effective evacuations. The 2018 Kīlauea eruption is an excellent natural laboratory to 

test previous forecasting methods as the data on the flows is exceptional in its temporal 

resolution, with daily overflights by the response team with both helicopters and drones, as well 

as daily overflights by commercial photographers. I utilize equations from two complimentary 

studies that predict lava flow length through time by calculating the evolution of various lava 

properties that serve to slow the flow. This study focuses on three flows during the eruption that 

span a range of lava composition, crystallinity, and duration to test the applicability of equations 

that require limited a priori knowledge of flow conditions. Altogether, this dissertation provides 

new insights to implementation of simulations of volcanic processes that will aid future 

modelers. 
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Chapter 1. Introduction 
 

Volcanic eruptions present various health and socioeconomic hazards to humans, and 

these hazards scale with the size and intensity of the eruption. High-silica magmas (e.g., rhyolites 

and dacites) tend to erupt more explosively, as during the 1980 eruption of Mt. St. Helens, WA 

(Cashman and Sparks, 2013). Powerful explosive eruptions involve viscous magma and produce 

ash columns that can impact large areas with pyroclast fallout, as well as deadly pyroclastic 

density currents that can inundate areas nearby the volcano (Cashman and Sparks, 2013). Low 

silica magmas are more fluid and often erupt effusively to weakly explosively, such as the 

eruptions that have occurred at Kīlauea Volcano (Hawai‘i) over the last 200 years. These 

eruptions tend to produce lava flows that can destroy homes and livelihoods (Cashman and 

Sparks, 2013; Houghton et al., 2021b). Although the hazards from these eruption styles are 

different, they can have devastating impacts, and it is critical to understand the factors that 

contribute to the style and destructiveness of eruptions in order to minimize their societal 

impacts. 

1.1 High silica magmas 

 Magma degassing plays a fundamental role in determining the ultimate eruption style of 

high silica magmas. The magma degassing process begins as magma begins rising towards the 

surface. At a certain point, the magma becomes supersaturated in a volatile phase (e.g., H2O, 

CO2) and the excess volatiles are exsolved into a separate vapor/gas phase (Fig. 1.1). Bubble 

nucleation can be aided by the presence of crystals (i.e., heterogeneous nucleation), particularly 

Fe-Ti oxides (e.g., Hurwitz and Navon, 1994). The degree of supersaturation needed to nucleate 

the vapor bubbles (ΔPN) depends directly on the style of nucleation. Homogeneous nucleation 

(i.e., nucleation without the aid of crystals) ΔPN was experimentally determined to occur at 
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~100-150 MPa (e.g., Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 1999; 2004), 

and heterogeneous nucleation ΔPN ranges from <25 MPa (Fe-Ti oxides; Hurwitz and Navon, 

1994) to ~100 MPa (feldspar; Hurwitz and Navon, 1994; Shea, 2017). Early investigations of 

high silica magmas suggested that bubble nucleation must occur predominantly homogeneously 

due to the low number density of Fe-Ti oxides and high bubble number density in many rhyolites 

(e.g., Mangan et al., 2004). Indeed, a late-stage homogeneous nucleation event has been thought 

to be a major driver for the explosivity of erupted rhyolitic magmas (e.g., Mangan and Sisson, 

2000). However, this interpretation has been challenged recently; Shea (2017) suggests that the 

low number density of Fe-Ti oxides observed in rhyolites is due to primarily sectioning effects 

and the small size of most Fe-Ti oxides. This hypothesis has been supported by recent 

experimental studies (e.g., Caceres et al., 2020), detailed measurements of rhyolite glass with 

 

Figure 1.1. Schematic representation of changes to bulk magma vesicularity and dissolved water content during 
decompression and ascent of a rhyolite magma. Vesicularity increases rapidly at lower pressure, which 
accelerates the magma up the conduit. The vesicularity-water content relationship is calculated using the 
solubility relationship of Moore et al. (1998) and vesicularity model of Gardner et al. (1999), with parameters 
relevant to Inyo Domes, CA, outlined in deGraffenried et al. (2019) 
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Raman spectroscopy (e.g., Di Genova et al., 2018; 2020), and numerical studies of bubble 

nucleation (e.g., Hajimirza et al., 2021). Thus, it is possible that bubble nucleation predominantly 

occurs heterogeneously, rather than homogenously, in rhyolitic magmas. 

 Regardless of nucleation style, once bubbles are nucleated, continued decompression 

drives bubble growth through diffusive addition of volatiles and decompression-induced gas 

expansion (Gonnermann and Manga, 2007). Once bubbles grow large enough, they begin to 

impinge on one another and coalesce. Through coalescence, bubbles may create interconnected 

pathways along which vapor can travel and escape the system, thus relieving gas pressure that 

would otherwise drive explosive eruptions. Coalescence can be promoted by shearing, 

particularly near the conduit walls (e.g., Okumura et al., 2006; 2008), or the presence of crystals 

(e.g., Lindoo et al., 2017; deGraffenried et al., 2019; Colombier et al., 2020). The balance 

between volatile exsolution from the melt (i.e., degassing) and loss of exsolved gas from the 

system through permeable networks (i.e., outgassing) influences the explosivity of the associated 

eruption (Cassidy et al., 2018). 

 Magma decompression rate exerts a first-order control on magma degassing, and thus the 

explosivity of eruptions, as it determines the time available for degassing and outgassing. 

Additionally, other time-dependent reactions during decompression influence whether the 

magma fragments or not, such as decompression-induced crystallization of plagioclase microlites 

(e.g., Hammer and Rutherford, 2002). Faster decompression rates also are related to faster ascent 

rates, though decompression can also occur via a fragmentation wave propagating down the 

conduit, rather than upwards motion by the magma (e.g., Toramaru, 2006). In instances where 

decompression rate and ascent rate are directly correlated, however, fast decompression rates 

produce large strain rates on the magma, which promotes fragmentation (e.g., Webb and 
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Dingwell, 1990; Dingwell, 1996). Decompression rate is a critical parameter to better understand 

these other dependent processes and their influence on the explosive-effusive eruption transition.  

1.2 Low silica magmas 

 Explosive Plinian to sub-Plinian eruptions are rare in low silica magmas, such as basalt, 

so the likely hazards associated with their eruptions are different. Instead, basaltic lavas tend to 

erupt in a weakly explosive manner that produces lava flows. Although lava flows are rarely 

hazardous to human life, fast moving lava flows can catch nearby communities unaware and 

result in casualties (e.g., Nyiragongo 2002 eruption; Komorowski et al., 2004). Most 

importantly, lava flows are immensely destructive to property and infrastructure that lie in their 

paths (e.g., Houghton et al., 2021b). Attempts to artificially divert lava flows in the past have had 

varying degrees of success (e.g., Lockwood and Torgerson, 1980; Williams and Moore, 1983; 

Barberi et al., 2003) but require significant resources and time to enact. Additionally, great care 

must be taken not to divert the lava flow to another populated area. Thus, the general course of 

action is just to evacuate anyone in the lava’s path; any items that homeowners wish to save must 

be removed during evacuation. Timely and accurate evacuation orders require information on the 

path and velocity of lava flows, so many models have been developed to address these two key 

parameters. 

 Lava is a gravity current that follows the path of steepest descent (e.g., Favalli et al., 

2005). Probabilistic models of lava flow path can be derived just using a digital elevation model 

(DEM) to determine the topography (e.g., SCIARA – Crisci et al., 2004; DOWNFLOW – Favalli 

et al., 2005). Varying degree of model complexity is available, with some iterations only taking 

into account the pre-existing topography (e.g., DOWNFLOW; Favalli et al., 2005) and others 

allowing for the effects of early emplaced lava (e.g., SCIARA; Crisci et al., 2004). Running 
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these types of models repeatedly produces a probability map of areas likely to be inundated by a 

lava flow of a given size originating from a given vent (Fig. 1.2b). 

 Lava flow velocity is more difficult to determine as it relies on a complex interplay 

between the evolution of 

lava material properties, 

lava supply rate, and the 

ground slope and 

roughness over which 

the lava is traveling 

(e.g., Griffiths, 2000). 

Lava material properties 

(e.g., viscosity, yield 

strength) are dependent 

on many factors, 

including melt 

composition, crystal 

content, bubble content, 

and temperature (e.g., 

Griffiths, 2000; Rust and 

Manga, 2002; Costa et 

al., 2009; Giordano et 

al., 2008; Mader et al., 2013). Even for these basic parameters, the influence of each on material 

properties is still an area of active study. For example, bubbles have a complex influence on 

 

Figure 1.2. Examples of two lava flow simulations. A) Simulations that combine 
the thermo-rheologic calculations of FLOWGO (Harris and Rowland, 2012) with 
the DOWNFLOW (Favalli et al., 2005) path prediction for the 1984 eruption of 
Mauna Loa, HI. Each red line represents one simulation (modified from Harris 
and Rowland, 2015). B) Inundation probability forecasts for a flow from Mt. Etna, 
Italy using DOWNFLOW. Warmer colors indicate regions that are within the true 
length of the modeled flow (outlined in white) and cooler colors indicate forecasts 
greater than the length of the modeled flow. Darker colors within each family 
indicate higher probability of inundation (modified from Favalli et al., 2011). 
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viscosity that depends on their shape and size (e.g., Rust and Manga, 2002; Mader et al., 2013), 

though this relationship still requires clarification. Downflow cooling of lava promotes 

crystallization and potentially vesiculation, thereby increasing viscosity and yield strength and 

slowing the flow (e.g., Crisp and Baloga, 1994; Griffiths, 2000; Pistone et al., 2012; Harris and 

Rowland, 2015). High lava effusion rates promote longer lava flows and vice versa (e.g., 

Kauahikaua et al., 2003; Harris et al., 2007). However, lava effusion rate is rarely constant 

during an eruption and can fluctuate over timescales of minutes to days to months (e.g., Wadge, 

1981; Harris et al., 2007; Bonny and Wright, 2017; Patrick et al., 2019). Recent work has started 

to show that the shortest timescale fluctuations in effusion rate can strongly influence flow 

behavior, particularly in channelized flows (e.g., Patrick et al., 2019). Effusion rate is often 

difficult to determine while the lava is actively flowing, but observations with unoccupied 

aircraft systems (UAS) can now constrain shorter timescale fluctuations in effusion rate (e.g., 

Patrick et al., 2019; Dietterich et al., 2021). Finally, the ground slope over which the lava flows 

also modulates its velocity, with steeper ground slope producing faster flows (e.g., Griffiths, 

2000). 

 The feedbacks between changes in temperature and changes in lava properties can be 

incorporated in lava flow propagation models (Fig. 1.2a). Existing models include 1D 

simulations (e.g., FLOWGO – Harris and Rowland, 2015), 2D simulations (e.g., MAGFLOW – 

Vicari et al., 2007; VOLCFLOW – Kelfoun and Vargas, 2015), and more rarely, 3D simulations 

(e.g., LavaSIM – Hidaka et al., 2005; GPUSPH – Bilotta et al., 2015). Many of these models 

combine thermo-rheologic evolution of the lava with flow path prediction (Fig. 1.2a). Although 

3D simulations can encompass a great deal of complexity that is present in nature, including 

depth and lateral variations in temperature and rheology, they require a priori knowledge of 
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many flow parameters and long computation times. 1D simulations cannot encompass the same 

range, but require less a priori knowledge of the flow and less computation time. Thus, the 

appropriate model for a given situation is dependent on the goal (e.g., Dietterich et al., 2017). 3D 

models are less useful in hazard forecast situations when information on the flow itself may be 

sparse, and 1D models cannot capture the full range of complexity that retrospective studies may 

require. The broad range of options for lava flow models offers researchers the appropriate tool 

for any given scenario, with new models being developed as our understanding of lava flows 

advances. 

1.3 Outline of this dissertation 

 Although the two fundamental processes related to volcanic hazards outlined above (i.e., 

magma decompression and lava flow propagation) are present across all magma compositions, 

they play a different role for different magma compositions. In this dissertation, I examine the 

efficacy of two methods, one for calculating magma decompression rate and one for modeling 

lava flow propagation using both experimental and numerical approaches. Chapters 2 and 3 

respectively cover a numerical and an experimental examination of petrologic techniques to 

calculate magma decompression rate. Chapter 4 covers a numerical application of sloping 

viscous theory to forecast lava flow propagation, with a natural example of the Kīlauea 2018 

eruption. At the end of this dissertation, I summarize the conditions under which the two 

methods are the correct tools to choose, among the many available, and offer insights into the 

future of modeling these volcanological processes.  
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Chapter 2. Using Volatile Diffusion Profiles in Melt Embayments to Estimate 
Magma Decompression Rates: Assumptions and Inherited Errors 

Published as: deGraffenried, R. & Shea, T. (2021). Using volatile diffusion profiles in melt 
embayments to estimate magma decompression rates: assumptions and inherited errors. 
Geochemistry, Geophysics, Geosystems, 22(5). 

2.1 Abstract 

 Magma decompression rate has profound impacts on volcanic eruption style as it 

determines the time available for most kinetic processes (e.g., volatile exsolution, crystal 

nucleation and/or growth) that influence the explosive-effusive eruption transition. Thus, 

accurately quantifying decompression rate is a critical goal for understanding volcanic eruption 

dynamics. A recently developed technique uses crystal-hosted pockets of melt that remain open 

to the host magma (melt embayments) to calculate an average decompression rate. Diffusion of 

volatile elements (e.g., H2O, CO2) out of the embayment during decompression creates ‘frozen’ 

concentration gradients that can be modeled to calculate the time needed to create the gradients. 

This geospeedometer is increasingly used, but inherent assumptions associated with the 

modeling and their impact on calculated decompression rates are poorly quantified. Therefore, 

we have conducted a numerical investigation to assess the impact of three common model 

simplifications pertaining to rhyolitic magmas: 1D diffusion models, equilibrium degassing, and 

isothermal decompression. We find that the greatest deviation between imposed and calculated 

decompression rates occur when 1D models are applied to ‘necked’ embayments that have a 

constriction where the embayment joins with the far field melt. Simplifying to equilibrium 

degassing can also introduce modeling errors when disequilibrium conditions exist, though the 

prevalence of one or the other condition in nature is currently under debate. Assuming isothermal 

conditions introduces little error into modeled timescales. All of our modeling results are 
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summarized into a list of best practices to minimize error in modeled timescales due to modeling 

assumptions. 

2.2 Introduction 

 Volcanic eruption style is modulated by the process of volatile (e.g., H2O, CO2) 

exsolution from ascending magma. Volatile exsolution efficiency strongly depends on 

composition, namely the degree of melt polymerization (e.g., Cassidy et al., 2018; Mangan et al., 

2004). Highly polymerized melts, such as rhyolites, can inhibit volatile exsolution, a 

phenomenon typically not observed in less polymerized melts, such as basalts. However, kinetic 

processes can impact volatile exsolution and impact eruption style. For example, fast 

decompression rates can promote Plinian basaltic eruptions (e.g., Lloyd et al., 2014; Sable et al., 

2006), while slow decompression rates can result in effusive rhyolitic eruptions (e.g., Castro et 

al., 2013; Houghton et al., 2010). The efficiency of volatile degassing is therefore primarily 

controlled by decompression rate, which determines the time allowed for volatile exsolution and 

diffusion within the melt.  

Because of the link between eruption style and decompression rate, several techniques 

have been developed to estimate decompression rates, including numerical modeling of ascent in 

the conduit (e.g., Kaminski and Jaupart, 1997; Papale and Dobran, 1993; Papale et al., 1998), or 

texture-based rate-meters such as bubble number density (e.g., Toramaru, 1995; 2006) microlite 

textures (e.g., Andrews, 2014; Castro and Gardner, 2008; Couch et al., 2003; Szramek, 2016; 

Toramaru et al., 2008), and reaction rims on hydrous minerals (e.g., Nicholis and Rutherford, 

2004; Rutherford, 2008; Rutherford and Devine, 2003; Rutherford and Hill, 1993). However, 

many of these techniques resolve decompression rates either during the fastest (e.g., bubble 
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number density) or slowest (e.g., microlite textures and reaction rims) parts of the 

decompression, but rarely the entire range (Shea, 2017). 

 Diffusion modeling of volatiles in melts can be used to target a large range of timescales, 

depending on the diffusivities of the diffusing species and the composition of the fluid media 

(e.g., Costa et al., 2020). Recent studies have exploited diffusion modeling to estimate 

decompression timescales using a technique called melt embayment modeling (MEM), which 

was first conceptualized by Anderson (1991) and formalized by Liu et al. (2007). MEM consists 

of fitting diffusion profiles to volatile element concentration gradients that develop in crystal-

hosted, open melt inclusions (termed melt embayments; Fig. 1a). Concentration gradients 

between the interiors of unsealed melt embayments and the far field melt develop during 

decompression as volatiles exsolve from the magma. Exsolution is hindered within the 

embayments, and volatiles diffuse towards the more volatile-depleted host melt. Embayments 

that are good candidates for MEM have a bubble near the mouth that provides an interface for 

volatile exsolution and buffers the concentration of volatiles in the melt at the mouth. For 

diffusion to yield useful concentration gradients, no bubble nucleation can occur within the 

embayment itself, as volatiles would be lost to the interior bubble(s) instead of the exterior 

bubble. Bubble nucleation does occur in some embayments, but others seem to lack them 

entirely (e.g., Liu et al., 2007; Lloyd et al., 2014; Myers et al., 2016). Some embayments are 

even devoid of melt (Befus and Manga, 2019). It is currently unclear as to why bubble nucleation 

does not occur in all embayments (Cashman and Rust, 2016).  

Model input parameters for MEM include volatile diffusivity, initial and final volatile 

concentrations, and a solubility law to relate concentration to pressure (e.g., Liu et al., 2007). 

Initial volatile concentration is typically estimated by using data from closed melt inclusions 
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(e.g., Humphreys et al., 2008; Liu et al., 2007; Lloyd et al., 2014; Myers et al., 2016), the highest 

volatile concentration measured within the embayment (e.g., Myers et al., 2018), or leaving 

initial pressure as a free parameter that is part of the minimization procedure during modeling 

(e.g., Ferguson et al., 2016; Newcombe et al., 2020a). The inherent assumption in using the 

highest volatile concentration in the embayment is that decompression was sufficiently rapid to 

preserve the initial concentration without diffusive loss. Final water concentration is usually 

estimated by using the volatile concentration in the residual glass (e.g., Liu et al., 2007). 

 MEM has been increasingly used in recent years to extract average decompression rates 

of basaltic (0.05-0.45 MPa/s; Ferguson et al., 2016; Lloyd et al., 2014; Newcombe et al., 2020a) 

and rhyolitic magmas (0.001-1.6 MPa/s; Humphreys et al., 2008; Liu et al., 2007; Myers et al., 

 

Figure 2.1. Examples of the complications present with melt embayment modeling. a) Examples of geometrical 
variety in melt embayments. The top embayment is an example of cylindrical geometry, with a preserved bubble 
at the mouth (modified from Myers et al., 2018). The bottom embayment is within a quartz crystal from the 
Bishop Tuff and displays a necked geometry with a constriction of ~40% of the total embayment width. b) 
Disequilibrium degassing and its implications for diffusion models. Diffusion models typically assume equilibrium 
degassing  and volatile concentrations at solubility levels (gray curve), but disequilibrium degassing (purple 
curve) would result in less time for diffusion for the same amount of decompression as the main driving force for 
diffusion is absent until the supersaturation pressure (ΔPN) is overcome. c) Difference in maximum diffusivity 
experienced over the same decompression pathway at the same decompression rate of 0.5 MPa/s for isothermal 
(red) and isentropic (blue) decompression. The inset shows the temperature-pressure relationship. With the 
difference in diffusivity over the decompression pathway, calculated decompression timescales are expected to 
be different between isothermal and isentropic conditions. Maximum diffusivity here reflects the maximum water 
content within the embayment; hence, there is a delay before the diffusivity begins to decrease as some time is 
required for diffusion to modify the highest water concentration. 



12 
 

2016; 2018) using a variety of diffusing volatile species, such as H2O, CO2, and S. Potentially, 

other species with faster or slower diffusivities could be used to target an even broader range of 

decompression rates (e.g., Li). An important note is that decompression rate is non-linear (e.g., 

Su and Huber, 2017), and MEM retrieves an average decompression rate experienced by the melt 

embayment. 

However, there are complications with the technique that have yet to be addressed. First 

and foremost, the current standard is to use one-dimensional diffusion models on measured 

profiles within complex three-dimensional objects (Fig. 2.1a). In particular, geometries that have 

a narrowing or “neck” at the opening are problematic as the constriction can potentially reduce 

the flux of volatiles leaving the embayment, and a 1D model cannot account for this. Merging 

diffusion fronts from 3D objects like crystals violate the infinite planar configuration assumed by 

1D diffusion models (Krimer and Costa, 2017; Shea et al., 2015), and similar principles should 

be applicable to diffusion within melt embayments. 

An additional complication that is typically not taken into account in MEM is non-

equilibrium degassing. If no energetic barrier opposes nucleation of bubbles, exsolution begins 

as soon as the melt becomes supersaturated in a particular volatile species (equilibrium 

degassing) via decompression. If, however, nucleation requires large levels of supersaturation to 

be attained, formation of bubbles in the melt will be significantly delayed. Without bubble 

nucleation, volatile concentrations in the far field melt do not decrease, and there is no directed 

volatile diffusion out of the embayment, though random diffusion does occur regardless of 

concentration differences (e.g., Chakraborty, 2008; Fig. 2.1b). For high-silica melts, such as 

rhyolites, delayed nucleation is a possible problem, with ΔPN =100-150 MPa of supersaturation 

necessary for homogeneous nucleation without the aid of crystals (i.e., Mangan and Sisson, 
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2000; Mourtada-Bonnefoi and Laporte, 1999). Recent studies have also demonstrated that 

disequilibrium degassing is possible in basalts, with ΔPN ~45 MPa of supersaturation necessary 

for homogeneous nucleation (Le Gall and Pichavant, 2016a; 2016b). Timescales calculated from 

MEM will only record the time from bubble nucleation to quench, so failing to account for the 

pressure difference between storage and bubble nucleation can introduce error when the 

timescale is converted to a decompression rate (Fig. 2.1b). Although disequilibrium degassing 

can also be considered from the perspective of viscosity-hindered bubble growth (e.g., Gardner 

et al., 1999), we consider only the process of delayed nucleation herein. 

Finally, as diffusion is a thermally activated process, it is sensitive to changes in 

temperature. Most models treat magma decompression as an isothermal process, but the rapid 

gas expansion associated with ascent in the shallow conduit can cool a rhyolitic magma as much 

as 200oC over 200 MPa of decompression if isentropic conditions are considered (Mastin and 

Ghiorso, 2001; Fig. 2.1c). The decrease in temperature associated with isentropic ascent would 

result in slower average diffusion rates as compared to isothermal ascent, which can influence 

calculated decompression rates by shortening the modeled timescale (e.g., Humphreys et al., 

2008; Newcombe et al., 2020b). 

Herein, we develop diffusion models that address the relative errors introduced to 

calculated decompression rates in simplified models. Specifically, we focus on water diffusivity 

in rhyolitic systems because water diffusivity and solubility are well constrained (e.g., Liu et al., 

2005; Zhang et al., 2010), and rhyolitic systems are major targets of melt embayment studies 

(e.g., Humphreys et al., 2008; Liu et al., 2007; Lloyd et al., 2014; Myers et al., 2016). We focus 

on the three assumptions (1D vs 3D and simple vs complex geometry, disequilibrium vs 

equilibrium degassing, isothermal vs isentropic) previously described as they conceivably have 
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the largest impact on model results. Our results show that for the conditions studied, modeled 

decompression rates are most impacted by complex 3D geometry and disequilibrium degassing, 

with little influence from isentropic cooling. To guide future users of MEM, we provide a 

summary of our findings as modeling best practices to minimize error introduced by modeling 

assumptions. 

2.3 Methods 

 Numerical diffusion models were developed to describe the motion of volatiles within 

melt embayments in silicic melts during decompression. First, we outline the general model 

scheme that was utilized for all the tested model simplifications (1D vs 3D, disequilibrium vs 

equilibrium degassing, isothermal vs isentropic). Then, we detail the differences in the models 

associated with each simplification tested. 

2.3.1 Model Parameters 

 Because water diffusivity depends on its concentration (e.g., Zhang et al., 2010), all the 

models in this paper use the concentration-dependent version of Fick’s 2nd Law, either in 1D: 
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where C is volatile concentration in wt. % (here, H2O), t is time in seconds, D is diffusivity in 

μm2/s, and x, y, z are the spatial directions in μm (Fig. 2.2). In melts, diffusivity is isotropic. 

Therefore, the same value of DH2O was used for x, y, and z. We relate pressure and water 

concentration, in weight percent, via a solubility model. For the models exploring 3D geometry 
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and disequilibrium degassing, we used the solubility model of Liu et al. (2005). For the 

isentropic decompression models, we used rhyolite-MELTS (Ghiorso and Gualda, 2015; Gualda 

et al., 2012), which incorporates the solubility relations of MagmaSat. The saturation values of 

MagmaSat incorporate isentropic effects on water solubility, so they are preferred relative to the 

Liu et al. (2005) values. 

 We solved the 1D and 3D diffusion equations (Eq. 2.1 or 2.2) numerically using finite 

differences (forward in time and centered in space). The models were programmed to ensure that 

the stability criterion for explicit finite difference schemes was respected (Appendix A). Our 

spatial grid was equally spaced by 2-4 μm, depending on the overall duration and computational 

requirements of the model. For longer duration models, we used grids with fewer points but 

increased the spacing so that the total length of the embayment remained constant. Modeled 

timescales differ by ~ a maximum of 10% between the finer and coarser resolution models for 

the longest decompression times (Table 2.1). We assume that the initial water concentration in 

the outside melt and in the embayment are equal, a value that is determined by the water 

solubility at the initial pressure. For boundary conditions, at the embayment opening, the water 

concentration in the outside melt is determined by the pressure at each time step. For all models, 

we use fictitious points, which “reflect” back all diffusive flux, to impose no-flow boundaries at 

the crystal-melt interfaces. 

  In order to determine the independent effects of each assumption, we ran the models as a 

two-step process. First, a model was run with the realistic, complex conditions incorporated (i.e., 

3D geometry, disequilibrium degassing, or isentropic ascent) to produce a concentration profile 

similar to what would be measured in a natural melt embayment. This “real” profile was then 

used as an output constraint for diffusion models that incorporated simplifying assumptions (i.e., 
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no flux in other dimensions, isothermal ascent, and equilibrium degassing). Timescales, and thus 

decompression rates, from these 1D models were then compared with the known imposed 

decompression rate from the non-simplified models. This exercise was akin to measuring 

profiles in embayments and performing diffusion modeling with typical simplifying assumption, 

except that the true decompression rate was known here. The best-fit timescale was determined 

by a minimum weighted root mean squared difference (RMSD): 
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where C is the concentration value of the fitting model at index i, Ĉ is the concentration value of 

the “real” profile at index i, and α is a weighting factor. The weighting factor was assigned a 

value of 1 for the index closest to the mouth of the embayment and 0.1 for all other indices (e.g., 

Ferguson et al., 2016). This weighting forces the best solution to pass through or close to the 

water content calculated for the final pressure at the embayment mouth. Without it, modeled 

best-fit timescales tended to produce curves that were visually poor fits. For all fittings, we first 

used a coarse grid search of decompression rates, then successively narrowed in on a finer and 

finer grid search until the minimum RMSD was determined to the nearest second. To ensure the 

accuracy of our models, we checked the numerical results against the analytical solution for 

diffusion in a sphere (Crank, 1975) (Appendix A). 

2.3.2 Effect of Geometry 

 Natural embayments exhibit a broad range of 3D geometries that are difficult to recreate 

comprehensively (e.g., Anderson, 1991; Fig. 2.1a). Instead, we tested only the influence of the 

key geometrical parameter of neck width. We created 5 synthetic embayments, starting with a 

cylindrical embayment with an opening diameter of 40 μm and successively narrowing the 
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opening by 20% increments (Fig. 2.2a). The geometries all included flared mouths (i.e., the 

location where the embayment joined with the outside melt) and curved backs, to best replicate 

natural embayments (Fig. 2.1a). Two additional models were tested with cylindrical geometries 

that had no flare at the base and with a flat back to isolate their effect on modeled decompression 

rates.  

 Decompression rates of 0.01, 0.1, 0.5, 1.8, and 6 MPa/s were imposed initially on all 

geometries. As tests were conducted and important shifts in decompression rate trends were 

identified, additional decompression rate tests were added as needed to complete the data set. All 

models were run with an initial pressure of 200 MPa and final pressure of 20 MPa. The relatively 

high final pressure was used to decrease computing time for longer duration models. All models 

were run with a constant temperature of 800°C.  

2.3.3 Effect of Disequilibrium Degassing 

 All models associated with the disequilibrium tests were run as isothermal 1D models so 

as to isolate their effects from those of added dimensions and geometry. No general models for 

pressure-water concentration relationships during disequilibrium degassing currently exists, so 

we emulate the relationship in Figure 5 of Mangan and Sisson (2000). To simulate homogeneous 

bubble nucleation, water concentration was only allowed to decrease once a sufficient ΔPN had 

developed (e.g., Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 1999; 2004). Once 

nucleation started, the effective melt re-equilibration decompression rate 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑⁄  was faster than 

the overall system decompression rate 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑⁄  by an exponential factor (e.g., Mangan and 

Sisson, 2000; Fig. 2.2b): 

𝑑𝑑𝑃𝑃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑡𝑡

𝑒𝑒0.003𝑡𝑡 (2.4) 
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where both decompression rates are in MPa/s, and t is time in seconds after bubble nucleation. 

For modeling purposes, it is convenient to calculate this as a function of pressure. However, it is 

important to note that this apparent pressure is based on the dissolved water content within the 

melt; there is no actual difference in confining pressure between the embayment and the far field 

melt. The exponential constant of 0.003 was chosen based on the similarity of the produced 

pressure vs time curves to the experimental data outlined in Mangan and Sisson (2000). During 

the period of time in which the system is actively re-equilibrating and water supersaturation 

declines (e.g., region [2] of Fig. 2.2b), the concentration of water buffered by the bubble at the 

 

Figure 2.2. Model parameters explored for the variable geometry and disequilibrium degassing models. a) Base 
melt embayment geometries used in the 3D models and their different parts (see text). The cylinder embayment 
is shorter in length (240 μm) than the necked embayments (346 μm), but length is constant within a given 
geometry. b) Variations in system pressure and apparent melt pressure during disequilibrium degassing with 
fraction of total time elapsed, and for different decompression rates. Here, system pressure refers to the imposed 
lithostatic confining pressure, whereas apparent pressure refers to the pressure in the melt as calculated from 
water concentration, assuming equilibrium. Depending on the decompression rate, the melt water concentration 
may not re-equilibrate with the system pressure (e.g., 1 MPa/s curve), leading to a greater apparent final 
pressure (Pf) than that imposed in the model. If we consider the 0.1 MPa/s decompression pathway, region [1] is 
the fraction of decompression spent building up sufficient supersaturation (ΔPN) to nucleate bubbles. Once 
bubbles are nucleated, water rapidly exsolves from the melt, resulting in a rapid decrease in apparent pressure 
until the dissolved water concentration is equal to the expected concentration at lithostatic pressure (region [2]). 
The pressure changes in region [2] are calculated with Eq. 2.4. Because the x-axis is “Fraction Time Elapsed” it 
appears as if the slowest decompression rate equilibrates rapidly. However, this is a result of more total time 
available to equilibrate. Once the apparent melt pressure and system pressure are equal, the two will remain 
concordant for the rest of the decompression (region [3]). 
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mouth of the embayment equals water solubility at the pressure of the far field melt, as 

determined by Eq. 2.4. If the apparent pressure of the melt and the overall pressure of the system 

equilibrate, any continued decompression is calculated at the imposed linear decompression rate. 

For decompression rates sufficiently rapid that the system never re-establishes equilibrium, the 

apparent final pressure (i.e., the pressure corresponding to the disequilibrium water content at the 

mouth of the embayment) is greater than the true final pressure imposed on the system (Fig. 

2.2b). In these cases, the final pressure used for fitting was based on the disequilibrium water 

concentration in the outside melt. This pressure based on water concentration will be referred to 

as the ‘apparent pressure’ in later discussions. In contrast, in models that imposed sufficiently 

slow decompression rates, the system could attain equilibrium solubility before reaching the final 

pressure. 

 We ran three series with variable initial pressures and ΔPN values. In this paper, we use 

ΔPN to refer to the supersaturation pressure needed to initiate bubble nucleation. Case 1 had an 

initial pressure of 200 MPa and a ΔPN of 100 MPa, case 2 an initial pressure of 200 MPa and a 

ΔPN of 150 MPa, and case 3 an initial pressure of 300 MPa and a ΔPN of 150 MPa. All models 

were run to a final pressure of 10 MPa and at a temperature of 850°C. Tested decompression 

rates ranged from 0.01 to 10 MPa/s. 

 In addition to the models presented in the text, a separate set of models were run with 

exponential factors of 0.03 and 0.0003 to examine the influence of the re-equilibration rate on 

model results. As there are few previous constraints on disequilibrium degassing pathways, it is 

necessary to evaluate how changing the exponent by +/- an order of magnitude impacts our 

results. These models were all run at an initial pressure of 200 MPa and ΔPN of 100 MPa (Fig. 

A-S3). 
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2.3.4 Effect of Isentropic Ascent 

 Although most embayment diffusion models assume isothermal ascent, isentropic 

expansion of exsolved volatiles is postulated to cause significant cooling of the magma in the 

shallow conduit (Mastin and Ghiorso, 2001; Newcombe et al., 2020b; Fig. 2.1c). To test the 

influence of this cooling on modeled timescales, we ran 1D isentropic diffusion models to 

produce a profile that was subsequently fit by an isothermal model. We calculated the 

temperature change by running rhyolite-MELTS in isentropic mode with a water-saturated 

rhyolitic input composition (Glass Mountain, CA; sample 1406M; Grove et al., 1997) starting at 

a temperature of 800°C. All crystallization was suppressed during these runs in order to isolate 

the effect of gas expansion. We tested three different final pressures, 20, 10, and 5 MPa, since 

the cooling is more rapid at lower pressures (Fig. 2.1c). The models imposed variable 

decompression rates ranging from 0.02 to 10 MPa/s. MELTS outputs for dissolved water content 

versus pressure were used to construct an empirical solubility relationship for the Glass 

Mountain composition: 

𝐶𝐶𝑤𝑤 = 0.2746𝑃𝑃0.563 (2.5) 

Here, pressure is in MPa. During fitting, the initial temperature of 800°C was used as the 

isothermal temperature.  

2.4 Results and Interpretations 

To investigate deviations in decompression rate between the groundtruth and simplified 

models, we introduce a “Decompression Rate Multiplier” (DRM), defined as the ratio of 

modeled to imposed decompression rate. A DRM of 1 indicates perfect retrieval of the imposed 

decompression rate, a DRM of >1 indicates a faster modeled decompression rate, and a DRM of 

<1 indicates a slower modeled decompression rate. For almost all of our modeling scenarios, the 
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fastest decompression rates produce DRMs slightly less than one (0.88-0.96). However, that 

difference is usually produced by a difference of no more than 3 seconds between the imposed 

and modeled timescales. The total length of the embayment impacts the decompression rate at 

which the maximum DRM occurs, so we avoid direct comparisons of DRM between models 

with differing lengths in our subsequent discussion. 

2.4.1 Geometry 

Models using a cylindrical geometry show good agreement between 1D and 3D models 

(i.e., DRMs are all close to or equal to 1; Fig. 2.3). In detail, the DRM decreases slightly from 1 

at a decompression rate of 1.8 MPa/s to 0.92 at a decompression rate of 0.01 MPa/s (Table 2.1), 

indicating that the 1D model is calculating a decompression rate that is very slightly slower than 

the 3D imposed decompression rate.  

 

Figure 2.3. Decompression rate discrepancies in models exploring the effects of 1D vs. 3D models and variable 
geometry (cylindrical vs. necked). Shaded region shows the margin of numerical fitting error corresponding to ±3 
seconds at different decompression rates (where it is larger than the thickness of the 1:1 line). a) Imposed 
decompression rate in 3D models and decompression rates obtained from best-fit 1D models. b) Modeled 1D 
decompression rate against the DRM (ratio of modeled decompression rate to the imposed decompression rate; 
i.e., the separation between the 1:1 line and a given data point in a). Error bars on specific data points indicate 
coarser spatial resolution models, and the maximum possible error imparted on the data point by the decreased 
resolution. For geometries with >40% neck constriction, the DRM is large (>2) for most decompression rates. 
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Table 2.1. Summary of variable geometry model results 

Geometrya Imposed dP/dt 
(MPa/s) 

Modeled dP/dt 
(MPa/s) DRMb 

Cylinder 6 6.00 1.00 
Cylinder 1.8 1.80 1.00 
Cylinder 1 0.984 0.98 
Cylinder 0.5 0.479 0.96 
Cylinder 0.1 0.093 0.93 
Cylinder 0.01 0.009 0.92 

Cylinder (Flat Back) 0.1 0.100 1.00 
Cylinder (Flat 

Sides) 0.1 0.093 0.93 

20% Necked 6 5.81 0.97 
20% Necked 1.8 1.88 1.04 
20% Necked 0.75 0.853 1.14 
20% Necked 0.5 0.583 1.17 
20% Necked 0.3 0.351 1.17 
20% Necked 0.1 0.115 1.15 
20% Necked 0.01 0.012 1.15 
40% Necked 6 5.81 0.97 
40% Necked 1.8 2.14 1.19 
40% Necked 0.75 1.15 1.53 
40% Necked 0.5 0.833 1.67 
40% Necked 0.3 0.529 1.76 
40% Necked 0.1 0.168 1.68 
40% Necked 0.01 0.016 1.64 
60% Necked 6 5.81 0.97 
60% Necked 1.8 2.57 1.43 
60% Necked 0.5 1.42 2.83 
60% Necked 0.35 1.15 3.30 
60% Necked 0.25 0.914 3.65 
60% Necked 0.2 0.753 3.77 
60% Necked 0.15 0.561 3.74 
60% Necked 0.1 0.347 3.47 
60% Necked 0.01 0.032 3.18 
80% Necked 6 5.29 0.88 
80% Necked 1.8 3.05 1.69 
80% Necked 0.5 2.34 4.68 
80% Necked 0.25 2.02 8.09 
80% Necked 0.2 1.88 9.38 
80% Necked 0.1 1.48 14.75 
80% Necked 0.08 1.28 15.96 
80% Necked 0.05 0.833 16.67 
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80% Necked 0.03 0.554 18.46 
80% Necked 0.01 0.135 13.49 
80% Necked 0.005 0.065 12.93 

aAll listed models were run at a temperature of 800°C, initial pressure of 
200 MPa, and final pressure of 20 MPa 
bDecompression rate multiplier - see text for definition 

Models using a necked geometry, regardless of the degree of constriction, all gave the 

same general pattern; as imposed decompression rate decreases, the DRM increases to a 

maximum value and then decreases. The value and position of maximum DRM is a function of 

the degree of constriction. For a fast decompression rate of 6 MPa/s, all tested geometries result 

in little to no difference from the base model. The modeled timescale is a little slower than the 

imposed decompression rate, but this is likely due to the slightly different shapes of the 1D and 

3D profiles (Fig. 2.4a). The 3D profiles have sharper inflection points in concentration at the join 

between the necked region and the main body of the embayment that the 1D models cannot 

reproduce accurately. Models run at a decompression rate of 6 MPa/s are fast enough that the 

error introduced by this discrepancy is greater than any effect of geometry. Below this 

decompression rate, the DRM increases for all geometries, with greater decompression rate 

mismatch for the more necked geometries. For example, at a decompression rate of 1.8 MPa/s, 

the DRMs for constrictions of 20, 40, 60, and 80% at the embayment mouth are 1.04, 1.19, 1.43, 

and 1.69. Each of the necked geometries also displays maximum DRMs at different imposed 

decompression rates. The maximum DRM increases with degree of constriction, reaching 1.17, 

1.76, 3.77, and 18.46 for 20, 40, 60, and 80% necked, respectively. Although DRM decreases at 

slower decompression rates, the DRM never re-attains the value of ~1 even for the slowest 

decompression rate tested (0.01 MPa/s for all geometries except 80% necked, which is 0.005 
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MPa/s). At these decompression rates, the final DRMs are 1.15, 1.64, 3.17, and 12.93 for 

constrictions of 20, 40, 60, and 80%, respectively. 

 For any given geometry, the increases and decreases in DRM are tied to the location of 

the diffusion front at a given point in time (Fig. 2.5). For the cylindrical geometry, the 1D model 

can accurately recover the 3D decompression rate (DRM of 1) until the diffusion front reaches 

the back of the embayment. Once the diffusion front reaches the back of the embayment, the 

DRM steadily decreases below 1. This decrease is attributed to the curvature at the back of the 

 

Figure 2.4. Examples of profiles generated in the “groundtruth” models and associated best-fit models for each 
of the tested simplifications. Water concentration in the melt outside the embayment is set to the equilibrium 
value with the coexisting vapor at each pressure step, hence the flat concentration at the embayment-melt 
interface. a) and b) show comparisons of profiles from the cylindrical and 80% necked geometries at two different 
decompression rates. Note the sharp inflection point present in the 80% necked geometry 3D-generated profile 
that the 1D model cannot replicate. In a), both the cylindrical and 80% necked geometries have maintained a 
plateau of high water concentration, but in b), the cylindrical geometry has lost the initial high water 
concentration, whereas the 80% necked geometry has only just begun to lose the high initial water concentration. 
Although this is partially due to the shorter total length of the cylindrical embayment, it is mainly associated with 
the buffering effect of the neck on the 80% necked geometry. Importantly, in b), the shape of the 80% necked 
3D-generated profile still appears to have a plateau-like shape, despite having lost the initial high water 
concentration. c) Example profiles from the disequilibrium degassing test, using case 1. For the fastest 
decompression rate, the apparent final pressure is greater than the imposed final pressure. The greatest 
difference in water concentration between the interior of the embayment and the far field melt occurs at 0.2 
MPa/s. d) Example profiles from the isentropic decompression test, using profiles with an imposed final pressure 
of 20 MPa. Isothermal decompression fitting models fit the profiles well across the range of decompression rates 
shown. 
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3D embayment, where diffusive fluxes from the sides start to converge and merging diffusion 

fronts become apparent. With a curve at the back of the embayment, the volume of melt, and 

thus water, is less than if the back was flat. Therefore, the water concentration decreases faster in 

3D than in 1D. The 1D model yields a decompression rate that is based on a lower total flux, 

resulting in a slower decompression rate.  

 This interpretation is supported by two additional models that test the effect of the 

default flared opening and the curved embayment back used for most 3D models (Table 2.1). 

Each of the two models removed one of these morphological features to obtain either a flat, 

orthogonal opening or back. At an imposed decompression rate of 0.1 MPa/s, the cylindrical 

model without a flared base but with a curved back yields a DRM of 0.93, identical to the DRM 

that was calculated for the initial flared version. However, the geometry with the flared base but 

a flat back resulted in a DRM of 1. Therefore, the decrease in DRM is related to interaction of 

the diffusion front with the curved back. 

Similarly, water flux in the necked geometries is impacted by merging diffusion fronts 

originating from geometric constrictions and embayment-crystal interface curvature. At the 

fastest imposed decompression rate, there is essentially no difference regardless of the degree of 

necking because the diffusion front  is still largely within, or close to, the constriction (Fig. 2.5). 

Thus, at these rates, diffusion creates gradients indistinguishable from gradients within models 

that utilize the idealized cylindrical geometry. However, once the diffusion front moves into the 

main body of the embayment, the impact of the constriction on the concentration profile 

becomes apparent. The 3D diffusion front is no longer flat, but instead bends as flux moves from 

near the outer edge of the embayment towards the opening of the neck (Fig. 2.5). For a profile 

taken down the middle of the 3D embayment, the water concentration plateau is maintained for 
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longer durations than for constriction-free embayments because fluxes from the sides partly 

buffer water loss (Fig. 2.4). Thus, for a 1D model performed along the same region, shorter 

timescales are needed in order to fit the output 3D concentration profile. The 1D model therefore 

yields an artificially faster decompression rate. This effect is scaled by the degree of necking 

because water retention increases with increasing constriction. As the diffusion front moves 

through the body of the embayment, the effect becomes more and more pronounced, and the 

DRM rapidly increases. 

To preserve realistic embayment shapes, the necked embayments also possess a curved 

back. Thus, similar to the cylindrical geometry, there is a decrease in DRM after attaining a 

maximum at a given dP/dt as the diffusion front reaches the back of the embayment. The 

decompression rate associated with the maximum DRM corresponds to a complex interplay 

between oppositely curved diffusion fronts originating from the neck and the curved back (Fig. 

 

Figure 2.5. 2D slices through select 3D embayment models with key diffusion features, at the final pressure of 20 
MPa. The white scale bar is equivalent for all of the panels. Contours indicate the higher range of water contents 
(H2O > 5.2 wt. %, except for the slow decompression of the cylinder embayment, which is H2O > 4.2 wt. %). Solid 
contours are in intervals of 0.1 wt. %, and the dashed contours are in intervals of 0.02 wt. %. For the zoomed in 
views of the necked embayment (orange box) the contour interval is 0.002 wt. %. In the cylindrical models (a and 
b), the diffusion fronts are mostly flat, except where there is an interaction with the curved back of the 
embayment. In the necked models (c and d), the diffusion front bends near the junction between the neck and the 
main body. The orange box (e) shows the curvature of the diffusion front associated with the shape of the 
embayment back. The more subtle curved diffusion front stemming from the back of the embayment (as 
compared to the curvature from the neck) is made apparent only by examining H2O variations at a very fine 
concentration scale (colors corresponding to < 0.1 wt. % difference in these images). 
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2.5). The maximum DRM does not occur at the time at which the diffusion front reaches the 

back of the embayment, but rather once the curved diffusion front from the back of the 

embayment extends a particular distance into the body of the embayment (Fig. 2.5). Unlike with 

the cylindrical geometry, the DRM does not fall below 1 once the diffusion front reaches the 

back of the embayment in the necked geometries. Although there is a decreased mass flux from 

the back of the embayment, the loss of water is reduced at the neck. Thus, the DRM decreases 

more gently as flux is being buffered by the constriction. 

In summary, the DRM is close to 1 across the range of decompression rates tested for the 

cylindrical geometry, but systematically increases at almost all decompression rates as the degree 

of necking (i.e., amount of constriction) increases. Trends in increasing and decreasing DRM 

arise due to interaction of the diffusion front with the 3D embayment geometry, such as the 

embayment neck or the curved back. 

2.4.2 Disequilibrium Degassing  

Relative trends in DRM are similar for all conditions tested (Fig. 2.6). At fast 

decompression rates, the DRM is relatively low (~1), then steadily increases as decompression 

rate decreases, reaches a peak value, and decreases again.  

 The magnitude of the maximum DRM is a function of the proportion of the total 

decompression time spent overcoming ΔPN. For cases 1 (Pi=200 MPa, ΔPN =100 MPa) and 3 

(Pi=300 MPa, ΔPN =150 MPa) for which ΔPN represents about half of the total decompression, 

the peak in DRM is of equal magnitude, with case 1 having a maximum DRM of 2.79 and case 3 

having a maximum DRM of 2.61 (Table 2.2). For case 2 (Pi=200 MPa, ΔPN =150 MPa) in which 
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ΔPN represents about three-quarters of the decompression time, the peak in DRM is much greater 

than the other two cases, attaining a value of 7.73. 

 The decompression rate at which maximum DRM is produced is a function of both 

starting pressure and the relative magnitude of ΔPN to the total decompression. For case 1, the 

maximum DRM occurs at an imposed decompression rate of 0.2 MPa/s. For case 2, which has 

the same initial pressure as case 1 but greater ΔPN, the maximum is shifted to a slower imposed 

decompression rate of 0.05 MPa/s. For case 3, which has a greater initial pressure but same ΔPN 

as case 2, the maximum is shifted to a faster decompression rate at 0.35 MPa/s. The location of 

the maximum DRM is mainly tied to the apparent pressure state of the system upon quench. The 

maximum DRM is produced for decompression rates that result in the apparent pressure, as  

determined by water content, just barely catching up to the system pressure. This scenario 

represents the maximum apparent pressure difference between the embayment and the system 

 

Figure 2.6. Discrepancy in decompression rates calculated assuming equilibrium degassing when degassing 
occurs under disequilibrium conditions. Shaded region shows numerical fitting uncertainties estimated to be 
within ±3 seconds of the imposed decompression rate (where it is larger than the 1:1 line). This ±3 seconds is 
calculated relative to the apparent final pressure when it is different from the imposed final pressure so that it 
matches the calculation method of the decompression rate. a) Comparison between decompression rates 
imposed in disequilibrium degassing models and best-fit decompression rates obtained assuming equilibrium 
degassing. b) Best-fit decompression rate obtained by assuming equilibrium degassing against the DRM for each 
model. 
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Table 2.2. Summary of disequilibrium model results 

Pi (MPa)a ΔP (MPa) Apparent Melt 
Pf (MPa)b 

Imposed dP/dt 
(MPa/s) 

Modeled dP/dt 
(MPa/s) DRMc 

200 100 109 10 9.10 0.91 
200 100 108 5 4.84 0.97 
200 100 97 1 1.17 1.17 
200 100 81 0.5 0.721 1.44 
200 100 64 0.35 0.613 1.75 
200 100 38 0.25 0.565 2.26 
200 100 10 0.2 0.557 2.79 
200 100 10 0.15 0.326 2.17 
200 100 10 0.1 0.163 1.63 
200 100 10 0.05 0.056 1.12 
200 100 10 0.01 0.010 0.99 
200 150 160 10 8.00 0.80 
200 150 160 5 4.44 0.89 
200 150 158 1 1.02 1.02 
200 150 155 0.5 0.577 1.15 
200 150 152 0.35 0.440 1.26 
200 150 149 0.25 0.347 1.39 
200 150 145 0.2 0.309 1.55 
200 150 139 0.15 0.272 1.82 
200 150 123 0.1 0.258 2.58 
200 150 94 0.07 0.290 4.14 
200 150 33 0.05 0.387 7.73 
200 150 10 0.03 0.113 3.76 
200 150 10 0.01 0.011 1.14 
300 150 157 10 9.53 0.95 
300 150 154 5 5.21 1.04 
300 150 126 1 1.34 1.34 
300 150 81 0.5 0.952 1.90 
300 150 29 0.35 0.913 2.61 
300 150 10 0.25 0.535 2.14 
300 150 10 0.2 0.348 1.74 
300 150 10 0.15 0.209 1.39 
300 150 10 0.1 0.111 1.11 
300 150 10 0.05 0.049 0.99 
300 150 10 0.01 0.010 0.99 

aAll models were run with an imposed final pressure of 10 MPa and temperature of 850 °C 
bApparent melt pressure based on water concentration 
cDecompression Rate Multiplier - see text for definition 
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with the minimum amount of time to diffusively re-equilibrate (Fig. 2.4c). As decompression 

rate decreases further, there is more time for the embayment to diffusively re-equilibrate with 

this large volatile concentration difference, thus resulting in a decrease in DRM. Because the 

relative time needed for the apparent pressure to catch up to the imposed system pressure is 

dependent on both the initial pressure and the magnitude of ΔPN, the location of the maximum 

DRM is a function of both parameters.  

DRM is close to 1 when the system has a large difference between the external pressure 

and the apparent pressure, resulting in a high degree of water supersaturation in the far field melt. 

Presumably, this low DRM occurs because both the total time allowed for diffusion and the H2O 

concentration difference between the interior of the embayment and the outside melt is relatively 

small (Fig. 2.4c). Both of these factors contribute to the similarity between modeled and imposed 

decompression rates, when the apparent final pressure of the melt is taken into account. The 

maximum DRM is produced when the H2O concentration difference between the interior of the 

embayment and outside melt is largest, and this generally corresponds to the decompression rate 

that results in the apparent pressure just barely re-equilibrating with the system pressure (Fig. 

2.4c). Any additional time for diffusion allows for a “smoothing out” of the remaining impacts of 

the disequilibrium (Fig. 2.4c). This process is reflected in the decreasing DRM, and the fact that 

all of the cases re-attain a DRM of ~1 at the slowest tested decompression rate. 

 The relative rate at which the supersaturation of water, and thus the greater apparent 

pressure, reaches equilibrium with the imposed system pressure is poorly constrained, so the 

absolute values of these results are only correct to nature if the exponential factor is actually 

0.003. Since the location of peak DRM is a function of how quickly the melt water re-establishes 

pressure equilibrium with the system, modifying the exponential factor makes a major 
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difference. With bigger exponential factors, the melt water re-establishes pressure equilibrium 

more quickly, shifting peak DRM to faster decompression rates. With smaller exponential 

factors, the melt water re-establishes pressure equilibrium more slowly, shifting peak DRM to 

slower decompression rates (Fig. A-S3). 

In summary, the magnitude of the maximum DRM increases as the ratio of ΔPN to total 

decompression pressure increases. The decompression rate at which the maximum DRM occurs 

is a function of both initial pressure and ΔPN; greater initial pressure shifts the maximum towards 

faster decompression rates, and greater ΔPN shifts the maximum towards slower decompression 

rates.  

2.4.3 Isentropic Ascent 

Regardless of decompression rate or quench pressure range examined, isentropic 

decompression results in DRMs close to 1 (Fig. 2.7). For decompression rates ≤1 MPa/s, the 

DRM is slightly greater than 1 and increases with decreasing decompression rates. Additionally, 

lower quench pressures produce greater DRMs as compared to higher quench pressures. The 

difference between the three quench pressures for a given decompression is small, however. For 

example, for an imposed decompression rate of 0.02 MPa/s, the DRMs for quench pressures of 

20, 10, and 5 MPa are, respectively, 1.23, 1.28, and 1.32 (Table 2.3). These values also 

correspond to the maximum DRMs calculated for each quench pressure, and our examined range 

covers most of the range of studies of decompression rate; thus we can assume that isentropic 

cooling has a minimal effect in almost all cases. Additionally, at even slower decompression 

rates, isentropic cooling is likely buffered by heat input from other sources, such as latent heat of 

crystallization of microlites (e.g., Newcombe et al., 2020b). 
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Table 2.3. Summary of isentropic model results 
Imposed 
Pf (MPa)a 

Apparent 
Pf (MPa)b 

Imposed dP/dt 
(MPa/s) 

Modeled 
dP/dt (MPa/s) DRMc 

20 21 10 9.42 0.94 
10 11 10 9.00 0.90 
5 6 10 8.82 0.88 
20 21 5 4.84 0.97 
10 11 5 4.73 0.95 
5 6 5 4.85 0.97 
20 21 1 1.05 1.05 
10 11 1 1.06 1.06 
5 6 1 1.07 1.07 
20 23 0.5 0.527 1.05 
10 13 0.5 0.537 1.07 
5 8 0.5 0.539 1.08 
20 21 0.1 0.114 1.14 
10 11 0.1 0.117 1.17 
5 6 0.1 0.119 1.19 
20 21 0.02 0.025 1.23 
10 11 0.02 0.026 1.28 
5 6 0.02 0.026 1.32 

aAll models were run with initial pressure of 200 MPa and initial temperature 
of 800 °C 

bApparent final pressure is based on far field melt water concentration and an 
isothermal solubility relationship 
cDecompression Rate Multiplier - see text for definition 

The slight increases in DRM with decreasing decompression rate and decreasing quench 

pressure are related to the effect of temperature on diffusivity. Along the decompression path, the 

more time spent at lower temperature and slower diffusivity conditions, compared to the higher 

temperature isothermal model, the greater the discrepancy between actual diffusion and expected 

diffusion timescales.  

In summary, the effects of isentropic cooling are relatively minimal, even at slow 

decompression rates. There is a slight dependence on quench pressure, with lower quench 

pressure resulting in greater DRM at the same decompression rate, but the difference is small. 
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2.5 Discussion 

 Our modeling results demonstrate that some simplifications to melt embayment diffusion 

models introduce errors in the estimation of timescales and thereby decompression rates. In 

particular, disequilibrium degassing and 3D embayment geometry can introduce error of 

approximately one order of magnitude in calculated decompression rate. Isentropic 

decompression, on the other hand, does not seem to significantly impact modeled timescales. 

However, these three factors are not the only assumptions in MEM, and we further develop the 

impact of assumptions associated with initial conditions on calculated decompression rates. 

Finally, we give a list of recommendations for best practices to minimize errors introduced into 

timescales by model assumptions. 

 

Figure 2.7. Discrepancy in decompression rates calculated assuming isothermal decompression when 
decompression occurs under isentropic conditions. Shaded region shows numerical fitting uncertainties 
estimated to be within ±3 seconds of the imposed decompression rate (where it is larger than the 1:1 line). a) 
Comparison between decompression rates imposed in isentropic conditions and best-fit decompression rates 
obtained assuming isothermal conditions. b) Best-fit decompression rate obtained by assuming isothermal 
conditions against the DRM for each model. Note that the y-axis scale is much smaller than the previous DRM 
plots as DRM is minimal in these models. 
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2.5.1 Prevalence of Disequilibrium Degassing 

 Disequilibrium degassing causes significant deviations in modeled timescales. The 

buildup of disequilibrium conditions depends chiefly on nucleation mechanism (Mangan and 

Sisson, 2000). Onset of homogeneous nucleation requires attainment of large supersaturation 

pressures in rhyolitic melts (e.g., Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 

1999; 2004). The prevalence of homogeneous over heterogeneous nucleation in crystal-poor 

rhyolites has recently come under scrutiny (e.g., Shea, 2017). For instance, rhyolitic melts 

involved in eruptions such as Novarupta in 1912 could not have experienced homogeneous 

nucleation because the supersaturation pressure necessary for homogeneous nucleation to take 

place exceeds the total pressure change from storage to fragmentation (Gonnermann and 

Houghton, 2012; Shea, 2017). It was previously suggested that crystal-poor rhyolites must 

nucleate bubbles homogeneously due to the lack of favorable nucleation sites (e.g., Mangan et 

al., 2004); however, recent work has suggested that nanometer-sized Fe-Ti oxide crystals might 

be more abundant than previously thought and provide sufficient nucleation sites for bubble 

nucleation to be dominantly heterogeneous (Burgisser et al., 2020; Caceres et al., 2020; Shea, 

2017). It is impossible to say without a careful, very high-resolution petrographic examination of 

eruption products w hether a magma has undergone a particular style of nucleation. Shallowly 

stored, crystal-rich magmas that can readily nucleate and exsolve volatiles should more closely 

follow near-equilibrium degassing pathways. Therefore, these magmas are less likely to be 

impacted by modeling errors associated with disequilibrium degassing. It is possible to still use 

MEM even in systems that have experienced disequilibrium degassing if the degassing pathway 

can be defined (e.g., Gonnermann and Manga, 2005). However, resolving the nucleation 

mechanism debate will provide key guidance to the prevalence and severity of impact of 
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disequilibrium effects on decompression rates derived from embayments hosted within crystal-

poor rhyolites. 

2.5.2 Impacts of Initial Conditions Assumptions 

The initial volatile concentration in the interior of an embayment depends on when the 

embayment forms. Silicic magmas can be stored at multiple levels within the crust (e.g., 

Cashman et al., 2017; Edmonds et al., 2019), and melt-filled embayments may form via rapid 

crystal growth during storage and/or ascent. The timescales and mechanisms of embayment 

formation have not been thoroughly studied to date, so it is unclear when in a crystal’s lifespan 

they form. MEM assumes that the embayments formed at the storage level, and that their initial 

water content therefore corresponds to that depth. Recent work by Barbee et al. (2020) and 

Loewen et al. (2017) indicates that for rhyolites, melt-filled embayments form in quartz as a 

response to rapid growth, typically associated with changes in pressure and/or temperature. Thus, 

the initial volatile concentration within the embayments should reflect the conditions that the 

host quartz experienced during rapid growth. However, rapid growth could occur at any depth. 

Thus, the appropriate initial water content may not always be obvious. 

Determination of the timing of embayment formation is essential to ascertain initial 

model conditions. Two approaches are typically used to recover initial depth and water content: 

(1) use the maximum water content measured in melt inclusions and assume it records the initial 

pressure and depth of  embayment formation (e.g., Humphreys et al., 2008; Liu et al., 2007; 

Lloyd et al., 2014; Myers et al., 2016) or (2) use the maximum water content measured in the 

embayment as representative of the initial pressure (e.g., Myers et al., 2018). However, there are 

occasionally differences between these two values, even in the same crystals (Myers et al., 2016; 

2018). Under the assumption that melt inclusions did not leak and faithfully recorded volatile 
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concentrations at depth, our modeling results can shed light on the possible reasons for 

discrepant melt inclusion and embayment water contents. Potentially, the initial melt inclusion 

water concentration is correct, and diffusion was sufficiently long that the plateau lost its initial 

value. Interestingly, the initial H2O value in our models can be lost while still maintaining a 

plateau-like inner concentration profile, particularly for the necked geometries (Fig. 2.4b). Thus, 

the presence of a plateau alone does not guarantee preservation of initial water concentration.  

So far, our treatment of the profiles obtained from the groundtruth models assumes that 

the initial, higher, H2O concentration is known, even when it is not preserved within the 

embayment. This is the equivalent scenario where melt inclusions can be used to estimate initial 

volatile concentrations even if the highest value within the embayment is lower (e.g., embayment 

was formed at a shallower depth than the melt inclusions). To test the alternative scenario (i.e., 

using the highest volatile concentration in the embayment as the initial volatile concentration), 

we re-ran 1D models with a different approach for all of the 3D models in which the initial high 

water content was lost. This time, we calculated the saturation pressure associated with the 

highest water concentration in the embayment rather than a known initial value. The 1D model 

was then run with that lower calculated initial pressure, and the best fitting decompression rate to 

the groundtruth 3D model was recalculated (Table 2.4). Essentially, this assumes no knowledge 

of the imposed decompression rate and starting pressure, instead using values that are calculated 

from model fits and water content, much like typical applications of MEM. We find that for all 

cases, the DRM is greater than 1, and compounds the error associated with geometry (Fig. 2.8). 

Thus, using a starting pressure that is less than what the system actually experienced can lead to 

significant additional overestimation of decompression rate; even geometries that are mostly 

unaffected by complex 3D fluxes, such as the cylinder, can yield erroneous decompression rates. 
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These results are consistent with the findings of Myers et al. (2018). Their 1D models 

tested melt inclusion water content and maximum embayment water content as starting 

conditions. The calculated decompression rate between the two scenarios in their study varied by 

as much as an order of magnitude in some cases. Ferguson et al. (2016) and Newcombe et al. 

(2020a) treated starting volatile concentration as a free parameter in their models, and found that 

for a majority of their models, the best solution required a higher concentration than the highest 

measured value in their modeled embayments. Thus, using high volatile concentration plateaus 

in embayments as starting conditions can be problematic. If the initial high water content was 

lost via diffusion, even without a clear visual loss of plateau, using that water content as a proxy 

for starting pressure can increase DRM by a factor of 2-3 for geometries well-approximated by 

1D models and by a factor of as much as 10 for geometries poorly approximated by 1D models. 

 

 

Figure 2.8. Changes to modeled 1D decompression rate vs. DRM trends when different assumptions are made 
about the starting pressure of the diffusion models. The light blue shaded region in a shows the extent of b. The 
gray shaded region shows numerical fitting uncertainties estimated to be within ±3 seconds of the imposed 
decompression rate (where it is larger than the 1:1 line). Each darker colored line has the corresponding model 
results using the correct starting pressure (as in Fig. 2.3b) shown in lighter color for reference. For all 
geometries, once the high H2O concentration in the back of the embayment begins to decrease, there is a 
corresponding increase in DRM when using the H2O concentration in the embayment to infer the initial modeling 
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Table 2.4. Summary of different starting conditions models 

Geometrya Max Embayment 
Water (wt. %) 

Pi 
(MPa) 

Imposed 
dP/dt (MPa/s) 

Modeled 
dP/dt (MPa/s) DRMb 

Cylinder 5.94 198 1.8 1.89 1.05 
Cylinder 5.83 192 1 1.20 1.20 
Cylinder 5.55 175 0.5 0.767 1.53 
Cylinder 4.36 115 0.1 0.204 2.04 
Cylinder 2.73 50 0.01 0.021 2.13 

20% Necked 5.94 198 0.75 0.899 1.20 
20% Necked 5.87 193 0.5 0.700 1.40 
20% Necked 5.71 184 0.3 0.513 1.71 
20% Necked 5.07 150 0.1 0.241 2.41 
20% Necked 3.27 69 0.01 0.030 3.00 
40% Necked 5.95 198 0.75 1.21 1.61 
40% Necked 5.89 195 0.5 0.962 1.92 
40% Necked 5.77 188 0.3 0.743 2.48 
40% Necked 5.24 159 0.1 0.399 3.99 
40% Necked 3.47 77 0.01 0.051 5.13 
60% Necked 5.93 197 0.5 1.51 3.03 
60% Necked 5.88 194 0.35 1.37 3.91 
60% Necked 5.82 191 0.25 1.20 4.82 
60% Necked 5.76 187 0.2 1.14 5.68 
60% Necked 5.66 182 0.15 1.02 6.79 
60% Necked 5.50 173 0.1 0.850 8.50 
60% Necked 3.89 94 0.01 0.154 15.4 
80% Necked 5.96 199 0.5 2.39 4.77 
80% Necked 5.93 197 0.25 2.19 8.74 
80% Necked 5.91 196 0.2 2.07 10.35 
80% Necked 5.81 190 0.1 1.91 19.10 
80% Necked 5.76 188 0.08 1.83 22.83 
80% Necked 5.63 180 0.05 1.63 32.65 
80% Necked 5.50 173 0.03 1.47 49.04 
80% Necked 4.88 140 0.01 0.812 81.10 
80% Necked 4.35 115 0.005 0.470 94.06 

aAll models have the same final pressure of 20 MPa 
bDecompression Rate Multiplier - see text for definition 

Because relative timing of inclusion and embayment formation can be difficult to 

determine, we suggest measuring water content at the back of many embayments with similar 

length but variable geometries to determine if it is suitable to use as a constraint for starting 
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conditions. As seen in our 0.01 MPa/s runs, the maximum water content in the back of the 

different embayment geometries varied from 2.7 wt. % in the cylindrical embayment to 4.9 wt. 

% in the most necked embayment (Table 2.4). These embayments all have similar lengths and 

experienced the same diffusion timescale, so the discrepancy in water content is only a function 

of the different geometries. In the case of similarly sized embayments with variable maximum 

water contents, these water contents should be treated with caution as a starting condition. For 

the faster decompression rates in which the diffusion front has not reached the back of the 

cylindrical embayment (as evidenced by a DRM of ~1), the maximum water content at the back 

of each embayment geometry is the exact same. Thus, measuring water content in multiple 

similarly sized embayments can offer guidance about starting conditions. Longer embayments 

are also more likely to preserve the initial maximum water content. When present, concentrations 

of CO2 and/or S can provide additional constraints on the formation pressure of the embayment 

(e.g., Ferguson et al., 2016; Lloyd et al., 2014; Newcombe et al. 2020a). Alternatively, starting 

conditions can be left as a free parameter during modeling, with guidance from melt inclusion 

measurements. 

One additional complication with starting conditions that we did not address in this study 

is the influence of any pre-exsolved volatile fraction on degassing. Both Ferguson et al. (2016) 

and Newcombe et al. (2020a) incorporate a pre-existing exsolved volatile fraction in their 

models, which impacts the exsolution of the pre-existing volatiles from the embayment into the 

associated vapor bubble at the mouth of the embayment. For the basaltic systems that these 

studies examine, CO2 profiles were the most impacted by the inclusion or exclusion of these 

exsolved volatiles. Generally, increasing the fraction of exsolved volatiles shifted the best-fit 

decompression rate to faster rates (Ferguson et al., 2016). For both Ferguson et al. (2016) and 
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Newcombe et al. (2020a), fits to their profiles were improved by inclusion of exsolved volatiles 

in the models. Thus, whether a magma contained exsolved volatiles prior to decompression 

should be an important consideration for future modelers. 

2.5.3 Recommendations for Best Modeling Practices 

 Based on the modeling results and discussion presented in the previous sections, we will 

summarize here the best modeling practices for future users of MEM to avoid introducing 

modeling errors. 

(1) 1D models can be used reasonably (DRM <2) for all geometries when the diffusion front 

is still close to the necked region. The decompression rate value to which that 

corresponds will depend on the diffusivity of the volatile of interest and the length of the 

necked region. 

(2) 1D models can be used reasonably (DRM <2) for all decompression rates as long as the 

constriction on the embayment is ≤40%. 

(3) 1D models cannot be used for embayments with constrictions >40% if the diffusion front 

is within the main body of the embayment. 

(4) MEM should not be used for eruptions in which the magma has undergone 

disequilibrium degassing, unless a disequilibrium degassing pathway can be defined. 

Determination of equilibrium vs disequilibrium degassing is a critical first step when 

selecting eruptions with which to use MEM. 

(5) Initial volatile concentration is difficult to determine, but surveying the highest 

concentration in several embayments and/or measurement of other volatiles can provide 

guidance as to whether melt inclusion values or embayment values are the better choice. 
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2.6 Conclusions 

 Melt embayment modeling (MEM) is gaining popularity as a method to calculate magma 

decompression rate, a historically difficult parameter to determine despite its importance for 

eruption dynamics. This study examined the impact of diffusion model simplifications on 

calculated decompression rate, relative to the true decompression rate. We tested the impact of 

isentropic ascent, disequilibrium degassing, and 3D embayment geometry. Our results indicate 

that isentropic ascent can be simplified as isothermal ascent with relatively little consequence. 

Disequilibrium degassing is an important but poorly defined parameter, though the overall role it 

plays in explosive eruptions is currently not well constrained. Most importantly, embayment 3D 

geometry can impart large errors in decompression rates calculated from 1D models if the 

embayment has a constriction near the mouth. 
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Chapter 3. Experimental Examination of Coordinated Decompression Rate 
Meters 

3.1 Abstract 

 Quantification of magma decompression rate for volcanic eruptions is a high priority as 

decompression rate plays a major role in modulating volcanic eruption style. Many of the tools to 

calculate decompression rate from natural samples leverage textural and petrologic “fingerprints” 

left behind in the form of vesicles, crystal textures, and concentration gradients of volatiles (e.g., 

H2O, CO2). These meters are suitable for quantifying either fast or slow decompression rates, 

and typically are used to infer an average decompression rate, despite the knowledge that 

decompression is almost never constant during ascent to the surface. In the past, decompression 

rate meters have largely been used independently of each other, but recent advances have 

advocated use of multiple decompression rate meters in the same study to quantify better the 

range of decompression rates that occur during an eruption. In the present study, I conduct high 

pressure/high temperature decompression experiments that utilize two decompression rate meters 

(bubble number density and diffusion modeling) within the same experimental charge to 

examine whether the two rate meters reproduce the same decompression conditions and to assess 

what assumptions must be made to reproduce the known imposed decompression rate. The 

results indicate that both decompression rate meters can generally reproduce an experimentally 

imposed constant decompression rate, though the bubble number density-derived rate is more 

sensitive to heterogeneities within the starting material. Generally, assuming homogeneous 

nucleation resulted in the closest approximation of the known (imposed) decompression rate. 

Diffusion modeling results are also sensitive to the timing of bubble formation, as bubbles are 

needed for volatile concentration gradients to form. These experiments are the first step towards 

assessing the use of multiple decompression rate meters to characterize magma ascent 
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characteristics within a single eruption. Further studies should target experiments with variable 

decompression rate to determine whether the two decompression rate meters record different 

values, as eruptions are expected to experience non-constant decompression rates. 

3.2 Introduction 

 Magma decompression rate is a critical parameter that modulates volcanic eruption style 

(Cassidy et al., 2018; Cashman and Sparks, 2013). It influences many processes that occur in the 

conduit, such as magma degassing and outgassing (e.g., Cassidy et al., 2018), decompression-

induced crystallization (e.g., Hammer and Rutherford, 2002), and the strain rate needed to cross 

the glass transition (e.g., Webb and Dingwell, 1990; Dingwell, 1996). Many models of conduit 

dynamics rely on accurate estimates of decompression rate in order to produce meaningful 

results (e.g., Diller et al., 2006; Clarke et al., 2007). Due to the importance of decompression 

rate, several methods to estimate it have been developed. Some of the more common methods 

utilize bubble number density (Toramaru, 1995; 2006), hydrous mineral reaction rims (Nicholis 

and Rutherford, 2004; Rutherford, 2008; Rutherford and Devine, 2003; Rutherford and Hill, 

1993), microlite textures (Andrews, 2014; Castro and Gardner, 2008; Couch et al., 2003; 

Szramek, 2016; Toramaru et al., 2008), and numerical modeling of ascent in the conduit 

(Kaminski and Jaupart, 1997; Papale and Dobran, 1993; Papale et al., 1998). Each is generally 

suited to resolve either fast or slow decompression rates, but not the entire range (Shea, 2017). 

 Magma decompression is almost never constant; exsolution of volatiles as a fluid phase 

during decompression increases the buoyancy of the magma and results in acceleration at lower 

pressures (Gonnermann and Manga, 2007; Su and Huber, 2017). Therefore, different 

decompression rate meters can be leveraged to probe different stages of decompression during an 

eruption (e.g., Myers et al., 2021). This integrated approach is a relatively new approach, as 
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many previous studies have only used one decompression rate meter, but it offers greater insights 

into shifts in eruption dynamics. Diffusion modeling is well-suited to probing the earlier, slower 

stages of decompression, whereas bubble number density tends to reflect the final, faster stages 

of decompression (e.g., Shea, 2017).  

The flexibility of diffusion modeling allows its use in many contexts to probe 

decompression timescales. Previous studies have used diffusion of volatiles in melt inclusions 

(e.g., Myers et al., 2019), melt embayments (e.g., Ferguson et al., 2016; Humphreys et al., 2008; 

Liu et al., 2007; Lloyd et al., 2014; Myers et al., 2016; 2018; Newcombe et al., 2020a), and 

crystals (e.g., Barth et al., 2019; Newcombe et al., 2020a) to calculate magma decompression 

rate. By changing the species of interest, a wide range of timescales can be targeted (e.g., 

Chakraborty, 2008; Costa et al., 2020). However, many of the errors associated with the 

assumptions tested in Chapter 2 are common to other diffusing systems, and these errors can 

obfuscate decompression rate trends in natural systems. 

Bubble number density (BND) as a decompression rate meter has undergone much 

scrutiny and subsequent refinement since its initial proposal by Toramaru (1989). However, 

many questions still surround the use of this meter, particularly with respect to the style of 

bubble nucleation. As described in Chapter 2, bubbles can nucleate either homogeneously or 

heterogeneously, or even a combination of the two. The dominant style of nucleation 

significantly impacts the rate retrieved from BND (e.g., Shea, 2017; Hajimirza et al., 2021). 

Therefore, an experimental examination of this technique, in which an imposed decompression 

rate is a known parameter, is useful in probing the impacts of homogeneous vs heterogeneous 

nucleation on calculated decompression rates. 
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In this chapter, I conduct high pressure/high temperature decompression experiments on 

rhyolitic melts to assess the decompression rates retrieved by diffusion modeling and BND 

within the same experimental charge. The experiments are designed to contain regions in which 

bubbles are present before decompression, as well as regions in which bubbles are not present 

before decompression. The former is achieved by loading powdered starting material into Al2O3 

tubes with pre-determined hole diameters of 250 or 500 μm; this setup is also intended to be 

analogous to melt embayments. Bubble free regions are achieved by including solid, vesicle-free 

obsidian cores of the same composition as the powder on either end of the alumina tubes. My 

results indicate that nucleation within the obsidian cores is predominantly homogeneous, though 

occasional heterogeneities within the starting obsidian influences nucleation. Diffusion-retrieved 

decompression rates are highly sensitive to the timing of bubble formation. Additionally, 

although the initial goal was to simulate melt embayments within the alumina tubes, the 2D 

distribution of bubbles within the “embayments” are unlike those found in natural embayments, 

and these bubbles also influence retrieved decompression rates. These combined results have 

implications for the application of these two decompression rate meters to natural products. 

3.3 Methods 

 High pressure/high temperature decompression experiments were conducted at both the 

University of Hawai‘i at Mānoa (UHM) and Laboratoire Magmas et Volcans, Université 

Clermont, Auvergne, France (LMV). The main difference between the two facilities is that the 

LMV facilities allow for a rapid quench of samples and contain an apparatus for computer-

controlled decompression, which is optimal for slow decompression rates (<0.2 MPa/s). Products 

of all experiments were analyzed at UHM using reflected light microscopy for BND and bubble 

textures and Raman spectroscopy for water measurements.   
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3.3.1 Experiment Methods 

  The decompression experiments were conducted using rhyolitic obsidian from Güney 

Daği, Turkey (<1 vol. % crystals and 76.51 wt. % SiO2; Mourtada-Bonnefoi and Laporte, 2002), 

both in powdered form and as cores, as well as alumina (Al2O3) tubes with boreholes of set inner 

diameter (500 and 250 μm). Powder was loaded into the larger diameter boreholes by carefully 

pouring powder (~50 μm grain size) and periodically tapping to compress the powder. The 

smaller diameter boreholes were loaded with powder (<10 μm grain size) with the aid of a 

vacuum pump. The alumina tubes loaded with powder were then nested into larger diameter 

alumina tubes to provide additional stability during the experiment (Fig. 3.1). This nested tube 

setup was then capped 

with cores of obsidian 

on both ends to prevent 

powder from leaving 

the synthetic 

embayments. The 

assembly was then 

carefully loaded into 4 

mm Ag or Ag70Pd30 

tubes with enough 

deionized water to 

saturate both the 

powder and the cores. 

Capsules were welded 

closed on both ends 

 

Figure 3.1. Schematic of different experiment capsule setups. The different 
regions are labeled with the material of which they are comprised, and is the 
same for both setups. The difference between the two setups is the diameter of 
the alumina tube holes.  
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using an arc welder, and the welds were tested by heating the  capsules at 150 °C for at least 15 

minutes. For capsules saturated on a gas-pressurized line, the welded 4 mm capsules were loaded 

into 5 mm Ag70Pd30 outer capsules, which were packed with a mixture of Ni and NiO powder, as 

well as water, to buffer the experiments to the NNO buffer. This outer capsule was also welded 

closed and checked for leaks using the same method. At the end of experiments, the buffer 

mixture was examined to ensure that neither powder was completely exhausted. 

 Leak-free capsules were loaded into either Nimonic or Waspalloy cold-seal pressure 

vessels. Capsules saturated on the water-pressurized line had a Ni rod inserted into the vessel 

with them to buffer the experiments to the NNO buffer. Experiments were cold-pressurized to 

200 MPa with either water or N2, then heated to 800 °C. Pressure was monitored during heating 

to ensure that it did not exceed 200 MPa. Experiments were held at 800°C and 200 MPa for five 

days to ensure homogeneous distribution of water in all starting material. Then experiments 

bound for decompression at LMV were quenched with compressed air and water. When 

necessary, inner capsules were extracted from the outer buffer capsules, and all capsules were 

weighed to ensure no holes occurred during saturation. Experiments that were decompressed at 

UHM were not 

quenched prior 

to 

decompression. 

Instead, at the 

end of the 

saturation period, 

pressure was 

Table 3.1. Summary of experiments and conditions 

Experiment 
Name 

Embayment 
Diameter 

(μm) 

dP/dt 
(MPa/s) 

Pi 
(MPa) 

Pf 
(MPa) 

Quench 
Facility 

RDGD250-4 500 0.5 200 50 LMV 
RDGD250-8 500 0.01 200 50 LMV 
RDGD250-13 500 0.2 200 50 UHM 
RDGD250-14 500 0.5 200 50 UHM 
RDGD250-15 500 1 200 50 UHM 
RDGD125-2 250 0.5 200 50 UHM 
RDGD125-3 250 0 200 200 LMV 
RDGD125-7 250 0.01 200 50 LMV 
RDGD125-12 250 1 200 50 UHM 
RDGD125-13 250 0.2 200 50 UHM 
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carefully bled from the system at the desired rate by hand using a leak valve and a stopwatch. 

Once the pressure reached 50 MPa, the experiments were quenched with compressed air and 

water. Typical quench times were ~30-45 seconds after decompression ceased. Pressure was 

modulated during the quench to ensure it did not drop below 50 MPa before the pressure vessel 

was submerged in water. The relatively high quench pressure was chosen to ensure that the 

hydration bubbles in the embayment did not grow so large as to displace all of the melt from the 

embayment. 

 Decompression experiments that were carried out at LMV were loaded into a Nimonic 

pressure vessel fitted with a rapid quench assembly, and heated and pressurized with N2 to 800 

°C and 200 MPa. Experiments were held at these conditions for 15 minutes to resorb any bubbles 

or crystals that formed during the previous quench. After the hold period, experiments were 

decompressed, either by hand or by an automated program, at different rates to a final pressure of 

50 MPa and quenched rapidly. For decompressions by hand, pressure was carefully bled from 

the system via a leak valve and timed to ensure the correct rate of bleeding. For decompressions 

by automated program, a computer controlled a series of valves that automatically removed a 

given volume of pressurizing gas at varying time intervals (Mourtada-Bonnefoi and Laporte, 

2004). The automatic decompression was preferred for longer duration decompressions as the 

program provided more reproducible decompression pathways. Once the desired final pressure 

was reached, the experiment was quenched by dropping the experiment into a water-cooled 

region of the pressure vessel, cooling below the glass transition temperature in <2 seconds (~200 

°C/s). Quenched glasses were carefully extracted from the 4 mm capsules and prepared for 

subsequent analyses (Table 3.1). 
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3.3.2 Analytical Methods 

 Raman spectroscopy was used to measure water both inside the embayments and in the 

vesiculated obsidian. I double-polished the experimental products to minimize spectral 

interference of the parasitic crucible Al2O3 peak with the water (molecular H2O) peak from the 

hydrous rhyolite glass. Water concentration was determined by using the ratio of area under the 

water (3000 – 3800 cm-1) peak to the area under the aluminosilicate structure (200 – 1270 cm-1) 

peak (Le Losq et al., 2012; Shea et al., 2014). This method accounts for fluctuations in the laser 

between different analyses as it uses a ratio rather than the absolute magnitude of the peaks. 

 Raman analyses were conducted at the University of Hawai‘i at Mānoa, using a Witec 

Alpha300R confocal microscope and green (i.e., 532 nm wavelength) laser. Spectra were 

collected at 1 μm spots over five iterations with 20 second counting time per iteration. 

Processing of spectra was done with the “SpeCTRa” (Spectral Correction Tools for Raman) 

Matlab code (Shea et al., 2014). This code allows for background subtraction and calculation of 

peak areas. Generally, five spots in the obsidian regions of experiments were collected. For 

experiments with optimal melt-filled embayments, profiles were collected starting at a melt-

vapor interface and ending at either another melt-vapor interface, or when a plateau in water 

concentration was recorded. Inter-bubble profiles in the obsidian region were chosen between 

similarly-sized bubbles to ensure that the bubbles nucleated at similar times. For both inter-

bubble and embayment transects, the glass below the polished surface was examined to ensure 

no nearby bubbles could influence water content. Profiles were collected with step sizes of 5-20 

μm, depending on the total length of the profile. 

 The vesiculated obsidian core regions were polished and imaged on a microscope using 

reflected light. Obsidian core pieces that detached from the alumina during extraction were 

polished to produce radial sections, and series of images were captured during iterative polishes 
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to expose different regions of the obsidian. Obsidian pieces that remained attached to the 

alumina were cut and polished length-wise with the alumina, and only the final exposure of 

bubbles was imaged after polishing the alumina appropriately for Raman analysis. Generally 

only one or two magnifications were used to image the samples as bubble sizes did not vary 

significantly. Captured images were processed in Adobe Photoshop such that vesicles were a 

different grayscale value from the glass and crystals. Where visible, coalesced bubble walls were 

redrawn to “decoalesce” bubbles in the processed image so that BNDs are not reduced by 

coalescence. Processed images were loaded into FOAMS (Shea et al., 2010) to calculate BND, 

vesicularity, and modal bubble size. Only bubbles that were larger than 10 μm in diameter were 

counted in the analysis. Following Toramaru (2006), decompression rate (dP/dt) in Pa/s is 

calculated from BND (Nv) in m-3 using: 
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(3.1) 

where n0 is the initial number of water molecules per unit volume melt, kB is the Boltzmann 

constant, DH2O is water diffusivity in m2 s-1, VH2O is the volume of a water molecule in m3, σ is 

the melt-vapor interface surface tension in N m-1, Psat is the H2O saturation pressure in Pa, and T 

is temperature in K. 

3.3.3 Diffusion Modeling 

 Diffusion modeling was conducted by solving the concentration-dependent version of 

Fick’s Second Law in 1D using a finite differences approach described in Chapter 2. The best-fit 

profile was determined using the same weighted RMSD approach as in Chapter 2. I assumed 

water homogenously distributed throughout the melt at the equilibrium water concentration at 
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experiment initial pressure, according to the solubility model of Liu et al. (2005). At the final 

pressure, the water concentration at the bubble edge(s) was assumed to be equal to the 

equilibrium value, and that value was used in the RMSD calculation. For profiles that had 

bubbles at both ends, the boundary condition was set such that each melt/vapor interface index in 

the finite differences calculation had a water concentration equal to the equilibrium saturation 

value for a given pressure step. Diffusion then proceeded in both directions over the duration of 

the model, with diffusivity calculated using the model of Ni and Zhang (2008). For profiles with 

a water concentration plateau and a vapor bubble at only one end, the vapor bubble boundary 

was the same as previously described, and the index at the end of the plateau was set at the value 

of the adjacent index at each time/pressure step. Thus, the plateau could decrease in value, given 

a sufficiently long diffusion time. 

3.4 Results and Interpretations 

3.4.1 Vesicularity and water content in the obsidian 

 Vesicularity within the obsidian region of the experiments is too low compared to values 

predicted at equilibrium for all decompressed experiments (Fig. 3.2a). In general, the degree to 

which the measured vesicularity differs from the expected equilibrium value is a function of 

decompression rate. Faster decompression rates tend to produce a larger deviation from 

equilibrium, and vice versa (Table 3.2). The experiment that was quenched without 

decompression has a minor population of very small bubbles, but they account for <1 vol. %. 

However, these vesicles have important implications for the experiment results, as discussed 

later. 

 Experiments are all supersaturated with regard to water (Fig. 3.2b). As with vesicularity, 

faster decompression tends to produce higher degrees of water supersaturation (Table 3.2). One 
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experiment, RDGD125-13, has anomalously low vesicularity as compared to the other 

experiments with similar or faster decompression rates, though its dissolved water content is 

correspondingly greater. The modal bubble size is also much smaller than the other experiment 

with a similar decompression rate (Table 3.2). Potentially, nucleation was later for this sample, 

resulting in smaller bubbles and higher dissolved water content. 

Table 3.2. Water and vesicularity measurement results 

Experiment 
Imposed 

dP/dt 
(MPa/s) 

Pf 

(MPa) 
Dissolved 

Water (wt. %)a 
Vesicularity 

(vol. %) 
BND 

(mm-3) 

Modal 
Bubble 

Size (mm) 
Nb 

RDGD250-4 0.5 50 n.d.c 22 16562 0.035 482 

RDGD250-8 0.01 50 n.d. 23 1199 0.022 133 
RDGD250-13 0.2 50 4.1 (0.6/0.6) 21 338 0.137 153 
RDGD250-14 0.5 50 5.1 (0.5/0.4) 21 287 0.139 171 
RDGD250-15 1 50 5.3 (1/0.4) 7.8 163 0.087 184 

RDGD125-2 0.5 50 3.8 (0.5/0.3)d 
4.5 (0.2/0.4)e 15 2159 0.055 242 

RDGD125-3 0 200 5.6 (0.2/0.3) 0 0 n/a n/a 
RDGD125-7 0.01 50 n.d. 28 235 0.137 156 
RDGD125-12 1 50 5.3 (0.2/0.2) 11 82 0.109 107 
RDGD125-13 0.2 50 5.4 (0.6/0.3) 6.6 211 0.087 153 
aValues in parentheses are (+/-) the range of values measured in each experiment 
bNumber of bubbles measured 
cn.d. - no data 
dWater content measurement in bubble-rich region (Fig. 3.3b) 
eWater measurement in bubble-poor area (Fig. 3.3b) 

 3.4.2 Bubble and crystal textures 

 The glass is generally crystal-poor, though small oxides are numerous in all samples, 

regardless of any outside influence on quench rate from the decompression facility. Experiments 

decompressed at UHM have rare small (<5 μm) feldspar crystals, likely from cooling-induced 

crystallization during the slower quench. 
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Bubble textures 

differ between regions that 

have powder-derived melt 

(i.e., the embayment) and 

regions that have obsidian-

derived melt (Fig. 3.3e). 

The obsidian regions start  

out largely vesicle-free, 

whereas embayment 

regions start out with 

hydration bubbles, as well 

as  air pockets where 

powder did not fully pack 

into the embayment. 

Because the embayment 

vesicles are present at the 

start they are generally 

larger than later nucleated 

bubbles in the obsidian 

region. Additionally, many 

of the hydration bubbles 

 

Figure 3.2. Plots of dissolved water content and vesicularity measured in the 
experiments. a) vesicularity tends to be higher in experiments with slower 
decompression rates, though all experiments measured have lower 
vesicularity than the equilibrium value. The equilibrium vesicularity line is 
calculated using the model of Gardner et al. (1999). b) dissolved water 
content is generally higher in experiments with lower vesicularity and is a 
function of decompression rate. However, all experiments are supersaturated 
with respect to the expected equilibrium water content and vesicularity at 50 
MPa. Error bars show the spread of water contents measured within a 
sample. The two data points at 15 vol. % vesicularity are two measurements 
made in the bubble-rich (lower water content) and bubble-poor regions 
(higher water content) of the experiment shown in Fig. 3.3b 
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are elongated and 

coalesced, presumably 

from expanding against 

the rigid alumina wall. 

 Within the obsidian 

region, three different 

distributions of bubbles 

are observed. Most of 

the experiments have a 

random distribution of 

bubbles, and bubbles 

have no discernable 

tendency to group in a 

region of the sample 

(e.g., Fig. 3.3d). One 

experiment has an 

uneven distribution of 

bubbles in which 

bubbles are clustered in 

a region of the obsidian 

(e.g., Fig. 3.3b). Finally, 

some experiments also 

display bubble curtains 

 

Figure 3.3. Examples of different textures present in the experiments. a) – d) 
are radial sections that show bubble textures in the obsidian, whereas e) shows 
the different textures in the embayment and the obsidian from experiment 
RDGD250-14. a) shows the experiment that was quenched with no 
decompression. Black arrow points to incipient bubble chain. b) Shows the 
“uneven distribution” bubble texture, c) shows the “bubble chain” texture, and d) 
shows the “even distribution” texture. In both c) and d) a very large bubble can 
be observed, though it is only observable in d) as the void space that creates the 
crescent moon shape of the glass. The scale bars in each image are 1 mm.  
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in which long chains of coalesced bubbles are observed, with few bubbles outside the chain(s) 

(e.g., Fig. 3.3c). Almost all of the experiments also have a single very large vesicle in the 

obsidian region. It is difficult to quantify the exact size of the vesicle as it causes the shape of the 

obsidian to become irregular, so polishing perpendicular to it is challenging. The scale of the 

bubble is also generally larger than can be captured by the lowest magnification objective on the 

used microscope. However, vestiges of this bubble can occasionally be seen in the polished 

surfaces (Fig. 3.3). Potentially this large vesicle results from the large amount of void space (i.e., 

ambient air) typically within the embayment region escaping during decompression. This large 

vesicle was excluded from the sample area and not counted during BND calculation. 

3.4.3 Bubble number density and subsequent derived decompression rates 

 Bubble number densities in the experiments span several orders of magnitude, ranging 

from the order of 101 to 104 mm-3 (Table 3.2; Fig. 3.4). For experiments that experienced the  

same decompression 

rate, the variation in 

BND between 

experiments is 

typically less than an 

order of magnitude. 

The only exception is 

the experiments 

decompressed at 0.5 

MPa/s; these 

experiments vary in 

 

Figure 3.4. Relationship of measured BND with decompression rate. Most of the 
decompression rates display similar BNDs for the same decompression rate, with 
the exception of experiments decompressed at 0.5 MPa/s. The experiments 
decompressed at 1 MPa/s are also systematically lower in BND than the other 
decompression rates. 
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BND by more than two orders of magnitude. In principle, faster decompression rates should 

produce greater bubble number densities. However, the fastest decompression rate (1 MPa/s) 

produces the smallest BNDs in the experiment suite (Fig. 3.4). The two experiments that 

experienced the fastest decompression rate are also the two experiments that have bubble chains, 

so it seems that the bubble texture impacts BND. Thus, the results of the BND-derived 

decompression rate calculations are grouped by the observed bubble texture. Although the 

decompression rates experienced by these experiments span three orders of magnitude, there is 

not significant variation in BND between rates. Potentially, this could be the result of similar 

processes that produce the different textures, or this could be the result of too few bubbles within 

the experimental charge to resolve the differences. 

Table 3.3. Bubble textures and BND-derived decompression rates 

Experiment Imposed dP/dt 
(MPa/s) Bubble Texture Heterogeneous 

dP/dt (MPa/s)a 
Homogeneous 
dP/dt (MPa/s)b 

RDGD250-4 0.5 random distribution 
(many small bubbles) 0.247 3.950 

RDGD250-8 0.01 random distribution 0.043 0.686 
RDGD250-13 0.2 random distribution 0.018 0.295 
RDGD250-14 0.5 random distribution 0.017 0.264 
RDGD250-15 1 bubble curtain 0.011 0.181 

RDGD125-2 0.5 uneven distribution 0.063 1.015 

RDGD125-3 0 bubble curtain 0.000 0.000 
RDGD125-7 0.01 random distribution 0.014 0.231 
RDGD125-12 1 bubble chain 0.007 0.115 
RDGD125-13 0.2 random distribution 0.013 0.215 

aUses σ=0.02 N m-1 
bUses σ=0.08 N m-1 

To examine the dominant bubble nucleation style within the experiments, BND-derived 

decompression rate for each experiment is calculated using a surface tension appropriate for 

titanomagnetite-assisted nucleation (σ=0.02 N m-1) and homogeneous nucleation (σ=0.08 N m-1). 
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The different surface tension values produce decompression rates that differ by almost exactly an 

order of magnitude for each experiment (Table 3.3). Calculated decompression rates range from 

0.007 to 4 MPa/s, a greater range than used in the experiments. 

Experiments that experienced the slowest decompression rate (0.01 MPa/s) are better fit 

by the heterogeneous nucleation surface tension value, though the rate is always overestimated, 

regardless of assumed nucleation style (Fig. 3.5). As described above, the experiments that 

experienced the fastest decompression rate have the lowest BND values, so neither surface  

tension value (and thus nucleation style) reproduces the imposed decompression rate; the 

decompression rate is wholly underestimated. Both experiments decompressed at 0.2 MPa/s 

 

Figure 3.5. Plot of imposed decompression rate vs modeled decompression rate for the different methods used 
in this study. Results are differentiated between assumed nucleation style, observed bubble texture, and type of 
diffusion profile. BND = bubble number density, HT = assumed heterogeneous nucleation (i.e., σ=0.02 N m-1), 
HM = assumed homogeneous nucleation (i.e., σ=0.08 N m-1), ED = even distribution of bubbles, BC = bubble 
chains, and UD = uneven distribution. 
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decompression yield BNDs that are consistent with homogeneous nucleation. Two of the three 

experiments decompressed at 0.5 MPa/s contain BNDs that are neither perfectly consistent with 

fully heterogeneous or fully homogeneous nucleation; thus, they potentially experienced 

heterogeneous nucleation, but not assisted by titanomagnetite when considering the bubble 

textures (Table 3.3). One of these experiments has an uneven distribution of bubbles, so it is 

likely that the bubbles nucleated on some heterogeneity within the obsidian, but it was not as 

energetically favorable as titanomagnetite. The final experiment conducted at 0.5 MPa/s 

decompression was not well-approximated by either surface tension value; the modeled 

decompression rates are lower for both nucleation modes. Although two of the experiments that 

experienced 0.5 MPa/s decompression had a similar texture of evenly distributed bubbles, the 

modal bubble size between them is very different. The experiment with smaller bubbles has a 

larger BND, whereas the experiment with larger bubbles has a smaller BND. These two 

experiments were also performed at two different facilities, so the differences between the two 

could be related to  differences in the facilities. At LMV, experiments were not fugacity-buffered 

during decompression, only hydration, so slight oxidation from H+ loss from the capsule could 

have facilitated the nucleation of titanomagnetite partway through decompression. This would 

then have facilitated the nucleation of a large number of small bubbles. 

3.4.4 Diffusion modeling and subsequent derived decompression rates 

 Three experiments contained optimal locations for profiles both within the embayment 

and in the obsidian. These experiments cover three of the four decompression rates in this study, 

excluding the 0.01 MPa/s rate. Most of the profiles showed some amount of disequilibrium with 

respect to the water concentration measured nearest the bubble edge (Fig. 3.6). Embayment 

profiles tended to be undersaturated relative to the imposed final pressure, whereas inter-bubble  
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profiles in the obsidian region tended to be supersaturated. However, collecting spectra directly 

on the bubble edge was challenging, so modeling proceeded with the assumption of equilibrium 

directly at the bubble wall, as described in the Methods. 

 Modeled 

decompression 

rates within 

embayments are 

generally quite 

close to the 

imposed 

decompression rate 

(Table 3.4). The 

largest difference 

between the 

modeled and the 

imposed 

decompression 

rates occurs for 

experiment 

RDGD250-15, 

with a modeled 

decompression rate 

that is slower by a 

 

Figure 3.6. Example of measured profiles and their location within the sample for 
experiment RDGD250-13. The fitting profiles that are +/- 5 seconds from the best fit 
time are also shown on the plots. Data points at each edge of the profile are the 
assumed water concentration, if the edge of the bubble is at equilibrium. Scale bar is 1 
mm. 
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factor of two. The other two experiments have slight overestimations of the imposed 

decompression rate. Likely the deviation in RDGD250-15 is a result of the 2D distribution of 

bubbles. Although the profile has a plateau in water concentration, there are chains of bubbles 

along the walls of the embayment that likely influence the diffusion of water. The 1D modeled 

rate is likely longer than the imposed rate due to extra diffusive loss to the bubble chains that is 

not accounted for in the 1D model. 

Table 3.4. Diffusion modeling results  

Experiment Transect 
Type 

Imposed 
dP/dt 

(MPa/s) 

Total Imposed 
Decompression 

Time (s)a 

Modeled 
timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Corrected 
Modeled 

dP/dt 
(MPa/s)b 

RDGD250-13 embayment 0.2 780 432 0.35 n/a 
RDGD250-13 inter-bubble 0.2 780 71 2.11 0.24 
RDGD250-14 embayment 0.5 337 228 0.66 n/a 
RDGD250-14 inter-bubble 0.5 337 18 8.33 0.94 
RDGD250-15 embayment 1 170 319 0.47 n/a 
RDGD250-15 inter-bubble 1 170 13 11.5 1.31 
aTimescale includes time needed to quench sample, as well as decompression time 
bCorrected decompression rate for when bubbles nucleated, assuming PN=67 MPa 

 The modeled timescales from the inter-bubble profiles are significantly shorter than the 

corresponding timescales from the embayment profiles for all three experiments (Table 3.4). 

This is to be expected with the experiment design, given that the bubbles within the embayment 

should have existed at the very start of the decompression, whereas bubbles in the obsidian 

required some amount of time (and decompression) to form. Without the presence of bubbles, 

concentration gradients would not develop. Assuming that the bubbles formed at the start of 

decompression, or soon thereafter, yields unrealistically fast decompression rates (2-11 MPa/s) 

that are significantly different from the imposed rates. 

 Alternatively, decompression rate can be calculated relative to the pressure of bubble 

nucleation. Based on the results from the BND modeling, the experiments used for diffusion 
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modeling likely experienced homogeneous nucleation. This interpretation is complicated for 

RDGD250-15, as the bubble chain texture appears to have influenced nucleation. However, the 

inter-bubble profile was collected between bubbles not visibly associated with a bubble chain, 

thus, these bubbles likely experienced homogeneous nucleation similar to the other experiments. 

Therefore, I use the surface tension (σ) value of 0.08 N m-1 relevant to homogeneous nucleation 

with classical nucleation theory to approximate the nucleation pressure of the bubbles, and the 

corresponding initiation pressure for diffusion (e.g., Hirth et al., 1970; Cluzel et al., 2008; Shea, 

2017): 

𝐽𝐽 = 𝐽𝐽0𝑒𝑒𝑒𝑒𝑒𝑒 �−
16𝜋𝜋𝜎𝜎3

3𝑘𝑘𝐵𝐵𝑇𝑇(𝑃𝑃𝐵𝐵∗ − 𝑃𝑃𝑀𝑀)2 𝜑𝜑�
(3.2) 

𝐽𝐽0 =
2𝑛𝑛02𝐷𝐷𝐻𝐻2𝑂𝑂𝑉𝑉𝐻𝐻2𝑂𝑂

𝑎𝑎0
�

𝜎𝜎
𝑘𝑘𝐵𝐵𝑇𝑇

(3.3) 

Where J is nucleation rate, kB is the Boltzmann constant, T is temperature, PB* is the pressure in 

the bubble, PM is the pressure in the melt, φ is the geometrical term that defines nucleation 

mechanism (for homogeneous nucleation, φ=1), n0 is the concentration of water molecules per 

volume melt, DH2O is the diffusivity of water at the melt-bubble interface, VH2O is the volume of a 

water molecule in the melt, and a0 is the separation between water molecules in the melt. 

Nucleation pressure (PN) is determined by solving for the PM at which the BND, as calculated by 

summing J at each pressure step for a decompression pathway, is equivalent to that measured in 

each experiment. For the three experiments, the difference in measured BND produces a 

difference in PN of <1 MPa, so an intermediate value of 67 MPa is used for all three experiments 

as PN. Calculating decompression rate as the difference between PN of 67 MPa and quench 
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pressure of 50 MPa yields modeled decompression rates that are much more consistent with the 

imposed decompression rates (Fig. 3.5). 

3.5 Discussion 

3.5.1 Comparison with previous nucleation experiments and natural samples 

 Measured BNDs, vesicularity trends, and water supersaturation trends are similar to those 

obtained in other experimental studies by Cluzel et al. (2008) and Mourtada-Bonnefoi and 

Laporte (2004). For similar decompression rates and quench pressure, their BNDs range from 

101-103 mm-3, vesicularity ranges from 10-40 vol. %, and dissolved water ranges from 3-5 wt. %. 

They used the same starting material in their studies, as well as similar decompression rates. 

Thus, I assume the results of this study are robust and suitable for further interpretation. 

 The obtained BNDs, vesicularity trends, and water supersaturation trends are also similar 

to those found in other bubble nucleation studies in high silica melts (e.g., Gardner et al., 1999; 

Mangan and Sisson, 2000; Mangan et al., 2004). However, the fastest decompression rate (1 

MPa/s) does not produce a similar order of magnitude of BND as the other studies, likely related 

to the influence of the bubble chain texture, as further discussed below. Except for these 

anomalous results, the measured BNDs overlap with the lower estimates of other studies.  

 Comparing with natural erupted rhyolite products, the BNDs and vesicularities are quite 

low (e.g., Klug and Cashman, 1994; Houghton et al., 2010; Myers et al., 2021). Potentially this is 

related to the high quench pressure of the experiments as compared to typical fragmentation 

pressures for eruptions. If homogeneous nucleation is the dominant mechanism in these 

experiments, as is suggested by the best-fit surface tension value in the BND decompression rate 

calculation (Fig 3.5), then late-stage nucleation should occur at lower pressure (e.g., Mangan and 

Sisson, 2000). Given the large degree of water supersaturation still present in the melt at 50 MPa, 
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it is possible that the experiments were interrupted during the main pulse of bubble nucleation. 

Further decompression of the experiments could have resulted in more nucleation that would 

have driven BNDs to values closer to those measured in natural products. 

3.5.2 Influence of starting material on experiments 

 Powder as a starting material has long been known to produce different vesicle textures 

during decompression as compared to solid obsidian because pores in the powder favor the 

formation of hydration bubbles (e.g., Gardner et al., 1999; Preuss et al., 2016). Hydration 

bubbles form from trapped air and added water between powder grains that remain even when 

the powder forms a melt (Gardner et al., 1999; Larsen and Gardner, 2000). The pre-existing 

bubbles facilitate diffusive loss of water, rather than the energetically-challenging nucleation of 

new bubbles. Preuss et al. (2016) noted that in their experiments, hydration bubbles tended to 

disappear when the experiments were held at initial conditions >96 hours. Although the 

experiments in this study were held at initial conditions for 120 hours, hydration bubbles were 

still evident in the embayment regions (Fig. 3.3). Potentially, the cap of obsidian on either end of 

the embayment region prevented migration of hydration bubbles out of the embayment, as is the 

proposed mechanism for hydration bubble loss in Preuss et al. (2016). Alternatively, the high 

viscosity of the rhyolite melt in this study hindered bubble escape, as compared to the lower 

viscosities of the phonolite and trachyte melts used in the Preuss et al. (2016) experiments. 

However, in this study, the pre-existing bubbles were necessary to evaluate the impact of timing 

of bubble formation on diffusion modeling results. Certainly, diffusion timescales calculated 

from inter-bubble profiles are sensitive to the timing of bubble formation as the gradients do not 

form until the bubbles are present. As shown in Chapter 2, embayment profile timescales are also 

sensitive to timing of bubble formation. 
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 Although solid obsidian cores are generally preferable to powder as starting material for 

bubble nucleation studies, nucleation can still be influenced by pre-existing heterogeneities 

within the obsidian itself, such as microcrystals or healed fractures (e.g., Shea, 2017). In these 

experiments, the bubble chain texture is likely an inherited feature from heterogeneities in the 

obsidian, rather than a primary nucleation phenomenon. An incipient bubble chain can be seen in 

the lower left corner of the experiment that experienced no decompression (Fig. 3.3). Examples 

were also noted in secondary electron images in Mourtada-Bonnefoi and Laporte (2002) and 

(2004). The products of experiments with this bubble texture were also bubble-poor in the glass 

regions not cut by the bubble chain(s). Thus, new bubble nucleation is likely influenced in these 

experiments by the presence of these chains. Potentially, they form an efficient route for gas 

escape and decrease the supersaturation of water in the melt enough that nucleation is not 

favored. Had the experiments been decompressed to lower pressures, the additional 

supersaturation could have been sufficient for nucleation to occur. 

 Heterogeneities within obsidian cores are often annealed out by superliquidus treatment 

(i.e., heating the experiment to >150-200°C above the intended experimental temperature) prior 

to holding the experiment at starting conditions (e.g., Mangan and Sisson, 2000; Iacono 

Marziano et al., 2007; Cichy et al., 2011). However, this superliquidus treatment is likely altering 

the silicate melt structure and influencing the results of subsequent nucleation studies (Shea, 

2017). The fact that superliquidus treatment changes melt structure is most evident in crystal 

nucleation experimental studies (e.g., Walker et al., 1978; Donaldson, 1979; Sato, 1995; Pupier 

et al., 2008; Leonhardi et al., 2015). A relationship between duration of superliquidus treatment 

and bubble nucleation behavior was noted by Gardner et al. (1999), though no detailed studies 

have been conducted to date.   
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3.5.3 Nucleation style and requirements for accurate decompression rate retrieval 

 The power of experimental studies is that many of the parameters which are unknown in 

natural studies, such as decompression rate, are known and thus can be utilized to infer 

properties that otherwise require introducing simplifying assumptions, such as dominant 

nucleation style. In this study, bubble nucleation appears to be predominantly homogeneous, 

which governs the assumed surface tension for calculating decompression rate from BND and 

subsequently the PN for the inter-bubble diffusion profile. However, given the noticeable 

presence of oxides in these experiments, a researcher who had no knowledge of the 

decompression rate would be likely to choose to assume heterogeneous nucleation (e.g., Hurwitz 

and Navon, 1994; Shea, 2017). Potentially, the number density of oxides was not sufficient in 

most experiments to impact the macro-scale observed BND, and thus nucleation proceeded 

homogeneously. More work is thus needed to quantify the number density of titanomagnetite 

crystals required to push nucleation into the heterogeneous regime, as well as relative timing of 

titanomagnetite and bubble formation during eruptions (e.g., McCartney et al., 2020). Recent 

work from Burgisser et al. (2020) shows that  the critical threshold of titanomagnetite number 

density needed to impact bubble nucleation must be >1011 m-3 for slow ascent (0.005 m/s), and 

this critical threshold is greater for faster ascent rates. Resolving these questions will provide 

guidance for future researchers that employ these decompression rate meters, and provide critical 

constraints on style of bubble nucleation that can drastically change the calculated 

decompression rate (Fig. 3.5). 

3.5.4 Implications for disequilibrium degassing mechanisms 

 One of the fundamental questions leftover from Chapter 2 is how the water concentration 

changes in the melt during disequilibrium degassing. These experiments have very likely 
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experienced disequilibrium degassing, so the inter-bubble profiles can be leveraged, along with 

the disequilibrium degassing code developed in Chapter 2, to investigate the disequilibrium 

degassing pathway in these experiments. For this test, rather than solving for the best-fit 

decompression rate, instead the profile was fit to find the best-fit “catch-up exponent” in Eq. 2.4. 

The forced fit of the equilibrium water value at the two edges of each profile was removed for 

this test, and nucleation pressure was assumed to be the same as calculated previously (PN = 67 

MPa).  

  The best-fit catch-up exponent increases as decompression rate increases, for the three 

decompression rates tested (Fig. 3.7). This contrasts with how the catch-up exponent was treated 

in the Chapter 2 modeling, where the exponent was assumed to be constant across all 

decompression rates. Additionally, the values of the exponent (0.036 – 0.184) are all greater than 

the exponent values tested, even the variable exponent results presented in Appendix A (Fig. A-

S3). Assuming that water re-equilibration does follow an exponential decay pattern, these results 

imply that the kinetics of water exsolution during disequilibrium degassing is sensitive to 

decompression rate, with faster exsolution at faster decompression rate. This presents an 

interesting future avenue of additional exploration. More experiments with different quench 

pressures would be useful to also investigate whether the catch-up exponent changes with 

 

Figure 3.7. Inter-bubble profile fitting results when accounting for disequilibrium conditions. The best-fit exponent 
to Eq. 2.4 increases with increasing decompression rate. Fitting profiles shown are ±0.005 from the best-fit 
value.  
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pressure, even at the same decompression rate. Potentially, experiments of this nature could be 

used to construct a whole disequilibrium degassing relationship for this composition, as a 

function of decompression rate and pressure. This is a relationship that is currently lacking in the 

literature, with just one example at the time of writing this dissertation (Gonnermann and Manga, 

2005). 

3.5.5 Additional experimental needs 

 These experiments represent the first attempt to utilize coordinated decompression rate 

meters with the same experimental charge. In general, both decompression rate meters are able to 

retrieve similar decompression rates that are within one order of magnitude of the known 

imposed decompression rate, given several assumptions associated with bubble nucleation 

mechanism. The next steps are to conduct similar decompression experiments but with variable 

decompression rates. Logically, the next step to advance our understanding would be non-linear 

decompression, with an initial slow decompression that becomes faster to match the typical 

variation inferred for eruptions (e.g., Gonnermann and Manga, 2007; Su and Huber, 2017). This 

requires some refinement of the experimental technique presented in this study, though. For 

instance, a method to overcome the extreme growth of the hydration bubbles at quench pressures 

<50 MPa is needed, as variable decompression rate would need to go to lower pressures to 

produce meaningful differences in decompression timescale. Additionally, lower quench 

pressures would assess the impact of a late-stage bubble nucleation event better (e.g., Mangan 

and Sisson, 2000) on recorded BNDs. 

3.6 Conclusions 

 Magma decompression rate is a non-linear parameter over the duration of ascent to the 

surface, and refined representation of eruption dynamics requires a more nuanced examination of 
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the range of decompression rates in a given eruption. Currently popular decompression rate 

meters are potentially well-suited to this task, as BND typically records the fastest part of the 

decompression, and diffusion modeling of magmatic volatiles typically records the slowest part 

of the decompression (e.g., Shea, 2017; Myers et al., 2021). This study used decompression 

experiments that were designed to utilize both decompression rate meters within the same 

experimental charge in order to provide the first comparison of these two meters, with known 

imposed decompression rates, given that the decompression rate is the same for both. My results 

indicate that both meters can retrieve similar and useful decompression rates, though BND 

results are highly sensitive to assumed nucleation style and heterogeneities within the starting 

material. Further work is needed to constrain better nucleation mechanisms in order to increase 

the resolution of the decompression rate actually retrieved by BND, as it is currently only 

consistently resolved within an order of magnitude. Diffusion modeling results are also sensitive 

to timing of bubble formation, particularly when bubble formation is late in the decompression, 

as is the case for homogeneous nucleation. Further testing of this approach should utilize non-

linear decompression rates to test whether BND truly records the faster decompression while 

diffusion modeling records the slower decompression rate. 
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Chapter 4. Evaluating Lava Flow Propagation Models with a Case Study 
from the 2018 Eruption of Kīlauea, HI 

In review as: deGraffenried, R., Hammer, J., Dietterich, H., Perroy, R., Patrick, M., & Shea, T. 
Evaluating lava flow propagation models with a case study from the 2018 eruption of Kīlauea, 
HI. Submitted to: Bulletin of Volcanology. 

4.1 Abstract 

The 2018 lower East Rift Zone (LERZ) eruption of Kīlauea, Hawai‘i provides an 

excellent natural laboratory to test models of lava flow propagation. During early stages of 

eruption crises, the most useful lava flow propagation equations utilize easily determined 

parameters and require few a priori assumptions about future behavior of the flow. Here, we 

leverage numerous observations of lava flows collected over the duration of the eruption crisis at 

Kīlauea in 2018 to test simple lava flow propagation models. These models track the 1D 

propagation of the flows according to three main rheological stopping forces: bulk viscosity, 

yield strength, and growth of a surface crust. We calculate the predicted changes in length 

through time of three 2018 flows that vary in bulk composition, crystal content, and total flow 

length. Cooler flows that were crystal-rich tended to be limited by crust strength, though early 

propagation could be controlled by bulk viscosity. We find that variations in effusion rate 

significantly impact flows that were short-lived; flows that were produced during steady-state 

effusion were readily approximated by average values for the entire flow. Thus, accurate 

knowledge of variations in effusion rate are critical to accurate lava flow propagation 

forecasting. 

4.2 Introduction 

 Lava flows are a major hazard during basaltic eruptions. Although the risk of loss of 

human life to lava inundation is typically low, particularly for well-monitored volcanoes, lava 

flows can cause major damage to buildings and infrastructure. This is exemplified by the 2018 
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eruption of Kīlauea on its lower East Rift Zone (LERZ), during which 716 structures were 

damaged, and millions of dollars were spent to rebuild highways buried by lava (Neal et al., 

2019; Houghton et al., 2021b). Therefore, it is important to understand how lava flows 

propagate, in terms of path, velocity, and length. The path is perhaps the easiest parameter to 

forecast, given topographic data of suitable resolution and accuracy as lava flows behave as 

gravity currents and follow the route of steepest descent (Favalli et al., 2005). However, the 

ability to predict flow front velocity and final length with useful accuracy for a broad range of 

conditions remains difficult (Harris et al., 2016; Dietterich et al., 2017). 

 Lava flows are complex systems that are influenced/controlled by many factors, both 

internal (e.g., viscosity) and external (e.g., substrate slope). Studies of actively flowing lava 

provide holistic views of emplacement processes, and field data comprise the gold standard for 

evaluating the efficacy of simple physical characerizations of flow dynamics. However, variables 

controlling lava flow advance tend to be correlated, making it difficult to isolate their effects. 

Understanding the influence and relative importance of individual variables is critical for hazard 

forecasting (e.g., Walker et al., 1973; Rowland and Walker, 1990; Griffiths, 2000). Thus, one 

branch of research has utilized analytical viscous flow theory (e.g., Huppert 1982a; 1982b; 

Lister, 1992; Takagi and Huppert, 2010) and lava analogs flowing in controlled experimental 

environments. For example, studies have successfully applied viscous flow equations to describe 

the balance of forces controlling flow front velocity and ultimately, flow length of polyethylene 

glycol (PEG) wax and PEG wax-solid particle slurries emplaced in both subaerial and submarine 

settings (e.g., Fink and Griffiths, 1992; Cashman et al., 2006; Kerr et al., 2006; Lyman and Kerr, 

2006). These quantitative descriptions of flow dynamics are suitably tuned to describe the 

propagation of PEG and PEG-solid particle slurry flows. However, their utility in forecasting the 
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advance rate and lengths of lava flows has not been thoroughly evaluated. One of the initial goals 

of this project was to evaluate whether wax is a suitable analog material for lava. However, we 

found this question difficult to evaluate directly as deviations in behavior could be attributed to 

either fundamental differences in the materials themselves or natural complexities that influence 

lava flows but not wax flows. For example, wax studies do not use variable effusion rate, but 

effusion rate can vary significantly during an eruption (e.g., Harris et al., 2016; Bonny and 

Wright, 2017). Instead, in this study, we evaluate sloping viscous theory as a method to calculate 

lava flow length evolution with time, considering that it adequately described wax flow 

propagation. 

 Two sets of equations that describe 1D flow propagation, or how flow length evolves 

through time, were developed by Lyman and Kerr (2006), “LK”, and Castruccio et al. (2013), 

“CEA”, using the same physical description of lava. The equation sets differ regarding the time-

dependency of input parameters and the treatment of the mass flux source. The diverse and high-

frequency observations of the early LERZ events permit quantitative comparison of these 

viscous flow models. We take a hierarchal approach to testing whether a priori knowledge of 

input parameter time-dependency is needed to recover the observed time-length data, and 

secondly, to determine the level of specificity that is needed to characterize each parameter in the 

equation sets. Our objectives are to (1) discover the extent to which these simple equations can 

be used to describe accurately lava flow propagation and (2) infer the rheologic parameters that 

dominated the propagation of select lava flows during the LERZ eruption. 

 We start by quantifying key aspects of three lava flows from the early part of the LERZ 

eruption and use these measurements to test the equation sets’ ability to match the observed flow 

length as a function of time (“time-length data”). We chose the likely volume-limited (Guest et 
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al., 1987) flows emanating from early fissure 8, fissure 17, and the fissure 20/22 complex 

because they span the full range in rheology exhibited in the 2018 sequence (Neal et al., 2019; 

Soldati et al., 2021), and they also most closely resemble the wax experiments. We approach the 

fundamental efficacy question by presuming the validity of the equation sets and back-solving 

for the variable effusion rate relationships that most closely conform to the time-length data. We 

then consider the plausibility of the resulting flux curves in the context of other observations and 

a theoretical understanding of effusive eruption dynamics. 

4.2.1 2018 Kīlauea LERZ eruption summary 

 Drawing from the eruption chronology detailed in Neal et al. (2019), the 2018 eruption 

commenced on May 3rd, after a period of precursory activity that involved overflow at two lava 

lakes, the collapse of the Puʻu ʻŌʻō cone, propagation of earthquakes downrift, and opening of 

ground cracks in the vicinity of the impending eruption. This activity was caused by 

pressurization of the magmatic plumbing system and subsequent failure of a blockage beneath 

Puʻu ʻŌʻō that allowed magma to travel farther downrift (Patrick et al., 2020; Roman et al., 

2021). During the first two weeks of the eruption, the lava that erupted was relatively viscous 

and formed pads that rarely traveled more than tens of meters from the source vents. The high 

viscosity, cooler temperatures, and evolved bulk composition, relative to lava that had been 

erupting from Puʻu ʻŌʻō, suggested that the lava that erupted during the first two weeks was 

sourced from leftover stored magma from previous LERZ eruptions (Gansecki et al., 2019). This 

phase included the first observed discharge of andesite from Kīlauea. Fissure eruption durations 

during this early phase were generally short. 

 On May 18th, a shift in the temperature and composition of the magma supplied to the 

vents changed the behavior of the lava flows and the longevity of individual fissures. Fresher, 
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hotter magma began to erupt at higher effusion rates (Gansecki et al., 2019; Dietterich et al., 

2021), which produced fast-moving lava flows that rapidly reached the coast. This phase of the 

eruption was generally dominated by fissure reactivation, though a few new fissures opened. One 

of the early vents, fissure 8 (and the cone subsequently named Ahu‘ailā‘au), reactivated on May 

27th and was the main center of eruptive activity by May 28th. This long-lived fissure fed a large, 

channelized flow that ultimately reached the ocean (Patrick et al., 2019). Most eruptive activity 

ceased on August 4th. Although not directly addressed in this paper, the LERZ eruption was 

accompanied by summit collapse events that also ceased when lava effusion ceased (Anderson et 

al., 2019). 

4.2.2 Lava flow models 

 In this study, we examine two sets of equations that describe the same analytical theory 

of three rheologic regimes as stopping forces for lava flows. These two equation sets differ in 

two ways: (1) ability to vary input parameters through time and (2) method of calculating lava 

mass flux. The three rheologic regimes we examine are limited by: viscosity, yield strength, and 

crust development.  

The first equation set, utilized by Lyman and Kerr (2006; “LK”), assumes a constant 

value for all input parameters. The three equations that govern length (L) in m vs time (t) in s for 

viscosity limited, lava yield strength limited, and crust strength limited flows are given by, 

respectively: 

𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐶𝐶1 �
𝑔𝑔𝛥𝛥𝛥𝛥𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑞𝑞2𝑡𝑡

𝜂𝜂
�

1
3

(4.1) 

𝐿𝐿𝑦𝑦𝑦𝑦 = 𝐶𝐶2
𝑞𝑞𝑞𝑞𝛥𝛥𝛥𝛥𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽

𝜎𝜎0
(4.2) 
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𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶3 �
𝑞𝑞2𝜌𝜌𝜌𝜌 sin𝛽𝛽
𝜎𝜎𝑐𝑐√𝜅𝜅𝜅𝜅

�
1
2�

(4.3) 

where g is acceleration due to gravity in m s-2, Δρ is the density difference between the lava and 

air in kg m-3, β is ground slope, q is volumetric flow rate normalized to flow width in m3 m-1 s-1, 

η is bulk viscosity in Pa s, σ0 is bulk yield strength in Pa, σc is crust yield strength in Pa, κ is 

thermal diffusivity in m2 s-1, and C1, C2, and C3 are constants. A summary of all symbols and 

their units can be found in Table 4.1. Kerr and Lyman (2007) utilized Equations 4.1 and 4.3 to 

infer material properties of the 1988-1989 Lonquimay, Chile andesite lava flow, and concluded 

that flow propagation was predominantly controlled by the crust. 

Table 4.1. Summary of variables 
Symbol Meaning Units 

L length m 
W width m 
g gravitational acceleration m s-2 
ρ lava density kg m-3 
β ground slope degrees 
q normalized volume discharge rate m3 s-1 m-1 
t time s 
η viscosity Pa s 
σ0 yield strength Pa 
σc crust yield strength Pa 
κ thermal diffusivity m2 s-1 
V volume discharge rate m3 s-1 
B empirical constant Pa 
C empirical constant K-1 
T0 liquidus temperature K 
Te eruption temperature K 
φ crystal fraction n/a 

 

In contrast, the second equation set, utilized by Castruccio et al. (2013; “CEA”) to 

describe several historic lava flows, is parameterized to allow input parameters to vary at each 
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calculation interval. These equations use the same governing physical laws as the LK 

calculations. However, Castruccio et al. (2013) used the equations to derive lava material 

properties, given knowledge of the other parameters, rather than solving for flow length given 

the knowledge of material properties. The length of the flow is computed as a summation of the 

contribution of each calculation interval. The equations that govern the three rheologic regimes 

are: 

𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐶𝐶1��
𝑉𝑉𝑖𝑖2𝜌𝜌𝜌𝜌 sin𝛽𝛽𝑖𝑖 𝑡𝑡𝑖𝑖

𝜂𝜂𝑊𝑊𝑖𝑖
2 �

1
3�𝑛𝑛

𝑖𝑖=1

(4.4) 

𝐿𝐿𝑦𝑦𝑦𝑦 = 𝐶𝐶2��
𝑉𝑉𝑖𝑖𝜌𝜌𝜌𝜌 sin𝛽𝛽𝑖𝑖
𝜎𝜎0𝑖𝑖𝑊𝑊𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

(4.5) 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶3��
𝑉𝑉𝑖𝑖2𝜌𝜌𝜌𝜌 sin𝛽𝛽𝑖𝑖
𝑊𝑊𝑖𝑖

2𝜎𝜎𝑐𝑐𝑐𝑐√𝜅𝜅𝜅𝜅
�
1
2�𝑛𝑛

𝑖𝑖=1

(4.6) 

Here, instead of a single q term, there are instead V (effusion rate in m3 s-1) and W (flow width in 

m). 

Thus, the LK and CEA equation sets incorporate a similar physical description of fluid 

flow but differ in the treatment of volume flux. This is a consequence of differing lava source 

geometries. The LK equation set was derived to describe flowing wax released all at once into a 

tank from a single slot-shaped opening. Thus, the mass flux term used in these equations 

normalizes the full volume by the width of the tank; neither flux nor supply structure can vary in 

time. In contrast, the CEA equation set treats the volume supply as incremental, potentially 

varying in time, and allows changes in flux to be accompanied by changes in flow width. Our 

adaptation of these variables for application to LERZ flows is discussed in the Methods section. 
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4.2.3 Lava Flows Selected for Study 

 We selected three lava flows that span a range of composition, particle content, and 

distance traveled (Fig. 4.1). Here, we use the term “particle” to indicate both bubbles and 

crystals. The early fissure 8 (EF8) flow, from the first sluggish phase of the eruption (phase 1; 

~4-5 wt. % MgO), is a crystal-rich lava with a relatively evolved liquid (Gansecki et al., 2019). 

We note that we use the qualifying term “early” on this flow to differentiate it from the 

 

Figure 4.1. Map of the three studied flows and associated samples used for textural analysis. The black and 
white area is the extent of the thermal map (see “Data Sources”). Temperature in the thermal image is displayed 
as gray-scale values, with the brightest pixels indicating the hottest areas. The base is a copyrighted color 
satellite image (used with permission) provided by DigitalGlobe. Flow outlines represent the final extent 
considered for each flow, and blue dots are the collection locations of each sample. Our use of the shorter length 
for F17 is described in the “Key flow attributes” section. The base thermal image is of the lava flow field as of 
May 21, 2018. The outline for EF8 is from May 7, the outline for F17 is from May 15, and the outline for F20/22 is 
May 21. Red box on the inset map of the Island of Hawai‘i shows the extent of the map. 
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voluminous flow produced when the fissure reactivated (phase 3; >6 wt. % MgO). The fissure 17 

(F17) flow is the most viscous due to its evolved composition (<4 wt. % MgO) and crystallinity 

(Gansecki et al., 2019). The final flow is from the flow field produced by fissures 20 and 22 

(F20/22) during a transitional period of increasing effusion rate and magma temperature (phase 

2; 4.5-6 wt. % MgO). We treat these fissures as one system because there was significant overlap 

between the flows produced by these fissures, and it is difficult to determine the contributions of 

each fissure to the flow. This flow field, sourced from fresh magma supplied ~2 weeks after the 

eruption started, is crystal-poor and lowest in viscosity of the three flows (Gansecki et al., 2019). 

Note that we conclude our calculations of F20/22 propagation once it reaches the ocean, rather 

than when propagation ceases.  

4.3 Methods 

4.3.1 Data sources 

 Imagery of the flows comes from three sources: (1) still-shots captured from a helicopter 

(2) composite ortho-rectified images, ‘orthomosaics’, assembled from drone overflight imagery 

and (3) thermal orthomosaics from helicopter overflight imagery. The drone imagery was 

captured and processed following Turner et al. (2017). The thermal imagery was captured and 

processed following Patrick et al. (2017). Although the thermal imagery contains information on 

temperature variations within the flow, this information was only used qualitatively to identify 

flow features. Absolute temperature of each flow was obtained petrologically, discussed below. 

 Samples were collected both syn- and post-eruption (Fig. 4.1). All samples for EF8 were 

collected during emplacement, and additional samples are not available; the flow was buried 

entirely by the reactivated fissure 8 flow. Only a medial sample was used for F20/22 as the 

proximal and distal samples were unsuitable to characterize the lava flow. The proximal samples 
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available were scoriaceous, and thus only representative of fragmented material, particularly 

with respect to the relative proportion of vesicles. Distal samples were overprinted by lava-water 

interactions at the ocean entry, and samples could have come from any of the three adjacent 

flows that entered the ocean at close proximity. Syn-eruptive quenched samples were collected 

by the USGS. Post-eruptive samples were collected during a helicopter field campaign, and the 

collected samples were chosen to be the glassiest available. Glassier samples are more 

representative of the crystallinity of the flow during emplacement and are less influenced by 

groundmass crystallization once the flow halts and cools. 

4.3.2 Macro-scale feature characterization 

 The still-shots were collected at oblique angles to the ground surface, so the images were 

corrected for look angle by georeferencing using QGIS (version 3.4.5). Reported error in flow 

front location is the maximum error in the final georeferenced image location (Appendix B). 

 A primary vent location for measurements of flow length was selected for each flow on 

the basis of constant effusion and centralized location to flow propagation (Fig. 4.2). All 

subsequent measurements of flow length were conducted relative to that point, following the 

flow route as discerned by flow features, such as channels, rather than straight-line distances to 

the flow front. Flow width measurements were made as close to the active flow front as possible, 

but where the width is not changing rapidly. The ground slope between images was also 

calculated along the flow path, using the USGS National Elevation Dataset 1983 10 m DEM. 

 Total flow volumes were also calculated from aerial imagery. Surface area of the flow 

was measured in QGIS then multiplied by average flow thickness (Tables 4.3-4.5). Average flow 

thickness was determined from field measurements and a digital surface model of the F17 flow 

constructed from drone imagery (Fig. A-S2). Volume was corrected for vesicularity by 
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approximating 25 vol. % vesicularity across all three flows, as an intermediate value between all 

flows (Table 4.2), such that all volumes are dense rock equivalent (DRE) volumes. Mean output  

Table 4.2. Microfeatures of the three flows 
Flow EF8c F17d F20/22e 
SiO2 51.57 56.94 52.08 
TiO2 4.26 3.18 3.94 
Al2O3 12.77 12.25 12.73 
FeO* 13.46 12.26 13.55 
MnO 0.19 0.2 0.2 
MgO 4.56 2.79 4.81 
CaO 8.71 6.74 9.04 
Na2O 2.98 3.33 2.79 
K2O 0.97 1.61 0.8 
P2O5 0.56 0.81 0.41 
SO3 0.03 0.05 0.05 
Cl 0.01 0.04 0.01 

Total 100.08 100.22 100.41 
Temperature (°C)a 1117 1071 1121 

Melt Viscosity (Pa s)b  791 8031 657 
Melt Density (kg/m3)f 2726 2657 2724 

Initial Crystal Content (vol. %) 26.5 24.1 8.3 

Initial Vesicle Content (vol. %) 2.8 11.0 53.0 

Initial Crystal Aspect Ratio 2.6 2.1 2.9 

Final Crystal Content (vol. %) 80.1 45.6 8.3 

Final Vesicle Content (vol. %) 3.8 1.1 53.0 

Final Crystal Aspect Ratio 1.9 2.1 2.9 
aTemperature calculated using Beattie (1993) 
bViscosity calculated using Giordano et al. (2008), assuming 0.2 wt. % 
water 
cSamples used are: KE62-3231 for composition and temperature, KE62-
3228-1A for initial crystal content, and kil2018_F8s4 for final crystal 
content 
dSamples used are: KE62-3261 for composition and temperature, KE62-
3252 for initial crystal content, and KE62-3345 for final crystal content 

eSamples used are: KE62-3244 for composition and temperature, KE62-
3340 for initial crystal content, and KE62-3334 for final crystal content 
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rate (Harris et al., 2007) was calculated by dividing the DRE volume by the time at which the 

measured length vs time curve flattened, indicating no additional flow propagation (Fig. 4.3). 

Without more robust estimates of effusion rate variations in time for the flows of interest, we  

choose to use this estimation of average effusion rate for our modeling as it requires the fewest 

assumptions. 

 

Figure 4.2. Example of flow outline and its evolution during the early fissure 8 flow. Colored outlines indicate the 
shape of the flow at a given time (HST), and the blue lines indicate the flow width at the time next to the line. The 
line labeled “Flow Length” shows the measured path of flow length over the duration of the flow, following the 
observed flow paths in the studied imagery. Light blue arrows point to rapidly advancing lobes that are explained 
in the Discussion section. The base thermal image is from May 7. 
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4.3.3 Micro-scale feature characterization 

 Back-scattered electron (BSE) images were collected from thin sections of each sample 

using the JEOL Hyperprobe JXA-8500F electron microprobe located at the University of 

Hawai‘i at Mānoa (Fig. 4.4). Image collection at variable magnifications followed the 

methodology in Shea et al. (2010). Glasses were analyzed by wavelength-dispersive 

spectroscopy on the same instrument, with an accelerating voltage of 15 keV, a current of 10 nA, 

and spot size of 10 μm. Time-dependent intensity corrections were applied for Na when 

 

Figure 4.3. Plot of flow length versus time data for each flow. Error bars for flow front location are smaller than 
the symbols (Appendix B). The lines extend from the final point for EF8 and F17 to indicate that the flow may 
have continued expanding slightly for a time, but the main propagation was finished at the time of the last plotted 
point. In contrast, the F20/22 line is truncated at the last point to indicate the ocean entry and cessation of flow 
propagation over land. Although not explicitly plotted here, all flow lines could be extended to intersect zero 
length at the start of the flow propagation. 
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necessary. Two basaltic glass standards, VG2 and A99, were measured as unknowns during 

analysis to check for accuracy and evaluate drift.  

 BSE images were subsequently processed in Adobe Photoshop and imported to NIH 

ImageJ to measure the area and aspect ratio of particles. Only particles >5 pixels in area were 

included in measurements. These measurements were conducted separately; the area 

measurement included all particles in the image, whereas the aspect ratio measurement excluded 

crystals touching the edge of the image (Hammer et al., 1999; Muir et al., 2012). Vesicles were 

all approximated as spheres, so their aspect ratios were not measured. 

4.3.4 Modeling 

 Our modeling used a two-pronged approach, with each prong corresponding to the 

equations from either the LK or CEA equation set (Figure 5). As a subset within each prong, 

 

Figure 4.4. Representative back-scattered electron images from the five samples used to measure flow 
microtexture. The scale bar in all of the images is 100 μm. Distances (proximal, medial, and distal) refer to 
relative distances from the vent. Although the absolute grayscale values are different between the images, the 
relative grayscale of the different phases is the same. Ol = olivine, Pg = plagioclase, Px = pyroxene 
(orthopyroxene and clinopyroxene were not differentiated), V = vesicle, and G = glass. 
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particles were treated with differing levels of complexity, with respect to assumed shape (e.g., 

spherical vs. parallelepiped) and particle types (e.g., crystals and/or vesicles) incorporated into 

 

Figure 4.5. Flow chart illustrating the calculation approach in this study. Schematic flows in the “Stopping Force” 
column represent the forces stopping the flows (after Castruccio et al., 2013). The schematic BSE images in the 
“Simplification to Particle Inclusion” column shows the treatment of particles for each calculation type, and it is 
the same between both the LK and CEA calculations. Abbreviations next to each terminus indicate the scenario, 
and are used later in the text. Dashed line and stars indicate the paths used for calculations associated with 
variable effusion rate in the Discussion section. 
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the calculations (Figure 5). We use the term “scenario” to refer to a specific calculation branch, 

whereas “model” refers to the process of calculating the length vs. time curves. Measurements 

from the BSE images informed our characterization of particle abundance and crystal shape. 

 Glass composition was used to calculate initial liquid viscosity (Giordano et al., 2008), 

liquid density (Iacovino and Till, 2019), and eruption temperature (Beattie, 1993) (Table 4.2). 

Water content for viscosity and density was assumed to be 0.2 wt. %, though this is likely a 

slight overestimation based on typical Hawaiian basalt lava flow water contents of ~0.1 wt. % 

(Seaman et al., 2004). However, volatile contents from erupted products at Kīlauea have been as 

high as 0.3 wt. % (Ferguson et al., 2016); thus, our melt viscosity values are likely an 

underestimation, but the difference in melt viscosity between 0.1 and 0.2 wt. % water is less than 

a factor of two. We treat the flows as isothermal and do not consider any changes to the 

dissolved volatile content during propagation, so any changes to the material properties of the 

lava are a function of particle content. Relative viscosity incorporating solid particles was 

calculated using the model of Costa et al. (2009), using fit parameters from Cimarelli et al. 

(2011) that most closely matched the measured crystal aspect ratios as well as the spherical 

particles. Calculated capillary numbers for our samples are <0.1, so we incorporate bubbles into 

our calculations, where appropriate, as solid spherical particles (Mader et al., 2013; Appendix B). 

  Effusion rate for the CEA equations was maintained as a volume per unit time 

parameter. However, mass flux was treated differently for the LK equations. Instead of separate 

volume and width terms, the LK equations use the volumetric flow rate normalized to a constant 

width (i.e., the flume width in the experiments; “q” of Lyman and Kerr, 2006). The analogous 

physical parameter in the natural setting is the length of the fissure. Thus, q is calculated as the V 

term in the CEA equations divided by the fissure’s length, as measured in aerial photos. 
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Treatment of F17 introduces additional complexities. The fissure increased in length for several 

hours after the  initial opening and was heterogeneous in terms of eruption style; fountaining 

occurred at one end and Strombolian explosions at the other. In principle, it is possible to 

discretize the fissure into small segments and then estimate the contributions to the flow from 

each segment. However, determining productive/unproductive segments of the fissure is 

unnecessarily complex, yielding little difference in calculated final length. Specifically, it 

increases the number of sources of uncertainty and would be impractical to execute during a 

crisis. We adopt the fissure’s full length as the reference length, noting that this assumption 

decreases q, which produces a shorter calculated final flow length. Final length in the context of 

our modeling refers to the predicted flow length at the time we consider as the “end” of a given 

flow. 

 Yield strength of natural silicate melts remains poorly constrained, with measurements 

ranging from 101 Pa (Robert et al., 2014) to 104 Pa (Fink and Zimbelman, 1990) for basalts; we 

follow the approximation that incorporates both temperature and crystallinity employed by an 

existing lava flow propagation model, FLOWGO (Harris and Rowland, 2012). The yield strength 

of the basaltic liquid is approximated as a function of eruption temperature relative to the 

liquidus, and crystals can be incorporated by adding a term that accounts for their effect of 

increasing yield strength with increasing abundance (Dragoni, 1989; Pinkerton and Stevenson, 

1992): 

𝜎𝜎0 = 𝐵𝐵�𝑒𝑒𝐶𝐶(𝑇𝑇0−𝑇𝑇𝑒𝑒) − 1� + [6500𝜑𝜑2.85] (4.7) 

Here, B and C are empirical constants of 0.01 and 0.08, respectively, T0 is liquidus temperature, 

Te is eruption temperature, and φ is crystal fraction. This equation assumes all crystals are 1 mm 

long on their longest axis and have tabular shapes with axis length ratios of 10:5:1. This 
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approximation likely overestimates the impact of crystals on yield strength for our samples as 

most crystals were <1 mm. However, a more accurate 3D determination of crystal size 

distribution and aspect ratio would be a time-consuming exercise in the context of an emergency 

response effort. In our case, the overestimation of yield strength by approximating the crystals as 

1 mm could be by as much as an order of magnitude (Pinkerton and Stevenson, 1992), but as 

seen in our modeling results, even the maximum possible value of yield strength does not impact 

flow propagation in most cases. 

 The effective strength of the crust can be estimated, to an order of magnitude, from the 

flow width using the empirical equation of Kerr et al. (2006): 

𝜎𝜎𝑐𝑐~
1
𝑊𝑊
�
(𝑔𝑔∆𝜌𝜌)5(cos𝛽𝛽)5𝑉𝑉7𝜂𝜂3

𝜅𝜅4
�
1 8⁄

(4.8) 

The mass flux (V) used for this calculation is the mean output rate for each flow.  

4.4 Results  

4.4.1 Key flow attributes 

 The initial opening of EF8 occurred on May 5, and lava began erupting from the 

fissure at ~21:00 HST (Houghton et al., 2021a). The flow ceased moving by 11:30 HST on May 

7 after achieving a final length of 1230 m (Table 4.3).  

F17 began erupting on May 13 at 4:30 HST (HVO Staff, 2018). Although the fissure kept 

erupting for over a week, we consider the flow to have finished its initial advance by 6:45 HST 

on May 15. After this time, the fissure was weakly fountaining, and any additional lengthening 

of the flow occurred as localized “ooze-outs” around the edge of the flow. On May 18, when 

fresh magma reached the LERZ system (Gansecki et al., 2019), there was a noticeable increase 

in fountain height and thus volumetric output of lava, and lava extruded from the edges of the 
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Table 4.3. Physical measurements for early fissure 8 flow 
Fissure Start Time: 5/5, 21:00 HST; Flow Start Coordinate 299665E, 2153040.1N 

Image Type Date Time 
(HST) 

Time After 
Fissure 
Start (s) 

Flow 
Length (m) 

Flow Width 
(m) 

Flow Front 
Velocity (m s-1) 

Ground 
Slope 

(degrees) 

Crust Yield 
Strength (x105 

Pa) 
Still Shot 6-May 5:56 32160 330 114 0.010 0.9 2.8 
Still Shot 6-May 6:00 32400 346 115 0.068 2.4 2.8 
Still Shot 6-May 6:05 32700 356 116 0.032 2.8 2.8 

Drone Image 6-May 13:30 59400 870 112 0.019 0.8 2.9 
Thermal Image 6-May 14:30 63000 931 185 0.017 1.1 1.7 
Thermal Image 7-May 11:30 138600 1228 107 0.004 1.9 3.0 
Thermal Image 9-May 17:30 333000 1228 107 0.000 0.0 3.0 

Other physical parameters 

 

Fissure 
Length 

(m) 

Flow 
Thickness 

(m) 

Flow Area 
(m2) 

DRE Flow 
Volume 

(x105 m3) 
q (m3 m-1 s-1) Q (m3 s-1) 

  
  117 2 ±2 343375 5.15 - 10.30 0.0318 3.7162     
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Table 4.4. Physical measurements for fissure 17 flow 
Fissure Start Time: 5/13, 04:30 HST; Flow Start Coordinate: 303363.8E, 2155371N 

Image Type Date Time (HST) 
Time After 

Fissure Start 
(s) 

Flow 
Length 

(m) 

Flow 
Width 

(m) 

Flow 
Front 

Velocity 
(m s-1) 

Ground 
Slope 

(degrees) 

Crust Yield 
Strength (x105 

Pa) 

Still Shot 13-May 5:57 5220 44.2 57.1 0.008 2.9 39.7 
Still Shot 13-May 5:59 5340 44.7 58.5 0.004 3.1 38.8 
Still Shot 13-May 6:01 5460 44.9 58.7 0.002 2.1 38.7 
Still Shot 13-May 6:02 5520 48.7 62 0.063 2.1 36.6 

Drone Orthomosaic 13-May 12:14 27840 171.5 306.4 0.006 2.1 7.4 
Drone Orthomosaic 13-May 12:58 30480 182.2 363.3 0.004 2.1 6.3 
Drone Orthomosaic 13-May 13:51 33660 193.0 360.6 0.003 2.1 6.3 

Thermal Orthomosaic 13-May 16:30 43200 376.6 135.3 0.019 0.6 16.8 
Still Shot 14-May 5:48 91080 1740 151.4 0.028 2.4 15.0 
Still Shot 14-May 5:55 91500 1742 154.5 0.006 2.4 14.7 

Thermal Orthomosaic 14-May 14:30 122400 2024 121.1 0.021 2.2 18.7 
Thermal Orthomosaic 15-May 6:45 180900 2256 237.6 0.004 1.3 9.6 
Thermal Orthomosaic 22-May 6:45 785700 2337 n.m.a n.m. n.m. n.m. 
Other physical parameters 

 

Fissure 
Length (m) 

Flow 
Thickness 

(m) 

Flow Area 
(m2) 

DRE Flow 
Volume 

(x106 m3) 

q (m3 m-1 
s-1) Q (m3 s-1) 

  
  491 6 ±4 528144 2.38 - 3.96 0.0267 13.1379     
an.m. - not measured 
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Table 4.5. Physical measurements for fissure 20/22 complex flow 
Fissure Start Time: 5/19, 00:00; Flow Start Coordinate: 302088.46E, 2154419.36N 

Image Type Date Time 
(HST) 

Time 
After 

Fissure 
Start (s) 

Flow Length 
(m) 

Flow 
Width 

(m) 

Flow 
Front 

Velocity 
(m s-1) 

Ground 
Slope 

(degrees) 

Crust Yield 
Strength (x105 

Pa) 

Still Shot 19-May 6:05 21900 2636 130 0.120 7.8 16.1 
Still Shot 19-May 6:07 21720 2651 141 0.122 4.3 15.0 
Still Shot 19-May 6:34 23340 2810 181 0.098 4.3 11.6 
Still Shot 19-May 6:50 24300 2834 177 0.025 4.5 11.9 

Thermal Orthomosaic 19-May 12:15 43800 3946 123 0.057 4.6 17.2 
Drone Orthomosaic 19-May 22:32 80820 5347 119 0.038 5.0 17.7 
Drone Orthomosaic 19-May 22:45 81600 5392 86 0.057 13.2 24.1 

Other physical parameters 

 

Fissure 
Length 

(m) 

Flow 
Thickness 

(m) 

Flow Area 
(m2) 

Flow 
Volume 

(x105 m3) 

q (m3 m-1 
s-1) Q (m3 s-1) 

  
  306 3 ±1 597326 34.62 - 46.12 0.1385 34.7566     
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flow at a higher rate. However, the analytical theory we are applying is relevant to initial 

propagation, rather than expansion by break-outs, so we do not model this behavior. At the end 

of the initial advance, the flow achieved a length of 2260 m; subsequent expansion increased the 

flow length to 2340 m before all activity at the fissure ceased (Table 4.4).  

 F20/22 opened at around 18:30 HST on 5/17 (C. Parcheta, pers. comm.), and the first 24 

hours or so of the fissure’s eruptive life was characterized by lava ponding near the fissure. A 

small flow propagated along the northern rampart of the fissure during the day of May 18, but 

the main, ocean-bound flows started on May 19, around 00:00 HST based on thermal satellite 

observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) and estimates of flow 

front velocity (Appendix B). Approximately 22 hours later, the eastern branch of the flow 

reached the ocean after traveling 5400 meters (Table 4.5).  

 The three selected lava flows differ with respect to SiO2 wt. %, temperature, crystal 

content, vesicularity, and average effusion rate (Tables 2-5). The F20/22 flow represents the 

most fluid and voluminous of the flows, with low SiO2 (52.1 wt. %) and crystallinity (8.3 vol. 

%), and high vesicularity (53 vol. %), temperature (1121 °C), and average effusion rate (34.8 m3 

s-1). The F17 flow is the most viscous of the flows, with high SiO2 (56.9 wt. %) and crystallinity 

(24.1-45.6 vol. %), and low vesicularity (1.1-11 vol. %) and temperature (1071 °C). The F17 

flow was longer than the EF8 flow, reflecting the higher average effusion rate (13.1 m3 s-1) and 

longer duration. The EF8 flow is less viscous than the F17 flow, due to the lower SiO2 (51.6 wt. 

%) and higher temperature (1117 °C), though the crystal content (26.5-80.1 vol. % for EF8) and 

vesicularity (2.8-3.8 vol. % for EF8) are similar. However, the low average effusion rate (3.7 m3 

s-1) and short duration ensured that the flow was relatively short. 
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4.4.2 Modeling results 

Following Lyman and Kerr (2006), the “dominant” restraining force regulating flow 

advance is that which predicts the shortest length for a given time. Changes to the flow 

properties through cooling and crust growth produce transitions in dominant restraining force 

through time and space. We present the results of first the LK equations then the CEA equations. 

Two criteria are used to assess whether a set of calculations describes a flow well: (1) whether 

the calculation matches the final flow length and (2) whether the calculation produces the 

observed time-length curve. 

4.4.2.1 Early fissure 8 

For the LK calculations, dominant restraining force is strongly dependent on whether 

particles are incorporated (Fig. 4.6; Fig. B-S3). In the crystal-free calculations, crust is the 

 

Figure 4.6. Best-fitting results for the calculations for each flow, labeled with the particle treatment. Thicker lines 
represent calculations that incorporated vesicles (BE = bubbles excluded, BI = bubbles included) into the total 
particle fraction. The final lengths of all flows are underpredicted, even for these best-fitting scenarios. 
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dominant stopping force, predicting a final length of 272 m; this greatly underpredicts the final 

flow length of 1230 m. Incorporation of particles into the calculations results in a more complex 

interplay between the different regimes, particularly when considering the inclusion/exclusion of 

bubbles as solid particles in the yield strength regime calculation. If bubbles behave as solid 

particles, then yield strength is the dominant regime for the entirety of the flow, though the final 

flow length is the same as that predicted by the crust regime (Fig. 4.6). If bubbles do not behave 

as solid particles, and thus are excluded from the calculation, then yield strength is the dominant 

regime for the first ~20 hours of the flow and then crust dictates the propagation of the final half 

of the flow (Fig. 4.6). For calculations incorporating parallelepiped crystals, viscosity controls 

flow propagation. Final flow length is predicted as 188 m, even shorter than the crust calculation. 

On the basis of overall fit, as determined by the root mean square deviation (RMSD) calculated 

at each measured point, the best fitting set of calculations is produced using the spherical 

particles assumption, but all calculations greatly underpredict final flow length (Table 4.6). None 

of the calculations generate a curve that is similar to the time-length data. 

The CEA calculation results are less dependent on particle treatment (Fig. 4.6; Fig. B-

S4). For all calculations, crust is the dominant regime and predicts a final length of 553 m. 

Although this is still an underprediction of the final flow length, it is less so than the LK model. 

Both viscosity and yield strength overpredict the final flow length, even with the incorporation of 

particles. The best fit solution is obtained from the calculations that incorporate parallelepiped 

crystals. None of the models track the flow propagation in time adequately (Table 4.6). 

4.4.2.2 Fissure 17 

The general shape of the time-length curve is sigmoidal, and the LK models do not 

replicate its shape (Fig. 4.6). However, the first 10 hours of the flow are better approximated 
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Table 4.6. Modeling results 
  Constant Effusion Rate - LK Equations 
 

Crust 
Viscosity 

 
Crystal-Free Spherical Particles Spherical Particles - 

Includes Bubbles 
Parellelepiped 

Crystals 

Fissure Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD 

EF8 272 611 3929 1270 535 502 383 574 188 670 
F17 990 702 10407 3273 1416 575 1506 541 499 934 

F20/22 3756 1764 57182 24739 51676 22002 6526 1021 50655 21494 
 Constant Effusion Rate - CEA Equations 

 
Crust 

Viscosity 

 
Crystal-Free Spherical Particles Spherical Particles - 

Includes Bubbles 
Parellelepiped 

Crystals 

Fissure Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD 

EF8 553 488 17639 7777 3261 1635 2724 1313 2037 983 
F17 888 726 20138 7766 9575 3538 7090 2249 7383 2635 

F20/22 3253 1960 89915 41533 81257 37174 5300 1353 79652 36366 
 Variable Effusion Rate - CEA Equations 

 
Crust 

Viscosity Yield Strength 

 
Spherical Particles Spherical Particles - 

Includes Bubbles Spherical Particles Spherical Particles - 
Includes Bubbles 

Fissure Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD 

EF8 1221 27 6594 3917 5429 3182 8984 5235 7319 4074 
F17 2272 88 18322 7691 13516 5274 130140 65388 75294 35894 

F20/22 5154 874 110290 52000 7194 818 22113000 11705844 77049 37016 
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Table 4.6. Continued 
  Constant Effusion Rate - LK Equations 
 Yield Strength 

 Crystal-Free Spherical Particles Spherical Particles - 
Includes Bubbles 

Parellelepiped 
Crystals 

Fissure Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD Final 

Length (m) RMSD 

EF8 1157100 588232 323 604 272 628 323 604 
F17 373030 155478 13773 4683 8847 2621 13773 4683 

F20/22 183730000 91423813 7082800 3520813 24679 8596 7082800 3520813 
Constant Effusion Rate - CEA Equations 
 Yield Strength 

 
Crystal-Free Spherical Particles Spherical Particles - 

Includes Bubbles 
Parellelepiped 

Crystals 

Fissure Final 
Length (m) RMSD Final 

Length (m) RMSD Final 
Length (m) RMSD Final 

Length (m) RMSD 

EF8 10465000 4664615 3679 1645 2991 1161 3679 1645 
F17 1040600 489569 50572 27732 26972 12733 50572 27732 

F20/22 362590000 190944284 13978000 7357286 48704 21868 13978000 7357286 
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 (Fig. 4.6; Fig. B-S3). The dominant regime is dependent on the method of particle incorporation 

into the calculations. For the particle-free calculations, the dominant regime for the total duration 

of the flow is the crust regime, with a predicted final flow length of 990 m. This underpredicts 

the true final flow length of 2260 m. Once particles are incorporated, viscosity becomes the 

limiting factor, with the relative dominance of the regime determined by particle shape (i.e., 

spherical vs parallelepiped). For spherical particles, viscosity-limited flow is the dominant 

regime for the first ~12 hours and then crust becomes the limiting regime (Fig. 4.6). Viscous 

flow incorporating spherical particles also is the closest visual fit to the initial propagation of the 

F17 flow. However, there is little difference between bubble-bearing calculations and crystal-

only calculations. Once parallelepiped crystals are incorporated, viscous flow is the dominant 

regime for the duration of the flow. This regime even further underpredicts final flow length, 

with a final length of 499 m (Table 4.6). Regardless of particle incorporation, yield strength 

calculations greatly overpredict flow length, though the fit is improved by increasing complexity 

of crystal shape (Table 4.6). 

With the CEA model, the dominant regime across all times and crystal shapes is the crust 

regime with a final flow length of 888 meters (Fig. 4.6; Fig. B-S4). Like the LK calculations, the 

initial propagation of the flow is modeled reasonably well, though the rapid increase in length 

that started ~10 hours after the flow initiates is not replicated. Regardless of particle shape, both 

yield strength and viscosity regimes greatly overpredict flow length (Table 4.6). 

4.4.2.3 Fissure 20/22 

Because the physical properties (e.g., flow width, ground slope) of the fissure 20/22 flow 

did not vary greatly through time or space, the LK and CEA results are very similar (Fig. 4.6; 

Figs. S3-S4). For both equation sets, crust strength is predicted to be the dominant regime for the 
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whole flow in all scenarios, except for calculations that incorporate bubbles as spherical 

particles. The final length for the LK crust calculation is 3756 m, and the final length for the 

CEA crust calculation is 3253 m; both are significant underpredictions of the measured flow 

length of 5400 m (Table 4.6). 

Including bubbles into the spherical particle calculations produces curves that predict the 

initial ~5 hours of the flow is dominated by viscous flow then switches over to a crust-dominated 

flow regime. The viscous flow regime calculation produces a final flow length within 100 m of 

the measured value (5300 m vs 5400 m) for the CEA calculations, though flow propagation is 

generally underestimated. For the LK calculations, flow propagation is visually well modeled 

until the inflection point in the time-length data at ~17 hours. The final flow length is 

overestimated in the LK viscous flow regime at 6526 m (Table 4.6). 

4.5 Discussion 

 Although our modeling of flow propagation does not describe the lava flows from EF8 

and F17 adequately, general trends in dominant regimes based on composition and crystallinity 

are comparable to previous studies (Kerr and Lyman, 2007; Castruccio et al., 2013). The poor fit 

for the EF8 and F17 flows likely stems from the fact that effusion rate and even vent location 

was not constant during these flows, yet we treated them as such. Previous work highlights the 

significant impact of effusion rate on lava flow propagation (e.g., Walker et al., 1973; Harris et 

al., 2007; Tarquini and de’ Michieli Vitturi, 2014; Harris and Rowland, 2015). Therefore, we 

explore the impact of allowing effusion rate to vary through time in additional calculations. The 

results of these additional calculations, coupled with the initial constant effusion rate 

calculations, offer insights into three-phase flow. However, the tested equation sets are not 

comprehensive in accounting for conditions in nature; many other natural complexities have a 
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demonstrated influence on lava flow propagation, such as irregular topography and surface 

roughness (Rumpf et al., 2018; Richardson and Karlstrom, 2019), interactions with trees 

(Chevrel et al., 2019; Biren et al., 2020), and natural obstacles that cause flows to branch 

(Hamilton et al., 2013; Dietterich and Cashman, 2014; Dietterich et al., 2015). Innovations in 

technology, such as unoccupied aircraft systems (UAS), can provide aid to improve observations 

of lava flows and provide constraints on important parameters, such as effusion rate (Patrick et 

al., 2019; Dietterich et al., 2021). 

4.5.1 Comparison with other lava flows 

 For all of the flows considered using equation sets, the crust is a dominant restraining 

force during some or all of the propagation (Fig. 4.6). The flows from EF8 and F17 are also 

predicted to have early stages dictated by viscosity or yield strength when using the LK equation 

set. However, as our model of yield strength is likely an overestimate, it is more likely that 

viscosity plays the dominant role in the early propagation of EF8. For the F20/22 flow, both the 

CEA and LK equation sets predict that the early part of flow propagation is dominated by 

bubble-bearing viscosity which then transitions to crust-limited. 

 The dominance of crust in determining flow propagation for the more evolved lavas 

erupted from EF8 and F17 is consistent with results from Kerr and Lyman (2007) and Castruccio 

et al. (2013). Both Kerr and Lyman (2007) and Castruccio et al. (2013) find that the propagation 

of the andesitic lava flow from Lonquimay in 1988-1989 is fit best by crust strength as the 

dominant restraining force. Additionally, Castruccio et al. (2013) finds that the more crystal-rich 

basaltic flows from Etna, Italy in 2001 and 2006 are fit best by an initial phase in which bulk 

viscosity restrains the flow that later transitions to a phase in which crust strength restrains the 

flow. Both of these cases (Lonquimay and Etna) are most analogous to the EF8 and F17 flows, 
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and we note similar restraining forces inferred for these flows, although the flow propagation 

itself was not well-fit with our modeling conditions. 

 Best modeling results were achieved with the flow from F20/22. Although the interplay 

of forces predicts that crust determines the final flow length, the data were reasonably well-fit by 

the viscosity-limited regime that includes bubbles for both LK and CEA calculations. This is 

consistent with results from Castruccio et al. (2013). They find that basaltic flows with high 

effusion rate and low crystal content from Puʻu ʻŌʻō (episodes 11 and 17) are fit well by 

viscosity-limited flow. 

4.5.2 Influence of time-variable effusion rate 

If we assume that the equations themselves adequately describe the physics of lava flow 

propagation, then the general misfit of the earlier modeling must be attributed to our treatment of 

effusion rate or to limiting assumptions for the source parameters. To test whether varying 

effusion rate could improve the fit of the initial calculations, we back-solved iteratively for 

instantaneous discharge rate curves (Harris et al., 2007) that adequately fit the time-length data. 

The plausibility of the derived effusion rate curves was evaluated by comparison with qualitative 

observations of the imagery and similarity to previously observed patterns of effusion rate 

through time (Wadge, 1981; Bonny and Wright, 2017). Changes in effusion rate with time often 

 

Figure 4.7. Variable effusion rate curves constructed for each flow. The criteria used to construct these curves 
are based on qualitative observations of the flows and described in detail in Appendix B. These relationships 
were subsequently used to calculate length versus time relationships for each flow. 
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reflect changes to magma supply at depth and pressure changes within the magma reservoir 

(Wadge, 1981; Anderson and Poland, 2016; Bonny and Wright, 2017). This “Wadge-type” 

effusion rate curve (i.e., rapid initial increase to a maximum, then subsequent exponential 

decrease) was used for the EF8 and F17 flows as it reflects the proposed mechanism during 

phase 1 of the eruption of ejecting magma from pressurized pockets (Gansecki et al., 2019), and 

pressure within the magma pocket decreasing as the supply is erupted (Wadge, 1981; Harris et 

al., 2000). Many eruptions exhibit more complex patterns in effusion rate (Bonny and Wright, 

2017), but this idealized pattern requires the fewest assumptions while still fitting the data. 

Potentially, the F20/22 overall effusion pattern follows a similar trend, but for the window of 

time we consider, the best fit to the data is achieved through an essentially constant effusion rate. 

The effusion rate trends are generally within previously estimated values for the different 

eruption phases, with phase 1 effusion rates ~3-6 m3/s increasing to ~65 m3/s during phase 2 

(Plank et al., 2021; Dietterich et al., 2021). It is important to note that these studies collected total 

rates are for all active fissures, and the temporal resolution is lower than what we are trying to 

resolve. 

For this test, the best-fitting scenarios from the initial calculations were used to calculate 

length versus time. Insufficient data are available to create robust effusion rate curves with time. 

However, there are qualitative differences in effusion rate, both variance through time and total 

output, apparent from the images (Appendix B). Incorporating these curves (Fig. 4.7) into the 

model calculations produced qualitatively good fits to the time-length data. 

The Wadge-type effusion rate curve was able to produce the sigmoidal shape of the time-

length curves for the EF8 and F17 flows that the constant effusion rate was unable to replicate 

(Fig. 4.8). However, only the crust regime is capable of fitting the data. With the additional flux 
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at earlier times in the flows’ propagations as compared to the constant effusion rate case, the 

viscosity and yield strength regimes greatly overpredict flow length. The calculations for F20/22 

deviated slightly from the calculations for EF8 and F17 due to the relative fit produced by 

incorporating bubbles into the viscous flow regime in the initial calculations. We find that the 

first ~10 hours of the F20/22 flow are predicted to be dominated by viscous flow, and the rest of 

the flow propagation is dominated by the crust. The slight decrease in effusion rate is needed to 

replicate the inflection point in the slope of the data at ~17 hours. 

 Although we find that incorporating a variable effusion rate improves the modeling 

results, this approach requires the inherent assumption that the equations themselves were 

adequate to describe the flows, an assumption we were unable to test without better estimates of 

effusion rate variations. Most importantly for hazard management, a constant effusion rate 

simplification tended to produce an underestimate of flow length. For flows from Mauna Loa, 

Rowland et al. (2005) find that using double the average effusion rate, or half the initial effusion 

rate for cases that start with very high effusion, produces good fits to length data. However, this 

was tested on longer-lived effusion than either EF8 or F17, so this approximation would be more 

 

Figure 4.8. Calculated length vs time curves for each flow using the variable effusion rate relationships displayed 
in Fig. 4.7. Abbreviations next to each curve indicate the scenario in Fig. 4.5 used to calculate the line. Note that 
the conditions used for F20/22 are slightly different than those used for EF8 and F17 Variable effusion rate is 
able to reproduce the sigmoidal shape of the measured data. 
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relevant for the F20/22 case. Measurements of changing effusion rate during an eruption are 

needed for truly reliable flow propagation models for short-lived effusion. 

4.5.3 Implications for controls on three-phase flow propagation 

 Our calculations demonstrate that incorporation of vesicles into viscosity calculations can 

improve model fits. The F20/22 flow was best fit by those viscosity-limited equations, both LK 

and CEA, that incorporate vesicles as solid spheres (Fig. 4.6). Even the early propagation of the 

F17 flow was fit well visually by the LK equations using a constant effusion rate and including 

vesicles in the viscous flow calculation. Considering the vesicles in these lavas are relatively 

spherical (Fig. 4.5), this observation is consistent with previous studies of vesicle impacts on 

lava viscosity (e.g., Manga et al., 1998; Rust and Manga, 2002; Soldati et al., 2020). 

 For the LK calculations with constant effusion rate, we find that treating the average 

crystal content as spheres produces the best results. Incorporating the parallelepiped shape of the 

crystals overestimates their impact on both the EF8 and F17 flows, with viscous-limited flow 

calculations predicting a much shorter flow length than was measured at each time point. For 

these crystal-rich flows, the combination of higher crystal content at early stages of the flow 

imposed by using the average crystal content and the greater impact of elongate particles on 

viscosity (Mueller et al., 2011) creates a serious overestimation of viscosity. However, the lesser 

impact of spherical particles (Mueller et al., 2011) balances out the higher crystal content. 

4.5.4 Simple versus complex models: conditions for usage 

 The complexity of calculation needed to reproduce accurately the measured time-length 

curves varies based on the state of the fissure itself during the window of time modeled. The 

timing of both flows from EF8 and F17 includes both the waxing and waning of effusion rate. 

Conversely, the flow emanating from F20/22 was active during a period of quasi-stability. The 
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flow did not begin until after the fissure had been active for >24 hours, and the window of time 

that we are considering in our modeling does not include the effusion waning phase. Thus, the 

studied time interval for the F20/22 flow was within a period of relatively stable lava effusion, 

whereas the EF8 and F17 flows were active within a period of significant variation in lava 

effusion at short-lived fissures (Neal et al., 2019; Houghton et al., 2021a). We conclude that  

 simplified models and average input values work well during periods of steady-state effusion, 

but tend to underestimate flow advance rate if effusion rate varies. 

 For crystal-rich lavas and lavas that experience significant crystallization during flow 

emplacement, using average crystal content tends to underestimate lava propagation rate, 

particularly if crystals are parallelepipeds. However, our results are somewhat complicated by 

the fact that the flows that were crystal-rich were also typically stopped by the crust (Fig. 4.6). 

The thermal history of these flows that promoted crystallization, increasing from ~25 vol. % at 

eruption to >40 vol. % at flow terminus (Table 4.2), also promoted the growth of crust, which 

ultimately impacted the flows before a significant proportion of crystals formed (Fig. 4.6). Thus, 

we cannot reliably define an optimal crystal content and crystal shape to use with our studied 

flows; however, our results indicate that modeling crystals as parallelepipeds does not produce 

any systematic improvement over treating crystals as spheres. 

4.5.5 Extrinsic effects on flow propagation 

 The implementation of the equation sets that we have studied represents a simplified 

treatment of all the possible complexities in nature. Additionally, the flows from EF8 and F17 

were essentially single lobes, though the flow from F20/22 had significant branching (Fig. 4.1). 

Underlying surface roughness (e.g., Rumpf et al., 2018), interactions with trees (e.g., Chevrel et 

al., 2019; Biren et al., 2020), and terrain that diverts lava flows (e.g., Hamilton et al., 2013; 
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Dietterich and Cashman, 2014; Dietterich et al., 2015) are all potential complexities that can 

influence lava flow propagation and branching. 

 The impact of all of these factors combined can qualitatively be seen in the outlines of the 

EF8 propagation (Fig. 4.3). While the flow was propagating in an area that had paved roads, 

offshoot lobes from the main flow traveled down the roads. Although the bulk of the flow 

propagated along the path of steepest descent through trees and homes, there was clearly a 

secondary preferential path along the paved roads. At least two of these lobes are readily 

apparent in our aerial observations (Fig. 4.3), and they correspond to when the flow encountered 

a road, even when the road is at an oblique angle to flow direction. Similar propagation patterns 

were observed during the 1973 eruption on Heimaey, Iceland (Williams and Moore, 1983). 

Smoother surfaces allow for easier flow spreading (Rumpf et al., 2018; Richardson and 

Karlstrom, 2019), so paved roads represent routes of faster flow propagation. This phenomenon 

presents a somewhat unique hazard in populated areas; these rapidly advancing lobes oblique to 

the main flow advance are a risk to people attempting to evacuate a lava inundation area. 

 The other two flows, emanating from F17 and the F20/22 complex, propagated primarily 

through sparsely inhabited, densely forested land. As demonstrated by Chevrel et al. (2019) and 

Biren et al. (2020), lava-tree interactions can enhance cooling and, if the trees are densely 

packed, lava trees can become obstacles. Their results pertain to pāhoehoe flows, however, as 

‘a‘ā flows do not typically leave behind lava trees to study. For the dense coverage of trees 

through which both these flows propagated, it is certainly possible to imagine that the base of the 

flow was influenced by the increased surface roughness imposed by bulldozed trees. This is 

coupled with the results of Rumpf et al. (2018), which indicate that rough surfaces (such as those 

produced by bulldozed trees) also enhance cooling and subsequent crystallization by increasing 
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the surface area available for conductive cooling. Rumpf et al. (2018) find a complex 

relationship between surface roughness and apparent lava viscosity, with a maximum increase in 

apparent viscosity by a factor of four. Thus, the viscosities used in our calculations may be 

underestimates as we do not account for any surface roughness. 

4.5.6 Utility of UAS for critical lava flow measurements 

 Lava flow monitoring has improved greatly in the past few years with the use of aerial 

observations to track lava flow evolution (e.g., Patrick et al., 2017; Turner et al., 2017; De Beni 

et al., 2019). UAS have gained increasing use in volcanological monitoring due to their utility for 

monitoring hazardous phenomena with exceptional resolution as compared to space-based 

observations (James et al., 2020), and without the risks and higher costs associated with piloted 

aviation. Additionally, UAS are not impacted by cloud cover, which can make satellite 

observations challenging to use. UAS were utilized to monitor the 2018 eruption with great 

success, accomplishing many tasks such as aiding ground crews, monitoring flow propagation 

direction, and conducting gas emission measurements (Zoeller et al., 2018). Although UAS were 

primarily utilized for qualitative observations in the early, chaotic phases of the eruption, the 

reactivated fissure 8 and its corresponding lava flow were observed extensively with UAS to 

determine changes in flow velocity and channel dynamics (Patrick et al., 2019; Dietterich et al., 

2021). These parameters were used to calculate effusion rate at variable time intervals to 

constrain the effusion rate variations through time (Dietterich et al., 2021). Many of the early 

qualitative UAS observations are also used now for more quantitative analysis, as in this study. 

Incorporating UAS monitoring earlier in an eruption crisis can help provide better constraints on 

effusion rate variations. As noted in our study and many others (e.g., Walker et al., 1973; Harris 

et al., 2007; Tarquini and de’ Michieli Vitturi, 2014; Harris and Rowland, 2015), constraints on 
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effusion rate are critical for accurate lava flow propagation forecasting, and UAS are the tools 

needed for future eruptive crises. Although thermal observations from UAS were not 

quantitatively used in this study, these observations would be useful for models that use 2D and 

3D characterizations of thermo-rheologic evolution of lava flows. UAS are flexible tools that can 

be used to collect many critical data streams for lava flow hazard mitigation, and should be 

deployed at the start of an eruption crisis. 

4.6 Conclusion 

 We present analyses of three lava flows from the 2018 eruption of Kīlauea and model the 

length vs. time evolution of the flows. We used two equation sets that utilize simple physics of 

three potential flow-stopping forces, viscosity, yield strength, and crust strength. Our strategy 

pursues two goals: (1) to test the versatility of simple equations to provide a useful analysis for 

future eruptive crises and (2) to infer the dominant rheological parameters for the studied flows. 

Based on the equations of Lyman and Kerr (2006) and Castruccio et al. (2013), we find that the 

simpler calculation of Lyman and Kerr (2006) is reasonably accurate for steady-state flows, such 

as the flow from F20/22. For the data that includes both the waxing and waning phases of a 

fissure, like EF8 and F17, neither set of equations can reasonably reproduce the measured length 

vs. time relationship without a posteriori information about the temporal evolution of effusion 

rate. Our calculations suggest the evolution of both the EF8 and F17 flows were predominantly 

controlled by the crust; by contrast, the evolution of the flow from F20/22 was predominantly 

controlled by a combination of viscosity and crust. However, general fits to the data were poor 

for EF8 and F17 when using an average effusion value. Modeling fits were greatly improved 

when reasonable variations in effusion rate trends were incorporated, a posteriori. The sensitivity 

of flow propagation rate on effusion rate emphasizes the need for such data in accurate lava flow 
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propagation forecasting. Future effusion rate measurements can potentially be conducted with 

greater temporal resolution with the utilization of UAS, as has been demonstrated by recent 

studies. 
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Chapter 5. Conclusions 

5.1 Summary 

Accurate modeling of volcanic processes has important ramifications for hazard 

preparedness and mitigation. In this dissertation, I examine two properties that influence the 

hazards associated with high silica magmas and low silica magmas – the rates of silicic magma 

decompression and basaltic lava flow propagation. An overarching dilemma that is present in all 

modeling situations is what is the level of model complexity needed to accurately represent the 

process of interest? The results from each dissertation chapter address this dilemma for a given 

situation and offer guidance for future researchers. 

 Chapter 2 demonstrates that certain simplifications to diffusion models used to quantify 

volatile diffusion in melt embayments are acceptable, while others introduce significant errors to 

the calculated decompression timescale. Specifically, decompression can be treated as isothermal 

in all cases with little impact on calculated decompression timescales. However, using 1D 

diffusion profiles when significant (>40% constriction) exists at the embayment mouth can 

introduce non-negligible error into calculated timescales if the diffusion front is out of the 

necked region of the embayment. Additionally, simplifying the degassing behavior to 

equilibrium conditions can introduce significant error to calculated timescales when 

disequilibrium conditions are present. 

 Chapter 3 provides a first experimental comparison of two decompression rate meters as 

an initial step towards quantifying the decompression rate variation within an eruption. 

Constraining decompression rate variations within a given eruption in natural systems offers the 

benefit of better understanding of the conditions that can cause shifts in eruptive behavior. In this 

initial test of the experiments, both studied decompression rate meters, bubble number density 
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and diffusion of water, are able to produce useful decompression rates. However, the results are 

sensitive to assumptions made about bubble nucleation style. Experimental studies have the 

advantage of knowing the input parameters, but application of models to natural systems 

becomes complicated when many parameters are unknown.  

 Chapter 4 examines sloping viscous theory as a method for predicting lava flow 

propagation with flows from the 2018 eruption of Kīlauea. Various levels of calculation 

complexity are examined, including the time-dependence of flow material properties (e.g., 

viscosity and yield strength) and external properties (e.g., ground slope), the assumed crystal 

shape and down-flow increase in crystal concentration, and the temporal resolution of variations 

in lava effusion rate. The results suggest that the largest source of error in reproducing the 

propagation of the studied lava flows is associated with poor temporal resolution of effusion rate 

variations. Steady-state or quasi-steady-state effusion can be well approximated by using average 

values for all other properties, but no amount of complexity in the other studied parameters can 

produce observed lava propagation if an average effusion rate value is applied to highly variable 

effusion. 

5.2 Future directions 

The results from this dissertation have highlighted areas where additional work can be 

conducted to great benefit of the geologic community. For Chapter 2, although certain 3D 

embayment geometries are not suited for current 1D studies, additional 3D modeling can be 

utilized to create correction factors that will allow researchers to correct 1D-derived 

decompression rates to account for non-ideal geometries. Embayments can be rare in nature, so 

expanding the usable geometries is important to ensure melt embayment modeling continues to 

be a useful petrologic tool. For Chapter 3, additional experiments are needed to test fully the 
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utility of the coordinated decompression rate meter approach. Ideally, these additional 

experiments would use a two-step decompression to test whether the different decompression 

rate meters are recording the expected rates. An important remaining question for both Chapters 

2 and 3 is the question of bubble nucleation style. Resolving the conditions under which 

homogeneous versus heterogeneous nucleation are predominant is critical to leveraging correctly 

both bubble number density and volatile diffusion to calculate decompression rate. The results of 

Chapter 4 highlight the need for high temporal resolution of lava effusion rate measurements to 

forecast accurately lava flow propagation. Flows that are fed by sources with highly variable 

effusion rate cannot be accurately forecasted without knowledge of the effusion rate variations. 

Unoccupied aircraft systems (UAS) were utilized to great effect at the end of the 2018 Kīlauea 

eruption to quantify effusion rates, so they are an ideal tool for future eruptive crises. These types 

of effusion rate measurements should be high priority for hazard managers, particularly in 

rapidly changing crises when it is unknown whether effusion rate will vary at a given vent.  
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Appendix A: Chapter 2 Supplementary Material 

Numerical vs. analytical solution, stability criterion, and profile fitting 

Analytical vs numerical solution of 3D diffusion 

 Numerical solutions for diffusion are approximations that need to be checked against 

analytical solutions. However, analytical solutions are limited in their applicability because they 

cannot easily deal with the geometric complexity of objects like embayments (Fig. 2.1). 

Nevertheless, we can show that our numerical solution is a reasonable approximation for the 

 

Figure A-S1. Comparison of profiles produced by solving for diffusion in a sphere using an analytical and 
numerical solution. The two are in excellent agreement, so the numerical solution is considered to be an 
acceptable approximation in subsequent analysis. 
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analytical solution, though, by comparing our 3D numerical solution for a sphere to the 

analytical solution for a radial profile through a sphere. We use the solution of Crank (1975) for 

diffusion in a sphere: 

𝐶𝐶 − 𝐶𝐶1
𝐶𝐶0 − 𝐶𝐶1

= 1 +
2𝑎𝑎
𝜋𝜋𝜋𝜋

�
(−1)𝑛𝑛

𝑛𝑛
sin

𝑛𝑛𝑛𝑛𝑛𝑛
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒(−𝐷𝐷𝑛𝑛2𝜋𝜋2𝑡𝑡 𝑎𝑎2⁄ )
∞

𝑛𝑛=1

(𝐴𝐴1) 

And the concentration at the center of the sphere is given by: 

𝐶𝐶 − 𝐶𝐶1
𝐶𝐶0 − 𝐶𝐶1

= 1 + 2�(−1)𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(−𝐷𝐷𝑛𝑛2𝜋𝜋2𝑡𝑡 𝑎𝑎2⁄ )
∞

𝑛𝑛=1

(𝐴𝐴2) 

In these equations, C is the concentration at time t at a given distance from the center r, C1 is the 

initial water content, C0 is the final water content, a is the total radius of the sphere, and D is 

diffusivity. Although this solution is not explicitly 3D, it was derived such that it accounts for 

complex flux pathways in the other dimensions. Thus, it is an appropriate comparison to our 3D 

numerical solution.  

For the main 3D embayment diffusion model, we use the solubility relationship of Liu et 

al. (2005) to relate pressure and water content. The initial pressure is 200 MPa, and the final 

pressure is 20 MPa. For diffusivity we used the maximum diffusivity, calculated using the model 

of Ni and Zhang (2008) at 200 MPa and 800 °C. The test sphere was made with a total radius of 

100 μm with a step size of 2 μm. The summation was evaluated over 20 iterations (n=20), 

sufficient to converge on a solution. 

 We ran the two models for a total duration of 30 seconds and compared the profiles 

produced. The difference between the numerical and analytical solutions is negligible (Fig. A-

S1), so we consider our numerical solution to be a good approximation. Our 3D numerical 
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solution was also previously tested against a 3D analytical solution for diffusion in a 

parallelepiped by Shea et al. (2015), using the derivation of Crank (1975). However, a limitation 

of the applicability of both of these analytical solutions is that they do not allow for 

concentration-dependent diffusivity. 

Explicit finite differences solution and its stability 

 The centered finite differences solution to 1D diffusion, accounting for concentration-

dependent diffusivity can be written as: 

𝐶𝐶𝑖𝑖𝑡𝑡+1 = 𝐶𝐶𝑖𝑖𝑡𝑡 + ∆𝑡𝑡 ��
𝐶𝐶𝑖𝑖+1 − 𝐶𝐶𝑖𝑖−1

2∆𝑥𝑥
� �
𝐷𝐷𝑖𝑖+1 − 𝐷𝐷𝑖𝑖−1

2∆𝑥𝑥
�� + 𝐷𝐷𝑖𝑖∆𝑡𝑡 �

𝐶𝐶𝑖𝑖+1 − 2𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑖𝑖−1
∆𝑥𝑥2

� (𝐴𝐴3) 

In this case, C is is concentration in wt. %, D is diffusivity in μm2 s-1, Δx is the spacing between 

grid points in the x-dimension in μm, Δt is the time step between calculation points in s, i is the 

index position in x, and t is the index position in time. To expand this solution to 3D, additional 

terms for y- and z-dimensions (j and k indices, respectively) were added to each section. For the 

fictitious points boundary conditions, the finite differences solution for each boundary pixel was 

evaluated on a case-by-case basis. In order to “reflect” the flux so that it does not enter the host 

crystal during modeling, the finite differences solution for each boundary pixel was modified. 

Either the forwards (i+1) or backwards (i-1) concentration was set to equal to each other (i.e., 

Ci+1 = Ci-1) and the finite differences solution simplified using that substitution. This could be 

applied to 3D by incorporating terms for y and z as well. 

Stability of explicit finite differences solutions can be ensured using the following 

criterion: 
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𝑅𝑅 =
𝐷𝐷 × ∆𝑡𝑡
∆𝑥𝑥2

(𝐴𝐴4) 

where D is diffusivity in μm2/s, Δt is the change in time between each calculation iteration in 

seconds, and Δx is the grid spacing between points. To ensure stability, R must be less than 0.5. 

In our models, we calculate Δt such that the solution is stable at the starting D and Δx conditions 

(R=0.3 for 1D models and R=0.125 for 3D models). 

Profile fitting methods 

 Profile fitting was conducted as an iterative process (Fig. A-S2). The duration range for 

each subsequent fitting step was selected to completely bracket the duration with the minimum 

RMSD. Fitting iterations were conducted until the best-fitting duration was determined to the 

 

Figure A-S2. Plots of steps to search for best-fitting time, using an example from the 40% necked geometry, with 
an imposed decompression rate of 0.1 MPa/s. Moving from a to d, the search range becomes more fine scale. 
The box labeled “Next Step” in each panel shows the extent of the subsequent panel. Insets in each panel 
shows the 3D-generated profile, along with the 1D-generated profiles at each tested time. In this case, the final 
time determined as the 1D best-fitting time is 1074 seconds, compared to the 3D imposed time of 1800 seconds. 
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nearest second. As seen in the example profile in Fig. A-S2, the 1D fitting model cannot 

reproduce the exact shape of the 3D profile for the more necked geometries. 

Influence of catch-up decompression rate exponent in disequilibrium degassing 

 The “catch-up” rate of water loss from the melt after a homogeneous nucleation event is 

poorly constrained. For the purposes of our modeling, we chose a value that produced curves 

similar to those in the schematic representation of Mangan and Sisson (2000); however, that 

value has little physical constraint. Here, we demonstrate the impact of varying the catch-up 

exponent by an order of magnitude on the disequilibrium degassing modeling results. 

 The models were run with the same parameters as those described in the main text, 

except the “catch-up” exponent was varied by either increasing by an order of magnitude to 0.03 

 

Figure A-S3. Discrepancy in decompression rates calculated assuming equilibrium degassing when degassing 
occurs under disequilibrium conditions, using different values for the catch-up exponent (Eq. 2.4). All of these 
models used an initial pressure of 200 MPa and ΔPN of 100 MPa. Shaded region shows numerical fitting 
uncertainties estimated to be within ±3 seconds of the imposed decompression rate (where it is larger than the 
1:1 line). This ±3 seconds is calculated relative to the apparent final pressure when it is different from the 
imposed final pressure so that it matches the calculation method of the decompression rate. a) Comparison 
between decompression rates imposed in disequilibrium degassing models and best-fit decompression rates 
obtained assuming equilibrium degassing. b) Best-fit decompression rate obtained by assuming equilibrium 
degassing against the DRM for each model. 
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or decreasing by an order of magnitude to 0.0003. The range of imposed decompression rates in 

the models is comparable to those described in the main text, spanning from 0.01 MPa/s to 10 

MPa/s, with extra runs conducted where finer temporal resolution was necessary (Table A-S5).  

  We find that the value of the catch-up exponent has a significant effect on model results 

(Fig. A-S3). The position of peak DRM is shifted towards faster modeled decompression rates 

for larger catch up exponents; conversely, the peak DRM is shifted towards slower modeled 

decompression rates for smaller catch up exponents. The peak location varies over two orders of 

magnitude for the three exponent values tested, so the exponent has a strong influence on model 

results. There also appears to be a dependence of the magnitude of peak DRM on catch up 

exponent, though it varies by less than one between the three orders of magnitude of exponent 

tested. Thus, the primary effect of the different catch up exponent is controlling the modeled 

decompression rate at which the maximum DRM occurs. 
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Table A-S1. Full summary of geometry model conditions and results 

Geometrya 
Imposed 

dP/dt 
(MPa/s) 

Imposed 
Timescale 

(s) 

Modeled 
Timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Weighted 
RMSD DRMb 

Cylinder 6 30 30 6.00 0.0001 1.00 
Cylinder 1.8 100 100 1.80 0.0003 1.00 
Cylinder 1 180 183 0.984 0.0007 0.98 
Cylinder 0.5 360 376 0.479 0.0012 0.96 
Cylinder 0.1 1800 1936 0.093 0.0012 0.93 
Cylinder 0.01 18000 19574 0.009 0.0008 0.92 

Cylinder (Flat Back) 0.1 1800 1806 0.100 0.0005 1.00 
Cylinder (Flat 

Sides) 0.1 1800 1940 0.093 0.0012 0.93 
20% Necked 6 30 31 5.81 0.0003 0.97 
20% Necked 1.8 100 96 1.88 0.0011 1.04 
20% Necked 0.75 240 211 0.853 0.0015 1.14 
20% Necked 0.5 360 309 0.583 0.0019 1.17 
20% Necked 0.3 600 513 0.351 0.0028 1.17 
20% Necked 0.1 1800 1572 0.115 0.0036 1.15 
20% Necked 0.01 18000 15625 0.012 0.0035 1.15 
40% Necked 6 30 31 5.81 0.0009 0.97 
40% Necked 1.8 100 84 2.14 0.0028 1.19 
40% Necked 0.75 240 157 1.15 0.0035 1.53 
40% Necked 0.5 360 216 0.833 0.0042 1.67 
40% Necked 0.3 600 340 0.529 0.0061 1.76 
40% Necked 0.1 1800 1074 0.168 0.0090 1.68 
40% Necked 0.01 18000 11005 0.016 0.0087 1.64 
60% Necked 6 30 31 5.81 0.0020 0.97 
60% Necked 1.8 100 70 2.57 0.0051 1.43 
60% Necked 0.5 360 127 1.42 0.0066 2.83 

60% Necked - C.R.c 0.5 360 133 1.35 0.0066 2.71 
60% Necked 0.35 514 156 1.15 0.0075 3.30 
60% Necked 0.25 720 197 0.914 0.0091 3.65 
60% Necked 0.2 900 239 0.753 0.0106 3.77 
60% Necked 0.15 1200 321 0.561 0.0127 3.74 
60% Necked 0.1 1800 519 0.347 0.0150 3.47 

60% Necked - C.R.c 0.1 1800 483 0.373 0.0211 3.73 
60% Necked 0.01 18000 5665 0.032 0.0180 3.18 
80% Necked 6 30 34 5.29 0.0048 0.88 
80% Necked 1.8 100 59 3.05 0.0091 1.69 
80% Necked 0.5 360 77 2.34 0.0119 4.68 
80% Necked 0.25 720 89 2.02 0.0112 8.09 
80% Necked 0.2 900 96 1.88 0.0114 9.38 
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80% Necked 0.1 1800 122 1.48 0.0130 14.75 
80% Necked 0.08 2250 141 1.28 0.0142 15.96 
80% Necked 0.05 3600 216 0.833 0.0180 16.67 
80% Necked 0.03 6000 325 0.554 0.0289 18.46 
80% Necked 0.01 18000 1334 0.135 0.0314 13.49 
80% Necked 0.005 36000 2785 0.065 0.0289 12.93 

aAll listed models were run at a temperature of 800°C, initial pressure of 200 MPa, and final 
pressure of 20 MPa 

bDecompression Rate Multiplier 
cC.R. indicates coarse resolution (spacing of 4 μm) comparison model 
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Table A-S2. Full summary of disequilibrium model conditions and results 

Pi 
(MPa)a 

ΔP 
(MPa) 

Apparent 
Melt Pf 
(MPa)b 

Imposed 
dP/dt 

(MPa/s) 

Expected 
Timescale 

(s) 

Modeled 
Timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Weighted 
RMSD DRMc 

200 100 109 10 9 10 9.10 0.0011 0.91 
200 100 108 5 18 19 4.84 0.0009 0.97 
200 100 97 1 103 88 1.17 0.0005 1.17 
200 100 81 0.5 238 165 0.721 0.0004 1.44 
200 100 64 0.35 389 222 0.613 0.0005 1.75 
200 100 38 0.25 648 287 0.565 0.0005 2.26 
200 100 10 0.2 950 341 0.557 0.0040 2.79 
200 100 10 0.15 1267 583 0.326 0.0087 2.17 
200 100 10 0.1 1900 1165 0.163 0.0054 1.63 
200 100 10 0.05 3800 3380 0.056 0.0015 1.12 
200 100 10 0.01 19000 19173 0.010 0.0001 0.99 
200 150 160 10 4 5 8.00 0.0005 0.80 
200 150 160 5 8 9 4.44 0.0003 0.89 
200 150 158 1 42 41 1.02 0.0005 1.02 
200 150 155 0.5 90 78 0.577 0.0002 1.15 
200 150 152 0.35 137 109 0.440 0.0002 1.26 
200 150 149 0.25 204 147 0.347 0.0004 1.39 
200 150 145 0.2 275 178 0.309 0.0003 1.55 
200 150 139 0.15 407 224 0.272 0.0003 1.82 
200 150 123 0.1 770 298 0.258 0.0005 2.58 
200 150 94 0.07 1514 366 0.290 0.0007 4.14 
200 150 33 0.05 3340 432 0.387 0.0010 7.73 
200 150 10 0.03 6333 1684 0.113 0.0069 3.76 
200 150 10 0.01 19000 16640 0.011 0.0005 1.14 
300 150 157 10 14 15 9.53 0.0014 0.95 
300 150 154 5 29 28 5.21 0.0011 1.04 
300 150 126 1 174 130 1.34 0.0003 1.34 
300 150 81 0.5 438 230 0.952 0.0002 1.90 
300 150 29 0.35 774 297 0.913 0.0014 2.61 
300 150 10 0.25 1160 542 0.535 0.0110 2.14 
300 150 10 0.2 1450 834 0.348 0.0082 1.74 
300 150 10 0.15 1933 1387 0.209 0.0052 1.39 
300 150 10 0.1 2900 2614 0.111 0.0024 1.11 
300 150 10 0.05 5800 5874 0.049 0.0007 0.99 
300 150 10 0.01 29000 29255 0.010 0.0001 0.99 

aAll models were run with an imposed final pressure of 10 MPa and temperature of 850 °C 
bApparent final pressure based on far field melt water concentration 
cDecompression Rate Meter 
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Table A-S3. Full summary of isentropic model conditions and results 
Imposed 

Pf 
(MPa)a 

Apparent 
Pf 

(MPa)b 

Imposed dP/dt 
(MPa/s) 

Imposed 
Timescale 

(s) 

Modeled 
Timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Weighted 
RMSD DRMc 

20 21 10 18 19 9.42 0.0058 0.94 
10 11 10 19 21 9.00 0.0074 0.90 
5 6 10 20 22 8.82 0.0077 0.88 

20 21 5 36 37 4.84 0.0059 0.97 
10 11 5 38 40 4.73 0.0074 0.95 
5 6 5 39 40 4.85 0.0081 0.97 

20 21 1 180 170 1.05 0.0035 1.05 
10 11 1 190 179 1.06 0.0052 1.06 
5 6 1 195 182 1.07 0.0064 1.07 

20 23 0.5 360 336 0.527 0.0024 1.05 
10 13 0.5 380 348 0.537 0.0036 1.07 
5 8 0.5 390 356 0.539 0.0045 1.08 

20 21 0.1 1800 1564 0.114 0.0006 1.14 
10 11 0.1 1900 1614 0.117 0.0014 1.17 
5 6 0.1 1950 1632 0.119 0.0026 1.19 

20 21 0.02 9000 7252 0.025 0.0004 1.23 
10 11 0.02 9500 7372 0.026 0.0009 1.28 
5 6 0.02 9750 7363 0.026 0.0018 1.32 

aAll models were run with initial pressure of 200 MPa and initial temperature of 800 °C 
bApparent final pressure is based on far field melt water concentration and an isothermal solubility 
relationship 
cDecompression Rate Multiplier 
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Table A-S4. Full summary of different starting conditions models 

Geometrya 

Max 
Embayment 
Water (wt. 

%) 

Pi 
(MPa) 

Imposed 
dP/dt 

(MPa/s) 

Expected 
Timescale 

(s) 

Modeled 
Timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Weighted 
RMSD DRMb 

Cylinder 5.94 198 1.8 99 94 1.89 0.0014 1.05 
Cylinder 5.83 192 1 172 143 1.20 0.0034 1.20 
Cylinder 5.55 175 0.5 310 202 0.767 0.0061 1.53 
Cylinder 4.36 115 0.1 950 466 0.204 0.0061 2.04 
Cylinder 2.73 50 0.01 3000 1408 0.021 0.0045 2.13 

20% Necked 5.94 198 0.75 237 198 0.899 0.0018 1.20 
20% Necked 5.87 193 0.5 346 247 0.700 0.0030 1.40 
20% Necked 5.71 184 0.3 547 320 0.513 0.0040 1.71 
20% Necked 5.07 150 0.1 1300 539 0.241 0.0046 2.41 
20% Necked 3.27 69 0.01 4900 1669 0.030 0.0043 3.00 
40% Necked 5.95 198 0.75 237 147 1.21 0.0036 1.61 
40% Necked 5.89 195 0.5 350 182 0.962 0.0039 1.92 
40% Necked 5.77 188 0.3 560 226 0.743 0.0042 2.48 
40% Necked 5.24 159 0.1 1390 348 0.399 0.0042 3.99 
40% Necked 3.47 77 0.01 5700 1112 0.051 0.0030 5.13 
60% Necked 5.93 197 0.5 354 117 1.51 0.0065 3.03 
60% Necked 5.88 194 0.35 497 127 1.37 0.0067 3.91 
60% Necked 5.82 191 0.25 684 142 1.20 0.0066 4.82 
60% Necked 5.76 187 0.2 835 147 1.14 0.0067 5.68 
60% Necked 5.66 182 0.15 1080 159 1.02 0.0067 6.79 
60% Necked 5.50 173 0.1 1530 180 0.850 0.0065 8.50 
60% Necked 3.89 94 0.01 7400 482 0.154 0.0057 15.4 
80% Necked 5.96 199 0.5 358 75 2.39 0.0111 4.77 
80% Necked 5.93 197 0.25 708 81 2.19 0.0114 8.74 
80% Necked 5.91 196 0.2 880 85 2.07 0.0114 10.35 
80% Necked 5.81 190 0.1 1700 89 1.91 0.0114 19.10 
80% Necked 5.76 188 0.08 2100 92 1.83 0.0113 22.83 
80% Necked 5.63 180 0.05 3200 98 1.63 0.0111 32.65 
80% Necked 5.50 173 0.03 5100 104 1.47 0.0126 49.04 
80% Necked 4.88 140 0.01 12000 148 0.812 0.0112 81.10 
80% Necked 4.35 115 0.005 19000 202 0.470 0.0096 94.06 
aAll models have the same final pressure of 20 MPa 
bDecompression Rate Multiplier 
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Table A-S5. Summary of model runs with a different catch up exponent 

Catch Up 
Exponenta 

Apparent 
Melt Pf 
(MPa)b 

T 
(°C) 

Imposed 
dP/dt 

(MPa/s) 

Expected 
Timescale 

(s) 

Modeled 
Timescale 

(s) 

Modeled 
dP/dt 

(MPa/s) 

Weighted 
RMSD DRMc 

0.03 97 850 10 10 9 11.44 0.0011 1.14 
0.03 81 850 5 24 17 7.00 0.0004 1.40 
0.03 72 850 4 32 21 6.10 0.0009 1.52 
0.03 55 850 3 48 27 5.37 0.0018 1.79 
0.03 10 850 2 95 39 4.87 0.0062 2.44 
0.03 10 850 1 190 105 1.81 0.0162 1.81 
0.03 10 850 0.5 380 240 0.792 0.0115 1.58 
0.03 10 850 0.35 543 366 0.519 0.0089 1.48 
0.03 10 850 0.25 760 554 0.343 0.0068 1.37 
0.03 10 850 0.2 950 730 0.260 0.0055 1.30 
0.03 10 850 0.15 1267 1044 0.182 0.0040 1.21 
0.03 10 850 0.1 1900 1714 0.111 0.0024 1.11 
0.03 10 850 0.05 3800 3777 0.050 0.0009 1.01 
0.03 10 850 0.01 19000 19173 0.0099 0.0001 0.99 

0.0003 110 850 10 9 10 9.00 0.0010 0.90 
0.0003 110 850 5 18 19 4.74 0.0007 0.95 
0.0003 109 850 1 91 91 1.00 0.0006 1.00 
0.0003 108 850 0.5 184 182 0.506 0.0008 1.01 
0.0003 106 850 0.35 269 256 0.367 0.0008 1.05 
0.0003 105 850 0.25 380 354 0.268 0.0001 1.07 
0.0003 104 850 0.2 480 441 0.218 0.0006 1.09 
0.0003 101 850 0.15 660 576 0.172 0.0000 1.15 
0.0003 97 850 0.1 1030 839 0.123 0.0005 1.23 
0.0003 81 850 0.05 2380 1504 0.079 0.0006 1.58 
0.0003 54 850 0.03 4867 2149 0.068 0.0001 2.26 
0.0003 10 850 0.02 9500 2835 0.067 0.0013 3.35 
0.0003 10 850 0.01 19000 18630 0.0102 0.0002 1.02 

aAll models had an initial pressure of 200 MPa, ΔP of 100 MPa, and imposed final pressure of 10 MPa 
bApparent final pressure based on far field melt water concentration 
cDecompression Rate Multiplier 
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Appendix B: Chapter 4 Supplementary Material 

Capillary number calculations 

 Capillary number (Ca) controls whether bubbles increase or decrease relative viscosity in 

a silicate melt (Mader et al., 2013; Rust and Manga, 2002). It can be calculated as: 

𝐶𝐶𝐶𝐶 =
𝜂𝜂𝜂𝜂𝛾̇𝛾
𝛤𝛤

(𝐵𝐵1) 

where η is the melt viscosity in Pa s, r is the bubble radius in m, γ̇ is strain rate in s-1, and Γ is 

melt-vapor surface tension in N m-1. Here, melt viscosity for each flow is taken from Table 4.2, 

and surface tension is taken to be 0.3 N m-1, the value for anhydrous silicate melts (Bagdassarov 

et al., 2000). We used values that would produce the maximum reasonable Ca so as to 

demonstrate the most likely influence of bubbles in our calculations. Thus, r is taken to be either 

the mean bubble radius (converting bubble area into the radius of an equivalent sphere), or modal 

bubble radius, whichever is larger. Strain rate is approximated by dividing the maximum flow 

front velocity by the average thickness for each flow (Tables 4.3-4.5). Our calculated Ca for each 

flow is <0.1, so bubbles are predicted to have increased viscosity in our flows (Mader et al., 

2013; Table B-S1). 

Table B-S1. Capillary number estimations for EF8, F17, and F20/22 

Flow Surface 
Tension (N/m) 

Bubble Radius 
(μm) 

Melt Viscosity 
(Pa s) 

Strain Rate 
(s-1) Ca 

EF8 0.3 8.4 791 0.034 0.0008 
F17 0.3 45.4 8031 0.011 0.0134 

F20/22 0.3 94.2 657 0.041 0.0085 
 

Image georeferencing 
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The images captured from helicopter overflights needed to be corrected for the look angle 

so as to minimize length distortions. Key features in images were correlated with the same 

features in satellite imagery from DigitalGlobe using QGIS. Only images with sufficient 

identifying points (e.g., road intersections, houses, distinctive structures) around the flow front 

were used in data collection and subsequent modeling. Fissure locations in still-shots were 

correlated with the same features in both the drone and thermal imagery. Offset here refers to the 

error in locating a feature on the base satellite image and was quantified by measuring the 

distance between a feature in the satellite image and the same feature’s apparent location in the 

captured image. The EF8 flow was within the Leilani Estates subdivision, so many identifying 

features are present. Maximum offset between a georeferenced image and the base satellite 

image is 2-3 meters near the flow front and ~4 meters at the edges of the image. The F17 flow 

started in and propagated through a more sparsely populated location, so offset around the flow 

is ~3 meters for the images captured on May 13, and up to 7 meters for the images captured on 

May 14. The flow field associated with F20/22 covered a large area, and images that included a 

large area tended to be difficult to georeference, so images that focused only on the flow front 

were preferentially selected. The path from the vent to the image was measured using the thermal 

orthomosaic for F20/22. Maximum offset in images around the flow front was ~6 meters. 

Start time of F20/22 flow 

 The start time of lava effusion from F20/22 is relatively well-constrained by ground 

crews as 18:30 HST on May 17 (C. Parcheta, pers. comm.). However, during the first ~24 hours 

of the fissure’s lifespan, lava predominantly ponded around the fissure, with a small flow 

extending to the north. The flow that we model was not observed to be heading towards the coast 

until early in the morning on May 19. Constraints on the true start time of the flow are sparse, so 
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we approximate a start time based on thermal satellite images captured during the night and 

estimates of flow front velocity. Two start times are possible based on flow front velocity, as the 

average velocity of the flow or the flow velocity calculated from the first two length 

measurements can be used. Using the average flow velocity of 0.066 m/s (Table 4.5), the flow 

would have initiated at ~19:00 HST on May 18. Using the flow velocity calculated from the first 

two length measurements of 0.122 m/s, the flow would have initiated at approximately 0:00 HST 

on May 19. The natural choice is to use the start time associated with the flow velocity that 

captures the ground slope most similar to the start of the flow, but other data sources were 

available to corroborate this choice. We also use thermal images captured by the Visible Infrared 

Imaging Radiometer Suite (VIIRS) during the night (Fig.B- S1). In the image captured at 1:47 

HST on May 19, the hottest part of the flow is still relatively close to the fissure source, which 

would indicate the flow had not been active for long. Thus, we adopt the start time of the flow as 

0:00 HST on May 19. 

Thickness of F17 flow 

 

Figure B-S1. Thermal images captured from the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument 
on two satellites (Suomi National Polar-orbiting Partnership and NOAA-20) overnight between May 18th and 19th.  
Data were downloaded from NOAA CLASS (Comprehensive Large Array-data Stewardship System), are located 
in WGS84 UTM Zone 5N, and were processed with satpy, a Python library. Fissure locations of the important 
active flows are labeled, and the island coastline is shown in blue. Brighter pixels indicate greater heat flow, 
except for the black pixels in the middle of bright pixels; these pixels are high enough temperature that they 
saturate the grayscale. Thus, the hottest parts of flows are indicated by black pixels. Over the course of the 12 
hours shown, the main locus of activity shifts from the vicinity of F17 to near F20/22 and then farther down the 
slope as the flow advances. 
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 Drone imagery of the early stages of the F17 flow was used to construct a digital surface 

model (DSM), following the method of Turner et al. (2017). Lava flow thickness was calculated 

by subtracting the elevation of the DSM from a DEM of the pre-existing topography (Fig. B-S2). 

 

Figure B-S2. Visible light image (A) and corresponding thickness map (B) of the F17 flow at 13:51 HST on May 
13th, 2018. Other topographic features in the area have been masked out where possible without obscuring the 
edges of the flow. Anomalously high points and areas of zero elevation within the margins of the flow correspond 
to trees. 
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We use a 1 m resolution DEM constructed from airborne lidar conducted in November 2011, 

provided to the USGS by Ormat Technologies, Inc.  

Variable effusion rate curve construction 

Effusion rate measurements were not made in the field for any of the three flows of 

interest. Thus, our variable effusion rate curves represent only a reasonable possibility based on 

qualitative observations of differences between the various fissures. An initial key difference 

between EF8/F17 and F20/22 is the state of lava effusion at calculation initiation. The flows 

from both EF8 and F17 initiated as soon as lava extruded from the fissures, whereas the flow 

from F20/22 initiated after a period of sustained activity at the fissure. Therefore, effusion rate 

started at low values for EF8 and F17, and started at a high value for F20/22. In the same vein, at 

the conclusion of modeling, both F17 and F20/22 were still erupting lava; thus, effusion rate did 

not end at zero for either flow. In terms of maximum effusion rate, we assumed that EF8 had the 

smallest flux as the flow was the smallest, the fissure was the shortest, and the fountain height 

was the shortest (HVO Staff, 2018). Thus, both F17 and F20/22 should have greater maximum 

fluxes than EF8. F17 was the longest fissure, thus maximum flux from the entire fissure should 

be large, though fountain heights rapidly decreased (USGS eruption chronology sheet). 

Constraints were not placed on the relative magnitude of maximum effusion rate between F17 

and F20/22 as their relationship is complex. Although F20/22 produced an exceptionally 

voluminous flow, not all of the volume fed the flow of interest; our volume flux only fed the 

flow of interest.  

 The shape of the effusion rate curves through time were informed by the results of the 

initial modeling and previously established relationships of effusion rate with time. We assign 

EF8 and F17 “Wadge-type” effusion rate patterns of linear increase in effusion rate to a 
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maximum, followed by an exponential decay (Wadge, 1981). All of the variables associated with 

this type of relationship (slope of linear increase, time of maximum effusion rate, and exponent 

of exponential decay) were changed iteratively until a qualitatively good fit to the data was 

achieved. A solution was considered realistic as long as the maximum volume emitted did not 

exceed the upper limit of estimated flow volume and the previously described relationships 

between magnitudes of effusion rate were followed. For F20/22, we used an essentially constant 

effusion rate as it worked well in the initial modeling. However, we incorporated a slight 

exponential decrease in effusion rate to account for the inflection in the measured data that the 

constant effusion rate calculations did not emulate. The magnitude of the parameters and the 

timing of the switch between constant effusion and exponential decrease was determined 

iteratively until a qualitatively good fit to the data was achieved. 

The final equations used to construct the variable effusion rate curves are as follows. For 

EF8 we use: 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 54,000:𝑄𝑄 = 0.000543345𝑡𝑡 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 54,001 𝑡𝑡𝑡𝑡 138,600:𝑄𝑄 = 29.14𝑒𝑒−6∗10−5∗(𝑡𝑡−54,000) 

For F17 we use: 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 8,300:𝑄𝑄 = 8 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 8,301 𝑡𝑡𝑡𝑡 77,400:𝑄𝑄 = 0.0009501359𝑡𝑡 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 77,401 𝑡𝑡𝑡𝑡 180,900:𝑄𝑄 = 73.54𝑒𝑒−2∗10−5∗(𝑡𝑡−77,400) 

For F20/22 we use: 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 61,200:𝑄𝑄 = 55.37 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 61,201 𝑡𝑡𝑡𝑡 99,600:𝑄𝑄 = 55.37𝑒𝑒1∗10−6∗(𝑡𝑡−61,200) 

In all cases, t is time in seconds. 
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Additional supplementary figures 

 

 

Figure B-S3. All calculation scenario results from the LK equation sets. Thicker lines in the spherical particle 
scenarios (middle column) indicate calculations that include bubbles. The stars are the sets of calculations that 
are deemed best fitting for each flow and are also presented in the main text. 
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Figure B-S4. All calculation scenario results from the CEA equation sets. Thicker lines in the spherical particle 
scenarios (middle column) indicate calculations that include bubbles. The stars are the sets of calculations that 
are deemed best fitting for each flow and are also presented in the main text. 
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