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ABSTRACT

Modern science is heavily intertwined with the use of computing, with complex and large-scale

computational applications needing to be executed on parallel and distributed computing plat-

forms. The execution of these applications on these platforms is facilitated by multi-component

software infrastructures that implement various algorithms for orchestrating and managing applica-

tion computation and data access. Given the complexity of such systems (i.e., application workload,

compute platform, and software infrastructure), optimizing for their efficient execution is a difficult

proposition, which raises many research questions. A large literature focuses on answering these

questions, following an experimental approach: draw conclusions based on real-world experiments,

that is, executions on real-world platforms. Real-world experiments have many shortcomings, in-

cluding high cost, labor, and time. Furthermore, they cannot be used to explore hypothetical

scenarios that go beyond application, platform, and workflow configurations at hand.

One approach that obviates the shortcomings of real-world experiments is simulation, i.e., the

use of a software artifact that models and mimics the functional and performance behaviors of the

execution of a parallel and distributed computing system. The main concern, however, is that of

the accuracy of the simulation. High simulation accuracy can only be achieved by “calibrating”

simulation parameters adequately with respect to real-world executions. Unfortunately, simulation

calibration is rarely done in the literature, or, when it is done, it is a poorly documented, painstak-

ing, manual process. In this thesis we explore the feasibility of automated simulation calibration

in the context of the simulation of parallel and distributed computing systems. We frame the

simulation calibration problem as an optimization problem, and propose an automated simulation

calibration approach that can be instantiated for arbitrary simulation accuracy metrics and calibra-

tion algorithms. We evaluate our proposed approach via a case study for a particular production

setting, namely the execution of scientific workflow applications via a workflow management system

on a cluster managed by a batch scheduler. We find that our proposed approach is able to compute

an accurate calibration for any given scenario, but we also find that simulation accuracy is dimin-

ished when using the computed calibration for simulating other scenarios (i.e., different application

workloads, different platform scales). We investigate the reasons for this behavior, which point to

fertile ground for future research.
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CHAPTER 1
INTRODUCTION

1.1 Context and Motivation

Almost every field of modern scientific research has become heavily intertwined with computing in

order to collect and analyze data efficiently. The scale of such data processing can be immense, and

as a result countless Parallel and Distributed Computing (PDC) scientific applications have been

developed. One particularly prevalent and popular class of such applications is scientific workflows

or workflows. A workflow is a series of compute tasks that are connected via data and control

dependencies, such that there is an order, or flow, in which tasks need to execute. Workflows have

been used in a wide range of fields (physics, biology, chemistry, seismology, etc), and are relied

upon by thousands of researchers [26] for managing analyses, simulations, and other computations

in almost every scientific domain [61, 43, 3, 68]. Workflows have underpinned some of the most

significant discoveries of the last decade, including the first detection of gravitational waves from

colliding black holes [24], the discovery of the Higgs boson [39], and the detection of an exotic

nuclear decay [21]. The success of workflows in enabling new discoveries has fed into the confluence

of demands society has for ever more powerful computing hardware and infrastructure.

As workflows have been adopted by a number of scientific communities, they have become

more complex. For example, workflows increasingly integrate machine learning models to guide

analysis, couple simulation and data analysis codes, and exploit specialized computing hardware

(e.g., GPUs, neuromorphic chips, etc.) [28, 74]. Some workflows can now analyze terabyte-scale

data sets, be composed of millions of individual tasks, require coordination between heterogeneous

tasks, manage tasks that execute for milliseconds to hours, and can process data streams, files, and

data placed in object stores. Workflow tasks can be single-core programs, loosely coupled parallel

tasks (like MapReduce), or tightly coupled parallel tasks (as in MPI-based parallel programs) all

within a single workflow, and can run on a range of platform configurations. As a result, workflows

require sophisticated execution management capabilities. These capabilities are provided by a

workflow management system (WMS), i.e., a software tool to orchestrate the workflow execution

on compute resources. The importance of such systems cannot be overstated, and they have

required decades of research, development, and community engagement to reach a high level of

refinement [23, 43, 2, 6, 11, 45, 22, 72, 7].

Due to their computational demands, many workflows need to be executed on High-Performance

Computing (HPC) platforms. The most commonly used such platforms are clusters: an aggregation

of possibly large numbers of individually modest commodity computers, all connected together

via a fast network. Clusters allow researchers to utilize the full benefits of parallel processing

for executing large-scale workflows. However, these clusters are typically shared among many
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users and stakeholders, which requires careful management. The exact nature of how each cluster

is managed varies, although there are some general considerations that any system must take

into account. Those considerations, and the administration of the platform as a whole, are the

responsibility of a particular system often termed Resource and Job Management Software (RJMS).

While a WMS deals with the execution of individual tasks within a specific workflow, a RJMS

imposes higher level management of workloads from different users. A prime example of such RJMS

are “batch schedulers”, a well-known example of which is the Simple Linux Utility for Resource

Management (Slurm) [71]. Often, clusters are used for High-Throughput (HTC) applications.

These are applications that consist of very larger number of tasks, where each task can execute

only on a single compute node in a cluster. This is by contrast with applications in which “tasks”

are in fact parallel applications themselves, i.e., can execute concurrently on multiple compute

nodes. Many workflows are HTC applications. An example of resource management software for

HTC is HTCondor [62]. Like Slurm, it can handle job submissions from competing users, and

implements a variety of job prioritization, scheduling, and accounting policies.

Given the complexity of workflow applications and of the platforms on which they need exe-

cute, executing these workflows efficiently on these platforms is challenging. This challenge requires

answering many algorithmic and/or systems research questions, e.g., when designing and imple-

menting WMSs. Furthermore, users and their institutions may want to optimize for a specific type

of workflow and/or provision a specific cluster architecture, which also raises difficult questions.

Answering these questions requires performing experiments in which one executes actual workflows

on actual platforms so as to draw various lessons and conclusions. Unfortunately, performing these

experiments comes with many shortcomings. First, these experiments can be extremely expensive

(e.g., monetary cost, power consumption) and time-consuming. Second, they can also be labor-

intensive as they require precise (re)configurations of both applications and platforms. Third, and

perhaps most importantly, one needs to perform experiments for hypothetical scenarios, so as to

explore a wide range of settings that go beyond workflow and platforms at hand. This is so that

generalizable conclusions can be drawn from the experiments, as well as conclusions that can hold

for emerging and future application and platform settings.

An alternative approach to real-world experiments is simulation, i.e., the use of a software

artifact that models and mimics the functional and performance behaviors of software and hardware

stacks of interest. In our case, we consider the simulation of the execution of a workflow application

on an HPC platform. Simulation obviates the shortcomings of real-world experiments, and in

particular makes it possible to explore completely arbitrary experimental scenarios. The main

concern with simulation, however, is that of its accuracy. If simulation results are not sufficiently

accurate, then they are not useful, or even harmful as they would lead to false conclusions that

would not hold in practice.

In the field of PDC, many simulation frameworks are available for developing simulators of

2



applications executions on various platforms [64, 34, 73, 5, 10, 12, 52, 14, 51, 38, 47, 56, 48, 8, 16,

15, 17]. Some of these frameworks have striven to implement simulation models that achieve high

accuracy. For instance, SimGrid [16, 58] has been actively developed for over 20 years and provides

foundational simulation models and abstractions for simulating distributed applications, systems,

and platforms. A main focus of SimGrid has been simulation accuracy, and thus it has been the

object of a large number of (in)validation studies [9, 67, 66, 31, 40, 55, 27, 57, 33, 60, 59]. As a

result, the simulation models in SimGrid should be usable to implement accurate simulations of,

for instance, workflow executions on HPC platforms.

The driving motivation for this thesis is that although accurate simulation models are available,

it is still challenging to use them to produce an accurate simulator. This is because each simulation

model, such as the ones implemented in SimGrid, comes with several configuration parameters.

These parameters govern the behavior of the model, and must be chosen carefully so as to capture

the behavior of the target system of interest. Regardless of the potentially high accuracy of a

particular simulation model, if values for its configuration parameters are not picked judiciously,

accuracy will be poor. We term the process by which one picks these values simulation calibration.

Calibration is a crucial part of simulation, and yet, to the best of our knowledge, at least in the field

of PDC, it has received very little attention. Simulation calibration is often seen as a “dark art”

and simulation calibration procedures are rarely documented in the literature. One of the reasons

is that simulation calibration, when done manually, is extremely labor-intensive.

Thesis statement

In this thesis we develop a method for automated calibration of PDC simulators. This method

consists of picking judicious simulation model parameter values using ground-truth real-world

experimental data. Although general, we develop and evaluate our approach in the specific

context of workflow applications executed on cluster platforms using WMS, HTC, and RJMS

systems.

1.2 Roadmap

The remainder of this thesis is organized as follows:

• Chapter 2 discusses related work. In particular it reviews the state of the art of simulation

of PDC systems, and then discusses current simulation calibration approaches used for PDC

research (or lack thereof);

• Chapter 3 gives our problem statement and then describes our proposed automated simulation

calibration approach. This approach can be instantiated with various definitions of simulation

accuracy and with various simulation calibration algorithms. The chapter describes a few

options for both, which are used for evaluating our proposed approach experimentally.

3



• Chapter 4 presents a case study with a real-world system. The broad objective of this case

study is to evaluate the feasibility and effectiveness of our proposed approach when applied

to complex production systems. Specifically, this chapter outlines key research questions, and

then presents experimental results pertinent to each question.

• Chapter 5 summarizes our contributions and highlights directions for future work.
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CHAPTER 2
RELATED WORK

There is a large literature devoted to the simulation of PDC systems. The main focus of the

published work is on proposing simulation models and simulation frameworks, and on evaluating

their usability, scalability and/or accuracy. By comparison, simulation calibration, while a necessary

part of simulation-driven research and the primary focus on this thesis, is rarely discussed in the

literature. We first review general previous work on PDC simulation (Section 2.1) and then previous

work on simulation calibration (Section 2.2).

2.1 PDC Simulation Research

Many PDC simulation frameworks have been been developed to enable the simulation of specific

classes of PDC applications [10, 12, 52, 14, 50, 51, 44, 38, 47, 56, 18, 15, 17]. These frameworks

implement simulation models and abstractions, and provide APIs that facilitate the development of

simulators. These simulators are then used for studying the functional and performance behaviors

of application workloads executed on various hardware/software infrastructures.

The two main concerns for simulation are accuracy (the ability to faithfully reproduce real-world

executions) and scalability (the ability to simulate large/long real-world executions quickly and

with low RAM footprint). The simulation frameworks cited above achieve different compromises

between the two. At one extreme are discrete-event models that capture “microscopic” behaviors

of hardware/software systems (e.g., packet-level network simulation, block-level disk simulation,

cycle-accurate CPU simulation), which favor accuracy over scalability. At the other extreme are

analytical models that capture “macroscopic” behaviors via mathematical models. While these

latter models lead to fast simulation, they must be developed carefully if high levels of accuracy

are to be achieved [67].

The work in this thesis is agnostic to the simulation models and frameworks, since calibra-

tion must be performed regardless. However, to drive the development and demonstrate the

feasibility of our proposed simulation approach, we use the SimGrid and WRENCH simulation

frameworks. The years of research and development invested in the popular SimGrid simula-

tion framework [18], have culminated in a set of state-of-the-art macroscopic simulation models

that yield high accuracy, as demonstrated by (in)validation studies and comparisons to compet-

ing frameworks [9, 67, 66, 31, 41, 55, 27, 57, 33, 60]. Therefore, high simulation accuracy should

be within reach for SimGrid simulators provided that simulation calibration is done effectively.

The WRENCH simulation framework builds on SimGrid to provide high-level APIs that make it

possible to implement simulators of complex PDC system with low effort. Since we evaluate our

proposed approach via a case study for a complex PDC system, we use WRENCH to make the

development of our simulator tractable.
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2.2 Simulation Calibration

Regardless of the simulation frameworks used and the models they implement, simulators come with

many parameters that must be ”calibrated” in the hope of achieving high simulation accuracy.

The calibration problem can be defined as follows. Consider a real-world execution trace of an

application workflow on a compute infrastructure (both hardware and software), and a simulator

of that same execution that produces a simulated execution trace. This simulator’s behavior is

configured via a number of simulation parameters. There is a measure of the discrepancy, or

“error”, between the real-world and the simulated execution traces. The objective is to find the

parameter values that minimize this error. In other terms, the input to the simulation calibration

problem is one real-world execution trace, and its output is a set of simulation parameter values.

The lower a simulation model’s level of abstraction, the more directly its parameters map to

the fundamental characteristics of the system to be simulated. If these characteristics are known,

simulation calibration may be unnecessary. Low-level simulations are the norm in networking

research, in which many published research results are obtained using packet-level simulators. The

parameters of the simulation models pertain mostly to physical characteristics of network links and

routers and to configurations of network protocols. It should thus be possible to pick appropriate

values for these parameters based on the specification of the target system to simulate. And yet,

many authors have found that picking appropriate values is challenging and that calibration is, in

fact, necessary for achieving high accuracy [65, 1, 32, 42, 36].

In recent work [17], a simulator of the Pegasus/DAGMan system [24] executing workflows on on

both bare-metal and AWS-provided compute resources managed by HTCondor [63] was calibrated.

This simulator comes with dozens of configuration parameters. The calibration was performed

manually, by comparing simulated executions to several real-world execution logs, finding out in-

formation about the platform’s characteristics from hardware specifications and micro-benchmark

results, and inspecting source code. In the end, the calibrated simulator was shown to achieve

high accuracy. While feasible, such manual simulation calibration is extremely labor- and time-

intensive. As a result, it is often seen as “witchcraft”. It is poorly documented in the literature and

often described vaguely, with statements such as “we carefully calibrated our simulator”, which are

ambiguous and widely open to interpretation.

In areas of simulation outside of PDC, and in fact outside of Computer Science, there are a

few published examples of automated calibration. These areas are wide ranging, exemplifying the

many applications of simulation, and thus of opportunities for simulation calibration. They include

everything from flood models [46] to building electrical consumption models [70] to vehicular traffic

models [35]. A common theme for all these models is a large number of parameters and some degree

of abstraction between the model parameters and their translation to reality. While these models

can be calibrated manually by skilled individuals, the above works explore automated calibration to

save time and reduce required expertise. The work in this thesis is driven by the same motivation.
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To the best of our knowledge automated calibration for PDC simulation, which is the main goal

of this thesis, has not been explored. Automation of parameter calibration seeks to solve the issues

faced by manual calibration, such as the necessary comprehension of the impact of parameters

defining complex abstractions. Automation can be achieved by turning simulation calibration into

a black box optimization problem. The input to this problem is one real-world execution trace.

The output is a set of simulation parameter values. The objective is for these parameter values,

when passed to the simulator, to minimize simulation error, as defined earlier in this section. In

the next chapter we present and detail our proposed simulation calibration appraoch.
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CHAPTER 3
PROBLEM STATEMENT AND APPROACH

In this chapter we first outline our target problem (Section 3.1). We then describe our our pro-

posed approach, which can be instantiated for arbitrary simulation accuracy metrics and calibration

algorithms (Section 3.2). We describe the metrics (Section 3.3) and algorithms (Section 3.4) that

we consider in this thesis.

3.1 Problem Statement

Consider a PDC system that includes: (i) a hardware platform; (ii) an application workload to exe-

cute; and (iii) a software runtime system that orchestrates the execution of the workload on the plat-

form. Examples include a data center on which a MapReduce job is executed using Hadoop+HDFS,

a dedicated HPC cluster on which a tightly-coupled parallel application is executed using MPI, or a

batch-scheduled homogeneous cluster on which a workflow application is executed using a Workflow

Management System.

A simulator of that same PDC system has been developed using a variety of simulation models,

each of which is either custom-developed or provided by a simulation framework. This simulator

takes parameters that are used to instantiate all these simulation models.

The real-world execution of the system produces an execution trace, that is, a log of time-

stamped execution events and metrics. At a minimum the trace includes an ”execution completed”

event. The simulator also produces a trace of the simulated execution, implemented so that it is

structurally and quantitatively comparable to the real-world trace. Given an accuracy metric that

can be computed based on these two traces, the objective is to determine the simulation parameter

values that optimize this metric. Simulation calibration is thus an optimization problem whose

objective function can be evaluated but is not known analytically.

3.2 Proposed Approach

In this thesis we develop a general, automated simulation calibration approach, the operation of

which is depicted in Figure 3.1.

The first step is to collect ground-truth data from a PDC application execution on a real-world

hardware/software platform. This real-world execution trace (left part of the figure) is passed to

our simulation calibration procedure (center part of the figure). This procedure is instantiated for

a particular simulation accuracy metric and with a particular calibration algorithm (top part of

the figure). The algorithm repeatedly invokes the simulator with candidate parameter values, thus

obtaining a simulated execution trace for which the accuracy metric is computed (bottom part of

the figure). In this manner the algorithm searches the parameter space for the parameter values
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Figure 3.1: Approach for reaching an accurate simulation.

that optimize accuracy. Once this algorithm terminates, the parameter values that achieve the

highest accuracy are returned as output (right part of the figure). We say that these values have

been calibrated.

We assume that for each parameter the range of its possible values is known. This range

is provided by the simulator user, and could be very large. For instance, network bandwidth

parameters could be simply set to be between 0 and 1000 GB/sec. The goal is to constrain the

search space, which is necessary for some calibration algorithms (e.g., exhaustive search). The

narrower the range of a parameter the faster the calibration, but the higher the risk that the best

parameter value is outside that range. We also assume that there is a fixed bound on the number

of simulator invocations that our approach can place. This is to bound the calibration time. The

higher this bound the better the calibrated parameter value.

In this thesis, and in particular in the case study in Chapter 4, we use the accuracy metrics and

calibration algorithms described in the next two sections.

3.3 Accuracy Metrics

We consider the two following simulation accuracy metrics:

• Makespan Error (ME) – The metric is computed as the absolute value of the difference

between the simulated makespan (the total execution time) and the ground-truth makespan
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obtained from the real-world execution. This metric, which is in seconds, is probably the

simplest metric for quantifying the discrepancy between the simulated and the real-world

execution. Due to its simplicity, it can also fail to quantify important discrepancies between

the simulated and the real-world execution. Specifically, two very dissimilar executions could

have the same makespan. As a result, a metric that captures more of the overall structure of

the execution could be preferable.

• Task Completions Mean Squared Error (TCMSE) – This metrics computes the mean

squared error between the sorted workflow task completion times in the simulated and the

real-world execution. This metric thus capture some notion of similarity between the patterns

of the two executions.

The first metric is the most common accuracy metrics used by most works in the literature.

Both metrics quantify accuracy as a single scalar, but the second metric captures information

about the temporal structure of this execution. It has been used for manual calibration in previous

work [17]. Both metrics in fact quantify simulation error, and thus are to be minimized.

3.4 Calibration Algorithms

Calibration can be done using various methods for searching the parameter space for values that

optimize simulation accuracy. We consider the following three primary simplistic search methods

and a fourth with a greater degree of complexity:

1. Exhaustive search – Given a number of parameters to calibrate, each with a range of

values, this algorithm evaluates all parameter combinations by discretizing the parameter

space evenly in each parameter range.

2. Random search – This algorithm simply evaluates sets of randomly generated parameter

values, where each value is sampled uniformly in its parameter range.

3. Hybrid search – This algorithm first uses a random search to identify a good set of param-

eter values (exploration) and then uses an exhaustive search in the neighborhood of those

values (exploitation).

4. Bayesian optimization – This approach [54, 53] is known to be effective for optimizing

black-box functions that are relatively expensive to evaluate. We implement Bayesian opti-

mization using the BayesianOptimization function in the GPyOpt Python package [4].

Given the dimensionality of the parameter space, there needs to be a bound on the search

time to ensure that simulation calibration is tractable. Furthermore, in this work we compare the

above algorithms, and to ensure a fair comparison these algorithms should run in roughly the same

amount of time. For the first three algorithms above, we simply bound the number of simulator

invocation that they can place (to 10,000 invocations). When applying this bound to the Bayesian

optimization algorithm, we found that, at least using the implementation in the GPyOpt package,
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the search time was excessively long, much longer than that for the first three algorithms. Using an

empirical trial-and-error approach, we opted for configuring the Bayesian optimization algorithm

to use 500 “iterations”, which leads to a total execution time that is roughly equivalent to that

of the other three algorithms. Consequently, we can perform a fair comparison of our calibration

algorithms.

3.5 Conclusion

Although many options exist for the accuracy metrics and calibration algorithm used to instantiate

our approach, the options outlined in the previous two sections are sufficient to determine the

feasibility of automated PDC simulation calibration. In the next chapter we verify this feasibility

via a case study for a production system.
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CHAPTER 4
CASE STUDY: CALIBRATING A SIMULATOR OF

WORKFLOW EXECUTIONS WITH
PEGASUS/HTCONDOR/SLURM ON CHAMELEON

In this chapter we evaluate our proposed approach via a case study. We first describe the

production real-world system we use for driving the case study (Section 4.1). We then describe our

simulator of this system, which we wish to calibrate (Section 4.2). We identify specific research

questions that we wish to answer via this case study (Section 4.3), and then present results pertinent

to each question (Section 4.4). Lastly, we summarize our findings (Section 4.5).

4.1 Real-World System

Per the problem statement in Chapter 3, a system consists of: (i) a hardware platform; (ii) an

application workflow to execute; and (iii) a software runtime system. In the next three sections we

describe each component of the real-world system we use for our case study.

4.1.1 Hardware Platform

We use hardware resources from the Chameleon testbed [20], an NSF-funded experimental platform

built to support Computer Sciences systems research. Specifically, our allocation on this testbed

consists of homogeneous dedicated hosts, with the following hardware specifications:

• Processors: 2x CPU E5-2670 v3 @ 2.30GHz for a total of 48 hardware threads;

• RAM: 16 GB;

• Network: Connected via 10GB Ethernet;

• Disk: HDD SATA 250GB 7200 RPM (model: ST9250610NS).

For most of our experiments the setup consists of four physical hosts, however this is increased

to six, ten, and then eighteen hosts for the experiments detailed in Section 4.4.4. In addition,

another Chameleon host not included in that number is used strictly for file system access via NFS.

4.1.2 Application Workloads

As motivated in Chapter 1, we have chosen workflows as our target application workloads. Specif-

ically, we consider both synthetic and real-world workflows. Synthetic workflows, which we have

crafted ourselves, are relatively simple with regular structure. Real-world workflows are used to

determine how applicable our approach is to large, production workflows.
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Synthetic Workflows – We consider 7 synthetic workflow configurations. These configurations

vary in their number of tasks and in the dependencies between them. The smallest configuration

has a single task, while the largest is a 17-task workflow with many dependencies. Figure 4.1

depicts the smallest three configurations, and other configurations are depicted in Figures A.1-A.4

in Appendix A. All these synthetic workflows are meant to be much simpler than a real-world

workflow, and it is relatively easy to examine and analyze their executions. Therefore, not only

do they correspond to “easy” cases for simulation calibration, but it is possible for us to manually

inspect their execution logs (simulated and real-world) to investigate causes of simulation error.

Single 1-1-1 Diamond

Figure 4.1: Structure of our first three synthetic workflows (other workflows are depicted in Appendix A.)

Real-world Workflows – We have selected representative workflow configurations for two well-

known scientific applications: Montage and Epigenomics. Montage is an application that performs

astronomical image processing, whereas Epigenomics is a bioinformatics application that converts,

filters, maps and merges gene sequences into a single map. These workflows are executed in pro-

duction using the Pegasus system [24], and actual workflow configurations are available from the

WorkflowHub project [29] project. Specifically, in this case study we use a 58-task Montage config-

uration and a 71-task Epigenomics configuration. Figure 4.2 depicts a small Montage configuration,

and a small Epigenomics configuration is also depicted in Figure A.5 in Appendix A.

4.1.3 Software Runtime System

We use a production software runtime system for executing workflows on Chameleon. Namely, we

use the Pegasus Workflow Management System, which orchestrates workflow execution by submit-

ting jobs to the HTCondor High Throughput Computing (HTC) system, which itself submits jobs

to the Slurm batch-scheduling RJMS. This runtime system, and its deployment on Chameleon,

is representative of complex cyberinfrastructure deployments used to execute scientific applica-

tions [13]. Importantly, the use of Pegasus, HTCondor, and Slurm together entails many software

interactions and intra- and inter-host communications, which lead to various and complex overhead
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Figure 4.2: Sample Montage workflow.

behaviors (which hopefully can be captured by a well-calibrated simulator). In what follows, we

describe each of the three components of this runtime system.

Pegasus

Our workflows are executed using the Pegasus Workflow Management System [25]. Pegasus is being

used in production to execute workflows for dozens of high-profile applications in a wide range of sci-

entific domains, as seen in the project’s “Application Showcase” 1. Pegasus provides the necessary

abstractions for scientists to create workflows and allows for transparent execution of these work-

flows on a range of compute platforms including clusters, clouds, and national cyberinfrastructures.

During execution, Pegasus translates an abstract resource-independent workflow into an executable

workflow, determining the specific executables, data, and computational resources required for the

1https://pegasus.isi.edu/application-showcase/
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execution. Workflow execution with Pegasus includes data management, monitoring, and failure

handling. In particular, workflow execution is handled via the HTCondor HTC system (described

hereafter). Pegasus binds the execution of a each workflow task to a particular compute resource at

the onset of the workflow execution and then strives to execute that task on that resource (unless

the resource experiences a failure). Workflow executions with Pegasus experience relatively high

overhead, as clearly seen in workflow execution logs. It turns out that this overhead is due to the

way in which the interaction between Pegasus and HTCondor is implemented. Specifically, rather

than relying on a push model for communicating execution events (such as task completions, re-

sources becoming idle), instead a pull model is used. Fixed polling periods are used ( on the order

of 30 seconds) is used for pulling updated task and/or resource status updates. As a result, large

delays can be experienced, as well as propagated throughout the whole system.

HTCondor

As mentioned earlier, Pegasus executes tasks via HTCondor [63] (more specifically, using HTCon-

dor’s DAGMan component [30] and HTCondor’s “grid universe” feature). HTCondor is a HTC

system that is designed to execute large numbers of compute jobs on a range of compute platforms.

It is primarily used for serial jobs, although it has been extended to support parallel jobs as well.

In our case study, all jobs are sequential (i.e., one job per workflow task). In the standard use

of HTCondor, so called “HTCondor worker” daemons are started on compute resources. These

daemons then make it possible to execute HTCondor jobs on those resources. In our use case,

instead, the jobs are tagged with the “grid universe” attribute. As defined by HTCondor, jobs with

this attribute are to be redirected to a compute platform, typically a cluster, managed by a batch

scheduler (such as Slurm). The goal is to execute these jobs, if possible, on any idle core available

on that platform at the time of job submission. DAGMan (Directed Acyclic Graph Manager) is

a high-level scheduler built into HTCondor that explicitly manages inter-task dependencies. It is

thus useful for execute workflow applications, which is why Pegasus relies on DAGMan. DAGMan

maintains a current list of those jobs that are “ready”, i.e., whose parent jobs have already com-

pleted, so as to ensure that jobs are executed in the correct order. HTCondor reports idle compute

resources to DAGMan, which then picks one of the ready jobs for execution on these resources.

To achieve all the above, HTCondor consists of multiple daemons (master, collector, negotiator,

schedd, etc.) that coordinate and work together to orchestrate and monitor job executions. The

intercommunication of these daemons with each other and with other components of the software

infrastructure (e.g., the batch scheduler), is one overhead in the workflow execution. Furthermore,

there are some artificially introduced overhead in the system. In particular, we found that DAGMan

includes a fixed sleep (of 5 seconds) for each job submission.
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Slurm

We consider compute nodes managed via the popular and ubiquitous Slurm batch scheduler [71].

Users (in our case HTCondor) submit jobs to a batch scheduler requesting some number of compute

nodes for some length of times. These jobs requests are placed in a queue (the so-called “batch

queue”), and a particular scheduling algorithm is used to select which of these jobs in the queue is

started on available, idle compute nodes. The typical algorithm, which is implemented by default

in Slurm, is first-come-first-serve with backfilling. Backfilling is a technique that allows small/short

jobs to jump ahead in the queue, which is typically deemed desirable to increase compute node

utilization [49]. Slurm, much like HTCondor, consists of multiple daemons responsible for enabling

and managing job executions. The main such daemons are a a control daemon, which runs on a

“head node”, an optional database daemon, and a slurmd daemon that runs on each compute node

and reports to the control daemon. Here again, inter-daemon communications add overhead to the

workflow execution.

Deployment on Chameleon

We consider a small-scale deployment of this system on the Chameleon testbed. Figure 4.3 depicts

this deployment when two hosts are used as compute nodes managed by Slurm. Another host

executes the Slurm coordinator, and another executes the HTCondor coordinator. We instantiated

this deployment for 2, 4, 8, and 16 compute nodes. Therefore we only consider relatively small-scale

deployments. This is due to limited testbed resources and competition for these resources when

requiring them, as we do, for long periods of contiguous time.

4.2 Simulator

We have implemented a simulator of the system described in the previous section. This simulator

is implemented in C++ and consists of approximately Ï 800 LOCs. This simulator is built on top

of the WRENCH simulation framework [19, 69], which provides high-level simulation abstractions

for implementing simulators of complex PDC systems. In particular, WRENCH supports both

HTCondor and batch schedulers, such as Slurm, natively. Therefore, the development effort for

our simulator was minimal. Instead, most of our simulation development effort was devoted to

extending WRENCH so that it support HTCondor’s grid universe feature. Although we performed

this development specifically for this case study, it is now part of the WRENCH code base and

available to all WRENCH users who wish to easily simulate HTCondor, including its grid universe

feature. Recall that WRENCH itself builds on top of SimGrid [16], a popular accurate and scalable

simulation framework that has been used to obtain simulation results in 500+ research publications.

As discussed in Chapter 2, WRENCH and SimGrid make it possible to implement simulators that

can be extremely accurate, provided they are well-calibrated.
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Figure 4.3: Hardware resources in the Chameleon testbed when using two compute nodes (Slurm workers).

The simulation models within our simulator are configured via 5 distinct parameters, as follows

(ranges used for each parameter can be found in square brackets):

• Disk Bandwidth – [1,400] The effective disk data transfer rate (R/W), in MBps. It is used to

simulate each host’s primary disk that is used to store workflow data.

• Link Bandwidth – [1,1000] The effective bandwidth between hosts, in MBps.

• Pre-Execution Overhead – [1,2000] An overhead in seconds that causes a delay before the

execution of the first workflow task. This overhead is significant in real-world executions and

is due to interactions between Pegasus/HTCondor/Slurm as well as idiosyncrasies of some of

these systems (as explained in Section 4.1.3).

• Post-Execution Overhead – [1,2000] An overhead in seconds that causes a delay experienced

after the execution of each level of the workflow. This overhead is again significant in real-

world executions for the reasons stated above (see Section 4.1.3).

• Flop rate – [250000000,3000000000] The effective computational speed, in floating point op-

erations per second, of the compute nodes’ cores.
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Our objective is to apply our proposed automated simulation calibration approach to compute

values for all the above parameters that maximize simulation accuracy.

Our simulator is available on GitHub 2.

4.3 Research Questions

The purpose of this case study is to answer the broad research question: Is automated calibration

of PDC simulators feasible and effective to maximize simulation accuracy? To do so,

we start by answering the following more specific research questions:

• Research Question #0: Is simulation calibration necessary in the first place? As discussed

in Chapter 2, it is not clear how often simulation calibration is performed in the literature.

Anecdotal evidence seems to indicate that many simulator users tend to pick simulation

parameter values based on their own knowledge (or best guesses) regarding the target system.

In the scope of this case study, we wish to quantify the loss in simulation accuracy that such

a, seemingly reasonable, approach can cause.

• Research Question #1: What are sufficient simulation accuracy metrics? Simple metrics that

capture only one aspect of the simulation outcome can be easily implemented and understood

(e.g., overall execution time), but there are also more sophisticated metrics to consider. Met-

rics that capture the granular temporal structure of the simulation outcome may lead to

preferable, more generalizable parameter instantiations. In Section 3.3 we have proposed two

metrics, one simple and one more sophisticated. In the scope of this case study, regardless

of the calibration algorithm in use, we wish to quantify the difference in overall simulation

accuracy when calibrating with either one of these metrics.

• Research Question #2: What are effective algorithms for searching the parameter space for

parameter instantiations that maximize simulation accuracy? A range of algorithmic options

can be envisioned for the simulation calibration process, and we have outlined several options

in Section 3.4. Some are brute-force algorithms (such as exhaustive searches) that may have

difficulties exploring a multi-dimensional parameter space thoroughly in reasonable amounts

of time. Others (such as random searches or Bayesian optimization) should fare much bet-

ter. In the scope of this case study, we wish to compare the effectiveness of these different

algorithmic options.

• Research Question #3: How generalizable are automatically computed calibrations? After a

calibration is computed based on a particular real-world execution trace, is it unclear to which

extent this calibration remains valid when used to simulate different execution scenarios (e.g.,

2https://github.com/wrench-project/automated-calibration

18



different application workflow characteristics, different platform characteristics and scales).

Ideally, the calibration could be performed with a simple (small-scale, quick-running) real-

world experimental scenario, and still lead to high accuracy, or “generalize”, to a range of

other scenarios, and in particular larger-scale scenarios. In the scope of this case study we wish

to quantify the extent to which computed parameter calibrations are generalizable beyond

the specific scenario used as input to the calibration process.

4.4 Results

In all that follows, we are quantifying the accuracy of the calibrated simulator using the absolute

value of the difference, in percentage, between the simulated makespan and the observed real-world

makespan. Note that the calibration may have been computed using this very metric, ME, or

the TCMSE metric, as defined in Section 3.3. We use the ME for assessing the accuracy of the

calibrated simulator so as to ensure consistent comparisons between methods, and also because it

is the main metric used in the literature.

One factor to keep in mind when examining our results is the variability of real-world executions.

From our experience with Chameleon, the standard deviation of a workflow makespan was found

to be 6 to 7%. This is because there are always dynamic factors that perturb executions. This

is particularly the case in a shared cloud environment such as Chameleon, where other users can

cause unexpected load on the system. While our compute nodes are dedicated to our purpose, the

network infrastructure is not. Network load can change drastically from hour to hour and impact

file transfer times. One possible way to mitigate the variability of the execution is to reserve host

in the same rack of the physical infrastructure, which is in principle feasible with Chameleon.

However, we found that doing so is not always possible or practical.

4.4.1 Research Question #0

The first question to address is whether automated calibration is necessary to begin with. Or,

in other terms, what is the effectiveness of simply picking parameter values based on (hopefully

educated) guesses? Recall that, based on the existing literature, this approach is by far the most

common. For this case study, we know the hardware specifications of our hosts as stated on the

Chameleon Web site (see Section 4.1.1). Since from these specifications we know the model and

number of the disks, we can also find out their advertised data transfer rates (which are 115

MBps). More difficult to estimate is the network bandwidth, especially since network contention

occurs on the platform and the network configuration depends on the racks on which allocated

hosts are located. The Chameleon Web site provides very little information, and so a reasonable

estimate based on our own experience is 2500 MBps. Determining flop rates is also difficult, but

given that we know CPU information we are able to find published benchmark results, which lead
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us to use 1.150 billion flop/sec. The last two parameters which represent overhead added to the

execution by Pegasus/HTCondor/Slurm are more difficult to pick. Based on our observations of a

few executions, setting both of them to a few minutes (180 seconds) each seems reasonable. While

more effort could perhaps be devote to picking better values, the above is representative of what is

typically done in the PDC literature when calibration is not attempted.

Using these manually calibrated parameters we run a simulation of our fourth synthetic work-

flow, which features an eight-task harpoon-join configuration. We find that the simulation error

is 36.243%. And yet, as seen in upcoming sections, it is possible to compute parameter values

that achieve almost perfect accuracy. This illustrates the drawback of not performing simulation

calibration. And still, this is only for picking 5 parameter values, each of which seemingly directly

maps to key properties of the target system (or in fact are provided as known specifications).

Given the observed simulation error, we could then embark on a manual simulation calibration

effort, i.e., “tweaking” parameter values until the simulation error is acceptable. That tweaking by

trial-and-error is precisely what our proposed approach seeks to automate.

4.4.2 Research Question #1

In Section 3.3 we have defined two metrics can can be used by our proposed automated simulation

calibration approach: the simple ME (Makespan Error) metric and the more complex TCMSE

metric (Task Completions Mean Square Error). The question is whether using the TCMSE metric

is advantageous w.r.t using the ME metric (see discussion in Section 3.3).

Table 4.1 shows, for each of our 9 workflows when executed on 2 compute nodes, the simulation

error when using the two metrics for executing the calibration algorithm. These results are obtained

when using the Exhaustive Search calibration algorithm.

Table 4.1: Simulation error for both calibration metrics when using the Exhaustive Search calibra-
tion algorithm.

Calibration Metric

Workflow ME TCMSE

SingleTask 8.63% 8.63%
1-1-1 0.00% 0.00%
Diamond 0.07% 9.42%
Harpoon 0.40% 1.38%
1-10-1 0.70% 2.55%
1-5-1-5-1 0.46% 7.30%
1-3-(*4)-1 8.11% 8.11%
Epigenomics 0.20% 4.70%
Montage 0.22% 2.77%
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From the results in the table, and perhaps counter-intuitively, we see that calibrating using the

more complex TCMSE metric in fact leads to higher error than calibrating with the ME metric. For

other calibration algorithms, such as Bayesian optimization, the two metrics lead to similar results.

However, in none of our results does using the TCMSE metric lead to a significant improvement.

It is possible that for more complex settings, i.e., outside the scope of this case study, using the

TCMSE metrics would bring some benefits (since after all it does capture features of the temporal

structure of the execution). This said, in all that follows, unless specified otherwise, we discuss

results obtained when using the ME metric for calibration.

Full results, including all results when using the TCMSE metric for calibration, are available in

Appendix B.

4.4.3 Research Question #2

Table 4.2: Simulation error for each calibration algorithm when using ME metric.

Calibration Algorithm
Manual Calibration

Workflow Exhaustive Random Hybrid Bayesian

SingleTask 8.63% 0.00% 0.09% 0.00% 6.47%
1-1-1 0.00% 0.00% 0.09% 0.39% 20.70%
Diamond 0.07% 0.00% 0.12% 0.02% 38.04%
Harpoon 0.40% 0.00% 0.28% 0.13% 36.23%
1-10-1 0.70% 0.02% 0.20% 0.09% 51.28%
1-5-1-5-1 0.46% 0.01% 0.05% 0.10% 42.14%
1-3-(*4)-1 8.11% 0.02% 0.02% 0.07% 51.31%
Epigenomics 0.20% 0.02% 0.03% 0.20% 61.35%
Montage 0.22% 0.02% 0.59% 0.22% 52.66%

Table 4.2 shows simulation error for all our workflows, when executed on 2 compute nodes,

and our four calibration algorithms. Actual parameter values computed by these algorithms are

available in Tables B.1-B.9 in Appendix B.

The main observation from these results is that all the algorithms perform well. However,

there is some degree of separation. The Exhaustive Search algorithm performs the worse, the only

method with any error over 1%. The Bayesian Optimization algorithm and the Hybrid Search algo-

rithm both perform well, but the clear standout is the Random Search algorithm. Even though we

limit the number of simulation invocations to 10,000, it is able to achieve near perfect calibration,

i.e., near-zero error, for every workflow. We expect that for a more “difficult” simulation calibra-

tion problem (i.e., more parameter dimensions) the algorithms would exhibit more differences. In

particular, we would expect the Bayesian Optimization algorithm to fare increasingly better as

dimensionality increases.
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The difference between Exhaustive and Random is somewhat surprising, as we would expect

these to achieve similar results. As the number of simulation invocations is limited, recall that

Exhaustive is a grid search, i.e., it discretizes the parameter search space. In our experiments, this

means that Exhaustive only evaluates six different values for each parameter. One likely cause of the

poorer performance of Exhaustive is that the five simulation parameters are not all created equal:

they can have varying degrees of impact on the simulated execution time. This is due to factors

like bottle necking between disk speed and link speed (if one of the two is a clear bottleneck, the

other parameter does not really matter), and, for similar reasons, the composition of the workflows

(computation vs. I/O). As Exhaustive only evaluates six values for each parameter, it is likely that

no good value is found, and having a poor value for an impactful parameter results in the poor

simulation accuracy overall.

One caveat in our results is that they are obtained for a single real-world execution trace.

Yet, as mentioned previously, real-world executions experience some level of platform “noise”,

such that from our executions we experienced a standard deviation of 6-7% in makespan, for the

same workflow execution. This means the calibrations computed by our algorithms are overfitted

to optimize for one particular data point. As a result, calibration leads to accurate results for

this specific workflow execution, but may not be accurate for a different execution of that same

workflow. Given additional time and resources to generate a large sample of real-world execution

traces, the way to avoid overfitting would be to calibrate over that large sample, using a standard

training-testing set approach. The one problem with this approach is that generating that many

real-world traces requires a lot of time and access to the computing environment. We were not able

to obtain this data for our particular testbed. Also, from a more general perspective, obtaining

a very large sample may be impractical give the resource expense. For the purposes of our case

study, unfortunately, limited testbed resources and time, along with recurrent technical issues, we

have opted for using a single real-world execution trace. As a result, it is important to keep the

overfitting aspect of our results in mind.

Given the results in this section, in all that follows we only present results obtained using the

Random Search calibration algorithm.

4.4.4 Research Question #3

PDC simulators are typically used to simulate scenarios that cannot be executed in the real world,

in particular, scenarios for other application workloads and for other platform configurations. In

this section, we seek to quantify the extent to which a simulation calibration computed based on

a particular real-world scenario can be reused for other scenarios with some degree of accuracy.

We first look at using a calibrated simulator for different workflows and then for different platform

scales.
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Different Workflows

Table 4.3: Percent simulation error when using Random Search with the ME metric.

Table 4.3 shows simulation error observed when using the parameters calibrated for one workflow

configuration to simulate the execution of another workflow configuration. More precisely, the rows

indicate which workflow was used for computing the calibration and the columns indicate which

workflow executions are simulated using this calibration. For instance, the cell at row “Diamond”

and column “1-5-1-5-1” shows the simulation error observed for simulating the execution of the 1-5-

1-5-1 workflow when the simulator is calibrated based on the real-world execution of the Diamond

workflow. Note that the numbers on the diagonal (omitted from figure) would be the same numbers

as those in the second column of Table 4.2.

The results in Table 4.3 show that, as expected, there is a loss in accuracy when applying

a calibration computed for one workflow to another (larger) workflow. This loss can be quite

high. For instance, calibrating with the synthetic Harpoon workflow leads to 78.27% error when

simulating the production Montage workflow. In some cases, the results are not as poor. For

instance, using the calibration computed based on the execution of the 1-10-1 workflow leads to

a much lower 12.86% error for Epigenomics and 4.64% error for Montage. These margins of error

are definitely acceptable to most users (as they are much better than what is often reported in the

literature, and better than what can be seen above in Section 4.4.1). Recall also that our workflow

execution suffers from variability due to platform noise, which likely increases simulation error in

these results. This said, we have no reasonably hypothesis regarding why some results in Table 4.3

are better than others. For instance, we have no explanation for why using the 1-10-1 calibration

for simulating Epigenomics leads to high accuracy, but not using the 1-5-1-5-1 calibration.

Overall, the results in Table 4.3 are disappointing, and seem to indicate that automatically

computed calibrations do not generalize to other workflow scenarios, or at least not consistently

if high accuracy is needed. As explained in Section 4.4.3, part of the lack of accuracy can likely

be attributed to the overfitting in our calibration process caused by using just a single real-world

execution trace. In an attempt to understand any other reasons for these results we have exam-

ined simulated and real-world execution logs. We found that the culprit for these poor results

is the calibration of the ”overhead” simulation parameters (see Section 4.2). This is because the
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calibration algorithm can find a good solution for a specific scenario, but that solution over- and

under-estimates various overheads. When using the computed calibration, the over- and under-

estimates compound and do not scale, leading to poor accuracy. Furthermore, we find that our

simulator does not fully simulate all overhead behaviors of the real-world system, in which case

there are inherent limits to what calibration can achieve for that simulator. We believe that, while

some overhead in the real-world system can be attributed to behaviors of HTCondor and Slurm,

the largest portion is due to Pegasus.

To further verify the above explanation, we conducted experiments without using the Pegasus

workflow management system, which is responsible for the largest amount of overhead. We thus

configure our simulator to not simulate these overhead (i.e., we set them to 0 seconds). Due to not

using Pegasus, we are not able to execute the Epigenomics and Montage workflows. Table 4.4 is

similar to Table 4.3, but shows results only for the synthetic workflows executed without Pegasus

(i.e., via custom scripts).

Table 4.4: Percent simulation error when using Random search with ME metric on Non-Pegasus Synthetic
Workflows.

Results in Table 4.4 are significantly better than those in Table 4.3. These results show that

calibrations computed based on a given workflow execution do generalize to other workflows. These

results, albeit in a limited setting, are encouraging but point to many interesting questions. The

first question is that of the inherent accuracy of a simulator, as we have seen that our simulator

fails to capture the complex overhead behavior of our real-world system. Another, perhaps more

interesting, question, is what set of workflow configurations should be executed so as to obtain

simulation calibration that can be re-used with high confidence for large workflows. This question

it outside the scope of this thesis but provides fertile grounds for future work.

Different Platform Scales

In the previous section we attempted to use a calibrated simulator for a particular workflow execu-

tion to simulate the execution of another workflow. In this section we now simulate the execution

of the same workflow, but using a larger number of compute nodes. The question is whether a

calibration computed for some platform scale can produce reasonable accuracy when simulating a

different platform scale.
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Table 4.5: Simulation error when increasing the number of compute nodes for Montage and Epige-
nomics.

Simulation error

# compute nodes Montage Epigenomics

2 0.02% 0.02%
4 23.69% 7.35%
8 22.92% 29.87%
16 41.21% 18.15%

On our testbed we executed the Montage and Epigenomics workflows on 2, 4, 8, and 16 nodes.

We used the 2-node execution to calibrate the simulator for each workflow. Table 4.5 shows simu-

lation error for both workflows under these conditions.

The results in the table show that, as expected, simulation error increases when using the

simulator calibrated for the 2-node executions to simulate executions on more nodes. This increase

in simulation error is not monotonic, and the simulation error tends to be larger for Montage that

for Epigenomics. As in the previous section, the results are somewhat disappointing, even though

a ∼20% simulation error is commonly seen in the literature, and is still less than our manually

calibrated results from Section 4.4.1. Here again, and as mentioned in Section 4.4.3, the lack of

accuracy can partially be attributed to the overfitting in our calibration process caused by using a

single real-world execution trace to compute the calibration.

Inspecting the discrepancies between the simulated and the real-world executions, we find that

with higher numbers of compute nodes, the workflow execution time tends to plateau. For instance,

the real-world Montage execution takes roughly the same amount of time on 8 and on 16 nodes.

However, the workflow parallelism should make it possible for the execution to be faster on 16 nodes.

This expected behavior is seen in the simulated execution, but not in the real-world execution. This

is due to Pegasus suffering from overheads that our simulator fails to implement. This is essentially

the same explanation as in the previous section: our simulator does not sufficiently accurately

simulate Pegasus. On a side note, these overheads could be considered flaws of Pegasus, which

could be remedied by its developers (and that our simulator made it possible to discover!).

4.5 Conclusion

In this chapter we have applied our proposed automated simulation calibration approach to a

particular case study for a production system. Our main findings are:

• Picking simulation parameter values based on knowledge of or best guesses for the charac-

teristics and behavior of a real-world PDC system does not lead to high simulation accuracy.
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This was demonstrated for this case study, even though the number of simulation parameters

is relatively small and these parameters seem to have a direct mapping to features of the

real-world system. As a result, a systematic, automated simulation calibration approach is

needed.

• We experimented with two simulation accuracy metrics to drive the automated simulation

calibration procedure: Makespan Error (ME) and Task Completions Mean Square Error

(TCMSE). The former is simpler, while the latter captures some details of the temporal

structure of the execution. Within the purview of our case study, the simpler ME metric

leads to better results. Note, however, that in all our results we quantify simulation accuracy

after the fact using this same metric, as done in the literature. Therefore, it is perhaps

not surprising that using that very same metric for computing the calibration leads to good

results. One could hope that calibration computed using the TCMSE metric would be more

accurate or more generalizable, but we have not observed this in our case study.

• We experimented with four different calibration algorithms. Within the purview of this case

study, Random Search, Hybrid Random/Exhaustive Search, and Bayesian Optimization were

able to outperform Exhaustive Search when calibrating on a single execution trace. All three

of the former were able to reduce ME and TCMSE to low values under these circumstances.

Exhaustive likely leads to the worst results as it cannot search the relatively large parameter

space effectively and is most vulnerable to differences in impact (on makespan) between the

varying parameters. We note that the single execution trace used to calibrate will introduce

additional error when attempting to use the computed calibration to simulate other executions

than that used to obtain that particular trace.

• We experimented with using a simulator calibrated for a specific workflow execution trace to

simulate another workflow (e.g., a different application workload, a large execution platform).

We found that simulation error increases (from a few percent to about 20%) in most cases. The

error is still better than results obtained via manual calibration. We identified that complex

overhead behavior of our target system, namely that of the Pegasus Workflow Management

System, as the main source of error. This is caused by the simulator not fully capturing

that overhead behavior (some of which is undesirable not nevertheless present). As a result,

computed calibrations, when applied to different workflows or platform scenarios, do not

lead to low simulation error. We have verified that when removing this overhead behavior

(i.e., executing workflows without Pegasus), our computed calibrations are more accurate and

generalizable.
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CHAPTER 5
CONCLUSION

In this final chapter we provide a brief summary of our contributions and highlight possible

directions for future work.

5.1 Summary of Contributions

In this thesis, we have proposed, developed and evaluated an automated simulation calibration

approach for PDC simulators. Specifically, our contributions are:

1. We have designed a generic automated simulation calibration approach, which can be instan-

tiated for arbitrary simulation accuracy metrics and calibration algorithms (i.e., algorithms

that search the simulation parameter space in order to maximize the accuracy metric).

2. We have instantiated our approach for two simulation accuracy metric definitions: (i) a sim-

ple metric that captures only the overall application execution time; and (ii) a more complex

metric that captures the temporal structure of that execution. We have also instantiated

our approach for four calibration algorithms: exhaustive search, random search, hybrid ran-

dom/exhaustive search, and Bayesian optimization.

3. We have built a simulator of a complex real-world, production system, namely a system that

uses the Pegasus Workflow Management System [24] to execute various workflow applications

on compute nodes managed by the Slurm [71] batch scheduler and accessed via HTCondor [62],

all deployed on the Chameleon Cloud testbed [37]. This particular system configuration is

used in real-world production settings [13].

4. We have collected real-world execution data both for synthetic and production workflow

applications on this system.

5. We have applied our simulation calibration approach to our simulator of this system and have

be able to quantify the extent to which it is successful in optimizing simulation accuracy.

6. Our key finding from the above activities is that simulation calibration of PDC simulators

is a promising approach for increasing simulation accuracy, even though challenges remain.

Specifically:

• Simply picking simulation parameter values based on knowledge of the target PDC

system is difficult, and an automated simulation calibration approach is needed.

• While several options are possible for the simulation accuracy metric used to compute the

calibration, in our case study we found that the simple, most common metric (makespan

error) leads to good results.
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• We experimented with four different calibration algorithms in our case study. When

parameters are calibrated to a single trace, Random Search, Hybrid Search, and Bayesian

Optimization algorithms are all able to reduce the simulation error to low values (below

1%), with the Random Search algorithm fitting the training data better than the other

algorithms. All these algorithms lead to better results than the Exhaustive Search

algorithm. Whether this relative advantage generalizes to new data remains to be tested.

• When using a simulator calibrated for a specific workflow execution trace to simulate

another workflow, the calibration being computed using the Random Search algorithm,

we found in our case study that the calibration generalizes in that it still leads to results

better than manual calibration (as seen by comparing the percentages in Table 4.3 to

the the last column of Table 4.4.3). We found, however, that simulation error increases

significantly. This increase is due to overfitting to a single workflow execution trace

during the calibration process, as well as to the fact that our simulator fails to capture

complex (and undesirable but nevertheless present) overhead behaviors of our target

production system, and in particular that of Pegasus. We have confirmed that this

second source of error is prevalent by running experiments without Pegasus.

5.2 Future Work

This work is only a first step toward an automated calibration solution for PDC simulators. As

such, several promising future research directions can be envisioned:

• Although our results showed that it is possible to compute automatically an accurate sim-

ulation calibration for a specific execution trace. This calibration can generalize to other

scenarios to some extent, leading to results better than manual calibration (ass in by com-

paring results in Table 4.3 to the manual calibration results in Table 4.4.3). Nevertheless,

the simulation error remains relatively high. One difficulty here is that the simulator of the

real-world system may not capture all relevant behaviors of that system precisely. In our case

study, we found that the overhead behavior of the real-world system was more complex that

simulated by the simulator. As a result, although it was possible to calibrate this simulator

for each individual execution trace, these calibrations under- and over-estimate overheads to

“make it fit”. But these overhead values are then not applicable to other scenarios, or at least

not in a way that provides consistently high simulation accuracy. There is thus an interesting

tension between quality of the simulator itself and the quality of the computed calibration.

A crucial future work direction is to explore this tension. This exploration will require the

development of different versions of the simulator, where each version captures the target

system’s behavior with a different degree of faithfulness.
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• The case study used in this thesis is representative of production PDC systems and applica-

tion workloads, but is only one of many possible options. It will be necessary to conduct other

case-studies with different real-world systems and simulators thereof. This is so as to verify

that our approach is generally applicable beyond the scope of the case study in Chapter 4.

In particular, it is crucial to evaluate our different calibration algorithms for simulators that

require even more simulation parameters. We expect that algorithms such as Bayesian opti-

mization will perform better in higher dimensions. But increasing the number of dimensions

will also likely motivate the need for exploring alternate calibration algorithms.

• A natural next step is to release our simulation calibration approach as a Python package

re-usable by others. This would include tools to collect real-world execution traces, compute

simulation accuracy metrics, and compute calibrated parameter values.

• The key motivation for this research is to automate simulation calibration because manual

simulation calibration is not tractable. But regardless of how easy our approach renders

the simulation calibration process, this process still requires access to a real-world system

deployment. In some cases, users may not have access to such a deployment. In other cases,

they only have access to systems that are insufficient for or too dissimilar from their targeted

simulated scenario. What is needed instead is a community catalog of simulation calibrations.

Specifically, developers and users of particular simulators could, using our proposed approach,

easily calibrate their simulators for any number of production system. The simulator software

could then be published along with sets of computed calibrations (i.e., sets of parameter

values for particular system specifications) so that others can use these simulators with high

confidence. This would enable a drastic improvement in the scientific methods used for

simulation-based research in the PDC field.
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APPENDIX A
APPENDIX FOR SECTION 4.1.2

1-3-3-1
Harpoon

Figure A.1: Structure of Harpoon-Join synthetic workflow.
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1-10-1
Merge

Figure A.2: Structure of 1-10-1 Join synthetic workflow.
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1-5-1-5-1
Merge

Figure A.3: Structure of 1-5-1-5-1 Join synthetic workflow.
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1-3-12-1
Split

Figure A.4: Structure of 1-3-12-1 Split/Join synthetic workflow.

33



Figure A.5: Structure of Epigenomics workflow.
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APPENDIX B
APPENDIX FOR SECTION 4.4

Table B.1: Calibrated Parameter Values for Single-Task. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 1 400 1350000000
Random 36 683 82 612 2938073693
Hybrid 316 144 34 620 2373570891
Bayesian 330 122 341 337 2695289788

Table B.2: Calibrated Parameter Values for 1-1-1. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 400 400 1350000000
Random 374 605 1761 38 1792763135
Hybrid 136 716 1585 192 2709639136
Bayesian 177 676 647 470 2247091827

Table B.3: Calibrated Parameter Values for Diamond. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 800 400 800000000
Random 224 869 1016 248 765155150
Hybrid 186 757 1178 737 1840141677
Bayesian 54 850 1353 399 1134036926
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Table B.4: Calibrated Parameter Values for Harpoon Join. (disk bw: Disk Bandwidth; link bw:
Link Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 400 1600 1350000000
Random 56 37 191 1354 2880769401
Hybrid 80 754 1840 510 995301676
Bayesian 321 994 1372 1661 2610525414

Table B.5: Calibrated Parameter Values for 1-10-1. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 1600 2000 800000000
Random 70 436 345 1658 562149900
Hybrid 279 316 1374 1657 676203054
Bayesian 361 24 1291 1558 2219058817

Table B.6: Calibrated Parameter Values for 1-5-1-5-1. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 800 1600 2000 1900000000
Random 135 759 1682 1357 1082113114
Hybrid 193 272 1173 1333 950882204
Bayesian 157 333 936 1779 1241566609

Table B.7: Calibrated Parameter Values for 1-3-(4*)-1. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 200 2000 2000 800000000
Random 24 29 343 1291 753558637
Hybrid 116 517 1532 1507 550531686
Bayesian 211 115 696 1726 526613252
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Table B.8: Calibrated Parameter Values for Epigenomics. (disk bw: Disk Bandwidth; link bw:
Link Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 1 800 400 2450000000
Random 127 915 1174 1169 632605578
Hybrid 293 607 1850 1951 1250586738
Bayesian 393 868 808 1229 612025322

Table B.9: Calibrated Parameter Values for Montage. (disk bw: Disk Bandwidth; link bw: Link
Bandwidth; pre: Pre-Execution Overhead; post: Post-Execution Overhead; flop: Flop rate).

Calibration Method disk bw (MB/sec) link bw (MB/sec) pre (sec) post (sec) flop (flop/sec)

Manual 115 2500 180 180 1150000000
Exhaustive 1 1 1600 1 2450000000
Random 335 62 991 40 578458231
Hybrid 44 501 1111 1586 589209254
Bayesian 389 28 872 739 578931049

Table B.10: Percent simulation error when using Exhaustive search with the ME metric.

Table B.11: Percent simulation error when using Random search with the ME metric.
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Table B.12: Percent simulation error when using Hybrid search with the ME metric.

Table B.13: Percent simulation error when using Bayesian search with the ME metric.

Table B.14: Percent simulation error when using Exhaustive search with the TCMSE metric.

Table B.15: Percent simulation error when using Random search with the TCMSE metric.
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Table B.16: Percent simulation error when using Hybrid search with the TCMSE metric.

Table B.17: Percent simulation error when using Bayesian search with the TCMSE metric.
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