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ABSTRACT

The goal of this dissertation research is to demonstrate the integration of targeting, guidance, nav-
igation, and control (TGNC) functions for real-time implementation onboard unmanned aerial
vehicles (UAVs) for a wide range of applications. This allows us to create a robust and accurate
integrated TGNC software platform for UAVs, which enables them with real-time capabilities and
leverages the flight autonomy. Target-relative guidance, real-time targeting and re-targeting ca-
pabilities are of great interest in today’s UAV technology. This research proposes new guidance
and estimation methods as well as new extremal control laws for UAV applications. In particular,
this research focuses on quadcopter applications. The proposed guidance methods represent an
extension of the existing explicit translational guidance (E-guidance) to include rotational guid-
ance and exponential braking guidance to reach target points. The proposed estimation method
is a hierarchical mixture of experts (HME) framework with extended Kalman filters (EKFs) and
a modified softmax function to provide state and parameter estimations for navigation solutions.
The proposed research utilizes the Hamiltonian formalism with the indirect method to solve the
optimal control problem, which replaces existing PID control laws with extremal control laws
based on first-order optimality conditions. Three illustrative examples demonstrate integration
of targeting, guidance, and control functions for takeoff, waypoint, and roll maneuvers of quad-
copters. It is shown that the proposed HME framework with acoustic parameters demonstrates a
viable navigation solution. Implementation of the TGNC functions through the proposed HME,
target-relative guidance, and extremal control with simulated acoustic parameter measurements
demonstrates a completely integrated TGNC software system for quadcopters. Novelties of the
proposed research include extension of E guidance, simulating an exponential braking guidance
law to reach a target point, determination of the switching function for max-intermediate thrust
arcs, and design and validation of a HME framework to provide navigation solutions. The pro-
posed research results can be used to address environmental and agricultural problems that utilize
UAVs. This research has been funded, in part, by the NASA EPSCoR ACTUAS (Autonomous Con-
trol Theory - Unmanned Aerial Systems) project. The core research contributions are deriving E
Guidance for rotational maneuvers extending E Guidance to higher order integration methods,
integrating E Guidance with extremal control satisfies the boundary conditions to yield an ex-
tremal for the guided trajectory, and incorporating acoustics with EKFs in HME shows the impact
of considering several different models and parameters to have accurate state estimation. Future
work may encompass determining accurate dynamic thrust and acoustic models and considering
second-order conditions to determine optimal control with a corresponding trajectory.
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CHAPTER 1
INTRODUCTION

1.1 Goal

The goal of the proposed research is to design, develop, integrate and validate targeting guidance,
navigation, and control (TGNC) software algorithms for an autonomous and real-time implemen-
tation onboard of unmanned aerial vehicles (UAV) for agricultural and environmental applica-
tions in the Hawaiian Islands [1]. The proposed TGNC integration will be demonstrated by the
execution of the software algorithms for specified maneuvers, such as the monitoring and inspec-
tion of the fields of macadamia nuts, coffee plantations, and vegetation near the coastal areas of
the Hawaiian Islands such as Oahu, Hawaii island, and Kauai under various flight conditions,
including beyond line of sight conditions. The proposed research paves the way for a wide range
of possibilities and opportunities for UAV development with potential applications in the Central
Pacific and Micronesian Islands. This work will contribute to the fulfillment of the NASA strategic
plans and current efforts to create an efficient and safe national airspace [4].

1.2 Significance

Digital elevation maps help provide information about Oahu’s potential flood zones due to the
rising sea levels, which is a time-sensitive issue, especially for an island with numerous buildings
and structures near coastlines in locations such as Waikiki or Kaka’ako [5]. Strategic planning
through these digital elevation maps can lead to coastal surveys and analysis to develop solutions
to prevent exposing "approximately 6,500 structures and 19,800 people statewide" to potential
flooding, which will occur in the next 30 to 70 years [6]. Overall, utilizing UAVs with TGNC
capabilities for generating digital elevation maps can aid in these efforts.

1.3 Dynamics and Control of UAVs

This research emphasizes developing guidance, navigation, and control (GNC) schemes to lever-
age autonomy by enabling UAVs with targeting capabilities in performing various tasks and ma-
neuvers. In the last two decades, new nonlinear control laws and schemes have been developed
[7, 8, 9]. In particular, the existing onboard control systems primarily utilize well-known control
schemes such as linear or proportional controllers, PID controllers, and tracking controllers imple-
mented by the flight controllers, including "Pixhawk" and "Omnibus F4 V2" along with DJI, Mis-
sion Planner, and INAV software platforms [10, 11]. These controllers are primarily designed for
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ground-based computations and implemented onboard using iterative processes with humans-
in-the-loop. However, the efficiency, optimality, and utility of these existing control laws and
schemes onboard UAVs have yet to be studied and tested for applications. The implementation
of these control laws and schemes require real-time computation of the state and control vectors
to improve the accuracy and leverage the autonomy of UAVs. At the same time, onboard com-
putation of the state and control vectors requires a) efficient, simple, and explicit control laws, b)
computationally inexpensive estimation methods, c) simplistic guidance schemes or laws. Besides
mathematically resolving linear PID limitations with nonlinear controllers, nonlinear controllers
may have engineering merits over linear PID controllers. Comparing battery voltages between
PID controllers and nonlinear controllers for maneuvers provides pilots insight in choosing be-
tween the controllers to save battery life during flights. Having this information allows them to
prefer one controller over another if they desire to optimize battery life to have longer flight times.
This research focuses on TGNC, but there are generally more studies devoted to GNC than TGNC.
Thus, the literature review in the next section describes what has been done in UAV GNC research.

1.4 Literature Review

1.4.1 TGNC vs. GNC

Below is a comparison between GNC and TGNC, where the biggest differences are targeting
and lack of ground control to provide navigation and guidance commands in conventional GNC.
TGNC is important in UAVs because pilots typically desire to compute waypoints ahead of time
or generate new waypoints during a mission. In the UAV community, the waypoints are target
points, so targeting in UAVs involves computing waypoints. Typically, targets are pre-calculated,
so deviations from the nominal trajectory would cause the mission to fail if there are unaccounted
obstacles. Targeting provides information to guidance where the vehicle should go to avoid ob-
stacles or to follow a nominal trajectory. Control gives the vehicle’s actuators commands to move
towards the target, and navigation provides state estimation of the vehicle. Overall, enabling the
UAV to have autonomous TGNC capabilities allows it to search for targets or areas of interest
without humans providing trajectories and waypoints of where to search, which increases au-
tonomous capabilities. Section 3.1 provides definitions and more details of each of the TGNC
functions.
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Figure 1.1: GNC & TGNC Architecture [1]

1.4.2 Guidance Functions

Guidance laws are not discussed as frequently as control or navigation functions in UAV flight
software. However, UAV flight software such as PX4 and Ardupilot utilize a modified L1 con-
troller, allowing tighter tracking of curved flight paths. The L1 controller got its name from draw-
ing a vector, L1, from the vehicle’s current position to a reference point along the desired trajectory.
Ardupilot had a request from a user, which led to implementing and modifying the L1 controller
based on MIT’s work on nonlinear guidance for tight tracking [12, 13]. Ardupilot’s tracking al-
gorithm for circles during RTL, GUIDED, and LOITER modes is slightly different from MIT’s
guidance logic because Ardupilot uses a modified PD control law instead of the L1 controller [14].
Similarly, PX4 also adapts the concepts of the same L1 controller but also uses PD control for
tracking circles with a loiter radius less than the length of L1 [15].

Lee et al. designed a nonlinear guidance and control system based on a sliding-mode control
scheme for UAVs to automatically land on carriers out at sea [16]. Explicit, closed-form, analyti-
cal solutions of UAV non-steady flight in a vertical plane in which the solutions are explicit and
complete, leading to targeting and guidance solutions [17]. Viswanathan et al. combine feedback
control and guidance to send quadcopters to desired waypoints with a desired attitude trajectory
[18]. Lu presents an entry guidance method using a single baseline predictor-corrector algorithm
as the baseline algorithm for a wide range of vehicles "with varying lifting capabilities" [19].

1.4.3 Navigation Functions

Open-source UAV software such as Ardupilot and PX4 utilize Extended Kalman Filters for es-
timating the state vector. Ardupilot’s EKF provides estimation for 22 states: position, velocity,
quaternions, gyro biases, accelerometer Z bias, wind velocity, compass biases, and the earth’s
magnetic field. [20]. PX4 has implemented an EKF using their Estimation and Control Library
(ECL). It provides state estimation of 24 states: the quaternions for rotating from the north, east,
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down local earth frame to the UAV’s 3D Cartesian body frame, velocity at IMU, position at IMU,
IMU angle errors, IMU angular velocity errors, earth magnetic field components, vehicle body
frame magnetic field bias, and wind velocity [21, 22]. Betaflight, Cleanflight, and INAV currently
do not use EKF or other types of Kalman filters [23]. However, Butterflight, a fork of Betaflight,
has a Fast Kalman Filter (FKF) but only seems to provide estimates for gyros [24, 25].

1.4.3.1 Non-Hierarchical Mixture of Experts Navigation Methods

Kolpuke et al. were inspired by insects and birds to use a solar position algorithm to estimate a
UAS’s position when the "azimuth and zenith/incidence angles for solar position, attitude of the
aircraft, and time are known." They propose to calculate the observer’s position from the solar
position and time [26]. Mendoza-Soto and Cortes tracked a quadcopter’s trajectory using gener-
alized predictive control with a geometric attitude controller. Optimal control actions are used in
generalized predictive control to satisfy constraints on desired trajectories. [27]. Vetrella et al. im-
proved attitude estimation using relative vision-based sensing and carrier-phase differential GPS
between antennas. The multirotor flight test analyzes differential GPS and carrier-phase differen-
tial GPS solutions. Their experimental data demonstrated that the carrier-phase differential GPS
had less noise than the code-based differential GPS. [28]. Gatter and Andert tested a model-based
shadow estimation method on an unmanned helicopter to find self-cast shadows. Their algorithm
can detect shadow positions at accuracies over 95% [29].

1.4.3.2 Hierarchical Mixture of Experts

Alpaydin discusses mixtures of experts as a generalization of a radial basis function (RBF) net-
work, which uses supervised learning and is faster than multilayer perceptrons with distributed
representations [30]. Zhang also describes hierarchical mixtures of experts as an extension of a
mixture of experts, where the input space divides into regions, and each region performs data
fitting independently. Figure 1.2 shows Zhang’s figure of the HME architecture [2].

Chaer et al. utilized a mixture-of-experts framework for adaptive Kalman filtering with a gat-
ing network, where each expert is a Kalman filter with different system parameters and dynamical
models [31]. Chaer et al. expanded [31] by utilizing multiple levels in the HME architecture and
applying it to the Mars Pathfinder interplanetary navigation problem [32]. Jacobs and Jordan use
a modular neural network to learn how to perform control tasks with a piecewise strategy and
a trained adaptive feedforward controller with a fixed PID feedback controller to control a two-
joint planar manipulator robot arm to carry six different payloads with different masses along a
pre-determined trajectory [33]. Rao et al. implemented a deterministic annealing (DA) method
in a hierarchical mixture of experts framework for regression modeling, which gradually reduces
the system entropy and minimizes the cost at every entropy level with Lagrange multipliers act-
ing as "temperature" parameters [34]. Boroujeni and Charkari utilized a hierarchical mixture of
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Figure 1.2: HME Diagram [2]

multilayer perceptrons (MLP) experts with semi-supervised teacher-directed learning to detect
shadows, and their proposed method has an average accuracy of about 85%, which is a 5-10%
improvement in detection and discrimination rates for different environmental conditions [35].

Jordan and Jacobs present and apply an expectation-maximization (EM) algorithm to the HME
architecture [36]. Titsias and Likas utilize a three-level HME architecture for classification prob-
lems, and their results demonstrate that both of their HME methods generally outperform the
separate mixtures and common component models in most of the trials [37]. Ng and Deisen-
roth use HME for large-scale Gaussian process (GP) regression, and their model is practical and
efficient by learning quickly, performing accurately, consuming little memory, and avoiding high-
dimensional variational optimization of inducing inputs [38].

Bishop and Svensen apply a Bayesian treatment of HME, which avoids bias from maximum
likelihood and optimizes the complexity and topology of the HME graph, and they used their
Bayesian HME model to model the forward kinematics of an 8-link all-revolute robot arm to pre-
dict the distance between the end of the arm and a specified point [39]. Yuksel et al. provide a
comprehensive survey of research involving mixture of experts with a wide range of applications
relevant to robotics such as sensor fusion, deformable model fitting, filter selection, robot naviga-
tion, 3D object recognition, image transport regression, and nonlinear system identification of a
robotic arm. A vital advantage of HME over other methods is that HME is flexible by working
with different types of models and learning model parameters [3].
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Figure 1.3: Two-level HME architecture for regression [3]

1.4.4 Control Functions

UAVs usually use linear controllers such as PID controllers, but these linear controllers linearize
the UAV’s nonlinear system [40, 41, 42, 43, 44]. PID controllers’ major drawback is that tuning
is specified to a particular system. Having the same PID coefficients but for different size quad-
copters most likely will not work because PID tuning depends on the system. PID tuning is also
subjective and relative to the pilot. Another drawback of linearizing nonlinear systems is that
large perturbations decrease the accuracy, especially when the solution is not near equilibrium.
For instance, the nonlinear and linear equations of motion of a rotating pendulum without fric-

tion converge for ω <
√

g
l where ω is the angular velocity, g is the acceleration from gravity, and l

is the length of the pendulum. At higher angles, the solutions diverge [45]. Linearizing nonlinear
systems should be avoided by having nonlinear controllers to reduce errors.

Garcia et al. use a nonlinear H-infinity approach with L2-gain and dissipativity concepts to
control UAVs with a solution to a Hamilton-Jacobi-Isaacs equation by iteratively solving the par-
tial differential equations with a state-feedback Taylor series expansion [46]. Ibarra and Castillo
used a nonlinear super-twisting controller based on singular optimal control and Lyapunov theory
with the sliding mode technique to stabilize a quadcopter’s nonlinear attitude [47]. A nonlinear
control study of aerial manipulators uses an optimizer and feed-forward action to optimize the
a priori free degree of freedom in real-time, which increases efficiency and prevents instability in
dangerous environments or configurations [48].

Matus-Vargas et al. use two optimization techniques to tune PD coefficients for nonlinear UAV
dynamical models through conjugate gradient optimization strategies, and their second approach
used Pontryagin’s maximum principle, which lacked steady-state error, had a fast response, and
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demonstrated superior performance compared to PD controllers [49]. Yu et al. used a Markov
decision process algorithm with a backtracking method that generates collision-free trajectories
in a hostile environment with static and dynamic obstacles, and their flatness-based approach
allows the UAV to avoid aggressive maneuvers and attempt to maintain flying on the collision-
free trajectory [50]. Beall shows that adaptive control is a successful alternative to PID control
by optimizing the system’s performance concerning characteristics such as damping ratio and
settling time [51].

Holtsov et al. use adaptive control for the UAV roll channel and the µ-synthesis method to
establish robust control for stability and performance at varying airspeeds, demonstrating that
adaptive control is useful for systems with a broad range of parameter changes [52]. Frazzoli et
al. use a quadratic Lyapunov function with PD control for translational dynamics for a helicopter,
and all four of the simulations had good results except despite having a singularity at zero thrust
[53]. Waslander and Hoffmann used Integral Sliding Mode and Reinforcement Learning control,
which performed better than classical control methods for flying quadrotor drones using outdoor
altitude control [54]. Noble and Bhandari used an extended minimum resource allocating network
adaptive algorithm in a model reference adaptive controller for controlling the pitch and roll of
a fixed-wing unmanned aerial vehicle, which had better roll and pitch responses than PD or PID
controllers [55]. Lunni et al. use a nonlinear model predictive control controller for unmanned
aerial manipulators with the main task of performing 3D tracking of its arm effector [56].

Levin et al. use the rapidly-exploring random trees (RRT) algorithm for agile fixed-wing UAV
motion planning with knife-edge maneuvers, and the UAV successfully flew and switched into
knife-edge maneuvers through narrow passages and then reverted to normal flight once out of the
passage for constant altitudes [57]. Bulka and Nahon utilize an autonomous controller for an agile
fixed-wing UAV to perform complicated maneuvers such as knife-edge, rolling Harrier, hover, and
aggressive turnaround, and their single control system with three subcontrollers could manage the
knife-edge, rolling Harrier, hover, and aggressive turnaround maneuvers [58]. Pugach et al. use
a nonlinear fixed-wing adaptive controller with an echo state network to replace Ardupilot’s roll
PID controller, and their ESN performs well even during disturbances and noises [59].

It is known that many research studies have been devoted to the development of control tech-
nology of unmanned aerial vehicles (UAVs), but not many works deal with or address questions
related to optimality. It has been shown that none of the works surveyed here used the Hamilto-
nian based on the dynamical model of UAVs. One example includes using the Hamilton-Jacobi-
Bellman equation but based on a Dubins vehicle model instead of the dynamical model of UAVs
[60]. Beul and Behnke used the Hamiltonian but simplified the optimal trajectory and control
with an ad hoc, intuitive approach by breaking the optimal trajectory into seven sections [61].
Another work showed that the optimal controls and trajectories could be expressed as Legendre
polynomials, but neither the Hamiltonian nor the Euler-Lagrangian equations are used to deter-
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mine extremals or satisfy the necessary or sufficient conditions of optimality [62]. It has been
shown that linearizing nonlinear models of flight vehicles leads to linear controllers such as PID
controllers [63].

It was shown that the H∞ synthesis using robust control theory performed better than LQR
synthesis with optimal control theory[64]. Another work used task-oriented optimal control strate-
gies to improve flight time by generating energy-optimal coordinated motions. A Model Pre-
dictive Control (MPC) strategy tracks trajectories, and a PD controller creates set-point velocity
screws as inputs to MPC [65]. Others showed that a reinforcement learning based controller with
least squares policy iteration (LSPI) can learn the optimal control policies required for generating
landing trajectories for a Parrot AR drone 2.0 [66]. Another work developed a flight controller that
combines baseline, feedforward, and adaptive components and works with an optimal trajectory
generation algorithm [67].

There are recent studies in optimal control for UAVs at the 2019 ICUAS conference. A non-
linear model predictive control scheme computes optimal controls and trajectories in GPS denied
environments [68]. A Least Squares Policy Iteration determines optimal controls for tracking a
target drone while maintaining a fixed distance away from the target [69]. Using Pontryagin’s
Minimum Principle determines optimal trajectories for delivering fragile packages with a simple,
linear dynamical model [70]. Numerical steepest descent solves the Mayer optimization problem
for a guided projectile in a vertical plane [71]. Vision-based autonomous obstacle avoidance is
solved using the algebraic Riccati equation for an LQR problem [72]. Minimum energy paths are
determined by using GPOPS II, general-control software implemented in MATLAB, to solve non-
linear optimal control problems with variable-order adaptive orthogonal collocation and sparse
nonlinear programming [73]. The Continuous-time Algebraic Riccati Equation uses Lie algebra to
extend the LQR problem and linearizes the quadcopter’s state at each time step [74]. Adaptive
optimal guidance for UAV path following uses a State Dependent Riccati Equation approach with
a simple aircraft dynamical model [75].

One can solve optimal control problems by using one of four methods: 1) Lagrange’s for-
malism, 2) Hamilton-Jacobi-Bellmann’s formalism, 3) direct and indirect methods, and 4) unique
formalism based on the sufficient conditions of absolute optimality. Lagrange’s formalism works
if the set of admissible controls is open, and this method causes the solution to be reduced to the
boundary problem and to test the conditions of optimality. The Hamiltonian-Jacobi-Belmann’s for-
malism uses sufficient optimality conditions and reduces the problem of integrating the Hamilton-
Jacobi equation in partial derivatives, which creates a field of extremals to solve the problem of
optimal synthesis of trajectories. The direct and indirect methods solve the optimal control prob-
lem by approximating the minimum with some system of functions and Lagrange multipliers.
Unique formalism uses the sufficient conditions of optimality and finds an absolute minimum.
This method reduces the problem to the Jacobi-Bellmann equation or a boundary problem [76].
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1.4.5 Path Planning

Chandarana et al. had thirteen subjects use gesture-based interfaces and mouse-based interfaces
to define trajectories to generate paths for UAVs [77]. Sathyaraj et al. compared A* algorithm,
Dijkstra’s algorithm, Bellman-Ford’s algorithm, and Floyd-Warshall’s algorithm for UAVs and
found A* performed best [78]. Ten Harmsel et al. had two emergency sensor-based and map-based
planners to plan safe paths for UAVs using the A* algorithm with a cost function that considered a
movement cost and an environment cost [79]. Olson et al. used a cost map with the A* algorithm
to find safe landing paths for low energy quadrotor UAS flying in populated areas [80]. Zheng et
al. designed a path planning algorithm using two-dimensional LIDAR data with static global path
planning and dynamic local path planning, and the optimal path comes through a multi-objective
optimization heuristic function [81]. Zhou and Gao used the global-best brain storming algorithm
for avoiding static obstacles, and simulations show that global-best brainstorming and artificial
potential field are effective for generating 3D trajectories while avoiding obstacles [82].

1.4.6 UAV Acoustic Studies

Benyamin and Goldman detected and tracked a UAV with a tetrahedral microphone array with
beamforming and adaptive Kalman filters [83]. Feight et al. showed quadcopter rotor spectral
characteristics through testing in an anechoic chamber with microphones placed radially around
the UAV [84]. Kapoor et al. showed that acoustic sensors are useful in GPS-denied environments
for obstacle detection and localization [85]. Kloet et al. conducted psychoacoustic analysis on a DJI
Phantom 4 and a 250-size mini-quad [86]. Papa et al. evaluated UAV noise during typical flight
operations from electric engines and propellers by taking measurements inside an anechoic room
[87]. Leonardo and Chen tracked wildlife with a low-cost RF telemetry system onboard a fixed-
wing aircraft, AggieAir [88]. Case et al. use a low-cost acoustic array to find and track small UAVs
[89]. Finn and Franklin show successful 360◦ sense and avoid UAV capabilities with acoustic sen-
sors to detect, track, and avoid obstacles autonomously [90]. Kloet et al. showed relationships
between sound pressure level, distance, and altitude for a quadcopter [91]. Farassat describes the
noncompact and compact source formulas for rotating blade noise based on the Ffowcs Williams-
Hawkings (FW-H) equation [92]. Tinney and Valdez analyzed the thrust and acoustic performance
for a coaxial corotating rotor in hover, and the rotor speed and sound depend more on the index
angle than the stacking distance [93]. Tinney and Sirohi provide experimental results for acoustic
analysis of quadcopter and hexacopter drones for only hovering conditions in terms of propeller
size, propeller angular velocity, and the number of propeller blades [94]. Tinney and Valdez deter-
mine scaling laws for sound pressure levels of quadcopters while hovering by considering overall
sound pressure level, sound pressure level, blade-pass frequency harmonic noise, rotor thrust,
torque, power and blade tip speed, thrust and power coefficients, Reynolds number, blade tip
Mach number, and figure of merit, defined as the ratio between the thrust and power coefficients
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[95]. Huff and Henderson provide acoustic measurements of electric motors for small quadcopters
with and without propellers [96].

1.4.7 UAV Flight Control Software: State of the Art

Common open-Source autopilot systems for inexpensive vehicles: ArduPilot & PX4. Down-
loading computer applications and installing several packages and functions in Ubuntu 14.04
(Linux) is required. The Linux computer applications utilized are Notepad++ for viewing a class’s
list of functions, QT Creator as the IDE (Integrated Development Environment) for viewing and
editing the code, Cygwin terminal for simulation Graphical User Interface (GUI), Mission Planner
for simulations and interfacing the UAV with the user, gedit for editing make files and doxyfiles,
and doxygen for creating call graphs and function maps based on the code’s documentation. The
open-source Ardupilot code is cloned from Github, recursively updated, and then the Pixhawk’s
firmware gets updated after a few building steps. Then, simulations are executed using Cygwin
and Mission Planner to view current flight trajectories of UAVs such as quadcopters and planes.

QT Creator views and edits the Ardupilot code. Several control functions exist within the
code, and after changing several parameters with gedit, doxygen creates numerous dependency
and call graphs for the code’s classes and functions. Using this approach involves studying the
code’s functions for the motors to determine the control laws and schemes’ outputs.

Software in the Loop. The Software in the Loop (SITL) simulations for quadcopters worked
well, so none of the quadcopters crashed. However, one of the simulations for planes crashed
when the motor disarmed prematurely to test if the plane could land safely at an altitude of ap-
proximately 30 meters or 98 feet. The plane hit the ground very roughly and had velocity variance
errors. Shortly after, it flipped over twice and also had position variance errors. A few seconds
later, the plane was at an altitude of approximately -150 meters or 492 feet, implying that the plane
hit the ground so hard that it dug a hole and flew below the surface. This created an airspeed error,
which makes sense since there is no airflow underground. Unfortunately, the plane continued to
dig deeper into the ground and ended with an altitude of approximately -440 meters or -1440 feet.
Figures 1.4a, 1.4b, and 1.5 show screenshots of the simulation flights.

SITL in Mission Planner can be used to test new GNC functions before conducting flight tests.
Once SITL tests look promising, the next step would involve hardware in the loop (HITL) tests
with the UAV hardware and equipment used in a flight test. Finally, the last step verifies the SITL
and HITL tests after successful simulations.

Ardupilot Control Code Analysis. Analyzing the Ardupilot functions by hand requires thor-
ough attention to details. To reduce human errors, Doxygen analyzes the Ardupilot functions by
generating function maps and call/dependency graphs for the Ardupilot code to determine the in-
terdependent relationships among the several functions. Altering numerous parameters through
gedit in the doxyfile accurately produces the graphs. Figure 1.6 shows one of the "cleaner" func-
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(a) Quadcopter SITL (b) Plane SITL

Figure 1.4: Mission Planner SITL

Figure 1.5: Plane SITL Underground
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tions, control_autotune. Some functions are complex with many other functions and classes, so
their maps become unfortunately quite messy (see Figure 1.7 for a zoomed out map of acro_run.cpp)
and can be difficult to decipher. This initial analysis was done in Spring 2017, so the function maps
and call/dependency graphs may be more organized today.

Figure 1.6: Doxygen Dependency Graph for control_autotune.cpp (Ardupilot)

Ardupilot’s control_autotune function automatically determines PID coefficients during UAV
flights. New GNC functions include using nonlinear control to replace PID control, so con-
trol_autotune is one of the control functions that would be replaced if Ardupilot is used to im-
plement new GNC functions.

Ardupilot’s acro_run is a very complicated function (see Figure 1.7). Therefore, integrat-
ing new GNC functions to replace acro_run can be extremely difficult to implement and debug.
Ardupilot and PX4 have recently updated their code (this function map is outdated). If their soft-
ware is used for GNC implementation, doxygen analysis would be redone to determine if the
control functions’ interdependent relationships are "cleaner" and easier to read.

INAV, Cleanflight, & Betaflight. Due to ArduPilot’s complicated function calls and depen-
dency graphs (as of Spring 2017) and the fact that the Pixhawk has an update rate of only 400
Hz [97], INAV was chosen later in Fall 2017 as the UAV project to work on instead of ArduPilot.
INAV applies to racing drones, and some of these UAVs have flight controllers with update rates
as high as 32,000 Hz, which is orders of magnitude faster than the Pixhawk’s 400 Hz [11]. Having
a fast update rate is essential for quick calculations and especially for onboard sensor processing
in real-time to increase accuracy and performance during flight.

When new nonlinear control schemes get implemented, flight test data with PID control and
flight test data with non-PID control from Betaflight Blackbox will be compared against each other
to determine similarities and differences in stability and settling time to stabilize after violent
maneuvers such as a roll. Overall, the Betaflight Blackbox is useful for evaluating PID tuning and
reading sensor measurements.

INAV Control Code Analysis. INAV, Cleanflight, and Betaflight do not have doxyfiles like
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Figure 1.7: Function map for acro_run.cpp (Ardupilot)
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Ardupilot, so Doxygen cannot electronically generate function maps to show the interdependent
relationships. Instead of analyzing INAV functions like the handwritten approach used in the
initial Ardupilot analysis, function dictionaries and math formulas provide a written analysis in-
stead of a graphical analysis. There are numerous functions in INAV’s source code, but the two
main functions closely studied are pid.c and navigation.c. From this brief INAV code analysis, the
author drew an overall block diagram for INAV’s architecture (see Figure 1.8).

Figure 1.8: INAV Block Diagram

DJI SDK. There are five different types of DJI SDK (software development kit): mobile SDK,
UX SDK, onboard SDK, payload SDK, and Windows SDK. Onboard SDK (OSDK) allows the user
to create customized functions using the DJI SDK libraries and interface directly with the DJI flight
controller, a desirable feature for TGNC implementation [98].

1.5 Core Contributions

This research of integrating TGNC functions has some core contributions. First, extending E Guid-
ance to rotational maneuvers demonstrates attitude guidance. Second, E Guidance extensions
with higher order integration of three functions have some impractical results. However, this ap-
proach can help avoid incoming obstacles and is advantageous if satisfying the velocity terminal
conditions is not required. Third, translational E Guidance satisfies the boundary conditions for
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the optimal control problem, which leads to extremal control and an extremal trajectory. Fourth,
utilizing HME with EKFs and acoustic parameters shows the impact of considering several dif-
ferent models and parameters to have accurate state estimation. Simulation results have near
real-time capabilities, so onboard implementation is feasible.

1.6 Overview of Chapters and Appendices

Chapter 2 provides the quadcopter dynamical model equations. Chapter 3 describes the problem
and methodology. Chapter 4 describes the guidance methods and results. Chapter 5 provides the
details and approach of solving the optimal control problem using the Hamiltonian formalism.
Chapter 6 provides the results of integrating extremal control and explicit guidance. Chapter 7
describes the navigation solution and results from the HME framework. Chapter 8 combines the
TGNC functions together for the waypoint guidance maneuver, which serves as an illustrative
example of an integrated TGNC system for UAVs. Chapter 9 expresses the author’s recommen-
dations to the community and lists novelties and research contributions to the field. Chapter 10
presents concluding remarks about main conclusions and future studies. Appendix A provides
tables for the combinations of functions to extend E Guidance. Appendix B shows the closed-form
solutions for the partials of the velocity. Appendix C describes the author’s communications with
the community such as publications, presentations, and internships. Appendix D discusses the
author’s educational and extracurricular activities.
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CHAPTER 2
QUADCOPTER DYNAMICAL MODEL

2.1 State Vector

Let the general state vector for quadcopters be s ∈ Rn where n = 12. The state variables are
position vector components, velocity vector components, quaternions, and angular velocity com-
ponents:

s =
[

pN pE pU vN vE vU q0 q1 q2 ωx ωy ωz

]T
, (2.1)

The state vector s can be decomposed into four vector functions:

s =
[

p v q Ω
]

, (2.2)

where each of them are defined as

p =
[

pN pE pU

]
, v =

[
vN vE vU

]
, q =

[
q0 q1 q2

]
, Ω =

[
ωx ωy ωz

]
. (2.3)

2.2 Coordinate Systems

The NEU inertial frame is fixed and set on the ground. This NEU frame resembles the SEZ
(topocentric horizon coordinate system) frame, where the UAV acts as the satellite and assum-
ing the earth is flat [99]. Gravity points in the negative U-direction. The body frame is on the
quadcopter where the X and Y axes align with the arms, assuming a symmetrical frame, and the
Z-axis points up in the same direction as the motor axes. Fig. 2.1 shows the inertial frame axes
denoted by N, E, U and the body frame axes denoted by X, Y, Z [100]. A rotation matrix following
the (3-2-1) sequence is applied to rotate the quadcopter from the body frame to the inertial frame:
[101]

R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (2.4)

2.3 Forces

Fig. 2.1 also shows the thrust, drag, and weight forces acting on the quadcopter and are indicated
by Tb, D, W respectively. The drag force opposes the velocity vector indicated by v.
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Figure 2.1: Body and Inertial Frames of a Quadcopter with Forces

Thrust. The motor thrust vector in the body frame is

Tb =

 0
0

∑4
i=1 Tmi

 , (2.5)

where Tmi is the thrust from the ith motor.
Static Thrust Model. The static motor thrust vector in the body frame is

Tb =
4

∑
i=1

Tmi = k

 0
0

∑4
i=1 ω2

i

 , (2.6)

where ω2
i is the squared angular rate of the ith motor and k is the motor thrust coefficient [100].

Dynamic Thrust Models. Most quadcopters typically move throughout their flights and do not
stay static for long periods of time. Therefore, a dynamic thrust model should give more accurate
state estimation results than a static thrust model.

Each motor contributes towards the overall thrust and uses either the Burgers (TB) thrust
model or the Staples (TS) thrust model with Tmi being the Burgers thrust model or the Staples
thrust model:

Tmi =

TB

TS

. (2.7)

Burgers Thrust Model. The Burgers thrust model depends on the airspeed (v∞), propeller blade
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tip velocity (vtip), the density of the fluid (ρ), normalized thrust ratio of available work to kinetic
energy (ηL), and the area swept out by the propeller blade (Sb): [102]

TB =

(
1
2

v2
∞ +

1
6

v2
tip

)
ρηLSb. (2.8)

The velocity at the propeller’s tip is:
vtip = πNd , (2.9)

in which N is the number of revolutions per second and d is the diameter of the propeller [103].
Staples Thrust Model. The Staples thrust model utilizes Newton’s second law and mass flow rate

with the assumption that the velocity at the tip of the propeller (vtip) is approximately equivalent
to the velocity of the fluid exiting the propeller (ve) [104]. The Staples model also depends on the
density of the fluid (ρ), the area swept out by the propeller (Sb), and airspeed (v∞). Other works
have also referenced this model [105, 106, 107, 108, 109].

TS = ρSb(v2
e − vev∞)

(
k1

d
θp

)k2

, (2.10)

where k1 is the coefficient constant, and k2 is the power constant. Assuming the exit velocity and
propeller tip velocity are equivalent to each other gives exit velocity as:

ve = mRPM · 0.0254
m
in
· θp

1 min
60 sec

, (2.11)

in which θp is the pitch of the propeller blade measured in inches and defined as how far the
propeller translates forward after one revolution, and mRPM is the propeller angular velocity mea-
sured in revolutions per minute. The conversion factors show that the exit velocity has units of
m/s. Both models use Sb, the area swept out by the propeller, and is πd2

4 with d as the propeller
diameter.

Drag.
Linear Drag. A simple, linear (subscript lin) drag model for quadcopters is:

Dlin =

−kdvN

−kdvE

−kdvU

 , (2.12)

where kd is the constant friction coefficient, which may or may not be unique.
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Nonlinear Drag. The aerodynamic drag force in the body frame is: [110]

D =

Dx

Dy

Dz

 =
1
2

ρCd A

v2
∞,x

v2
∞,y

v2
∞,z

 , (2.13)

with ρ as the density of the air, Cd as the constant drag coefficient to be determined or estimated, A
as the cross-sectional frontal area of the quadcopter, and v∞,x, v∞,y, and v∞,z as the airspeeds of the
quadcopter in the body axes [110]. The International Standard Atmosphere (ISA) density model
increases exponentially with altitude [111]. Using the standard air density, ρ0 = 1.225 kg/m3, and
an exponential curve fit of the ISA density model yields a simple form with h as the altitude:

ρ(h) = ρ0e−9.611·10−5h , (2.14)

Another exponential density model neglects gravity variations and assumes an isothermal atmo-
sphere, which resembles Eq. (2.14) [112].

Weight. Weight is defined as:

W =
[
0 0 mg

]T
, (2.15)

where m is the mass and g is the acceleration due to gravity.

2.4 Moment of Inertia Matrix

The inertia matrix is modeled as two thin uniform rods intersecting at the origin with point masses
at the ends to represent the motors and a rectangular prism to model the central chassis with the
center of mass shifted slightly down the negative Z axis. Principle axes of moment of inertia are
assumed to be aligned with the body axes, which gives an inertia matrix of:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (2.16)

2.5 Torques

Summing the torques gives the typical equation:

τ = IΩ̇ + Ω× (IΩ) , (2.17)
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Expanding Eq. (2.17) with the inertia matrix components gives:

τ =

τx

τy

τz

 =

 Ixxαx − Iyyωyωz + Izzωyωz

Iyyαy + Ixxωxωz − Izzωxωz

Izzαz − Ixxωxωy + Iyyωxωy

 .

A simple torque model about the z-axis assumes constant velocity and negligible angular acceler-
ation:

τz = (−1)i+1bτω2
i (2.18)

with (−1)i+1 positive for clockwise propellers and negative for counterclockwise propellers. Thus,
the total torque about the z axis from all four propellers of a quadcopter is

τψ = bτ(ω
2
1 −ω2

2 + ω2
3 −ω2

4) ,

where bτ is the torque drag coefficient.
Static Thrust Torque Model. If motors 1 and 3 are used for the pitch axis and motors 2 and 4

are used for the roll axis, then the roll and pitch torques are:

τθ = `k(ω2
1 −ω2

3) , τφ = `k(ω2
2 −ω2

4) , (2.19)

where ` is the distance from the quadcopter to the center of a propeller (assuming symmetry) and
k is the motor thrust coefficient. Combining the torques in the body frame results in a simple
model:

τb =

 `k(ω2
2 −ω2

4)

`k(ω2
1 −ω2

3)

bτ(ω2
1 −ω2

2 + ω2
3 −ω2

4)

 . (2.20)

Dynamic Thrust Torque Model. The torque models for dynamic thrust use a different formula-
tion for τφ and τθ , but τψ is the same. The torques are defined in the body frame’s X, Y, Z axes (see
Fig. 2.1), and modifying a damping system of a circular disk immersed in oil yields a damping
torque for quadcopters: [110]

τb =

τφ

τθ

τψ

 =

 `(Tm2 − Tm4)

`(Tm1 − Tm3)

bτ(ω2
1 −ω2

2 + ω2
3 −ω2

4)

− 1
2

πµ`3

ωx

ωy

ωz

 , (2.21)

with µ as the dynamic viscosity of air at 1 atm and 25◦ C. Same as before, the even numbered
motors are on the roll axis, while the odd numbered motors are on the pitch axis.
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2.6 Dynamical Model Equations

The velocity vector is defined as the derivative of the position vector as shown in Eq. (2.3) and is
the same for the static thrust and dynamic thrust models.

Dynamical Model Equations with Static Thrust. Summing the forces in the inertial frame
gives

mp̈ = −W + RTb + Dlin , (2.22)

where m is the mass, p is the position vector as defined in Eq. (2.3), g is the gravitational accelera-
tion, Dlin is the linear drag force, R is the rotation matrix from the body frame to the inertial frame
and Tb is the thrust vector in the body frame. The acceleration vector is:

v̇ =
1
m
(−W + RTb + Dlin). (2.23)

The mass of the UAV is m, and the rotation matrix R from the inertial frame to the body frame
uses the (3-2-1) sequence [101]. Combining Eq. (2.15) and the rotation matrix with the expansion
of the thrust vector in the body frame from Eq. (2.6) and the drag force D from Eq. (2.13) turns Eq.
(2.23) into:

v̇ =

 γ(2q0q2 + 2q1q3)− kdvN
m

γ(2q0q1 − 2q2q3)− kdvE
m

−g + γ(q2
0 − q2

1 − q2
2 + q2

3)−
kdvU

m

 , (2.24)

where

γ =
k
m

( 4

∑
i=1

ω2
i

)
. (2.25)

The time derivatives of the Euler angle (Θ̇) and angular velocity vectors are

Θ̇ =

1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos θ cos φ


−1

Ω. (2.26)

The Euler angles and quaternions are related by the (3-2-1) direction cosine matrix sequence and
the quaternion identity, which forces the fourth quaternions to be a function of the other three
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quaternions to satisfy the identity:

q0 = s
(

φ

2

)
s
(

θ

2

)
s
(

ψ

2

)
+ c
(

φ

2

)
c
(

θ

2

)
c
(

ψ

2

)
,

q1 = s
(

φ

2

)
c
(

θ

2

)
c
(

ψ

2

)
− c
(

φ

2

)
s
(

θ

2

)
s
(

ψ

2

)
,

q2 = c
(

φ

2

)
s
(

θ

2

)
c
(

ψ

2

)
+ s
(

φ

2

)
c
(

θ

2

)
s
(

ψ

2

)
,

q3 = ±
√

1− q2
0 − q2

1 − q2
2 ,

(2.27)

where s denotes sin and c denotes cos [101]. The angular velocity vector and time derivative of
quaternions are related by 

q̇0

q̇1

q̇2

q̇3

 =
1
2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
ωx

ωy

ωz

 . (2.28)

The angular acceleration of the static thrust model is

Ω̇ =

τφ/Ixx

τθ/Iyy

τψ/Izz

−


Iyy−Izz
Ixx

ωyωz
Izz−Ixx

Iyy
ωxωz

Ixx−Iyy
Izz

ωxωy

 ,

where the torques, moment of inertia matrix components, and angular velocity components are
determined from the equations of motion. In summary, the dynamical model equations with static
thrust in their general vector form are

ṡ =


ṗ
v̇
q̇
Ω̇

 =


vN vE vU

1
m (−W + RTb + D)

(1/2)Q̄ω

I−1(τ −ω× (Iω))

 , (2.29)

where Q̄ is the 4 × 4 matrix in (2.28). Overall, this quadcopter model is simplified and ne-
glects complexities such as nonlinear quadcopter dynammics, rotational drag forces, propeller
deformation caused by high velocities or flexible propeller material, and winds. Ref. [100] uses
k = 3 · 10−6 kg ·m, bτ = 1 · 10−7 kg ·m2, and kd = 0.25 kg/s.

Dynamical Model Equations with Dynamic Thrust. The quaternion equations are the same
as the static thrust model and are not repeated here. The general, unexpanded acceleration vector
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without a specific dynamic thrust model (T) is defined as:

v̇ = a =
1
m

R(T − D)− g , (2.30)

Assuming a constant wind speed model in the NEU frame gives:

vw =

vw,N

vw,E

vw,U

 , (2.31)

and using Eqs. (2.3) and (2.31) gives the airspeed in the body frame as: [113]

v∞ =

v∞,x

v∞,y

v∞,z

 = RT(v− vw) ,

where RT from Eq. (2.4) rotates the difference of the inertial velocity vectors, v− vw, into the body
frame. Using Burgers’s thrust model, expanding terms, and assuming a constant wind speed
model from Eq. (2.31) gives Eq. (2.30) as:

v̇B =

 2(q0q2 + q1q3)(Nx − Dx
m )

2(q2q3 − q0q1)(Ny −
Dy
m )

(q2
0 − q2

1 − q2
2 + q2

3)(Nz − Dz
m )− g

 , (2.32)

with Nx, Ny, Nz, n1, and n2 defined as:

Nx = n1

(
n2 +

v2
∞,x

2

)
, Ny = n1

(
n2 +

v2
∞,y

2

)
, Nz = n1

(
n2 +

v2
∞,z

2

)
,

n1 =
SbηLρ

m
, n2 =

N2d2π2

6
.

Using Staples’s thrust model, expanding terms, and assuming the same constant wind speed
model from Eq. (2.31) gives gives Eq. (2.30) as:

v̇S =

 2(q0q2 + q1q3)(Mx − Dx
m )

2(q2q3 − q0q1)(My −
Dy
m )

(q2
0 − q2

1 − q2
2 + q2

3)(Mz − Dz
m )− g

 , (2.33)
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where Mx, My, Mz, Γ, m1, m2, and m3 are defined as:

Mx = m1(m2 −m3v∞,x) , My = m1(m2 −m3v∞,y) , Mz = m1(m2 −m3v∞,z) ,

m1 =
πd2ρ

m

(
0.3034d

θp

)1.5

, m2 =
16129m2

RPMθ2
p

9 · 1010 , m3 =
127θp

300000
,

where the numbers come from simplifying the conversion factors and using the default constants
from Staples’s model: k1 = 0.3034 for the coefficient constant and k2 = 1.5 for the power coefficient
[104].

The angular acceleration of the dynamic thrust model is

Ω̇ =


τφ/Ixx +

πµ`3

2Ixx
+

Iyy−Izz
Ixx

ωyωz

τθ/Iyy +
πµ`3

2Iyy
+ Izz−Ixx

Iyy
ωxωz

τψ/Izz +
πµ`3

2Izz
+

Ixx−Iyy
Izz

ωxωy

 , (2.34)

2.7 Control Vector

Let the control vector u ∈ R4 have the motor angular velocities:

u = [u1 u2 u3 u4] , (2.35)

where ui = ωi and i = 1, 2, 3, 4 based on the static thrust model from Eq. (2.6), the Burgers
dynamic thrust model from Eqs. (2.8)-(2.9), or the Staples dynamic thrust model from Eqs. (2.10)-
(2.11). The controls are admissible if they are defined and piece-wise continuous on some time
interval [t0, t1] and satisfy the constraints and conditions, which are mentioned in Chapter 5. To
clarify, "motor angular velocity" refers to ωi, while "motor spin rate" refers to ω2

i due to the thrust
formulas.
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CHAPTER 3
PROBLEM FOR INTEGRATING TARGETING, GUIDANCE,

NAVIGATION, AND CONTROL FUNCTIONS

3.1 Description of Targeting, Guidance, Navigation, and Control Prob-
lems

Targeting. It is required for the targeting function to utilize sensor position data to locate a
pursuer relative to a target. Targeting sensors can provide pursuer-to-target coordinates to deter-
mine the distance of the target from a pseudo-target or aim point, which is usually known a priori
[114].

Guidance. It is required for the guidance function to determine a trajectory to reach a desired
position. Other tasks include pre-calculating boost maneuvers based on time and duration, creat-
ing position, velocity, and attitude profiles to reach a desired point, and propagating the vehicle’s
center of mass in the body axes based on propellant consumption [115, 114].

Navigation. It is required for the navigation function to provide present information of the
state of the vehicle (state estimation) with respect to a coordinate reference frame by processing
several inputs and measurements from sensors, where Kalman filters are common navigation
solutions for estimating the state vector [115, 114].

Optimal Control. This study considers using optimal control for UAVs, where it is required
to find the state and control functions that satisfy Eq. (2.1), constraint equations, and extremizes a
functional. The proposed research will use the Hamiltonian formalism with the indirect method,
which was briefly mentioned in Chapter 1 [76].

3.2 Problem Statement Factors

This study combines targeting, guidance, navigation, and control functions to create a robust and
accurate integrated TGNC system for UAVs for applications, which leverages autonomous capa-
bilities with real-time target-relative guidance and re-targeting capabilities.

Description of Integrating TGNC on UAVs. GNC systems were first successful in aerospace
problems such as Apollo, where Apollo utilized guidance for lunar-descent, Kalman filtering, and
optimal control theory [116, 114]. Developing GNC systems were initially and heavily emphasized
on the math instead of solving practical problems. Using relevant GNC functions and concepts
to solve practical problems is essential to solving real-world problems [114]. Real-world prob-
lems for implementing GNC into UAV include problems such as sense-and-avoid obstacles au-
tonomously, determining targets autonomously in real time, performing complicated maneuvers
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autonomously, or guidance to a location when communication is lost. Integrating TGNC func-
tions to the UAV flight controller is a major element in leveraging autonomy and enabling UAVs
with these types of autonomous capabilities [1]. Thus, the main issue is learning and implement-
ing effective methods to build practical GNC systems for solving UAV problems autonomously in
real-time such as obstacle avoidance given only a starting location and landing at some destination
while responding to unexpected situations [1, 114].

Onboard Implementation of TGNC: Advantages and Disadvantages. Disadvantages of im-
plementing TGNC include:

1. Difficult to understand and apply GNC functions to perform specific UAV tasks and ma-
neuvers [114]

2. Gaps between theories and applications of GNC [114]

Advantages of implementing TGNC include:

1. Solving real-world practical problems autonomously such as real-time autonomous target-
ing, autonomous obstacle avoidance, and autonomous precision landing

2. In comparison to space shuttles or lunar landers, not much expensive hardware is needed
for integrating GNC into UAV (thousands of dollars or less)

3. Diminishing GNC research efforts since Apollo era without much practical development
since then [114]

Shortcomings and Progress in Current TGNC for UAVs. The main shortcomings in current
UAV TGNC functions are:

1. Separated uses of novel, complicated GNC functions, i.e. no integration

(a) Comparing a nonlinear guidance law with linear PD and PID controllers [12].
(b) Adopting concepts of nonlinear guidance but continuing to use PD control [14, 15].
(c) Extended Kalman Filters with linear PID controllers, lack of robust navigation func-

tions, and using nonlinear adaptive control without focusing on navigation or guid-
ance functions [20, 21, 23, 51].

2. Need to advance GNC to be considered as a discipline with potential targeting capability
[114]

(a) Aircraft GNC is traditionally considered as a secondary role.
(b) GNC technology does not produce anything tangible.

3. Lack of understanding fundamentals of advanced GNC, which causes a dependency on
aerodynamic design instead of advanced GNC design [114]

4. Using linear control for UAVs, which are nonlinear systems, so using linear PID controllers
for nonlinear dynamic systems creates errors [40, 41, 42, 43, 44, 45].

5. EKFs are typically used for navigation in UAVs, but there exist other accurate estimation
techniques such as Hierarchical Mixture of Experts (HME) [1, 20, 21, 23, 31]
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6. Underutilization of guidance laws, schemes, and their integration with navigation and con-
trol functions

3.3 Proposed Approach to the Integration of Targeting, Guidance, Nav-
igation, and Control Functions

1. Implement guidance laws and schemes including explicit guidance (E guidance) [117]
2. Replace PID control with nonlinear control laws using optimal control to find extremal

control solutions
3. Utilize multiple EKFs for estimating the state vector to form a HME framework
4. Design safe trajectories to avoid static and dynamic obstacles (if applicable)

The proposed solution intends to consider increasing the accuracy of UAV GNC performance by
modeling the UAV as a nonlinear system instead of linearizing it.

3.3.1 Explicit guidance (E guidance)

In 1964, George Cherry derived a general explicit, optimizing guidance law for rocket-propelled
spacecraft. Explicit guidance laws express the formulas for steering commands directly in terms of
the current and desired boundary values of the position and velocity vectors’ components. Guid-
ance laws are explicit only when they are derived as direct solutions to the equations of motion.
Sometimes explicit guidance laws cannot be exact, so derive explicit equations that become more
accurate as the current and desired boundary conditions approach each other closer and closer
[117].

The thrust acceleration, aTx, is the control function and moves the vehicle from the initial con-
ditions to the desired/terminal conditions. It is usually convenient to determine ẍ first and then
aTx. Overall, it is required to determine the commanded thrust acceleration:

aTx(t) = ẍ− gx , aTy(t) = ÿ− gy , aTz(t) = z̈− gz , (3.1)

in which:
ẍ = c1 p1 + c2 p2 , ÿ = c3 p3 + c4 p4 , z̈ = c5 p5 + c6 p6 (3.2)

with ci ∈ R and pi = pi(t) are linearly independent, pre-specified functions of time.

Discussion and Comments about E Guidance.

1. Recompute the Ē matrix to determine the coefficients periodically, but the coefficients will
not change if the navigation system and flight control system perform perfectly, i.e. invari-
ant constants under perfect conditions [117].
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2. However, recompute if the information from the navigation system improves. For instance,
landing radar data improves with decreasing altitude [117].

3. Recomputations should occur at a rate corresponding to the period over which the improv-
ing radar data makes a significant change in the constants [117].

4. Error predictions [117]

• Note the difference of ẋD − ẋ0, where this difference is essentially a prediction of the
final error in ẋ at t = T.

• Also note that xD − x0 − ẋ0Tgo is the prediction of the final error in x.
• Therefore, the Ē matrix is essentially a final-value control scheme, so the general ver-

sion is: [
c1

c2

]
=

[
e11 e12

e21 e22

] [
predicted f inal speed error

predicted f inal displacement error

]
(3.3)

• The correction acceleration program in [117] is given by, in particular, for the x axis:

ẍ = c1 p1(t) + c2 p2(t) (3.4)

Similar forms exist for the y and z axes.

5. The navigation system measures the state variables such as p, ṗ, q, q̇, ... [117].
6. The general solution to final-value control problems require maintaining specified values of

speed and displacement of a general coordinate such as q̄, where the differential equation
of motion defined in [117] is

d2q̄
dt2 = f (p, ṗ, q, q̇, ..., t) + aTq (3.5)

7. Thus, aTq is the control or choice variable that is chosen to force q(t) and q̇(t) to the specified
values at the terminal/desired time T [117].

8. Note that the Ē matrix’s elements approach ∞ as Tgo approaches 0 or vanishingly small
[117].

9. Unfortunately, when Tgo approaches 0, the non-vanishing errors in the boundary conditions
need an infinite acceleration to correct them, which causes c1 and c2 to blow up [117].

10. This singularity can be avoided by not recomputing the Ē matrix, c1, and c2 during the last
few seconds of powered flight, i.e. when the vehicle is close to its desired target position
and velocity [117].

11. Ultimately, the crucial step in E guidance involves good choices for polynomials p1(t) and
p2(t). One possibility is to choose a 2nd order polynomial for p1(t) and a 3rd order polyno-
mial for and p2(t) to compare against Cherry’s polynomials of p1(t) = 1 and p2(t) = T− t.
Performance criteria can be based on estimation errors, which set of polynomials causes
the UAV to follow the desired trajectory closer, and which set of polynomials produces an
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acceleration command that steers the UAV towards the desired trajectory the quickest.

3.3.2 Replacing PID Control with Optimal Control

Typically, nonlinear UAVs use PID control, which is linear. It makes sense for nonlinear controllers
to control nonlinear systems. Optimal control methods to find extremal control solutions can be
used to formulate extremal control laws, which will replace PID control.

3.3.3 HME-EKF

Extended Kalman filters (EKFs) are used to provide state estimations of nonlinear systems [118].
The EKF algorithm is well-known and will not be discussed in detail here. Multiple EKFs can
be combined into one bank to create a simplified Hierarchical Mixture of Experts (HME). Every
expert in the HME framework is a Kalman filter or extended Kalman filter. Each bank contains an
internal gating network, and a top-level gating network is outside the banks and weighs the bank
outputs. Each filter has a different model of unknown parameters such as process and measure-
ment noise.

The bank of filters uses two search algorithms in a feedback loop. One algorithm operates in
real-time and utilizes a recursive quadratic programming approach to find extrema of a modified
maximum likelihood function. The second algorithm works better for post-processing and has a
genetic algorithm that searches for the parameter vector [1, 31]. HME has been used in applica-
tions such as interplanetary orbit determination problems for the Mars mission [32]. Figure 3.1
shows the general architecture for HME.

3.4 Dedicated Quadcopter Platforms for TGNC

3.4.1 DJI M100

To avoid ruining the default flight control software, the DJI Onboard Software Development Kit
(OSDK) allows users to write code using OSDK functions without affecting the default underlying
code. This increases productivity because only the user’s code will have problems and errors,
which makes it easier to debug and troubleshoot code.

The DJI M100 is the selected quadcopter for the proposed solution since it comes with OSDK
capabilities. Fig. 3.2a shows the DJI M100, which has arms of length ` = 0.31 m and a mass
of m = 3.133 kg with one TB48D 6S (5700 mAhr) battery, a Raspberry Pi 2 Model B, and a 3D
printed case for the Raspberry Pi. The linear drag coefficients are kdx = 0.5, kdy = 1.75, and
kdz = 135 kg/s, the drag coefficient from the standard parabolic drag model is 0.5576, the motor
thrust coefficient is k = 3.19 · 10−5 kg · m, and the drag torque coefficient is bτ = 1 · 10−7 kg · m2,
which were determined by algebraically solving for these parameters from the telemetry data after
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Figure 3.1: General HME Architecture

conducting flight tests. The moment of inertia matrix components are Ixx = 0.02, Iyy = 0.02, and
Izz = 0.03 kg ·m2 by the mass properties of the DJI M100 Solidworks assembly, which verifies that
the principal axes of the inertia matrix align with the body axes. Measuring the frontal area of the
DJI M100 in Solidworks gives A = 0.0407 m2. The propeller diameter is 0.343 m with a pitch of
4.5 in.

3.4.2 FliteTest 270 Chase Quad

Figure 3.2b shows a picture of the FliteTest 270 Chase Quad, which is a quadcopter for drone
racing. It has arm lengths of 0.136 m, mass of 0.677 kg, a motor thrust coefficient of 3 · 10−6 kg ·m,
with moment of inertia components: Ixx = 5 · 10−5, Iyy = 5 · 10−5, Izz = 10 · 10−5 kg · m2, torque
drag coefficient of 1 · 10−7 kg ·m2 and a linear drag coefficient of kd = 0.25 kg/s.
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(a) DJI M100 with Raspberry Pi 2 Model B (b) FliteTest 270 Chase Quad

Figure 3.2: Exponential Braking Guidance: Distances from Waypoint
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CHAPTER 4
PROPOSED GUIDANCE METHODS

4.1 Explicit and Analytical Guidance

Current guidance results are applied to a quadcopter roll maneuver and waypoint guidance ma-
neuver. These change of variables provide a compact form throughout this chapter: τ = T− t and
Tgo = T − t0.

4.1.1 Translational Guidance

For translational E guidance, the standard commanded acceleration is used in Eq. (3.1) with this
choice of linearly independent polynomials:

p1 = τ2 , p2 = τ3.

This yields an F̄ matrix of:

F̄ =

[
1
3 T3

go
1
4 T4

go
1
4 T4

go
1
5 T5

go

]
,

and this yields an Ē matrix of:

Ē =

[
48/T3

go −60/T4
go

−60/T4
go 80/T5

go

]
.

For the waypoint guidance maneuver, there are three points in R3:

1. Origin (0,0,0)
2. Takeoff altitude (0,0,50)
3. Final point of the maneuver (430,160,100) ,

and the waypoint guidance maneuver hits each of these three points. This gives two sets of coef-
ficients, one set between points 1 (origin) and 2 (takeoff altitude) and the other set between points
2 (takeoff altitude) and 3 (waypoint guidance). The desired translational velocity at each point is
(0,0,0), which yields a go-stop-go-stop sequence. The acceleration and commanded acceleration
profiles are:

Directly integrating the acceleration instead of using the forward Euler method as in Ref. [119]
gives the guided velocity and position profiles:

More details about the waypoint guidance maneuver will be covered in the next chapter.
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(a) Acceleration (b) Commanded Acceleration

Figure 4.1: Guided Waypoint Acceleration and Commanded Acceleration

(a) Guided Motion Velocity (b) Guided Trajectory

Figure 4.2: Guided Waypoint Velocity and Trajectory
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4.1.2 Rotational Guidance

For attitude E guidance, the linearly independent polynomials are:

p1 = τ2 , p2 = τ3.

Ref. [117] does not include attitude guidance, so explicit attitude guidance is derived to be:

αφ(t) = c1τ2 + c2τ3 −
Iyy − Izz

Ixx
ωyωz ,

αθ(t) = c3τ2 + c4τ3 − Izz − Ixx

Iyy
ωxωz ,

αψ(t) = c5τ2 + c6τ3 −
Ixx − Iyy

Izz
ωxωy.

(4.1)

The choice of polynomials is the same as before, so the F and E matrices are the same as before.
For the guided 360◦ roll maneuver, there are three points in R3:

1. Origin (0,0,0)
2. Takeoff altitude (0,0,100)
3. After the 360◦ roll (0,0,100) ,

and the roll maneuver hits each of these three points. Same as before, this gives two sets of coeffi-
cients, one set between points 1 (origin) and 2 (takeoff altitude) and the other set between points
2 (takeoff altitude) and 3 (final position). The desired angular and translational velocity at each
point is (0,0,0), which yields a go-stop-go-stop sequence as before. In the guided roll maneuver,
translational E guidance is applied between points 1 and 2 to takeoff to the desired altitude of 100
m, while attitude E guidance is applied between points 2 and 3 to generate the roll maneuver. The
angular acceleration and commanded acceleration profiles are:

Directly integrating the angular acceleration instead of using the forward Euler method as in
Ref. [120] gives the angular velocity and Euler angle profiles:

Converting the Euler angles into quaternions using the (3-2-1) sequence gives:
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(a) Angular Acceleration (b) Commanded Angular Acceleration

Figure 4.3: Guided Roll Maneuver Angular and Commanded Acceleration

(a) Guided Angular Velocity (b) Guided Angles

Figure 4.4: Guided Roll Maneuver Angular Velocity and Angles
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Figure 4.5: Quaternions of the Guided Roll Maneuer

More details about the roll maneuver will be discussed in the next chapter.

4.2 Proposed Extensions to E Guidance

The author of this paper considered extending E Guidance by adding more polynomials and con-
stants. Thus, the Ē matrix could be R3×3 or R4×4 instead of the original R2×2. In the original E
guidance document, final desired thrust acceleration is used for E ∈ R3×3 to have neutral attitude
at the end of the maneuver by aligning the velocity and acceleration vectors [117].

4.2.1 Intermediate Positions and Velocities

The first attempt used desired intermediate positions and velocities, so Tgo,int = Tgo/2. The inter-
mediate desired positions are defined by dividing the final desired position in half and similarly
for the intermediate velocities. The polynomials chosen are:

pi+1 = τi ,

where i = 0, ..., 3. However, neither the intermediate nor final desired conditions are satisfied.
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4.2.2 Desired Acceleration and Jerk

The second attempt uses desired acceleration and jerk for the third and fourth constraints without
using the Ē matrix, similar to what Cherry did for final desired attitude guidance by aligning
the velocity and acceleration vectors. This attempt uses the same polynomials from Eq. (4.2.1).
However, the acceleration, velocity, and position profiles are not even close to the desired values.

4.2.3 Higher Order Integration of E Guidance Functions

Integrating E Guidance Functions Four Times with Desired Final Acceleration and Jerk. This
method uses the final desired acceleration as the third condition and the fourth condition as the
final desired jerk. The final desired acceleration is satisfied, while the final desired potion, veloc-
ity, and jerk are not. Since this approach and the previous approach both used jerk and did not
satisfy the target points, it might not be possible to incorporate jerk for computing the constraints,
coefficients, or the Ē matrix.

4.2.3.1 Integrating E Guidance Functions Three Times with Desired Final Acceleration

This method uses the final desired acceleration as the third condition, which is desired to be zero
at the end of the maneuver for both translational and rotational motion.

Of the four methods, this method is the most promising but has some drawbacks for the roll,
takeoff, and waypoint maneuvers. Overall, the boundary conditions are usually satisfied, but
using this method with a 3× 3 Ē matrix may not be practical or realistic for applications due to
moving in the opposite direction for some time before heading to the target point. Initial motion
in the opposite direction resembles physical examples such as getting a head start, winding up a
baseball pitch, or getting pulled back before receiving a big push on the swing set to move forward
to a higher height on the opposite side. A potential application of this approach involves avoiding
an incoming obstacle but with intention to still move forward to reach a target point behind the
incoming obstacle. Starting the maneuver in the opposite direction from the target point would
not be realistic for the takeoff maneuver because the UAV starts on the ground and cannot fly
underground. It would also not be realistic if there were obstacles below or behind during mid-
flight. Thus, the 2× 2 Ē matrix would be more practical to use because it lacks movement in the
opposite direction from the target point.
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4.2.4 Proposed Extension of E Guidance to Maneuvers

4.2.4.1 Roll Maneuver E Guidance Results - Three Polynomials

For the 360◦ roll maneuver, the final desired roll angle is 360◦ or −6.2832 rad and a final roll
velocity of 0 rad/s. The "best" polynomial choice that satisfies the desired final conditions is:

p1(t) = τ2 , p2(t) = τ3 , p3(t) = τ4.

Figure 4.6a shows the Euler angles for the roll maneuver with polynomials from Eq. (4.2.4.1). Fig.
4.6b the final roll angle is −6.2831 rad. However, there is an initial roll in the opposite direction
before heading towards the target point. This implies that the quadcopter would roll approxi-
mately 360◦ roll maneuver counterclockwise and then clockwise by about 720◦ to move back to
the original orientation. Unfortunately, such a large roll in the opposite direction is impractical
for a desired roll maneuver in only the clockwise direction, and this opposite motion away from
the target point is a common phenomenon in most of the results. Numerous combinations with
polynomials, exponential functions, and sinusoidal functions did not satisfy the boundary condi-
tions and are not shown. Fig. 4.6b shows the angular velocity profile, and the final roll velocity
of 0 rad/s. The torque required is 1.4114 J, which is less than the max torque of 24.56 J for the
FliteTest 270 Chase Quad.

(a) Guided Angles (b) Guided Angular Velocity

Figure 4.6: Guided Roll Maneuver Angles and Angular Velocity with Three Polynomials

4.2.4.2 Takeoff Maneuver E Guidance Results - Three Polynomials

The takeoff maneuver does not have practical results from this method because the UAV moves in
the opposite direction before heading towards the desired altitude of 50 m above the ground. Some
of the numerous combinations with polynomials, exponential functions, and sinusoidal functions
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satisfied the terminal conditions but all had initial movements in the opposite direction, i.e., un-
derground, which is not physically possible.

4.2.4.3 Waypoint Maneuver E Guidance Results - Three Polynomials

The point of interest maneuver in Ref. [119] has the quadcopter fly to a waypoint at (430, 160,
100) [m] starting from an altitude of 50 m. Just like the roll manevuer and takeoff maneuver,
there is an initial motion away from the target point before heading towards the target point.
Thus, this method is somewhat practical assuming there are no obstacles behind and below the
UAV. Moving backwards helps give a "bigger push" similar to someone initially moving someone
backwards on a swing set before pushing them forward to generate more force to reach a higher
height on the opposite side. However, none of the numerous combinations with polynomials,
exponential functions, and sinusoidal functions satisfy all the terminal conditions. Some fulfilled
reached the desired position but had non-zero velocity. Other combinations fulfilled the terminal
position and velocity conditions but had non-zero acceleration at the end. Overall, this approach
for the waypoint maneuver is impractical and unacceptable unless non-zero accelerations at the
target point is acceptable. If so, then the "best" option is:

p1(t) = τ−1 + τ0 , p2(t) = τ0 , p3(t) = τ + τ0.

Figure 4.7a shows the trajectory of the waypoint guidance maneuver in x, y, z Cartesian co-
ordinates for this choice of functions. Once again, motion initially starts moving away from the
target point, but forward motion towards the target point begins about halfway in the maneuver.
Even though the final position coordinates are satisfied, motion in the x-direction away from the
target goes back as far as approximately 220 m, which is roughly half of the distance to the target
point in the x-direction.

Figure 4.7b shows the velocity profile and that there are larger velocities in the opposite direc-
tion from the target point. The speed in the x-direction goes backwards as high as approximately
10 m/s, which is about 22 mph. However, the terminal velocity conditions are satisfied.

Figure 4.8 shows the acceleration profile. The final acceleration values do not end at zero,
which does not satisfy the desired acceleration conditions.

Appendix A shows all the combinations of the choices of pi(t). Combinations include expo-
nential, trigonometric, and polynomials, and the best combinations were polynomials. Trigono-
metric and exponential functions tended to diverge, oscillate, and/or not satisfy the boundary
conditions. Some combinations were so impractical that they did not produce real numbers and
outputted NA, i.e., not a number.
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(a) Guided Trajectory (b) Guided Velocity

Figure 4.7: Guided Waypoint Maneuver Trajectory and Velocity: Three Polynomials

Figure 4.8: Guided Waypoint Maneuver Acceleration: Three Polynomials
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4.2.5 Cherry’s Formulation of E Guidance for Final Attitude

Cherry uses final desired attitude at the end of the maneuver by having the velocity and accelera-
tion vectors aligned. He chooses:

p1(t) = 1 , p2(t) = τ , p3(t) = τ2

with a non-symmetric Ē matrix of:

E =

 0 0 1
18/T3

go −24/T3
go −6/T2

go

−24/T3
go 36/T4

go 6/T2
go

 ,

and a constraint vector of:  ẋD − ẋ0

xD − x0 − ẋ0Tgo

aTx,D + gx(T).


Thus, he computes the coefficients by [117]:c1

c2

c3

 =

 0 0 1
18/T3

go −24/T3
go −6/T2

go

−24/T3
go 36/T4

go 6/T2
go


 ẋD − ẋ0

xD − x0 − ẋ0Tgo

aTx,D + gx(T)

 .

Applying these polynomials, Ē matrix, and constraints to the roll maneuver, takeoff maneuver,
and waypoint guidance maneuver gives good results for only the takeoff maneuver. For the take-
off maneuver, the results are highly accurate because the takeoff maneuver is one-dimensional
with the velocity and acceleration vectors aligned. The results are not shown because it does not
have any novelties compared to Cherry’s formulation of E guidance for final attitude. The way-
point maneuver does not have good results with this approach, so the results are not shown.

For the roll maneuver, Fig. 4.9a shows the Euler angle profile, while Fig. 4.9b shows the
angular velocity profile. It is unusual that the pitch angle and pitch velocity do not converge to
zero. Thus, the physical interpretation is that the quadcopter has to pitch slightly up to perform
this 360◦ roll maneuver. An advantage of this method is that the backward motion is eliminated.
However, the final desired conditions are not satisfied. The final roll angle is -6.3947 radians,
which is about −366.4◦, and the final roll velocity is −0.1291 rad/s, which is about −7.4◦/s. Thus,
the final desired roll angle and roll velocity conditions are nearly satisfied. The final roll angle
error is about 2%, while the final roll velocity error is off by 0.1291 rad/s or 7.4◦/s. Thus, Cherry’s
final attitude method nearly satisfies the boundary conditions for the roll maneuver but with some
slight errors.
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(a) Guided Angles (b) Guided Angular Velocity

Figure 4.9: Roll Maneuver with Cherry’s Formulation of E Guidance for Final Attitude

4.2.6 Summary and Conclusion on Extending E Guidance

The first method used intermediate position and velocity conditions with a sparse Ē matrix and
four functions: p1, p2, p3, p4, but this method did not satisfy the boundary conditions. The second
method is similar to what Cherry did for desired attitude guidance by using final acceleration
and jerk without using the Ē matrix. However, the boundary conditions are not satisfied either.
The third method used final acceleration and jerk with integrating up to four times. For this
method, only the final acceleration is satisfied, but not the final desired position, velocity, and jerk
conditions.

Based on the simulation results presented, extending E guidance to three or four functions does
not enhance performance compared to p1 and p2. Intuitively, it was thought that increasing the
size of the Ē matrix with more functions and integrals would increase the performance similar to
how one can gain accuracy by truncating less terms in a Taylor series expansion. However, further
research and investigation may find a combination of functions for p1, p2, p3 or p1, p2, p3, p4 that
perform better than just using p1 and p2. There are an infinite number of possible functions to
choose from if the method of multiple integrals is used, so it is possible that one could be luckier
than the author and choose the right functions.

Alternatively, a different method instead of using multiple integrals may increase performance.
Recall that Cherry did not use three integrals for final attitude guidance to align the velocity and
acceleration vectors. Note that his method yielded an anti-symmetric Ē matrix, so symmetric Ē
matrices may only be valid for Ē ∈ R2×2.

Overall, the last method works the best but with backwards motion. Unfortunately, it is cur-
rently unknown if the backwards motion can be eliminated for using three functions: p1, p2, p3.
The analysis for extending E guidance to three functions and three integrals shows that sticking to
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the original R2×2 matrix using p1 and p2 has better performance because it moves only forwards
and satisfies all the boundary conditions.

There are some drawbacks to this E Guidance extension with three polynomials. First, the
backward motion is generally impractical, especially for a takeoff maneuver because it would
cause the aircraft to descend towards the ground, which would damage itself and anything or
anyone nearby. Another drawback of this method is that the guidance performance is incomplete
due to the final velocities being non-zero (see Fig. 4.7b). Finally, this method would definitely
not be applicable to fixed-wing drones since they typically cannot "reverse" during flight, so this
methods is useful only for multi-rotor UAVs.

There are some advantages to this E Guidance extension with three polynomials despite the
backwards motion. First, this method may be practical for a particular case for a dynamic object
approaching from the front, but the aircraft still desires to move forward. Thus, the aircraft would
move backwards and out of the incoming object’s path to avoid possible collisions. This is helpful
because the trajectory to reach the target point is already determined after the quadcopter would
move backwards to avoid the incoming object. However, this would be most successful for uti-
lizing E guidance discretely instead of continuously to update the current state vector and have
sensors to estimate the state of the incoming object. Second, if only the terminal positions need to
be satisfied and the terminal velocities do not need to be satisfied, then this method could be appli-
cable for maneuvers such as a multiple waypoint maneuver with an additional waypoint further
ahead. However, the aircraft must ensure that there are no obstacles behind it before proceeding.

4.3 Proposed Exponential Braking to Reach Targets

Besides E guidance, an exponential braking law has the aircraft or spacecraft decelerate to reach a
target point:

p(t) = X0 · e−
t−t0

λ , ṗ(t) = Ẋ0 · e−
t−t0

λ ,

where λ is a tuning parameter or proportionality factor [115]. The goal involved guiding the
quadcopter to a desired waypoint in 2D by exponentially braking after traveling at max speed.
Preliminary testing in MATLAB demonstrates proof-of-concept before implementing onboard a
Raspberry Pi on the DJI M100 using OSDK functions such as positionAndYawCtrl. Since the DJI
OSDK positionAndYawCtrl requires feedback of the remaining distance to travel, the position com-
mands slightly deviate from the original formulation in [115]:

pN,exp = pN,dist − pN0,dist · exp
(
−∆t
βN

)
, pE,exp = pE,dist − pE0,dist · exp

(
−∆t
βE

)
,

where pN,dist and pE,dist denote the current distance in NE coordinates to the target point, pN0,dist

and pE0,dist denote the original distance in NE coordinates from the target point, ∆t denotes the
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elapsed time, and βN and βE are the tuning parameters or proportionality constants. Eq. (4.3)
uses β instead of λ as in the original formulation to avoid confusion with Lagrange multipliers.

Figure 4.10 shows the hardware in the loop (HITL) tests of the exponential braking guidance
law to reach a waypoint. As expected, Figure 4.10a and Figure 4.10b have exponential trajectories.
An exponential curve fit to the distance from the waypoint reveals an accurate fit (R2 = 0.962).
The next step would be to obtain experimental results to verify the HITL simulation and compare
against the default PID controller in a similar manner to Ref. [121, 122, 123].

(a) North and East Distance from Waypoint vs. Time (b) Distance from Waypoint vs. Time

Figure 4.10: Exponential Braking Guidance: Distances from Waypoint
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CHAPTER 5
OPTIMAL CONTROL PROBLEM WITH HAMILTONIAN

FORMALISM

The optimal control problem and analysis follows the works of Ref. [119, 120, 121, 124].

5.1 Optimal Control Problem Statement

There are initial, intermediate, and final state constraint equations, each with four functions. The
first function has the position constraints or desired coordinates in meters, the second function
contains the velocity constraints in m/s, sthe third function constrains the Euler angles in radi-
ans, and the last function has constraints on the angular velocity in rad/s. The quadcopter must
maintain an altitude below 400 ft throughout the entire flight [125].

Initial State Constraint Equations. There are four initial constraint equations, denoted by 0:

E1(pN , pE, pU) = (N0, E0, U0) , E2(vN , vE, vU) = (vN0 , vE0 , vU0) ,

E3(φ, θ, ψ) = (φ0, θ0, ψ0) , E4(ωx, ωy, ωz) = (ωx0 , ωy0 , ωz0).
(5.1)

Intermediate State Constraint Equations. The intermediate state constraint also has four
equations and denoted by int:

F1(pN , pE, pU) = (Nint, Eint, Uint) , F2(vN , vE, vU) = (vNint , vEint , vUint) ,

F3(φ, θ, ψ) = (φint, θint, ψint) , F4(ωx, ωy, ωz) = (ωxint , ωyint , ωzint).
(5.2)

Final State Constraint Equations. There are four final constraint equations, denoted by f :

G1(pN , pE, pU) = (N f , E f , U f ) , G2(vN , vE, vU) = (vN f , vE f , vU f ) ,

G3(φ, θ, ψ) = (φ f , θ f , ψ f ) , G4(ωx, ωy, ωz) = (ωx f , ωy f , ωz f ).
(5.3)

Constraint Equations on the Control Variables. Constraints exist on the motors such that they
can operate between minimum and maximum angular rates throughout the flight:

ω2
i,min ≤ ω2

i ≤ ω2
i,max , i = 1, 2, 3, 4. (5.4)

Approximation of the max motor spin rate occurs by multiplying the max battery voltage by the
motor’s KV rating to get rpm, which is converted to rad/s and then squared. The auxiliary control
variables (slack variables), ηi, are defined such that η = (η1, η2, η3, η4) ∈ Rd for d = 4 [126]. The
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slack variables convert the inequality constraint to equality constraints:

Φi = (ω2
i,max −ω2

i )(ω
2
i −ω2

i,min)− η2
i = 0 , (5.5)

where i = 1, 2, 3, 4. The control vector ũ ∈ R8 can be modified to include the slack variables:

ũ = [ω1 ω2 ω3 ω4 η1 η2 η3 η4]. (5.6)

The controls are admissible if they are defined and piece-wise continuous on some time interval
[t0, t1] and satisfy Eq. (5.5) [126].

Constraints on the State Variables. Besides maintaining altitudes below 400 ft, there are also
velocity constraints on the DJI M100, in which the max ascent speed is 5 m/s, the max speed in
ATTI mode is 22 m/s, and the max speed in GPS mode is 17 m/s [127].

Functional. It is required to find state and control functions that satisfy Eqs. (2.1), (5.1) - (5.5),
and the functional based on the Mayer problem with a terminal cost for finite time is minimized
[128]:

J = t f − t0 → min. (5.7)

5.2 First Differential of Functional

The first differential of the functional J is written as [126]:

dJ = (Γs0 + λT
0 )

Tds0 + (Γs f − λT
f )

Tds f + (Γt0 − H0)dt0 + (Γt f + H f )dt f

+
∫ t f

t0

[
(Hs + λ̇

T
)Tδs + (Hλ − ṡT)Tδλ + HT

uδu + HT
ηδη

]
dt ,

(5.8)

where 0 and f denote initial and final respectively. The terms with Γ are defined as:

Γt0 = ε
∂J
∂t0

+ µT ∂E
∂t0

, Γt f = ε
∂J
∂t f

+ βT ∂F
∂t f

,

Γs0 = ε
∂J
∂s0

+ µT ∂E
∂s0

, Γs f = ε
∂J
∂s f

+ βT ∂F
∂s f

.
(5.9)

Satisfying the first order necessary conditions of optimality means dJ = 0, so each of the terms
in Eq. (5.8) must be zero. Each of the terms outside of the integral in Eq. (5.8) are zero by the
transversality conditions. The first two terms in the integrand in Eq. (5.8) are zero from the canon-
ical equations in Eq. (5.13). The last two terms in the integral are also zero by the local optimality
conditions in Eq. (5.11). To summarize, when all the terms in Eq. (5.8) are zero, then the necessary
conditions of optimality are satisfied. The second differential of the functional is not considered,
so optimal control with a corresponding optimal trajectory cannot be claimed. Therefore, this pa-
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per can claim extremality at best but not optimality. Future work may encompass studying second
order conditions and analyzing the second differential to determine if optimality can be claimed
or not.

5.3 Hamiltonian Formalism

Figure 5.1 shows the overall flowchart of solving the optimal control problem. There are two main
cases: 1) intermediate or variable motor thrust, and 2) constant motor thrust. The trivial variable
motor thrust case yields zeros for all the Lagrange multipliers, while the nontrivial variable motor
thrust case has six non-zero Lagrange multipliers. The constant motor thrust case contains non-
zero Lagrange multipliers.

Both cases use the same state vector from Eq. (2.1), control vector and constraints from Eqs.
(2.35) - (5.6), and functional from Eq. (5.7). However, the Pontryagin functions are slightly dif-
ferent, depending on which case is used. This leads to slightly different canonical equations and
consequently, different canonical systems. The second order conditions are not considered, so
both cases stop at extremal control. Considering second order conditions would result in a 16× 16
matrix by taking second-order partial derivatives of the Pontryagin function with respect to the
twelve state variables and the four control variables. For the controls to be optimal, the submatrix,
Huu = ∂2 H

∂u2 , must be semi-positive definite by the Legendre-Clebsch condition. Then, the other
submatrices, Hxu = ∂2 H

∂x∂u and Hxx = ∂2 H
∂x2 , must also be semi-positive definite, with the assumption

that Hxu = Hux is symmetrical. Finally, the second order differential of the functional must also
be semi-positive definite to demonstrate optimality [126].

Figure 5.1: Hamiltonian Formalism Flowchart
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Modified form of Pontryagin Function. Writing the Pontryagin function for time optimization
with λi as the Lagrange multipliers and the intermediate constraints from Eq. (5.5) gives:

H(t, x, ũ, λ, ν) = λ1vN + λ2vE + λ3vU + λ4

[
γ(2q0q2 + 2q1q3)−

kdxvN

m

]
+ λ5

[
− γ(2q0q1 − 2q2q3)−

kdyvE

m

]
+ λ6

[
− g + γ(q2

0 − q2
1 − q2

2 + q2
3)−

kdzvU

m

]
+

λ7

2
(−ωxq1 −ωyq2 −ωzq3) +

λ8

2
(−ωxq0 + ωzq2 −ωyq3) +

4

∑
i=1

νiΦi

+
λ9

2
(−ωyq0 −ωzq1 −ωxq3) + λ10

(
`k(ω2

1 −ω2
3)

Ixx
−

Iyy − Izz

Ixx
ωyωz

)
+ λ11

(
`k(ω2

2 −ω2
4)

Iyy
− Izz − Ixx

Iyy
ωxωz

)
+ λ12

(
b(ω2

1 −ω2
2 + ω2

3 −ω2
4)

Izz
−

Ixx − Iyy

Izz
ωxωy

)
,

(5.10)

where ũ is the modified control vector from Eq. (5.6) to include the auxiliary control variables.
Note that the original form of the Pontryagin function does not include νTΦ [129], and adding
νTΦ does not change the overall expression since Φi = 0 as defined in Eq. (5.5). Recall that γ was
defined in Eq. (2.25).

Local Optimality Conditions. The first-order local optimality condition must be satisfied to
find extremals: [

∂H
∂ũ

]T

= 0. (5.11)

Applying Eq. (5.11) allows one to determine the auxiliary control variables:

[
∂H
∂ηi

]T

= 0 or − 2νiηi = 0 , i = 1, 2, 3, 4 ,ηi 6= 0 if νi = 0

ηi = 0 if νi 6= 0
,

(5.12)

where ηi depends on νi for i = 1, ..., 4. Therefore, there are two main cases from Eq. (5.12). The
first case has variable motor thrust, which occurs when ηi 6= 0, νi = 0. The second case has
constant motor thrust when ηi = 0, νi 6= 0 [126]. Other cases involve combinations of minimum,
intermediate, and maximum motor spin rates.

Canonical Equations. The canonical equations form a canonical system and must be satisfied
to find extremals: [

∂H
∂s

]T

= −λ̇ ,
[

∂H
∂λ

]T

= ṡ , (5.13)

where s is the state vector and λ is the vector of Lagrange multipliers.
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Case I: Variable Motor Thrust. Case I has variable motor thrust such that ηi 6= 0, νi = 0.
For this case, νi = 0, which causes the summation in the Pontryagin function to vanish. The ηi

are arbitrary since they vanish by νi = 0. Then, applying Eq. (5.11) for the motor spin rates and
factoring the ωi gives:

∂H
∂ω1

= 0 = ω1

[
L +

2`kλ10

Ixx
+

2bλ12

Izz

]
,

∂H
∂ω2

= 0 = ω2

[
L +

2`kλ11

Iyy
− 2bλ12

Izz

]
,

∂H
∂ω3

= 0 = ω3

[
L− 2`kλ10

Ixx
+

2bλ12

Izz

]
,

∂H
∂ω4

= 0 = ω4

[
L− 2`kλ11

Iyy
− 2bλ12

Izz

]
,

(5.14)

in which L contains three Lagrange multipliers and other variables:

L =
4kλ4

m
(q0q2 + q1q3) +

4kλ5

m
(q2q3 − q0q1) +

2kλ6

m
(q2

0 − q2
1 − q2

2 + q2
3). (5.15)

Two subcases exist for the variable motor thrust case associated with Eq. (5.14). One is a trivial
case where the Lagrange multipliers are identically zero, while the other subcase is nontrivial with
six nonzero Lagrange multipliers, as shown in Fig. 5.1. Conveniently, the first three Lagrange
multipliers are the same for each subcase. Applying the canonical equations gives the first three
Lagrange multipliers:

∂H
∂x

= −λ̇1 = 0 ,
∂H
∂y

= −λ̇2 = 0 ,
∂H
∂z

= −λ̇3 = 0 , (5.16)

in which λ1, λ2, λ3 ∈ R.
Variable Motor Thrust - Trivial Case. For the trivial case, Eq. (5.14) demonstrates that either

the ωi or the terms in the brackets must be zero to satisfy the first-order necessary condition from
Eq. (5.11). Since this is the variable motor thrust case, it does not make sense for ωi = 0. Therefore,
the sum in the brackets must be zero. For the first-order necessary condition, Eq. (5.14) will
always be zero for any state if the Lagrange multipliers are identically zero, which quickly and
conveniently determines six of the twelve Lagrange multipliers. Applying ∂H

∂λ
from Eq. (5.13)

to Eq. (5.10) gives the original dynamical model with static thrust, so no new information exists
regarding the remaining six Lagrange multipliers. Since the terms in the brackets of Eq. (5.10) are
zero, one can use λ4 = λ5 = λ6 = 0 to find λ1, λ2, λ3:

λ̇4 = λ4kdx − λ1 = 0 , λ1 = λ4kdx = 0 (5.17)

and λ5 = λ6 = 0 by the same computation. Applying ∂H
∂s from Eq. (5.13) to the last three λ̇i and
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using λ10 = λ11 = λ12 = 0 gives:

λ̇10 =
λ7q1

2
− λ8q0

2
− λ9q3

2
= 0 ,

λ̇11 =
λ7q2

2
− λ8q2

2
− λ9q3

2
= 0 ,

λ̇12 =
λ7q1

2
− λ8q0

2
− λ9q3

2
= 0.

(5.18)

From Eqs. (5.14) and (5.18), λ10, λ11, and λ12 become arbitrary constants. In particular, it is possible
to have λ7 = λ8 = λ9 = λ10 = λ11 = λ12 = 0 ∀qi for i = 0, 1, 2, 3, which means λ = 0. The
transversality condition for a minimum time problem is ∂J

∂t f
= 1 [126].

The Hamiltonian does not explicitly depend on time, so energy is conserved, resulting in H
being constant, so H = 1 by the transversality condition. In the unlikely but possible event that
one or more of the motors stops spinning due to some type of mechanical or electrical failure, ωi

would become zero, which can make the terms in the bracket be non-zero. One study shows that
horizontal attitude can be stable while sacrificing heading control (yaw) if a motor stops working
[130]. Since all the Lagrange multipliers are zero, the dynamical model equations can be used
to determine the state variables, which generates a field of feasible trajectories instead of a field
of extremals. Overall, the trivial variable motor thrust case leads to feasible trajectories and not
extremal trajectories since all its Lagrange multipliers are zero, as shown in Fig. 5.1.

Variable Motor Thrust - Nontrivial Case. Applying ∂H
∂s from Eq. (5.13) to the next three state

variables (vN , vE, vU) to Eq. (5.10) gives:

∂H
∂vN

= −λ̇4 = λ1 −
λ4kdx

m
,

∂H
∂vE

= −λ̇5 = λ2 −
λ5kdy

m
,

∂H
∂vU

= −λ̇6 = λ3 −
λ6kdz

m
. (5.19)

Using the method of integrating factors provides solutions to these differential equations:

λ4 =
λ1m
kdx

+ C1 , λ5 =
λ2m
kdy

+ C2 , λ6 =
λ3m
kdz

+ C3 , (5.20)

where C1, C2, C3 are integration constants. The next logical step involves determining these inte-
gration constants. However, notice that the differential equations in Eq. (5.19) can be rewritten as:

dλ4

dt
=

λ4kdx

m
− λ1 ,

dλ5

dt
=

λ5kdy

m
− λ2 ,

dλ6

dt
=

λ6kdz

m
− λ3. (5.21)

Integrating by using the clever derivative substitution in Ref. [119] with the chain rule gives
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λ4(t), λ5(t), λ6(t) as:

λ4(t) =
λ1

Ax
+

exp(Axt)
Ax

(
λ4(t0)Ax − λ1

)
,

λ5(t) =
λ2

Ay
+

exp(Ayt)
Ay

(
λ5(t0)Ay − λ2

)
,

λ6(t) =
λ3

Az
+

exp(Azt)
Az

(
λ6(t0)Az − λ3

)
,

(5.22)

where a change of variables makes the notation more compact:

Ax =
kdx

m
, Ay =

kdy

m
, Az =

kdz

m
, (5.23)

and the clever substitution is: [119]

d(ln (λ4kd − λ1) =
1

λ4kd − λ1
(dλ4)(kd).

Notice how Eq. (5.22) resembles Eq. (5.20), which means the integration constants can be de-
termined if the Lagrange multiplier at the initial time t0 is known. Recall that Eq. (5.14) have
λ10, λ11, λ12. By setting the terms in the brackets of the ∂H

∂ω1
and ∂H

∂ω3
equations in Eq. (5.14) equal to

each other shows that the L and λ12 terms cancel, so only the λ10 terms remain:

2`kλ10

Ixx
= −2`kλ10

Ixx
.

Canceling terms implies that λ10 = 0. Setting the brackets of the ∂H
∂ω1

and ∂H
∂ω2

equations in Eq. (5.14)
equal to each other yields similar results such that λ11 = 0. Setting the ∂H

∂ω2
and ∂H

∂ω4
equations Eq.

(5.14) equal to each other causes the L terms to cancel:

2`kλ10

Ixx
+

2λ12b
Izz

=
2`kλ11

Iyy
− 2λ12b

Izz
.

Using the previous results with λ10 = λ11 = 0 and solving for λ12 reveals λ12 = 0. Thus, L = 0
from Eq. (5.15), which ensures ∂H

∂ωi
= 0, and L = 0 if one of the Lagrange multipliers can be solved

in terms of the other two Lagrange multipliers. A quick recap up to this point shows that the first
three Lagrange multipliers are real numbers, and the last three Lagrange multipliers are all zero.
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Applying the canonical equations to the last three state variables (ωx, ωy, ωz) gives:

λ̇10 =
λ7q1

2
− λ8q0

2
− λ9q3

2
= 0 ,

λ̇11 =
λ7q2

2
− λ8q3

2
− λ9q0

2
= 0 ,

λ̇12 =
λ7q3

2
− λ8q2

2
− λ9q1

2
= 0.

(5.24)

The differential equations in Eq. (5.24) are zero because λ10 = λ11 = λ12 = 0. Therefore, these
equations can be solved algebraically, which gives λ7 = λ8 = λ9 = 0. This is confirmed through
MATLAB’s solve function. A quick recap up to this point shows that nine of the twelve Lagrange
multipliers are determined in which only λ4(t0), λ5(t0), and λ6(t0) are unknown, and they will be
determined using the first-order necessary condition for optimality.

Recall from Eq. (5.15) that L = 0 to fulfill the first-order necessary condition for optimality.
Thus, setting one of the Lagrange multipliers as a function of the other two Lagrange multipliers
ensures L = 0. In particular, one can choose λ6(t0) as a function of λ4(t0) and λ5(t0) to ensure
L = 0:

λ6(t0) =
−λ4(t0)(q0q2 + q1q3)− λ5(t0)(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3
. (5.25)

Next, selecting initial values for λ4(t0) and λ5(t0) gives the initial value for λ6(t0). Once values
for λ1, λ2, λ3 are chosen, the costate equations for λ4(t), λ5(t), and λ6(t) can be computed at any
time. Now, all the costates are known and the first-order necessary condition is satisfied, so a
field of extremals is generated. It is interesting to point out that extremality is guaranteed for any
arbitrary time with any λ4(t) and λ5(t) regardless of the other parameters and variables if and
only if Eq. (5.25) is satisfied.

Overall, the nontrivial variable motor thrust case generates a field of extremals with six non-
zero Lagrange multipliers (λ1, ..., λ6) and six Lagrange multipliers (λ7, ..., λ12) equal to zero as
shown in Fig. 5.1. The takeoff maneuver and the waypoint guidance maneuvers utilize the non-
trivial variable motor thrust case.

Case II: Constant Motor Thrust. Case II has constant motor thrust such that ηi = 0, νi 6= 0. It
is conventional for controls to take on their boundary values, i.e., minimum or maximum. How-
ever, the controls can take intermediate values for hovering. Applying the first-order necessary
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condition for control and factoring the ωi gives:

∂H
∂ω1

= 0 = ω1

[
L +

2`kλ10

Ixx
+

2bλ12

Izz
+ 2ν1(ω

2
1,max + ω2

1,min)

]
− 4ν1ω3

1 ,

∂H
∂ω2

= 0 = ω2

[
L +

2`kλ11

Iyy
− 2bλ12

Izz
+ 2ν2(ω

2
2,max + ω2

2,min)

]
− 4ν2ω3

2 ,

∂H
∂ω3

= 0 = ω3

[
L− 2`kλ10

Ixx
+

2bλ12

Izz
+ 2ν3(ω

2
3,max + ω2

3,min)

]
− 4ν3ω3

3 ,

∂H
∂ω4

= 0 = ω4

[
L− 2`kλ11

Iyy
− 2bλ12

Izz
+ 2ν4(ω

2
4,max + ω2

4,min)

]
− 4ν4ω3

4 ,

(5.26)

where L is the same as in Eq. (5.15). Since the control is either minimum or maximum (constant
motor thrust case), νi can be determined from Eq. (5.26):

ν1 =
L + 2`kλ10

Ixx
+ 2bλ12

Izz

4ω2
1 − 2(ω2

1,max −ω2
1,min)

, ν2 =
L + 2`kλ11

Iyy
− 2bλ12

Izz

4ω2
2 − 2(ω2

2,max −ω2
2,min)

,

ν3 =
L− 2`kλ10

Ixx
+ 2bλ12

Izz

4ω2
3 − 2(ω2

3,max −ω2
3,min)

, ν4 =
L− 2`kλ11

Iyy
− 2bλ12

Izz

4ω2
4 − 2(ω2

4,max −ω2
4,min)

.

(5.27)

As mentioned before, the first three Lagrange multipliers are the same for the variable motor
thrust case and the constant motor thrust case, which is very convenient. Applying Eq. (5.13) for
the first three state variables (pN , pE, pU) gives the first three Lagrange multipliers:

∂H
∂x

= −λ̇1 = 0 ,
∂H
∂y

= −λ̇2 = 0 ,
∂H
∂z

= −λ̇3 = 0 (5.28)

where λ1, λ2, λ3 ∈ R such that λi = ai with ai as integration constants for i = 1, 2, 3, which is the
same result as before. The closed-form solutions for λ4, λ5, λ6 are also conveniently the same as
the variable motor thrust case:

λ4(t) =
λ1

Ax
+

exp(Axt)
Ax

(
λ4(t0)Ax − λ1

)
,

λ5(t) =
λ2

Ay
+

exp(Ayt)
Ay

(
λ5(t0)Ay − λ2

)
,

λ6(t) =
λ3

Az
+

exp(Azt)
Az

(
λ6(t0)Az − λ3

)
.

(5.29)
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Applying ∂H
∂s from Eq. (5.13) to the next state variables (q0, q1, q2) to Eq. (5.10) yields:

∂H
∂q0

= λ̇7 = −λ4Ω(2q2) + λ5Ω(2q1)− λ6Ω(2q0) +
λ8ωx

2
+

λ9ωy

2
,

∂H
∂q1

= λ̇8 = −λ4Ω(2q3) + λ5Ω(2q0) + λ6Ω(2q1) +
λ7ωx

2
+

λ9ωz

2
,

∂H
∂q2

= λ̇9 = −λ4Ω(2q0)− λ5Ω(2q3) + λ6Ω(2q2) +
λ7ωy

2
− λ8ωz

2
,

(5.30)

in which a change of variables provides compact notation:

Ω =
k
m

( 4

∑
i=1

ω2
i,max/min

)
. (5.31)

Just to clarify Eq. (5.31), the "/" in ω2
i,max/min means "or" and not divide. Applying Eq. (5.13) to the

last three state variables (ωx, ωy, ωz) to Eq. (5.10) yields:

∂H
∂ωx

= λ̇10 =
λ7q1

2
+

λ8q0

2
+

λ9q3

2
+

λ11ωz

Iyy

(
Izz − Iyy

)
+

λ12ωy

Izz

(
Ixx − Iyy

)
,

∂H
∂ωy

= λ̇11 =
λ7q2

2
+

λ8q3

2
+

λ9q0

2
+

λ10ωz

Ixx

(
Iyy − Izz

)
+

λ12ωx

Iyy

(
Ixx − Iyy

)
,

∂H
∂ωz

= λ̇12 =
λ7q3

2
− λ8q2

2
+

λ9q1

2
+

λ10ωy

Ixx

(
Iyy − Izz

)
+

λ11ωx

Iyy

(
Izz − Ixx

)
.

(5.32)

Constant Motor Thrust: Dynamical Model Comparison Recall that the angular acceleration
equations of the quadcopter dynamical model given in [100] are:

Ω̇ = α =

τφ/Ixx

τθ/Iyy

τψ/Izz

−


Iyy−Izz
Ixx

ωyωz
Izz−Ixx

Iyy
ωxωz

Ixx−Iyy
Izz

ωxωy

 , (5.33)

where α is the angular acceleration vector. Applying Eq. (5.13) with respect to the last three costate
variables yields:

∂H
∂λ10

= ω̇x = αφ = −
Iyy − Izz

Ixx
ωyωz ,

∂H
∂λ11

= ω̇y = αθ = −
Izz − Ixx

Iyy
ωxωz ,

∂H
∂λ12

= ω̇z = αψ = −
Ixx − Iyy

Izz
ωxωy.

(5.34)

Comparing Eq. (5.33) with Eq. (5.34) shows that τ = 0 in Eq. (5.33). Recall that the static thrust
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torque model in the body frame is [100]:

τ =

 `k(ω2
2 −ω2

4)

`k(ω2
1 −ω2

3)

b(ω2
1 −ω2

2 + ω2
3 −ω2

4)

 . (5.35)

Since τ = 0 and all the motor spin rates are identical, the motor spin rates cancel each other
out. Then, torques and rotations about the body axes cease to exist, which means ωx = ωy =

ωz = 0. Overall, the constant motor thrust case applies to quadcopter vertical maneuvers such as
ascent, hovering (constant intermediate motor thrust), and descent. The max motor thrust takeoff
maneuver uses the constant motor thrust case. Since there are no angular velocities in the constant
motor thrust case from the discussion in the previous subsection, this simplifies the last six costate
ordinary differential equations to:

∂H
∂q0

= λ̇7 = −2λ4Ωq2 + 2λ5Ωq1 − 2λ6Ωq0 ,

∂H
∂q1

= λ̇8 = −2λ4Ωq3 + 2λ5Ωq0 + 2λ6Ωq1 ,

∂H
∂q2

= λ̇9 = −2λ4Ωq0 − 2λ5Ωq3 + 2λ6Ωq2 ,

(5.36)

∂H
∂ωx

= λ̇10 =
λ7q1

2
+

λ8q0

2
+

λ9q3

2
,

∂H
∂ωy

= λ̇11 =
λ7q2

2
+

λ8q3

2
+

λ9q0

2
,

∂H
∂ωz

= λ̇12 =
λ7q3

2
− λ8q2

2
+

λ9q1

2
.

(5.37)

One can solve the costates in Eq. (5.36) by direct integration. Consider rewriting λ̇7 as:

dλ7

dt
= −2λ4Ωq2 + 2λ5Ωq1 − 2λ6q0 , (5.38)

Similar equations can be written for λ8 and λ9. Integrating, regrouping terms, and using Eq. (5.22)
yields:

λ7(t) = −2q2L1 + 2q1L2 − 2q0L3 + λ7(t0) ,

λ8(t) = −2q3L1 + 2q0L2 + 2q1L3 + λ8(t0) ,

λ9(t) = −2q0L1 − 2q3L2 + 2q2L3 + λ9(t0) ,

(5.39)
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where a change of variables gives a more compact form:

L1 = Ω
[

λ1t
Ax

+
exp(Axt)

A2
x

(
λ4(t0)Ax − λ1

)]
,

L2 = Ω
[

λ2t
Ay

+
exp(Ayt)

A2
y

(
λ5(t0)Ay − λ2

)]
,

L3 = Ω
[

λ3t
Az

+
exp(Axt)

A2
z

(
λ6(t0)Az − λ3

)]
.

(5.40)

Even though there are no angular velocities in the constant motor thrust case, the costates corre-
sponding to angular velocities can still be determined using Eq. (5.37) through direct integration.
Consider rewriting λ̇10, λ̇11, and λ̇12 as

dλ10

dt
=

λ7q1

2
+

λ8q0

2
+

λ9q3

2
,

dλ11

dt
=

λ7q2

2
+

λ8q3

2
+

λ9q0

2
,

dλ12

dt
=

λ7q3

2
− λ8q2

2
+

λ9q1

2
.

(5.41)

Defining the following terms help provide a compact form for solving (5.41):

M1 =
Ωλ1t2

2Ax
, M2 =

Ωλ2t2

2Ay
, M3 =

Ωλ3t2

2Az
, (5.42)

N1 =
Ωexp(Axt)

A3
x

(
λ4(t0)Ax − λ1

)
,

N2 =
Ωexp(Ayt)

A3
y

(
λ5(t0)Ay − λ2

)
,

N3 =
Ωexp(Azt)

A3
z

(
λ6(t0)Az − λ3

)
.

(5.43)
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Integrating, regrouping terms, and using Eqs. (5.39)-(5.43) gives λ10(t), λ11(t), λ12(t) as:

λ10(t) = −q1q2(M1 + N1) + q2
1(M2 + N2)− q1q0(M3 + N3) +

λ7(t0)q1t
2

+ q0q3(M1 + N1)− q2
0(M2 + N2)− q0q1(M3 + N3)−

λ8(t0)q0t
2

+ q3q0(M1 + N1) + q2
3(M2 + N2)− q3q2(M3 + N3)−

λ9(t0)q3t
2

+ λ10(t0) ,

λ11(t) = −q2
2(M1 + N1) + q2q1(M2 + N2)− q2q0(M3 + N3) +

λ7(t0)q2t
2

− q2
3(M1 + N1) + q3q0(M2 + N2) + q3q1(M3 + N3) +

λ8(t0)q3t
2

+ q2
0(M1 + N1) + q0q3(M2 + N2)− q0q2(M3 + N3)−

λ9(t0)q0t
2

+ λ11(t0) ,

λ12(t) = −q3q2(M1 + N1) + q3q1(M2 + N2)− q3q0(M3 + N3) +
λ7(t0)q3t

2

+ q2q3(M1 + N1)− q2q0(M2 + N2)− q2q1(M3 + N3)−
λ8(t0)q2t

2

− q1q0(M1 + N1)− q1q3(M2 + N2) + q1q2(M3 + N3) +
λ9(t0)q1t

2
+ λ12(t0) ,

(5.44)

Overall, the constant motor thrust case generates a field of extremals with all non-zero Lagrange
multipliers (λ1, ..., λ12) as shown in Fig. 5.1.
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CHAPTER 6
MANEUVERS WITH EXTREMAL CONTROL AND EXPLICIT

GUIDANCE

This chapter follows the work of Ref. [131, 119, 120, 121, 123, 124] and describes the procedures
and implementation of the extremal control and explicit guidance maneuvers.

6.1 Guided Takeoff and Waypoint Maneuver Procedures

Figure 6.1 shows the overall flowchart for the takeoff and waypoint guidance maneuvers. The
gray-filled boxes show the steps of the waypoint guidance maneuver, and the white-filled boxes
show the steps of the takeoff maneuver.

Figure 6.1: Flowchart for Takeoff and Waypoint Guidance Maneuvers

The C++ DJI OSDK libraries and functions integrate the proposed extremal control and explicit
guidance. Figure 6.2 shows the flowchart of the C++ DJI OSDK implementation. The light gray-
filled boxes indicate steps that use DJI OSDK’s velocityAndYawRateCtrl function, the dark gray-
filled boxes use DJI OSDK’s positionAndYawCtrl function, and the black-filled boxes show the start
of the maneuvers.
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Figure 6.2: DJI OSDK Flowchart for Extremal Control and Explicit Guidance Integration

Initial State Constraint Equations. There are four initial constraint equations, which act as the
initial constraints for the takeoff maneuver. The DJI M100 has an auto-takeoff function to takeoff
to an altitude of 1.2 m, so the initial state constraint equations start after auto-takeoff:

E1(pN , pE, pU) = (0, 0, 1.2) , E2(vN , vE, vU) = (0, 0, 0) ,

E3(φ, θ, ψ) = (0, 0, 0) , E4(ωx, ωy, ωz) = (0, 0, 0).
(6.1)

Intermediate State Constraint Equations. The intermediate state constraint is the takeoff alti-
tude of 20 m, so the quadcopter ascends to 20 m before heading to the waypoint while maintaining
an altitude below 400 ft [125].

F1(pN , pE, pU)) = (0, 0, 20) , F2(vN , vE, vU) = (0, 0, 0) ,

F3(φ, θ, ψ) = (0, 0, 0) , F4(ωx, ωy, ωz) = (0, 0, 0).
(6.2)

Final State Constraint Equations. Once the quadcopter reaches an altitude of 20 m, it turns
and flies towards the waypoint. There are four final constraint equations:

G1(pN , pE, pU) = (−71, 100, 30) , G2(vN , vE, vU) = (0, 0, 0) ,

G3(φ, θ) = (0, 0) , G4(ωx, ωy, ωz) = (0, 0, 0).
(6.3)

These final position coordinates are determined and rounded to the nearest whole number from
the difference between the takeoff location and the final desired location’s latitude and longitude.
The final yaw angle is not constrained because the heading has a smaller impact than the roll and
pitch angles for applications such as taking pictures for inspection purposes at a waypoint [1].
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6.2 Guided Takeoff and Roll Maneuvers

Figure 6.3 shows the overall flowchart for the takeoff and roll maneuvers. The gray-filled boxes
show the steps of the roll maneuver, and the white-filled boxes show the steps of the takeoff
maneuver.

Figure 6.3: Flowchart for Takeoff and Roll Maneuvers

The takeoff maneuver follows exactly the same steps in Fig. 6.2 but with a desired altitude of
60 m instead of 20 m, so conceptually everything remains the same. Unfortunately, it is unknown
how to remove the "training wheels" on the DJI M100 to permit aerobatic maneuvers such as the
360◦ roll maneuver. Thus, the DJI OSDK function, attitudeAndVertPosCtrl, cannot produce the
360◦ roll maneuver because the "training wheels" constrain the roll and pitch angles to only 35◦.
Thus, there is simulated data for the roll maneuver, but experimental data exists for the takeoff
manevuer.

Initial State Constraint Equations. There are four initial constraint equations, which act as the
initial constraints for the takeoff maneuver. The DJI M100 has an auto-takeoff function to takeoff
to an altitude of 1.2 m, so the initial state constraint equations start after auto-takeoff:

E1(pN , pE, pU) = (0, 0, 1.2) , E2(vN , vE, vU) = (0, 0, 0) ,

E3(φ, θ, ψ) = (0, 0, 0) , E4(ωx, ωy, ωz) = (0, 0, 0).
(6.4)

Intermediate State Constraint Equations. The intermediate state constraint is the takeoff alti-
tude of 20 m, so the quadcopter ascends to 60 m before performing a 360◦ roll maneuver.

F1(pN , pE, pU)) = (0, 0, 60) , F2(vN , vE, vU) = (0, 0, 0) ,

F3(φ, θ, ψ) = (0, 0, 0) , F4(ωx, ωy, ωz) = (0, 0, 0).
(6.5)
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Final State Constraint Equations. Once the quadcopter reaches an altitude of 60 m, it performs
a 360◦ roll maneuver. Thus, the state variables are the same after completing the maneuver:

G1(pN , pE, pU) = (0, 0, 60) , G2(vN , vE, vU) = (0, 0, 0) ,

G3(φ, θ) = (0, 0) , G4(ωx, ωy, ωz) = (0, 0, 0).
(6.6)

6.3 Explicit Guidance Solutions for the Manevuers

6.3.1 Takeoff Maneuver to Altitude of 20 m.

Choosing p1(t) = p3(t) = p5(t) = τ and p2(t) = p4(t) = p6(t) = τ2 yields:

ax(t) = c1τ + c2τ2 − gx(t) , ay(t) = c3τ + c4τ2 − gy(t) , az(t) = c5τ + c6τ2 − gz(t). (6.7)

For the takeoff maneuver, denoted by TO, E Guidance provides translational acceleration com-
mands for 8 seconds during the intermediate thrust arc immediately after the max thrust arc. The
takeoff maneuver uses the constraints from Eqs. (6.1) & (6.2), which provides the boundary con-
ditions for E Guidance. Following the E Guidance method gives the coefficients as:

c1,TO = 0 , c2,TO = 0 , c3,TO = 0 , c4,TO = 0 , c5,TO = −1.3921 , c6,TO = 0.3046. (6.8)

The first four coefficients are zero because they act in the x and y components, which are invariant
for this vertical takeoff maneuver.

6.3.2 Waypoint Maneuver

Choosing p1(t) = p3(t) = p5(t) = τ2 and p2(t) = p4(t) = p6(t) = τ3 yields:

ax(t) = c1τ2 + c2τ3 − gx(t) , ay(t) = c3τ2 + c4τ3 − gy(t) , az(t) = c5τ2 + c6τ3 − gz(t). (6.9)

For the waypoint guidance maneuver, E Guidance provides translational acceleration commands
for 25 seconds. This is approximately how long it took for the DJI M100 to travel from 20 m above
its takeoff location to the desired location, based on a flight test using DJI’s standard waypoint
navigation capabilities. The waypoint guidance maneuver uses the constraints from Eqs. (6.2) &
(6.3), which provide the boundary conditions for E Guidance. Datcon and CsvView, free offline
applications, allow users to view and analyze telemetry data and the flight path. For the waypoint
guidance (denoted by WG) maneuver, the coefficients, ci, are:

c1,WG = 0.0109 , c2,WG = −5.8396 · 10−4 , c3,WG = −0.0154 ,

c4,WG = 8.2019 · 10−4 , c5,WG = −0.0015 , c6,WG = 8.1920 · 10−5.
(6.10)
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After all the coefficients are determined, the translational acceleration commands can be com-
puted. Then, the accelerations can be computed, which lead to integrating to get position and
velocity components.

6.3.3 Roll Maneuver

Choosing p1(t) = p3(t) = p5(t) = τ2 and p2(t) = p4(t) = p6(t) = τ3 yields:

αx(t) = c1τ2 + c2τ3 −
Iyy − Izz

Ixx
ωyωz , αy(t) = c3τ2 + c4τ3 − Izz − Ixx

Iyy
ωxωz ,

αz(t) = c5τ2 + c6τ3 −
Ixx − Iyy

Izz
ωxωy.

(6.11)

For the guided roll maneuver, E Guidance provides translational acceleration commands for 1.626
seconds. This is approximately how long it took for the FliteTest 270 Chase Quad to complete
a manual 360◦ roll maneuver flight test. The roll maneuver uses the constraints from Eqs. (6.5)
& (6.6), which provide the boundary conditions for E Guidance. For the guided roll maneuver
(denoted by RM), the coefficients, ci, are:

c1,RM = 53.7857 , c2,RM = −44.0747 , c3,RM = 0.7819 ,

c4,RM = −0.8010 , c5,RM = 0.0489 , c6,RM = −0.0501.
(6.12)

After all the coefficients are determined, the angular acceleration commands can be computed.
Then, the accelerations can be computed, which lead to integrating to get position and velocity
components.

6.4 Integrated Extremal Control and Explicit Guidance Results for the
Maneuvers

6.4.1 Takeoff Maneuver to Altitude of 20 m.

The 60 m takeoff maneuver in Ref. [121] has similar results to the 20 m takeoff maneuver in Ref.
[123, 124], so only the 20 m takeoff maneuver results are shown in this section.

Pontryagin Function. The quadcopter takeoff maneuver acts only the positive z-direction and
maintains constant neutral attitude. Therefore, Ω, pN , pE, vN , vE, and q are constant and known:
pN = pE = vN = vE = ωx = ωy = ωz = q1 = q2 = q3 = 0, q0 = 1. Then the Pontryagin function
simplifies to:

H = λ3vU + λ6

(
− g +

k(ω2
1 + ω2

2 + ω2
3 + ω2

4)

m
− kdvz

m

)
. (6.13)

Switching Function. Typically, one computes the switching function by ∂H
∂u = 0 to find the
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factors multiplied by the control variables. Recall from Eq. (5.22) that λ6(t) depends on λ3 and
λ6(t0). Therefore, the switching function, χ, is also a function of λ3 and λ6(t0):

χ =
2λ6(t)k(q2

0 − q2
1 − q2

2 + q2
3)

m
. (6.14)

An example in Ref. [132] finds thrust for a maximum altitude of a sounding rocket, and the so-
lution involves bang-singular-bang arcs. There are mainly two differences from their example
and the analysis here. The first difference is that this work lacks a second bang arc with mini-
mum thrust at the end of the maneuver. The second difference is that differentiating the switching
function for singular arcs is not considered in this work. Overall, the takeoff maneuver uses max
constant motor thrust and then switches to intermediate motor thrust through the switching func-
tion.

Velocity and Altitude Profiles of the Max Thrust Arc. The canonical equations provide a
second order differential equation for altitude, i.e. aU = dvU/dt = d2U/dt2:

∂H
∂λ6

= v̇U = −g +
4kω2

i,max

m
− kdvU

m
(6.15)

Solving Eq. (6.15) with the initial velocity and altitude set to zero yields:

vz,MT(t) = 0.6175− 0.6175e−43.0899t ,

zMT(t) = 0.6175t + 0.01433e−43.0899t − 0.01433 ,
(6.16)

which are verified by MATLAB’s diff and dsolve functions and with MT to denote max thrust.
These altitude and velocity profiles are used for the max motor thrust arc of the takeoff maneuver.

Velocity and Altitude Profile Solutions of the Intermediate Thrust Arc. Fortunately, the in-
termediate thrust arc uses the same dynamical model as the max thrust arc. However, it is more
complicated to solve than the maximum thrust arc because the ω2

i,int profile is unknown. Over-
all, there were five approaches for solving the intermediate thrust arc, but each of them has some
issues and problems.

The first approach uses kinematics with altitude and gravity to solve for time. Then, the motor
spin rate profile is assumed to decrease linearly by using the linear point-slope formula using the
larger root of time. Just like the motor spin rate, velocity can be determined in a similar way
using the point-slope formula. Then, integrating the velocity determines the altitude. However,
there is only one integration constant, the drag force is ignored, and energy is not conserved when
comparing initial and final energies due to the neglected drag force, which should be considered.

Another option is to integrate the second-order differential equation for altitude, i.e. az =

d2z/dt2. Two initial conditions are used to satisfy the initial velocity and altitude. The profile of
the motor spin rate is unknown and is assumed to decrease linearly. The motor spin rate can be
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determined using the linear point-slope formula and choosing a final time when hovering will
occur. However, the solutions do not reach the desired velocity or altitude at the end because two
more boundary conditions are needed. The third attempt considered the possibility that the max
thrust arcs and intermediate thrust arcs could overlap, which yields the switching time from max
thrust to intermediate thrust. Unfortunately, the overlap time of the velocity arcs does not match
the overlap time of the altitude arcs.

The fourth method chose a desired constant deceleration is chosen and integrated it twice to
find the linear velocity and quadratic altitude profiles. The final time is determined using the
selected deceleration as the change of the velocity with respect to time, where the initial velocity
is the max thrust velocity at the switching time, and the final velocity is zero. Then velocity is
determined using the linear point-slope formula. Integrating velocity yields the altitude but with
only one integration constant.

The last method considered solving the second-order differential equation as a boundary value
problem with the initial and final altitude values as the boundary values. However, the initial and
final velocities are not satisfied.

Without going into excruciating details, there are some common downsides to these five meth-
ods. One issue is a lack of integration constants to satisfy the boundary values for velocities and
altitudes. Another issue is that the dynamical model from v̇U = ∂H

∂λ6
includes velocity, so using

the method of integrating factors to solve this differential equation yields an exponential term in
the solution. Consequently, the velocity and altitude profiles become monotonic, which makes it
complicated to satisfy the velocity and altitude boundary values. The third issue is that using sim-
ple linear models for deceleration and the motor spin rates significantly simplifies the problem,
which produces undesired inaccuracies.

Therefore, this motivated the idea of finding another method where the boundary conditions
for velocity and altitudes are satisfied without using linear assumptions for deceleration and mo-
tor spin rates. Other approaches and methods may exist, but using explicit guidance, mentioned
in the previous section, satisfies the boundary conditions.

Unforced and Forced Cases of the Switching Function. Figure 6.4 shows the forced switching
function for the takeoff maneuver. The gray shaded area under the curve indicates where the
maximum thrust arc occurs, which is left of the vertical dotted line. The intermediate thrust occurs
to the right of the vertical dotted line. Recall from Eq. (6.14) that the switching function depends
on λ6, which depends on λ3 and λ6(t0). Choosing λ3 = 43.0899 and λ6(t0) = 1 shows that the
switching function reaches zero at approximately 0.28 seconds. Before 0.28 seconds, it initially has
small positive values.

At 0.28 seconds, the switching function becomes zero, indicating to start the intermediate
thrust arc. However, after 0.28 seconds, the switching function becomes and stays negative, so
minimum thrust occurs until the end of the maneuver. Therefore, the control takes its minimum
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Figure 6.4: Forced Switching Function

values after 0.28 seconds. The physical interpretation implies that the quadcopter applies max-
imum thrust to takeoff for 0.28 seconds, applies intermediate thrust instantaneously, and then
applies minimum thrust after 0.28 seconds.

Due to poor scaling, the unforced switching function is not shown, which makes it difficult
to interpret the figure’s overall results. However, strictly following the unforced switching func-
tion means that the quadcopter would ascend at maximum thrust for only 0.28 seconds and then
apply minimum thrust until the end of the maneuver. Forcing the switching function to remain
zero to use intermediate thrust until the quadcopter reaches the desired altitude will satisfy the
boundary conditions. Thus, the intermediate thrust arc begins at 0.28 seconds, so the switching
function is forced to remain identically zero from 0.28 seconds until the end of the takeoff maneu-
ver. Consequently, forcing the switching function to remain zero also forces λ6 to be identically
zero.

Altitude and Velocity Plots for Max-Intermediate Thrust. Fig. 6.5 shows the simulated alti-
tude and velocity profiles for the maximum thrust arc, while Fig. 6.6 shows the simulated altitude
and velocity profiles for the intermediate thrust arc. The velocity at the junction is 0.6175 m/s ≈
1.4 mph, which is well within the max speed of some FPV quadcopters [133].

Figure 6.7 compares the position profiles of the standard out-of-the-box DJI PID controller
against the integrated extremal control and explicit guidance HITL simulation and the flight
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test. The PID controller finishes before the extremal controller (flight test and HITL) because the
elapsed time in the DJI OSDK implementation was a counter for computing position commands
instead of the real world clock time. The PID altitude slightly overshoots the desired altitude,
while the integrated extremal control and explicit guidance does not. The PID altitude is gener-
ally more linear and has shorter times smoothening out at the beginning and end. Contrarily, the
integrated extremal control and explicit guidance ascent is more nonlinear with a much smoother
ascent. Even though winds were present during the flight test, the overall altitude profile closely
matches the HITL altitude. MATLAB’s immse function computes the mean squared error (MSE)
of the HITL and flight test altitude as 0.1398 m2. Taking the square root gives a root mean square
(RMS) value of 0.3739 m. Table 6.1 shows the final position of the standard PID controller, HITL,
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Figure 6.7: Takeoff Maneuver Position Comparison

and experimental flight tests with the final desired altitude being 20 m. As expected, the HITL
is the most accurate since it lacks winds, and the experimental results are more accurate than the
standard PID.

67



Table 6.1: Takeoff Maneuver: Final Position Comparison

U ∆U % Error

PID 20.700 0.7 3.5%
HITL 20.095 0.095 0.475%
Exp 20.338 0.338 1.69%

Figure 6.8 compares the velocity profiles of the standard DJI PID controller against the inte-
grated extremal control and explicit guidance HITL simulation and the flight test. The PID con-
troller finishes before the extremal controller (flight test and HITL) because the elapsed time in
the DJI OSDK implementation was a counter for computing position commands instead of the
real world clock time. Therefore, the PID controller has a higher average velocity of 2.5 m/s as
it ascends to 20 m in approximately 8 seconds, while the extremal controller has an average ve-
locity of 0.71 m/s with an ascent time of 28 seconds. Consequently, the PID velocity profile is
significantly larger than the integrated extremal control and explicit guidance velocity. The PID
velocity profile resembles a classic trapezoidal velocity profile for point to point maneuvers with
max acceleration (max force), constant velocity, and then max deceleration [134, 135]. This typical
approach is time optimal due to max acceleration and velocity but has discontinuous acceleration
profiles [134]. Contrarily, the integrated extremal control and explicit guidance method presented
here has continuous acceleration through E Guidance, which yields smoother profiles for velocity
and position. There are fluctuations in the integrated extremal control and explicit guidance flight
test because of the wind. The MSE of the ascent velocity between the HITL and the flight test is
0.0234 (m/s)2 with a RMS value of 0.1529 m/s.

Weierstrass-Erdmann Corner Conditions. The Weierstrass-Erdmann corner conditions are
satisfied if the Hamiltonian and Lagrange multipliers are continuous at the corner point or junc-
tion [126]:

H(t−switch, s−, λ−, u−) = H(t+switch, s+, λ+, u+) ,

λ(t−switch) = λ(t+switch) ,
(6.17)

in which tswitch indicates the time when the control switches from maximum to intermediate
thrust. The minus superscript indicates coming from the left, i.e., the maximum thrust arc, and the
plus superscript indicates coming from the right, i.e., the intermediate thrust arc. The Hamiltonian
at tswitch for the maximum thrust arc (coming from the left) is:

Hmax = λ3vz(t−switch) , (6.18)
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where λ6 is zero at the switching time from maximum to intermediate thrust. The Hamiltonian
for the intermediate thrust arc (coming from the right) is:

Hint = λ3vz(t+switch). (6.19)

The velocity at the switching time for both arcs is 0.6175 m/s, and λ3 = 43.0899 is constant for both
arcs. Therefore, the Hamiltonian is continuous at the junction. Note that λ6 = 0 at the junction
and remains zero throughout the entire intermediate thrust arc, and λ3 = 43.0899 is continuous
throughout the maximum and intermediate thrust arcs. Therefore, the Lagrange multipliers are
continuous at the junction, so the takeoff maneuver satisfies the Weierstrass-Erdmann corner con-
ditions.

Fig. 6.9 shows the profiles of the Lagrange multipliers throughout the entire takeoff trajectory
with maximum and then intermediate thrust. Note that they are continuous at the junction at
tswitch = 0.28 s, which shows λ(tswitch)

+ = λ(tswitch)
−.
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Figure 6.9: Profiles for λ3, λ6 of Takeoff Maneuver

Motor Spin Rates. Fig. 6.10 shows the simulated motor spin rates for the maximum thrust
and intermediate thrust arcs of the takeoff maneuver. The top half of Fig. 6.10 shows the constant
maximum thrust arc for the first 0.28 seconds, while the bottom half shows the intermediate motor
thrust arc from 0.28 to 10.28 seconds. Due to poor scaling, it is easier to separate the arcs.

The quadcopter has a small velocity of 0.6175 m/s ≈ 1.4 mph at the junction, and then, it must
accelerate and then decelerate to stop at the desired altitude of 20 m. The quadcopter decelerates
by initially slowing down its motors and then speeding up to the hovering motor spin rates. After
approximately 4.6 seconds, the motor spin rates speed up and eventually reach 240, 880 (rad/s)2,
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Figure 6.10: Takeoff Maneuver Simulated Motor Spin Rates

which is the motor spin rates required for hovering. The equation for the intermediate motor spin
rates comes from solving ∂H

∂λ6
= az for ω2

i with aU and vU from E Guidance, which is denoted by
subscript EG:

ω2
i =

m
4k

(
aU,EG + g +

kdvU,EG

m

)
. (6.20)

On the other hand, the motor spin rates from the standard PID controller flight test has a similar
form but uses the telemetry data:

ω2
i =

m
4k

(
aU + g +

kdvU

m

)
. (6.21)

Figure 6.11 compares the standard PID controller, simulated HITL, and integrated extremal
control and explicit guidance motor spin rates for the takeoff maneuver. The PID controller fin-
ishes before the extremal controller (flight test and HITL) because the elapsed time in the DJI
OSDK implementation was a counter for computing position commands instead of the real world
clock time. Since the takeoff maneuver is one-dimensional, there are no torques or rotational mo-
tion. Therefore, the motor spin rates are assumed to be the same, so each of the four motor spin
rates has the same profile. The ascent acceleration values in the PID controller are about ten times
larger than the acceleration values in the telemetry data from the integrated extremal control and
explicit guidance HITL and flight test. Thus, the PID controller has much higher motor spin rates,
so it consumes more energy and reduces the remaining battery capacity, which ultimately reduces
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Table 6.2: Takeoff Maneuver MSE and RMS Summary

U vU ω2
i Normalized ω2

i

MSE 0.1398 0.0234 2.5014e+10 0.0702
RMS 0.3739 0.1529 1.5816e+05 0.2650

the flight time. Thus, the motor spin rates based on integrated extremal control and explicit guid-
ance are more efficient, and just like the velocity profiles, the flight test data has fluctuations due
to the wind.
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Figure 6.11: Takeoff Maneuver Motor Spin Rate Comparison

Table 6.2 summarizes the MSE and RMS of the altitude, velocity, and motor spin rate profiles
of the takeoff maneuver.

Transversality Conditions. Recall from Eq. (5.8) that dJ = 0 to fulfill the necessary conditions
of optimality. Computing transversality conditions at the initial state is not necessary since the
takeoff maneuver has fixed initial states. This means that Γt0 and Γs0 are not needed, so the first
and third terms outside the integral in Eq. (5.8) vanish:

dJTO = (ΓsTO, f − λT
TO, f )

Tds f + (ΓtTO, f + HTO, f )dt f

+
∫ t f

t0

[
(Hs + λ̇

T
)Tδs + (Hλ − ṡT)Tδλ + HT

uδu + HT
αδα

]
dt ,

(6.22)
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with TO to denote takeoff. Recall from the intermediate state constraints in Eq. (5.2) that ψ is
the only free variable and not constrained. Therefore, the Lagrange multipliers associated with ψ

must be considered at the end of the takeoff maneuver.
Recall that λ7, λ8, and λ9 are the relevant Lagrange multipliers for the first three quaternions,

and Eq. (2.27) shows that the quaternions depend on ψ. Thus, Eqs. (5.39) and (5.40) provide the
closed-form solutions for λ7, λ8, and λ9 even though their state variables are constant throughout
the takeoff maneuver, i.e. q0 = 1, q1 = q2 = 0.

However, the quadcopter is hovering at 20 m and in the variable motor thrust case at the end
of the takeoff maneuver. Recall that λ7 = λ8 = λ9 = 0 by algebraically solving the differential
equations in Eq. (5.24). Since λ7 = λ8 = λ9 = 0, J = t f − t0, and F does not depend on t f , the two
Γ terms outside the integral in Eq. (6.22) are:

Γt f = ε
∂J
∂t f

+ βTO
T ∂F

∂t f
= ε ,

Γs f = ε
∂J
∂s f

+ βTO
T ∂F

∂s f
= βT

TO.
(6.23)

Satisfying the First-Order Necessary Conditions of Optimality. The first-order necessary
conditions of optimality are satisfied dJ = 0. Therefore, all the terms in Eq. (6.22) must be zero:

ΓtTO, f = ε = −HTO, f , ΓsTO, f = βTO = λT
TO, f =

λ7(tTO, f )

λ8(tTO, f )

λ9(tTO, f )

 =

0
0
0

 ,

Hs = −λ̇
T

, Hλ = ṡT , Hu = 0 , Hα = 0.

(6.24)

The Hamiltonian at the end of the takeoff maneuver, HTO, f , is zero since vU(t f ) = λ6(t f ) = 0.
Therefore, ε = 0, so ΓtTO, f = −HTO, f = 0. Since the quadcopter ends the takeoff maneuver in
the variable motor thrust case with λ7 = λ8 = λ9 = 0, ΓsTO, f = 0. The canonical equations and
local optimality equations satisfy the remaining four equations in Eq. (6.24), which yield zeros
too. Since all the terms in Eq. (6.22) are zero, the takeoff maneuver has an extremal trajectory.
Recall that second-order conditions are not considered, so at best, only an extremal trajectory can
be currently claimed for the takeoff maneuver.

6.4.2 Waypoint Maneuver

CsvView’s Geoplayer app provides a 2D view of the trajectory based on the telemetry data, as
shown by the black line in Fig. 6.12.

Acceleration Profiles. Fig. 6.13 shows the accelerations and commanded accelerations. The
PID aU measurements fluctuate around 10 m/s2 due to gravity, and the aN and aE measurements
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Figure 6.12: CsvView Geoplayer Waypoint Guidance Trajectory

have smaller fluctuations. On the other hand, the E Guidance accelerations are smoother and lack
fluctuations.

Velocity Profiles. Fig. 6.14 compares the PID flight test velocity with the E Guidance velocity.
The top half of Fig. 6.14 shows the guided velocity, while the bottom half shows the velocity
from the standard PID controller. The quadratic and cubic E Guidance polynomials cause the E
Guidance velocity to be nonlinear, specifically a quartic because it integrates a cubic acceleration.
Contrarily, the PID velocity is nearly constant throughout the entire flight, but it decreases quickly
towards the end at a faster rate than the velocity from E Guidance. Overall, the E Guidance
velocity profile is much smoother and gradually slows down towards the target point due to its
nonlinear form.

Figure 6.15 compares the experimental, HITL, and PID velocity profiles. The PID controller
finishes before the extremal controller (flight test and HITL) because the elapsed time in the DJI
OSDK implementation was a counter for computing position commands instead of the real world
clock time (68 seconds). Similar phenomenon occurs in the PID velocity profile with the trape-
zoidal velocity profile, which resembles the takeoff maneuver’s PID velocity profile with max
acceleration and deceleration shown in Fig. 6.8. Same as before, the extremal control and E Guid-
ance velocities are smoother due to the continuous commanded accelerations from E Guidance.
There is an unexpected small jump in vE,HITL at the beginning, which is unusual since it does not
occur in the experimental results. Despite that initial jump, the MSE and RMS values are still small
but larger than the vN and vU MSE and RMS values due to this perturbation. Table 6.3 shows the
MSE and RMS between the HITL and experimental velocity results.

Position Profiles. The bottom half of Fig. 6.16 shows the PID positions. The top half shows
the E Guidance position profiles, which is nonlinear and smoother than the linear PID position
profile. Both reach the desired position at the end of the maneuver, but the pE and pU positions in
E Guidance converge to the desired values faster than the PID positions.
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Figure 6.13: E Guidance Acceleration & PID Comparison vs. Time
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Figure 6.14: E Guidance & PID Velocity Comparison vs. Time

Table 6.3: Experiment and HITL MSE and RMS Velocity Summary

vU vE vU

MSE 0.0778 0.6556 0.0060
RMS 0.2789 0.8097 0.0772
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Waypoint Maneuver Velocity Comparison vs. Time
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Figure 6.15: Experimental, HITL, & PID Velocity Comparison vs. Time
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The DJI OSDK function, positionAndYawCtrl, uses the pU commands from E Guidance, but the
pN and pE commands in positionAndYawCtrl require feedback of the remaining distance to travel.
Thus, the equations for the north and east position commands are:

pN,cmd = pN,EG − (pN,dist + pN,target) ,

pE,cmd = pE,EG − (pE,dist + pE,target) ,

where pN,EG and pE,EG are the north and east position commands computed from E Guidance,
pN,target and pE,target are the target positions from the start point. The pN,dist and pE,dist are the
north and east remaining distances to the target computed by:

pN,dist = RE(latrad − latOrrad) ,

pE,dist = RE cos latrad(longrad − longOrrad) ,

where RE is the Earth’s radius in meters, latrad and longrad are the current latitude and longitude
values in radians from DJI M100’s GPS sensor, and latOrrad and longOrrad are the fixed origin
latitude and longitude values in radians.
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Figure 6.16: E Guidance & PID Position Comparison vs. Time

Table 6.4 compares the final NEU coordinates of the PID controller, HITL, and experimental
flight tests, and the final NEU coordinates are (−71.2845, 100.1211, 30).

Table 6.5 compares the error of the final NEU coordinates of the PID controller, HITL, and
experimental flight tests. As expected, the HITL is the most accurate due to lack of wind, and
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Table 6.4: Final Position Comparison

N E U

PID -71.4577 100.2946 30.2450
HITL -71.1867 99.9846 29.9968
Exp -70.9543 99.5425 30.1089

only the experimental final altitude is more accurate than the PID controller. The wind speed was
higher on the day of the experimental flight test than the day of the standard DJI PID flight test,
which explains the lower error of the standard PID.

Table 6.5: Final Position Error Comparison

∆N ∆E ∆U % N Error % E Error % U Error

PID 0.1732 0.1735 0.245 0.2430% 0.1733% 0.8167%
HITL 0.09777 0.1365 0.003130 0.1372% 0.1363% 0.01043%
Exp 0.3302 0.5786 0.1089 0.4632% 0.5779% 0.363%

A future consideration involves reducing Tgo such that the E Guidance trajectory reaches the
target sooner and to have Tgo in the OSDK implementation closely match the real world clock time.
Reducing Tgo causes the acceleration profiles to yield larger values. Consequently, the motors
spin faster to generate these larger accelerations, so the limiting factors for reducing Tgo are the
max motor spin rates from Eqs. (5.4)-(5.5) and the DJI M100 max velocity constraints mentioned
earlier in subsection 5.1. If Tgo decreases too much and yields a motor spin rate greater than the
maximum motor spin rate or a velocity greater than the DJI M100 max velocities, then this Tgo is
too short and deemed physically impossible. Minimizing time to reach the target point would be
necessary for situations such as emergencies, search-and-rescue, or delivering packages as quickly
as possible. On the other hand, accuracy is more critical over time optimization for applications
such as photography or power line inspections.

Figure 6.17 compares the experimental, HITL, and PID position profiles. As expected, the
experimental and HITL position profiles are smoother and nonlinear than the generally linear
PID postion profiles. The PID controller finishes before the extremal controller (flight test and
HITL) because the elapsed time in the DJI OSDK implementation was a counter for computing
position commands instead of the real world clock time. Similar to previous results, even though
the HITL lacked winds, the experimental position results closely match the HITL positions. Table
6.6 shows the MSE and RMS between the HITL and experimental position results.
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Waypoint Maneuver Position Comparison vs. Time
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Figure 6.17: Experimental, HITL, & PID Position Comparison vs. Time

Table 6.6: Experiment and HITL MSE and RMS Position Summary

U E U

MSE 0.1047 1.1501 0.0289
RMS 0.3235 1.0724 0.1699
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Motor Spin Rates. Figure 6.18 compares the motor spin rates of the experimental, HITL, and
PID results. The PID controller finishes before the extremal controller (flight test and HITL) be-
cause the elapsed time in the DJI OSDK implementation was a counter for computing position
commands instead of the real world clock time. As expected, the PID motor spin rate values are
larger and consume more energy. Therefore, the integrated extremal control and E Guidance mo-
tor spin rates are more efficient and prolong battery life, which provides longer flight time. The
experimental motor spin rates fluctuate due to the wind, while the HITL motor spin rates are
smooth due to the lack of wind but with only fluctuations in the beginning. Table 6.7 shows the
MSE and RMS based on unnormalized motor spin rates, while Table 6.8 shows the MSE and RMS
based on normalized motor spin rates with subscript n to denote "normalized."

Waypoint Maneuver Motor Spin Rate Comparison vs. Time
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Figure 6.18: Experimental, HITL, & PID Motor Spin Rate Comparison vs. Time

The PID motor spin rates are computed from Eqs. (2.20) and (2.24) based on the quaternion,
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Table 6.7: Experiment and HITL MSE and RMS Unnormalized Motor Spin Rate Summary

ω2
1 ω2

2 ω2
3 ω2

4

MSE 7.0426e+10 7.1181e+10 7.0011e+10 7.1360e+10
RMS 2.6538e+05 2.6680e+05 2.6460e+05 2.6713e+05

Table 6.8: Experiment and HITL MSE and RMS Normalized Motor Spin Rate Summary

ω2
1,n ω2

2,n ω2
3,n ω2

4,n

MSE 0.4674 0.4641 0.4649 0.4659
RMS 0.6836 0.6812 0.6819 0.6826

accelerometer, angular velocity, and velocity telemetry data:

ω2
1 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
+

τψ

4b
+

τφ

2`k
,

ω2
2 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
−

τψ

4b
+

τθ

2`k
,

ω2
3 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
+

τψ

4b
−

τφ

2`k
,

ω2
4 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
−

τψ

4b
− τθ

2`k
.

(6.25)

Similar formulas exist for the motor spin rates based on E Guidance.
Primer Vector.
Fig. 6.19a shows λv, the primer vector, for the waypoint guidance maneuver. The profile is

generally linear and smooth because λ6 is solved in terms of the λ4 and λ5 terms. Setting λ6 as a
function of λ4 and λ5 ensures ∂H

∂ωi
= 0 ∀t:

λ6(t) =
−λ4(t)(q0q2 + q1q3)− λ5(t)(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3
. (6.26)

Ultimately, Eq. (6.26) must be satisfied to generate an extremal trajectory, which makes the guided
trajectory an extremal trajectory. Not constraining λ6 would produce a feasible trajectory instead
of an extremal trajectory. Fig. 6.19b shows λv for this unforced λ6, which generates a feasible
trajectory because ∂H

∂ωi
6= 0. The primer vector is a straight line in rocket dynamics for uniform

gravity fields [126, 136], so the straight line for the unforced primer vector in Fig. 6.19b validates
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(a) Primer Vector (b) Unforced Primer Vector

Figure 6.19: Comparing Primer Vector: Forced and Unforced

primer vector theory for rocket dynamics in a uniform gravity field.
Transversality Conditions. The waypoint guidance maneuver has free initial and final ψ, so

one must consider transversality conditions at the initial and final states. Since the waypoint
guidance maneuver occurs after the takeoff maneuver, the initial transversality conditions of the
waypoint guidance maneuver become the final transversality conditions of the takeoff maneuver.
The waypoint guidance maneuver always remains in the variable motor thrust case, so λ7 = λ8 =

λ9 = 0. Since λ7 = λ8 = λ9 = 0, J = t f − t0, and G does not depend on t f , the Γ terms outside the
integral in Eq. (6.22) become:

ΓtWG,0 = −ε , ΓtWG, f = ε , ΓsWG,0 = ε , Γs f = βT
WG.

Satisfying the First-Order Necessary Conditions of Optimality. The first-order necessary
conditions of optimality are satisfied if dJ = 0. For the waypoint guidance maneuver, the first
differential is:

dJWG = (ΓsWG,0 + λT
WG,0)

Tds0 + (ΓsWG, f − λT
WG, f )

Tds f

+ (ΓtWG,0 − HWG,0)dt0 + (ΓtWG, f + HWG, f )dt f

+
∫ t f

t0

[
(Hs + λ̇

T
)Tδs + (Hλ − ṡT)Tδλ + HT

uδu + HT
αδα

]
dt.
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Therefore, all the terms in Eq. (5.8) must be zero:

ΓtWG,0 = ε = HWG,0 , ΓsWG,0 = µWG = λT
WG,0 =

λ7(tWG,0)

λ8(tWG,0)

λ9(tWG,0)

 =

0
0
0

 ,

ΓtWG, f = ε = −HWG, f , ΓsWG, f = βWG = λT
WG, f =

λ7(tWG, f )

λ8(tWG, f )

λ9(tWG, f )

 =

0
0
0

 ,

Hs = −λ̇
T

, Hλ = ṡT , Hu = 0 , Hα = 0.

From the takeoff maneuver, HTO, f = HWG,0 = ε = 0. The Hamiltonian at the end of the waypoint
guidance maneuver, HWG, f , is also zero. The quadcopter ends the waypoint guidance maneuver
with a heading of ψ = 125◦, which yields q0 = 0.462, q1 = q2 = 0, q3 = 0.887. The velocity compo-
nents are zero, and λ6 = 0 from its dependence on λ4 and λ5. Therefore, the Hamiltonian is zero,
as expected. The canonical equations and local optimality equations satisfy the remaining four
equations in Eq. (6.4.2). Since all the terms in Eq. (6.4.2) are zero, the waypoint guidance maneu-
ver has an extremal trajectory, which means that the takeoff and waypoint guidance maneuvers
have extremal trajectories. The extremal control flight test data had an initial battery voltage at
86% and a final battery voltage of 77%, while the default PID flight test data had an initial voltage
of 76% and a final battery voltage of 74%. Unfortunately, this is not an accurate apples to apples
comparison because battery voltage tends to decrease exponentially, so future flight tests should
start with the same battery voltage for a thorough comparison. However, one can assume that the
extremal controller would yield smaller voltage decrease since it moves slower and smoother than
the PID controller. Future studies may include considering second-order conditions to determine
if these maneuvers have optimal trajectories.

6.4.3 Roll Maneuver

This 360◦ roll maneuver follows the results of Ref. [120, 121] with the FliteTest 270 Chase Quad.
Betaflight Blackbox provides real-time flight data for quadcopter and fixed-wing UAVs. A FliteTest
270 Chase Quad flew manually on October 14, 2017 at Ching Field with the Blackbox recording
function turned on to record flight data.

Euler Angles. Figure 6.20 shows the original Betaflight Blackbox Euler angle data, where the
roll angle switches from -180◦ to 180◦ because Blackbox constrains the Euler angles from −π to π.
To help see this clearer, roll values beyond −π decrease by 2π, which allows the roll angle profile
to transition smoothly and eliminates a vertical spike at the transition from -180◦ to 180◦.

Figure 6.21 compares the profiles of the simulated E Guidance Euler angles and the PID Betaflight
Blackbox flight test data. The top half shows the simulated attitude E Guidance Euler angles, while
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Figure 6.20: Betaflight Blackbox Roll Maneuver Euler Angles

the bottom half shows the Euler angles from the PID flight test telemetry data. The simulated atti-
tude E Guidance Euler angles are smoother than the PID flight test data, but both reach the target
point and successfully perform the roll maneuver. The PID flight test data had a final roll angle of
−6.2837 rad, while E Guidance had a final roll angle of −6.2831 rad. Even though it is harder to
determine in the E guidance roll angle, both seem to have inflection points at around 0.5 seconds.
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Figure 6.21: Roll Maneuver Euler Angle Comparison

Angular Velocity. Figure 6.22 compares the angular velocity profiles of the simulated E Guid-
ance and the PID flight test data. The E Guidance angular velocity profile is much smoother than

85



the PID flight test data because the pilot has to provide continuous remote controller inputs to
keep the quadcopter stabilized while performing the roll maneuver.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (seconds)

-8

-6

-4

-2

0

x
,F

D
, 

y
,F

D
, 

z
,F

D
 (

ra
d

/s
) E Guidance Angular Velocity vs. time

x,FD

y,FD

z,FD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (seconds)

-15

-10

-5

0

x
,F

D
, 

y
,F

D
, 

z
,F

D
 (

ra
d

/s
) Flight Data Angular Velocity (rad/s) vs. time

x,FD

y,FD

z,FD

Figure 6.22: Roll Maneuver Angular Velocity Comparison

Torques. Figure 6.23 compares the torques of the simulated E Guidance and the PID flight
test data. The E Guidance torques are much smoother than the PID flight test data because the
pilot has to provide continuous remote controller inputs to keep the quadcopter stabilized while
performing the roll maneuver.

Motor Spin Rates. Figure 6.24 compares the motor spin rates of the simulated E Guidance
and the PID flight test data. The motor spin rates in Figure 6.24 mainly depend on the torques and
quaternions, which come from the angular acceleration and Euler angles from E guidance:
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(6.27)

There are small initial torques that generate a smooth roll maneuver in profiles for the E guidance
motor spin rates. Then, the motor spin rates switch to negative thrust to decelerate and then switch
to stabilize back to neutral attitude. This switch occurs from the roll maneuver quaternions, which
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87



leads to a sinusoidal response with respect to time. The manual PID flight data motor spin rates
has numerous throttle fluctuations because the pilot makes continuous adjustments on the remote
control sticks to generate the roll maneuver. Even though the guided roll maneuver is smoother,
the pilot has faster reflexes but continues to fight to maintain stabilization after performing the
360◦ roll. Consequently, the manual PID control flight data has several fluctuations due to man-
ual attitude stabilization, which causes the spikes. However, the E Guidance motor spin rates
resemble bang-bang arcs, are very smooth, and reach neutral attitude at around 1 second.
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CHAPTER 7
HIERARCHICAL MIXTURE OF EXPERTS WITH EXTENDED

KALMAN FILTER BANKS

7.1 Hierarchical Mixture of Experts with Extended Kalman Filters Struc-
ture

This section uses the dynamic thrust models from section 2.3, and this chapter uses the results
of Ref. [122]. The Hierarchical Mixture of Experts architecture involves banks of experts, where
each expert is an Extended Kalman Filter. The best estimate is determined among the filters in
each bank, and then the best estimates among the experts are compared to determine the optimal
estimate by weighing all the models together [1]. Figure 7.1 shows the proposed HME structure
with two banks each with a gating network and two EKFs, bank 1 (left), bank 2 (right); inputs are
Q, K, and y, the measurement vector. The top-level gating network, GN3, weighs the outputs of
bank 1 and bank 2. The left box comprises bank 1 and filled light-gray to indicate that it uses the
Burgers thrust model. Contrarily, bank 2 contains the right box, filled with dark-gray to indicate
that it uses the Staples thrust model. The circles indicate the bank outputs. Table 7.1 provides

Figure 7.1: Proposed HME Structure

a brief description of the general details of the EKFs in the HME structure. Each of the banks
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Table 7.1: EKF Description

Acoustics Thrust Model Bank
EKF1,1 No Burgers 1
EKF2,1 Yes Burgers 1
EKF1,2 No Staples 2
EKF2,2 Yes Staples 2

contains two EKFs and a gating network, which uses a modified softmax function to determine
the weights. The weights dictate which solution is more accurate and summing the weighted
EKF outputs yields the overall output. The bank outputs and overall HME output, weighted best
estimate, are defined as:

y1 = g1,1ŝ1,1 + g2,1ŝ2,1 , y2 = g1,2ŝ1,2 + g2,2ŝ2,2 , ŝ = g1y1 + g2y2. (7.1)

The proposed HME structure is general and not constrained to specific types of maneuvers, so it
would apply to attitude maneuvers too and other types of aircraft [120].

7.1.1 Gating Networks in the Banks

The first index in the subscript is the expert number. The subscript has a second index, which
indicates the bank number for the gating network weights. The top-level gating network, GN3, is
not a bank, so it lacks the second subscript. The gating network weights inside the banks, gj,k, use
a modified softmax function:

gj,k =
exp(−uj,k)

∑j exp(−uj,k)
, (7.2)

where j denotes the expert number, and k denotes the bank number. The original formulation of
the softmax function lacks a negative sign and uses only positive signs [31, 32, 33, 36]. A softmax
function with positive signs favors the larger intermediate gate. However, this study desires the
smaller intermediate gate, i.e., smaller error, instead of the larger intermediate gates with larger
errors. Thus, including the negative sign allows the softmax function to favor the smaller interme-
diate gates with smaller errors instead of the larger intermediate gates with larger errors, which is
desirable for accurate state estimates. The gating network weights are functions of intermediate
gates: uj,k = Cei, where C ∈ R denotes some weighting factor. Alternate forms of the intermediate
gates utilize a weight vector multiplied by the measurement vector [31, 32]. The error, ei, is the
root-mean-square error between the dynamical model parameters (smodel,i) and the state estimate
parameters after measurements (ŝi(+)) with i as the iteration in the EKF computation loop:

ei = rms(smodel,i − ŝi(+)).
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7.1.2 Top-level Gating Network

The top-level gating network, GN3, sums the outputs from bank 1 and bank 2 as a weighted sum.
Its gating network weights are resemble the weights defined in Eq. (7.2), and its intermediate
gates have a similar form:

u1 = Ce1 , u2 = Ce2

with the error for the top-level gating network at each iteration defined as:

e1 = rms(y1 − smodel) , e2 = rms(y2 − smodel) , (7.3)

with e1 as the error of bank 1, and e2 as the error of bank 2.

7.2 Extended Kalman filters in HME

A quick recap of the HME structure reminds readers that there are four EKFs in the proposed
HME structure. The two EKFs in bank 1 use the Burgers thrust model, while the two EKFs in
bank 2 use the Staples thrust model. Figure 7.1 shows the EKFs with acoustics are in the dark
gray-filled boxes, while the EKFs without acoustics are in the light gray-filled boxes.

Measurement and Process Noise Matrices. The measurement and process noise matrices, Q
and K, respectively, are conventional square matrices with the number of rows and columns equal
to the number of state variables. The matrices are diagonal with zeros on the off-diagonal elements
with the assumption that cross-correlation errors in the process and measurement noises do not
exist. Another assumption is that Q and K are constant, i.e., invariant with respect to time.

Measurement Models. The global positioning system (GPS) and inertial measurement unit
(IMU) are the sensors to provide position and angular velocity measurements, which are the first
three and last three state variables in Eq. (2.1). A simple GPS measurement model with subscript,
GPS, contains bias terms, modeled as white noise: [137]

p = pGPS +

δpN

δpE

δpU

 ,

δpN ∼ N[0, σ2
GPS,h]

δpE ∼ N[0, σ2
GPS,h]

δpU ∼ N[0, σ2
GPS,v]

 . (7.4)

The angular velocity measurement model has a similar form to the GPS measurement model and
uses subscript, gyro, to denote gyroscope measurements:

Ω = Ωgyro +

δΩx

δΩy

δΩz

 ,

δΩx ∼ N[0, σ2
Ωx
]

δΩy ∼ N[0, σ2
Ωy
]

δΩz ∼ N[0, σ2
Ωz
]

 . (7.5)
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The SPL measurements in dB(A) from the MicW i437L Omnidirectional Measurement Microphone
give the calibrated sound pressure level, which is similar to an average of the sound level relative
to the standard pressure level: [138]

Lpr = 20 log10

(
pr

prre f

)
, (7.6)

where pr is the root-mean square sound pressure level, and prre f = 20 µPa is the reference pressure
level. Faster motor angular velocities produce more noise, and consequently, higher SPL values
occur. Directly relating SPL to motor angular velocities keeps the model as simple as possible, and
section 7.5 provides more details. The measurement matrix in extended Kalman filters is defined
as: [118]

Hk(ŝk(−)) =
∂h(s(tk))

∂s(tk)

∣∣∣∣
sk(t)=ŝk(t)(−)

, (7.7)

Applying Eq. (7.7) to Eqs. (7.4)-(7.5) yields:

Hk(ŝk(−)) =
[
1 1 1 0 0 0 0 0 0 1 1 1

]
. (7.8)

Utilizing non-Gaussian noise instead of Gaussian noise may increase the accuracy of the measure-
ment models, which is potential future work.

Uncertainty Covariance Matrix. Since Q and K are diagonal without any cross-correlation
errors, the covariance matrix, P, is also assumed to lack cross-correlation errors and has a similar
form:

P = diag(pii) , i = 1, ..., 12. (7.9)

Unlike Q and K, P is not invariant with respect to time because the error covariance propagation
depends on time and F, which is defined as: [118]

F(ŝ(t), t) =
∂ f (s(t), t)

∂s(t)

∣∣∣∣
s(t)=ŝ(t)

, (7.10)

where f (s(t), t) represents the right-hand side of the dynamical model equations. Putting F into
a matrix formulation yields: [118]

F(ŝ(t), t) =
[

∂ fi

∂sj

]
, i, j = 1, ..., 12. (7.11)

Initial Conditions for the State Vector and Uncertainty Covariance Matrix. The initial state
vector is defined as:

s0 =
[

pN,0 pE,0 pU,0 vN,0 vE,0 vU,0 q0,0 q1,0 q2,0 ωx,0 ωy,0 ωz,0 ,
]T

. (7.12)
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and the initial covariance matrix is defined as:

P0 = diag
[
σ2

GPS,h σ2
GPS,h σ2

GPS,v σ2
vN

σ2
vE

σ2
vU

σ2
q0

σ2
q1

σ2
q2

σ2
Ωx

σ2
Ωy

σ2
Ωz

]
, (7.13)

where diag[·] denotes the diagonal elements of the matrix, σ2
GPS,h is the GPS measurement variance

for in the horizontal plane, σ2
GPS,v is the GPS measurement variance for altitude, σ2

v,N , σ2
v,E, and σ2

v,U

are the variances for velocity, σ2
q0

, σ2
q1, and σ2

q2
are the variances for quaternions, and σ2

Ωx
, σ2

Ωy
, and

σ2
Ωz

are the variances for angular velocity.
State Vector Propagation. UAV pilots typically prepare trajectories before flights by setting

waypoints at various heights with latitude and longitude coordinates. Thus, p and q are known
a priori and become the nominal trajectory and attitude through telemetry data from previous
flights, assuming the telemetry data provides the true states of the maneuver even though the
true trajectory and states will never be known in practice. Taking GPS measurements with noise
provides position updates, and differentiating p with respect to time yields velocity. Similarly,
taking gyroscope measurements with noise provides angular velocity measurements. Converting
angular velocity to the time derivatives of quaternions and integrating them yields the quater-
nions. Utilizing cubic spline curve fits of the a priori p trajectory gives p(t) and v(t) as functions
of time. Incorporating GPS noise deviates p(t) and consequently, v(t) from the nominal trajec-
tory and velocity. A similar case exists for q(t) with gyroscope noise measurements affecting the
quaternion estimations. Having p, v, and q(t) as explicit functions of time allows one to integrate
the error covariance with respect to time.

Integrating Uncertainty Covariance Equations. Integrating the uncertainty covariance in-
volves these time-dependent functions:

Ṗ = F(ŝ(t), t)P(t) + P(t)FT(ŝ(t), t) + Q(t). (7.14)

To simplify the integration of Eq. (7.14), one can assume the error covariance is in steady-state
such that Ṗ = 0, but this assumption is assumed to be invalid due to the quadcopter moving
constantly, which contributes to variable uncertainty as time marches on, i.e., covariances are not
constant. An alternative integration approach uses linear Kalman filters for a linearized system
instead of EKFs for nonlinear systems. Then, utilizing the state transition matrix allows the error
covariance to propagate forward [118]. However, F may be invariant with respect to time for some
systems, which also makes it very convenient for integrating the error covariance propagation
[99]. Conveniently, P is diagonal and lacks cross-correlation errors. Using a change of variables
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simplifies Ṗ(t):

Ṗ(t) = A(t) + B(t) + Q(t) , Q(t) = [qij] , tk−1 ≤ t ≤ tk ,

A = F(ŝ(t), t)P(t) = [aij] , aij =
n

∑
k=1

∂ fi

∂sk
pkj ,

B = P(t)F(ŝ(t), t)T = [bij] , bij =
n

∑
k=1

pik
∂ fk

∂sj
.

(7.15)

Without correlations between state vector components, Ṗ(t) becomes:

ṗii = aii + bii + qii , i = 1, ..., n. (7.16)

Integrating both sides of ṗii gives:

∫ tk

tk−1

ṗii dt =
∫ tk

tk−1

(
aii + bii + qii

)
dt. (7.17)

Expanding the left hand side gives:

Pk(−)− Pk−1(+) =
∫ tk

tk−1

(
aii + bii + qii

)
dt. (7.18)

Finally, moving Pk−1(+) to the right hand side gives:

Pk(−) = Pk−1(+) +
∫ tk

tk−1

(
aii + bii + qii

)
dt. (7.19)

Computing the partial derivatives to determine the F matrix yields some non-zero terms, but
most of the terms are conveniently zero. Ultimately, this leaves only the partials for the velocity
covariance components on the diagonal of F, which are on the diagonal of F in the 44, 55, and
66 entries. Conveniently, the remaining nine diagonal elements are zero, which simplifies the
integration of Eq. (7.14). See Appendix to view the equations for the velocity partials for the
Burgers model and Staples model. Overall, there are three differential equations and nine linear
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equations per thrust model to solve to propagate the error covariance:

pk(−)11 = pk−1(+)11 + q11∆t , pk(−)22 = pk−1(+)22 + q22∆t

pk(−)33 = pk−1(+)33 + q33∆t , ṗk(−)44 = pk−1(−)44 · 2
∂v̇N

∂vN
+ q44

ṗk(−)55 = pk−1(−)55 · 2
∂v̇E

∂vE
+ q55 , ṗk(−)66 = pk−1(−)66 · 2

∂v̇U

∂vU
+ q66

pk(−)77 = pk−1(+)77 + q77∆t , pk(−)88 = pk−1(+)88 + q88∆t

pk(−)99 = pk−1(+)99 + q99∆t , pk(−)1010 = pk−1(+)1010 + q1010∆t

pk(−)1111 = pk−1(+)1111 + q1111∆t , pk(−)1212 = pk−1(+)1212 + q1212∆t

(7.20)

where ∆t denotes the time step between iterations, (−) denotes before measurements, (+) denotes
after measurements, and the factor of 2 comes from having a symmetric F matrix. Utilizing the
Runge-Kutta (4,5) formula with the Dormand-Prince pair solves the three differential equations at
each iteration with Pk−1(+) as the initial condition.

7.3 Acoustic Data Collection

Obtaining acoustic measurements was initially thought to aid in estimation accuracy, which has
not been done before in the UAV acoustic community. The Rbotics Databot sensor was installed on
the top of the Raspberry Pi case on the DJI M100 for acoustic sensor data collection. The Databot
sensor comes with a mic and various sensors: air pressure, altitude, humidity, accelerometer,
gyroscope, magnetometer, ultraviolet, light (lux), carbon dioxide, and volatile organic compounds
[139]. The initial plan was to use the Databot’s mic to collect acoustic measurements of the DJI
M100 as it flew various maneuvers.

However, there were some issues using the Databot sensor to collect acoustic measurements.
One issue was a remote controller connection issue when connecting the Databot sensor via Blue-
tooth to an Android smartphone. A possible solution involves connecting the Databot sensor to
the Raspberry Pi. Another issue was that the Arduino program for gathering microphone data has
units in the range of 16 or 17 dB in a quiet room, which is much lower than the typical range of a
quiet room, i.e., 40 dB. Thus, an alternative acoustic route with different sensors took precedence.

The Tascam DR-10L provides uncalibrated waveform data through the AudioTools app’s Recorder
feature, while the MicW i437L Omnidirectional Microphone collects calibrated SPL measurements
in dB(A). Analyzing the numerous data from flight tests led to attempts in determining rela-
tionships between state variables and acoustic measurements. It is possible to find relationships
among the motor angular velocities, velocity, acceleration, jerk, and snap, but this is outside the
scope of this work.
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7.4 Attempts for Deriving Acoustic Models for Quadcopters

This section will highlight the attempts in deriving an acoustic quadcopter thrust model, which
were unfortunately not successful even after following a similar approach [92]. Eqs. 51-52 (p.1127)
of Ref. [92] apply to hovering or static rotors, i.e., a hovering quadcopter. The idea was that if dB
is known, then working backwards allows one to compute p′Ln, which is a function of propeller
angular velocity, speed of sound, observer distance from the rotation center, force per unit area
on the medium, local Mach number in the radial direction, period of the sound, and harmonic
number. Of these variables, the motor frequency is important and the most relevant, so the other
terms can be lumped together. Algebraic manipulations allow us to solve for the angular velocity
of the propeller blade.

It is common knowledge that 1 Hz = 60 rpm because there are 60 seconds in a minute. If
we have the motor rpm, then, we can get the motor frequency. Contrarily, if we have the motor
frequency, we can get the motor rpm. Therefore, knowing the dB values leads to estimating or
calculating the motor spin rates, which are the control variables.

One of the restrictions of this method (p.1128 of Ref. [92]) is "far field position of the observer."
Assuming the Mic i437L would be the observer, asks the question if the Mic i437L is for far field.
If so, this method applies to the hover maneuver because the second restriction is "no forward
motion of the rotor is allowed." For the other maneuvers with translational motion, other models
need to be considered.

An attempted example of determining a UAV acoustic model started with a sample of motor
spin rates and dB during the hover maneuver at 15.193 seconds: 86.5316 dB with an average motor
spin rate of 499.6441 rad/s.

Using Eq. (52) of Ref. [92] with 86.5316 dB to solve for |p′Ln| gives p′Ln = 0.29998186. Computing
the integral in Eq. (51) of Ref. [92] in three ways does not provide close enough results to p′Ln =
0.29998186, assuming lr equals weight/area. The three different integration approaches were:

1. Assumed the loading force per unit area (lr) and the local Mach number in the radial direc-
tion were not constant (integrate with respect to r)

2. Assumed the loading force per unit area (lr) and the local Mach number in the radial direc-
tion were constant throughout the radius of the propeller

3. Assumed only the loading force per unit area (lr) was constant

Overall, current explanations are either of the following two options:

1. not integrating correctly
2. the Hawkings and Lowson’s method (p.1127-1128 of Ref. [92]) for subsonic/supersonic

rotors for hovering or static conditions does not apply to quadcopter propellers

To avoid complicated derivations and to keep the problem simple, the approach was to directly
relate SPL with motor angular velocities. Previous quadcopter dynamical model equations used
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static thrust, which would probably be inaccurate [100]. Applying relevant dynamical propeller
thrust models to quadcopters would theoretically increase the dynamical model accuracy by fol-
lowing the approaches in [104] and [102]. Thus, rederiving the quadcopter dynamical model with
dynamic propeller thrust would be necessary but possibly tedious. Then, the last steps would be
to create EKFs and then insert into HME.

7.5 Hierarchical Mixture of Experts Methodology

7.5.1 Baseline Indoor Data Collection

The MicW i437L has a frequency range from 20 Hz to 20 kHz and a sensitivity of -27.5 dBFS at 1
kHz, and a signal-to-noise ratio above 62 dB [140]. Connecting the MicW i437L via lightning cable
to an iPhone 5S allows users to collect acoustic data through the NoiseLab-Lite and AudioTools
IOS apps. The NoiseLab-Lite app provides sound pressure level (SPL) measurements in dB(A),
and it can produce calibrated SPL measurements when attached with the MicW i437L omnidi-
rectional measurement microphone, which attaches to an iPhone 5S via lightning connector. The
Recorder tool in the AudioTools app provides uncalibrated waveform data. Two tests indoors
provides baseline acoustic data of the quadcopter with and without propellers.

1. No propeller test - spinning the motors from 0% to 100% without any propellers
2. Propeller test with takeoff - takeoff indoors at low altitude with propellers spinning

Both tests were manual and in a quiet, indoors environment with an average baseline SPL of
approximately 40 dB(A).

7.5.2 Description of Maneuvers

Five maneuvers were conducted for collecting acoustic data:

1. Hover - maintain a position with small drifts due to the wind
2. Waypoint - fly to pre-determined GPS coordinates
3. Triangle - fly a series of waypoints in a triangle pattern, where the flight plan is to stop

at each waypoint, turn (yaw) towards the next waypoint, and then proceed to the next
waypoint

4. Shoelace loop - fly a series of waypoints in a shoelace loop pattern, where the flight plan
involves mostly smooth transition from waypoint to waypoint without the stop and turn
approach in the triangle maneuver

5. Max throttle - apply max thrust in the NEU directions for a short amount of time

Each maneuver started with a manual takeoff and then shifted into autonomous mode to fly
through the waypoints. The hover and max throttle maneuvers remained completely in manual
mode.
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7.5.3 DJI M100 Description with Acoustic Setup

The authors performed the waypoint, triangle, and shoelace loop maneuvers on a DJI M100
quadcopter, the same platform used for the takeoff and waypoint guidance maneuvers in Ref.
[124, 123, 121].

(a) The DJI M100 (2015) has arms of length ` =
0.31 m, 13" propellers with pitch of 4.5", and a to-
tal mass of m = 3.133 kg with one TB48D 6S (5700
mAhr) battery

(b) AudioTools recorder screenshot with a sample
rate of 44.1 kHz to generate wav files, which are
opened through MATLAB’s audioread function

(c) NoiseLab-Lite recording screenshot with a sam-
ple rate of 44100, buffer size of 16384, calibrated at
0.0 dB, measuring SPL in dB(A) with the fast op-
tion

(d) MicW i437L Omnidirectional Measurement Mi-
crophone (Lightning Connector) with a frequency
band from 20 Hz to 20 kHz, sensitivity of -27.5
dBFS (94dB SPL at 1 kHz), a signal-to-noise ratio
over 62 dB, connects directly to iPhone or iPad via
light, and weighs 10 g (User’s manual)

Figure 7.2: DJI M100 and Acoustic Equipment
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7.5.4 SPL and Motor Angular Velocity Curve Fit

Combining the telemetry data, numerous SPL measurements from the five maneuvers, and the
propeller test data provides a sufficient sample size of 789 data points, which are used to generate
a curve fit model between SPL and motor angular velocity. The Least Absolute Residuals (LAR)
method provides good polynomial fits of SPL vs. motor angular velocities. It takes on the form
with αj ∈ R, j = 1, ..., 5:

SPLk = α1ω4
i,k + α2ω3

i,k + α3ω2
i,k + α4ωi,k + α5 , i = 1, ..., 4. (7.21)

Table 7.2 shows the coefficients of the curve fit. Figure 7.3 shows the curve fits of SPL to ωi.

Table 7.2: SPL and Motor Angular Velocity Curve Fit Parameters

R2 RMSE α1 α2 α3 α4 α5 µ σ

ω1 0.9951 0.7601 0 0 -4.781 0.8472 87.58 429.7 148
ω2 0.9939 0.8508 0 0 -3.979 2.89 86.66 437 157.1
ω3 0.9931 0.9033 0 0.188 -3.115 3.535 85.93 439.1 159.3
ω4 0.9947 0.7926 -1.207 -2.485 0.9231 9.556 83.01 447.1 161.3

7.6 Flight Test Results

This section follows the work of Ref. [122]. The author conducted flight tests of the five maneuvers
using the DJI M100, shown in Figure 7.2a. The waypoint, triangle, and shoelace loop maneuvers
occurred at Mililani Ravine Park, while the propeller test and hover maneuver were performed
at the author’s home. The DJI Ground Station Pro app set the pre-determined waypoints and
paths for the maneuvers. Each maneuver had different types of data: the DJI M100 telemetry data
extracted post-flight, the uncalibrated AudioTools waveform data, and the recorded SPL data from
NoiseLab-Lite with the calibrated MicW i437L Omnidirectional Measurement Mic.

Maneuver Trajectories. The NE coordinates in the NEU frame used the latitude and longitude
GPS data in radians:

N = RE(lat− lat0) , (7.22)

E = RE cos (lat)(lon− lon0) , (7.23)

with RE as the radius of the Earth in meters, lat as the current latitude in radians, lon as the
current longitude in radians, lat0 as the initial latitude in radians, and lon0 as the initial longitude
in radians. The U coordinate in the NEU frame came from the relative altitude measurements in
the telemetry data.
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Figure 7.3: Curve Fit of SPL to ωi
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Trajectories in NEU Frame. Figure 7.4 shows the 3D trajectories of the hover, waypoint, tri-
angle, shoelace loop, propeller test, and max throttle maneuvers in the NEU frame. The hover
maneuver involves hovering without any pilot inputs for approximately 6 seconds with several
small fluctuations due to the wind, but it did not deviate drastically from its takeoff location, i.e.,
landed less than 0.5 away from the original takeoff location. After takeoff, the waypoint maneu-
ver had the quadcopter ascend to the desired altitude of approximately 15 m, move horizontally
towards the waypoint, and then land after reaching the waypoint.

After taking off, the triangle maneuver also ascended to the desired altitude of approximately
15 m, went to each of the prescribed waypoints to create a triangle path in the air, and then re-
turned to land at its takeoff location. The shoelace loop maneuver involved following waypoints
to trace a shoelace loop path in the air. The triangle maneuver had sharp corners because the pilot
used the DJI GS Pro straight setting for the cornering parameter. Using the straight setting caused
the drone to stop and then turn at each waypoint towards the next waypoint before resuming. On
the other hand, the shoelace loop maneuver had smoother edges due to the curved setting for cor-
nering, which provides smoother and continuous flight. The no propeller test’s NEU coordinates
are not displayed because the drone did not move throughout the test.

The propeller test was indoors, but the GPS signal was just strong enough to get a GPS lock.
Similar to the hover maneuver, not much horizontal translation occurred to avoid hitting anything
indoors. After takeoff, the max throttle maneuver applied max thrust to ascend vertically, paused
for approximately 0.5 seconds, applied max pitch forward, had another short pause also of about
0.5 seconds, drifted slightly due to the wind, applied max pitch backward, applied max thrust to
descend and then quickly ascend, and then landed. The small loop-like component in the path
occurred when the pilot rapidly switched from max descent to max ascent. The total 3D distance
traveled for the maneuvers is as follows: 3.57 m for hover, 56.12 m for waypoint, 122.80 m for
triangle, 115.63 m for shoelace loop, 1.61 m for propeller test with takeoff and 29.39 m for max
throttle.

2D Trajectories. Since the hover maneuver did not deviate much from the start point, its
2D trajectory is not shown. However, the waypoint, triangle, and shoelace loop maneuvers sig-
nificantly moved more than the hover maneuver. Their 2D trajectories are shown in Figure 7.5
through Google Earth Pro.

7.7 Acoustic Data

Sound Pressure Level Data. Figure 7.6 shows the MicW i437L Omnidirectional Measurement
Microphone calibrated SPL in dB(A) using the NoiseLab-Lite app for all the maneuvers. The hover
maneuver had SPL values of approximately 90 dB, fluctuating at approximately 90 dB throughout
the maneuver. The waypoint maneuver and shoelace loop maneuvers were generally quieter with
SPL values ranging from approximately 80 to 85 dB. The baseline SPL values in at Mililani Ravine
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Figure 7.4: North, East, and Up (NEU) Coordinates of the Maneuvers
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(a) Waypoint: 2D Google Earth Trajectory, distance
from takeoff is 48.6 m (b) Triangle: 2D Google Earth Trajectory

(c) Shoelace loop: 2D Google Earth Trajectory (d) Max Throttle: 2D Google Earth Trajectory

Figure 7.5: Mililani Ravine Park, 95-1100 Kaapeha St, Mililani, HI 96789
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Park were approximately 45 dB, which fluctuated slightly depending on the wind. The right side
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Figure 7.6: NoiseLab-Lite dB(A) for all Maneuvers and Tests

of Figure 7.6 shows SPL in dB(A) for the no propeller test, propeller test with takeoff, and max
throttle maneuver. The motors generated SPL values up to approximately 70 dB without having
propellers. The max throttle test had the largest SPL values as high as 95 dB, which occurred when
the pilot sent commands for max throttle during ascent, descent, or max pitch.

SPL and Motor Spin Rate Data. Figure 7.7 shows the SPL in dB(A) vs. the motor spin rates
in rad/s for the hover, waypoint, triangle, and shoelace loop maneuvers. The SPL levels generally
reached approximately 85 to 90 dB above 400 rad/s. Starting up the motors during takeoff or
slowing them down during landing produced an approximate SPL range between 50-80 dB.

7.8 HME-EKF Simulation Setup and Simulation Results

This section follows Ref. [122] and describes the setup for the HME-EKF simulation. The DJI
M100 manual provides GPS measurement errors [127], and the K matrix components came from
observing the GPS and IMU data in the hover maneuver’s telemetry data since the hover maneu-
ver lacked significant remote controller commands. The Q matrix components are chosen to tune
the EKFs, and using these values gives Q and K as:

Table 7.3: Q Matrix Components

σpN σpE σpU σvN σvE σvU σq0 σq1 σq2 σΩx σΩy σΩz

Q 2.5 2.5 0.5 0.001 0.001 0.001 0.005 0.005 0.005 0.05 0.05 0.05
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Figure 7.7: SPL vs. Motor Spin Rates for Maneuvers

Table 7.4: K Matrix Components

σGPS,h σGPS,h σGPS,v σax σay σaz σgyrox σgyroy σgyroz

K 2.5 2.5 0.5 0.02 0.02 0.02 0.0707 0.0707 0.0707
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Q = diag
[
σ2

pN
σ2

pE
σ2

pU
σ2

vN
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vE
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vU
σ2

q0
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]
,

K = diag

[
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∆t ...

σ2
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.

]
(7.24)

There were not any sensors to measure velocity or quaternions, so the K matrix components for
velocity and quaternions use the accelerometer and gyroscope error multiplied by ∆t. The Staples
thrust model is more accurate than the Burgers thrust model after conducting preliminary calcu-
lations of the motor angular velocities. Thus, the Burgers thrust model’s process noise includes a
factor of two: QB = 2Q, while the EKFs with the Staples thrust model use just Q.

This section follows the simulation results of Ref. [122], which applies HME-EKF to the way-
point and triangle maneuvers. Overall, the runtime per cycle is approximately 1.4 seconds, which
demonstrates that implementing HME would yield near real-time capabilities. Most of the com-
putation time involves solving the SPL and motor angular velocity curve fit equations and in-
tegrating the error covariance propagation equations. The HME approach is not constrained to
solely quadcopters, so fixed-wing aircraft can use HME too but with different dynamical model
equations. [17, 141]

Accuracy. The EKF state estimation accuracy uses mean square error (MSE) and root mean
square (RMS). Some values repeat because they have the same Q components and measurements.
Both thrust models are inaccurate after comparing the max motor spin rate values with the teleme-
try and acoustic motor spin rates. Modeling inaccuracies or lack of measurements lead to increas-
ing covariances, which the next subsection discusses.

For the triangle maneuver, the motor spin rates from Burgers model produce values as high as
2.2328 · 1011 (rad/s)2. The Staples model yields motor spin rates as high as 1.9318 · 1011 (rad/s)2.
The estimated motor spin rates from acoustics give values as high as only 2.1692 · 104 (rad/s)2,
while the telemetry data yields values as high as only 3.3209 · 105 (rad/s)2. The max acoustic
and telemetry motor spin rates are considerably smaller than the values from the Burgers and
Staples models. Thus, the motor spin rates from the EKFs with acoustics produce more accurate
estimations.

Similarly, the waypoint motor spin rates from the Burgers thrust model has values as high
as 8.3154 · 1010 (rad/s)2. The Staples thrust model gives values up to 7.1941 · 1010 (rad/s)2. The
telemetry data yields motor spin rate values as high as only 3.2286 · 105 (rad/s)2, and the motor
spin rates from acoustics give values as high as 2.1691 · 104 (rad/s)2. Like the triangle maneuver,
the Burgers and Staples models are inaccurate, and the the motor spin rates from the EKFs with
acoustics produce more accurate estimations.

Overall, both dynamic thrust models are highly inaccurate compared to the telemetry data.
The assumptions simplify the quadcopter dynamic thrust models excessively, which means they
do not model the real-world quadcopter dynamic thrust very accurately. Future work includes
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utilizing other quadcopter thrust models with relative velocity over the motor, the motor’s an-
gular velocity, and thrust coefficients [142]. Another option is to tune the dynamic thrust model
parameters by tailoring the parameters to the DJI M100 through more flight tests.

Table 7.5: Triangle & Waypoint MSE and RMS Summary of Position and Velocity

N E U vN vE vU
Triangle MSE 4.074 3.010 0.129 0.0087 0.0082 0.0324

Waypoint MSE 2.870 4.267 0.151 0.0062 0.0049 0.0446
Triangle RMS 2.018 1.735 0.360 0.0931 0.0907 0.180

Waypoint RMS 1.694 2.066 0.389 0.0788 0.0703 0.211

Table 7.6: Triangle & Waypoint MSE and RMS Summary of Quaternions and Angular Velocity

q0 q1 q1 ωx ωy ωz
Triangle MSE 0.231 0.0020 0.093 0.0014 0.0013 0.0014

Waypoint MSE 0.0890 0.0274 0.0967 0.0011 0.0014 0.0015
Triangle RMS 0.480 0.0448 0.0966 0.0368 0.0346 0.0372

Waypoint RMS 0.298 0.166 0.311 0.0339 0.0379 0.0381

Gating Networks’ Weights. Figure 7.8 shows the profiles of the gating network weights in
bank 1 and bank 2 for the triangle maneuver, and the weights sum to one, which provides a sym-
metric or reflective result. Since EKF2,1 always has smaller error than EKF1,1, EKF2,1 is clearly the
best performer because EKF2,1 includes acoustics. Consequently, it yields more accurate state and
motor angular velocity estimates than EKF1,1, which does not include acoustics. Similar results
occur in bank 2, where the gating network prefers EKF2,2, which includes acoustics. As expected,
the EKFs with acoustics provide more accurate estimations, so the gating networks tend to favor
those EKFs. Figure 7.9 shows the gating networks of the top-level gating network in the triangle
maneuver, and the weights sum to one, which provides a symmetric or reflective result. The top-
level gating network prefers bank 2 over bank 1, but there is not a clear preference in choosing
between EKFs in banks 1 and 2. The gating network leans towards bank 2, which uses the Staples
thrust model, and produces motor angular velocity estimates closer to the telemetry motor angu-
lar velocities. Figure 7.10 shows the profiles of the gating network weights of bank 1 and bank 2
for the waypoint maneuver, and the weights sum to one, which provides a symmetric or reflective
result. The gating network in bank 1 prefers EKF2,1 due to its smaller error than EKF1,1. The gating
network never changes its selection, so EKF2,1 is clearly the better performer, which is expected
since EKF2,1 uses acoustics. As a result, it yields more accurate motor angular velocity estimates
than EKF1,1, which does not include acoustics. Once again, the EKFs with acoustics provide more
accurate estimations. Figure 7.11 shows the profiles of the gating network weights of the top-level
gating network in the waypoint maneuver, and the weights sum to one, which provides a sym-
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Figure 7.8: Triangle: Bank Comparison of Gating Network Weights
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Figure 7.10: Waypoint Bank Comparison of Gating Network Weights

metric or reflective result. The results are similar to the triangle maneuver, where the top-level
gating network prefers bank 2 over bank 1. Bank 2 uses the Staples thrust model, which yields
motor angular velocity estimates closer to the telemetry motor angular velocities than the Burgers
thrust model. Overall, the EKFs with acoustics yield more accurate estimates for the motor angu-
lar velocities, and the Staples thrust model is slightly more accurate than the Burgers thrust model.
It is unfortunate that both thrust models are inaccurate when compared against the acoustic and
telemetry motor angular velocities. If one of the non-acoustic thrust models provided state and
motor angular velocity estimations close to the model, then there would be a best performer with
one of the banks converging to 1 and the other converging to 0.

Uncertainty Covariances. This subsection shows the uncertainty covariances of the waypoint
maneuver’s second extended Kalman filter, EKF2,1, which is in bank 1 and uses the Burgers thrust
model. Figure 7.12 shows the profiles of the position variance vs. time. They converge quickly to
fixed values because EKF2,1 uses GPS measurements, which allows the uncertainty to be bounded.
The blue line represents ±2σ, while the red line represents ±3σ. Adding the mean error to the
sigma bounds centers them around the position variances. The position covariances lie within
the ±2σ and ±3σ bounds, which shows high confidence in the position estimations. Figure 7.13
shows the profile of the velocity variance vs. time, and a quick glance may seem like the un-
certainty covariances converge. However, Figure 7.14 shows a zoomed in version of the velocity
variances, and the variances for vN and vE diverge. Thus, true divergence occurs for the variances
for vN and vE [118]. The lack of velocity measurements, inaccurate dynamics thrust models, and
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Figure 7.11: Waypoint Top-Level Gating Network Weights

neglecting the cross-correlation covariances are the three main reasons that cause the uncertainties
and inaccuracies to grow in time.

Figure 7.15 shows the variance of quaternion vs. time, which diverge due to the lack of quater-
nion measurements. The q1 and q2 variances are the same due to having the same process error
variances, so the error covariance propagation equations yield the same values. They stay within
the ±2σ and ±3σ bounds but gradually diverge. Overall, the quadcopter attitude models are less
accurate than the translation models because they approach the 2σ bound closer than the velocity
variances. Like the velocity covariances, the quaternion covarainces also demonstrate true diver-
gence due to lack of quaternion measurements, inaccurate thrust models, and neglecting cross-
correlation covariances [118]. Figure 7.16 shows the variance of angular velocity vs. time. The
angular velocity variances converge quickly due to gyroscope measurements, which is similar to
the position variance convergence. Both the position and angular velocity uncertainties converge
and remain within the ±2σ and ±3σ bounds, which demonstrates high confidence in the estima-
tions. The other EKFs in the triangle and waypoint maneuvers demonstrate very similar results,
so they are not shown to conserve space.

Root Mean Square Error vs. Time. Figure 7.17 shows the RMS profiles of EKF2,1 of the triangle
maneuver with respect to time. The RMS values converge for position and angular velocity, while
the RMS values for q0 and vU tend to diverge.

110



Figure 7.12: Waypoint EKF2,1 Position Variance
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Figure 7.13: Waypoint EKF2,1 Velocity Variance
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Figure 7.15: Waypoint EKF2,1 Quaternion Variance
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Figure 7.16: Waypoint EKF2,1 Angular Velocity Variance
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Figure 7.17: Triangle EKF2,1 RMS

Figure 7.18 shows the RMS profiles of EKF2,1 of the waypoint maneuver with respect to time.
Just like the triangle maneuver, the RMS values converge for position and angular velocity. The
RMS values for vU tend to diverge. The RMS values for q0 seem to decrease, but they do not
converge sufficiently fast in the allotted time.
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Figure 7.18: Waypoint EKF2,1 RMS

7.9 Concluding Remarks

Overall, the HME framework with acoustics demonstrates a viable navigation solution for UAVs.
The Burgers and Staples dynamic thrust models are not accurate, but the HME simulation pro-
vides a broad approach by considering different models and parameters. This leads to increased
accuracy, which affects control and guidance. Thus, the next chapter will tie extremal control and
explicit guidance together with HME to create an integrated TGNC system for quadcopters.
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CHAPTER 8
INTEGRATED TARGETING, GUIDANCE, NAVIGATION, AND

CONTROL

This chapter follows the dynamical model and TGC approach in Ref. [124], which uses the Hamil-
tonian formalism to determine extremal control following the indirect (adjoint) method and trans-
lational E Guidance to satisfy the boundary conditions. The navigation solution uses the same
HME approach in Ref. [122]. Of the three maneuvers presented, the waypoint guidance maneu-
ver demonstrates integrated targeting, guidance, navigation, and control.

8.1 Targeting

For simplicity of the maneuvers and integration, pilots usually determine and load waypoints
before the mission. During the mission, the remaining distance to the waypoint based on GPS
measurements feeds into E Guidance, and Lin says that in targeting, "position sensor data must
be available...to locate the pursuer with respect to the target" [114]. The DJI OSDK function, po-
sitionAndYawCtrl, requires feedback of the remaining distance to the waypoint, so it uses GPS
measurements to determine the remaining distance to the waypoint. The remaining distance to
the waypoint feeds into the position command through positionAndYawCtrl, which also uses the
position from E Guidance. However, numerous intermediate target points along the nominal tra-
jectory can be autonomously determined onboard in real-time.

The target states are determined based on the nominal trajectory, which is pre-computed on
the ground using the dynamical model, and it is based on the maneuver characteristics, dynamic
environment, and the convenience to the mission (maneuver) designer to be highly accurate. The
onboard computer computes each target state as target points for the guidance function to steer
the UAV towards the target. The target state computation repeats after reaching the next target
point and stops until the UAV reaches the final target. The navigation function provides state
estimation at every instance of time and feeds into the initial boundary conditions for E Guidance
at each target point.

Figure 8.1 shows an example of this targeting strategy. The yellow dots indicate the initial
and final points, while the red dots indicate intermediate target points. The quadcopter starts the
waypoint maneuver at point 0 and computes the first target state on the nominal trajectory (green
line) at point 1 (first red dot), which occurs approximately at the one-third mark of the trajectory.
The target state’s position and velocity feed into E Guidance as the desired target with the position
and velocity at point 1 as the initial conditions for E Guidance. After reaching the first target point,
it determines another target state, TS2 (second red dot) and feeds this target state’s position and
velocity into E Guidance. The navigation function continuously estimates the state vector at each
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instance of time throughout the maneuver, and the state estimation at each target point feeds
into the initial boundary conditions for the next E Guidance arc. The red arrows indicate how E
Guidance would steer the UAV towards each target point, where slight deviations exist from the
nominal trajectory. This process repeats until the UAV reaches the last target point (last yellow
dot). Overall, increasing the number of target points increases the UAV’s accuracy in following
the nominal trajectory. The targeting approach is general and can apply to other maneuvers such
as the closed-loop triangle maneuver (see Fig. 8.2).

Figure 8.1: Waypoint Targeting Example

However, a potential re-targeting procedure for completeness of targeting has the UAV com-
pute targets onboard based on the nominal trajectory and in environments with dynamic obsta-
cles. In this case, the UAV must determine new target states based on sensors that detects obsta-
cles, so it must compute new targets to avoid potential collisions. This provides a framework for
real-time re-targeting through sensor data and guidance as part of the integrated TGNC. Overall,
increasing the number of target points increases the UAV’s chances of avoiding dynamics obsta-
cles. Simulations of the integrated targeting and re-targeting procedures requires a set of studies
outside the scope of the proposed research, so it can be considered as a potential future research
topic.
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Figure 8.2: Triangle Targeting Example

8.2 Guidance

The and guidance for the waypoint guidance maneuver follows the translational explicit guidance
approach in Ref. [124]. For the reader’s convenience, this section summarizes and highlights the
main targeting and guidance results for the waypoint guidance manevuer in Ref. [124]. The target
point is located approximately -71 m south, 100 m east, and 10 m up from the takeoff maneuver,
which ends at an altitude of 20 m. Thus, the waypoint guidance maneuver follows the takeoff
maneuver and has these boundary conditions:

p0 =

 0
0
20

 , v0 =

0
0
0

 , pD =

−71
100
30

 , vD =

0
0
0

 . (8.1)

The waypoint guidance maneuver uses these polynomials for translational E Guidance:

p1(t) = p3(t) = p5(t) = τ2 , p2(t) = p4(t) = p6(t) = τ3.

This selection of polynomials yields accelerations of:

ax(t) = c1τ2 + c2τ3 − gx(t) , ay(t) = c3τ2 + c4τ3 − gy(t) , az(t) = c5τ2 + c6τ3 − gz(t). (8.2)
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Using Tgo = 25 seconds and the boundary conditions from Eq. (8.1) gives the coefficients for the
accelerations with subscript WG to denote waypoint guidance:

c1,WG = 0.0109 , c2,WG = −5.8396 · 10−4 , c3,WG = −0.0154

, c4,WG = 8.2019 · 10−4 , c5,WG = −0.0015 , c6,WG = 8.1920 · 10−5.

8.3 Control

The control for the waypoint guidance manevuer follows the approach in Ref. [122] with inte-
grated extremal control and translational explicit guidance. For the reader’s convenience, this
section highlights the main extremal control results of the waypoint guidance from Ref. [124].

Motor Spin Rates. The closed-form solutions of the controls (ωi) are:

ω2
1 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
+

τψ

4b
+

τφ

2`k
, ω2

2 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
−

τψ

4b
+

τθ

2`k
,

ω2
3 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
+

τψ

4b
−

τφ

2`k
, ω2

4 =

(
m
k

)
aU + kdzvU

q2
0 − q2

1 − q2
2 + q2

3
−

τψ

4b
− τθ

2`k
.

(8.3)

It takes only approximately 7.3215 · 10−2 milliseconds to compute each extremal control value, so
onboard implementation of this extremal controller is feasible for real-time applications.

8.3.1 Extremality and Lagrange Multipliers

The integrated TGNC waypoint guidance maneuver uses the nontrivial variable motor thrust
case from Ref. [124], which generates a field of extremals with six non-zero Lagrange multipliers
(λ1, ..., λ6) and six Lagrange multipliers (λ7, ..., λ12) equal to zero as shown in Fig. 5.1. Extremal-
ity occurs by setting λ6 as a function of λ4 and λ5, which ensures ∂H

∂ωi
= 0 ∀t with H being the

Pontryagin function:

λ6(t) =
−λ4(t)(q0q2 + q1q3)− λ5(t)(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3
. (8.4)

Thus, the guided trajectory is an extremal trajectory. If λ6 was not forced in this manner, a feasible
trajectory would exist instead of an extremal trajectory. Having λ6(t) unforced gives a straight
line for the primer vector, which validates primer vector theory for rocket dynamics in a uniform
gravity field.
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(a) Primer Vector (b) Unforced Primer Vector

Figure 8.3: Comparing Forced and Unforced Primer Vectors

8.3.2 Satisfying the First-Order Necessary Conditions of Optimality

The general form of the first differential of the functional J is [76]:

dJ = (Γs0 + λT
0 )

Tds0 + (Γs f − λT
f )

Tds f + (Γt0 − H0)dt0 + (Γt f + H f )dt f

+
∫ t f

t0

[
(Hs + λ̇

T
)Tδs + (Hλ − ṡT)Tδλ + HT

uδu + HT
αδα

]
dt ,

(8.5)

where 0 and f denote initial and final respectively. The Γ terms are defined as:

Γt0 = ε
∂J
∂t0

+ µT ∂E
∂t0

, Γt f = ε
∂J
∂t f

+ βT ∂F
∂t f

,

Γs0 = ε
∂J
∂s0

+ µT ∂E
∂s0

, Γs f = ε
∂J
∂s f

+ βT ∂F
∂s f

(8.6)

with E to denote the initial constraint equations and F to denote the final constraint equations. Sat-
isfying the first-order necessary conditions of optimality means that dJ = 0. The first differential
for the waypoint guidance maneuver is:

dJWG = (ΓsWG,0 + λT
WG,0)

Tds0 + (ΓsWG, f − λT
WG, f )

Tds f

+ (ΓtWG,0 − HWG,0)dt0 + (ΓtWG, f + HWG, f )dt f

+
∫ t f

t0

[
(Hs + λ̇

T
)Tδs + (Hλ − ṡT)Tδλ + HT

uδu + HT
αδα

]
dt.

(8.7)
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All the terms in Eq. (8.5) must be zero for dJ = 0:

ΓtWG,0 = ε = HWG,0 , ΓsWG,0 = µWG = λT
WG,0 =

λ7(tWG,0)

λ8(tWG,0)

λ9(tWG,0)

 =

0
0
0

 ,

ΓtWG, f = ε = −HWG, f , ΓsWG, f = βWG = λT
WG, f =

λ7(tWG, f )

λ8(tWG, f )

λ9(tWG, f )

 =

0
0
0

 ,

Hs = −λ̇
T

, Hλ = ṡT , Hu = 0 , Hα = 0.

(8.8)

From the takeoff maneuver, HTO, f = HWG,0 = ε = 0, and the Pontryagin function at the end of the
waypoint guidance maneuver, HWG, f , is also zero. The quadcopter ends the waypoint guidance
maneuver with a heading of ψ = 125◦, which yields q0 = 0.462, q1 = q2 = 0, q3 = 0.887. The
velocity components are zero, and λ6 = 0 from its dependence on λ4 and λ5,. Therefore, the
Hamiltonian is zero, as expected. The canonical equations and local optimality equations cause
the remaining equations in the integrand of Eq. (8.8) to be zero. Therefore, all the terms in Eq.
(8.7) are zero, so the waypoint guidance maneuver has an extremal trajectory. This dissertation
does not consider second-order conditions, so an optimal trajectory for the waypoint guidance
maneuver cannot be claimed, i.e., at best, only extremal. Future studies may include second-
order conditions to determine if the waypoint guidance maneuver yields optimal control with a
corresponding optimal trajectory.

8.4 Navigation

For convenience and simplicity, the integrated TGNC waypoint guidance maneuver uses the same
navigation approach and HME structure diagram from Ref. [122] but also compares the perfor-
mance of the error covariance with off-diagonal components. The Burgers model yields 78 non-
zero uncertainty covariances, while the Staples model yields 72 non-zero uncertainty covariances.
The EKFs with acoustics utilize simulated SPL measurements based on the motor angular veloc-
ities from Ref. [124] with a factor of 1√

5
to yield similar values based on the flight test data with

experimental SPL measurements. This fudge factor acts as a tuning parameter because the motor
spin rates from Ref. [124] utilize a static thrust model, which does not capture all the dynam-
ics throughout maneuvers. As shown earlier, the Burgers and Staples dynamic thrust models do
not accurately capture the dynamics either. Future studies may encompass researching dynamic
thrust models that closely model quadcopter dynamics for various maneuvers such as the way-
point guidance maneuver, which is very common. The integrated TGNC software in this chapter
uses the same HME structure shown in Fig. 7.1.

Gating Network Weights. Figure 8.4 shows the gating networks weights of bank 1 and bank
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2, and the weights sum to one, which provides a symmetric or reflective result. Zooming in on
the first iteration shows that it is a tie at 50-50. However, the gating network quickly converges
and chooses the EKFs with acoustics (EKF2,1 & EKF2,2) as the best performers due to the smaller
errors.
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Figure 8.4: Waypoint Bank Comparison of Gating Network Weights

Figures 8.6 and 8.7 include the off-diagonal error covariance components of P. The gating net-
work still prefers the filters with acoustics, but there is a divergence problem in the 95 element of P,
which is a cross-correlation between q2 and vE. Unfortunately, it is unknown why this divergence
occurs, so the plot stops at approximately 42 seconds. Even if this P95 divergence was resolved, the
runtime per cycle ranges from 10-16 seconds. Thus, near real-time implementation is not feasible
when including the off-diagonal components due to numerous integrations per iteration.

Accuracy. The EKF state estimation accuracy uses mean square error (MSE) and root mean
square (RMS) in the tables in this subsection. Some values repeat due to the same Q components
and measurements, and the next subsection discusses covariances.
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Table 8.1: MSE and RMS Summary of Position and Velocity

N E U vN vE vU
MSE 0.7972 1.1216 0.0442 6.3545 12.6050 0.2416
RMS 0.8929 1.0591 0.2101 2.5208 3.5503 0.4915

Table 8.2: MSE and RMS Summary of Quaternions and Angular Velocity

q0 q1 q1 ωx ωy ωz
MSE 0.0011 5.4219 · 10−4 4.4787 · 10−4 3.3543 · 10−4 3.6359 · 10−4 3.8518 · 10−4

RMS 0.0334 0.0233 0.0212 0.0183 0.0191 0.0196
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8.4.1 Hierarchical Mixture of Experts Extended Kalman Filter Covariances

First Extended Kalman Filter. Figure 8.8a shows the variance of position vs. time for the waypoint
maneuver’s first extended Kalman filter, EKF1,1, which is in bank 1 and uses the Burgers thrust
model. The position variance quickly converges to a fixed value due to GPS measurements, so
uncertainty in position is bounded by staying within the ±2σ (blue lines) and ±3σ (red lines)
bounds, which center around the position variance by adding the mean error.

(a) Position Variance (b) Position Variance with Cross-correlation

Figure 8.8: Waypoint EKF1,1 Position Variance

Figure 8.8b shows the position covariances with the cross-correlation covariances. Comparing
Figures 8.8a- reffig:tgnc wpt EKF1 position variance diagonal shows no significant differences, so
including cross-correlation covariances does not increase the accuracy or confidence in the posi-
tion estimations. Figure 8.9a shows the variance of velocity vs. time for the waypoint maneuver’s
first EKF, EKF1,1. The velocity variance for vU converges, while the velocity variances for vN and
vE diverge. Figure 8.10a shows a zoomed-in version of the velocity variances, which demonstrates
true divergence for vN and vE [118]. Even though the velocity variances lie within the ±2σ and
±3σ bounds, the lack of velocity measurements, having simple dynamics thrust models with sim-
plifying assumptions, and neglecting cross-correlation covariances are the three main reasons that
cause the uncertainties and inaccuracies to grow in time.

Including the cross-correlation terms affects the velocity covariances, as shown in Figures 8.9b-
8.10b. The covariance for vN with cross-correlation increases but slows down and levels off, while
the covariance for vN without cross-correlation increases faster with time. The covariance for vE

with cross-correlation increases but seems to plateau and decrease later, while the covariance for
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vE without cross-correlation only increases and exhibits true divergence.The covariance for vU

with cross-correlation converges, while the covariance for vU without cross-correlation trended
downwards. They remain within the ±2σ and ±3σ bounds, which diverge.

(a) Velocity Variance (b) Velocity Variance with Cross-correlation

Figure 8.9: Waypoint EKF1,1 Velocity Variance

Figure 8.11a shows the variance of quaternion vs. time for the waypoint maneuver’s first EKF,
EKF1,1. The quaternion variances diverge due to the lack of quaternion measurements and exceed
the ±2σ and ±3σ bounds, which demonstrates true divergence and a lack of confidence in the
quaternion estimations. The q1 and q2 variances are the same due to having the same process
error variances, so the error covariance propagation equations produce the same values. Figure
8.11b shows the quaternion covariances with the cross-correlation terms, which shows a signif-
icant improvement by staying within the ±2σ and ±3σ bounds. Figures 8.12a - 8.12b show the
quaternion variances zoomed in, and both diverge. Neglecting the cross-correlation terms causes
the quaternion variances to exceed the initial covariances, while including including the cross-
correlation terms causes the quaternion variances to stay within the initial covariances. Overall,
the quadcopter attitude models are less accurate than the translation models, which leads to true
divergence for quaternions.

Figure 8.13a shows the variance of angular velocity vs. time for the waypoint maneuver’s
second EKF, EKF1,1. Figure 8.13b shows the angular velocity covariances with cross-correlation,
which does not yield any significant increases in performance. Both angular velocity variances
converge quickly, just like the position variances due to gyroscope measurements. Just as the
position uncertainty was bounded within the ±2σ and ±3σ bounds, the uncertainty in angular
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(b) Velocity Variance with Cross-correlation

Figure 8.10: Waypoint EKF1,1 Velocity Variance Zoomed In

(a) Quaternion Variance (b) Quaternion Variance with Cross-correlation

Figure 8.11: Waypoint EKF1,1 Quaternion Variance
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(a) Quaternion Variance (b) Velocity Quaternion with Cross-correlation

Figure 8.12: Waypoint EKF1,1 Quaternion Variance Zoomed In

velocity is also bounded. Overall, there is a tradeoff between accuracy and computation time
between including or neglecting the cross-correlation terms. There is a significant gain in perfor-
mance for the quaternion estimations because the quaternion covariances with cross-correlation
are bounded within ±2σ and ±3σ. The velocity estimations are also more accurate due to slower
divergence and convergence in vU . However, it takes approximately 10 to 16 seconds per cycle
with cross-correlation. Neglecting cross-correlation terms gives a much faster runtime per cycle
at approximately 1.2 to 1.4 seconds, which demonstrates near real-time implementation. Since
the position, velocity, and angular velocity estimations are within the ±2σ and ±3σ bounds with-
out cross-correlation terms, neglecting the cross-correlation terms provides adequate estimation
results for near real-time implementation. The other three EKFs demonstrate similar profiles and
are not included to conserve space.

8.4.2 State Variable Estimation by Hierarchical Mixture of Experts

Position. Figure 8.14a shows the differences of the position profiles of the experimental flight test
data, simulated HITL data, experimental PID flight test data, and the simulated HME estimation.
The HME estimates are very accurate and closely follow the nominal trajectories. Figure 8.14b
shows there is not a significant difference with cross-correlation terms in which the only difference
is that HME stops abruptly due to the P95 divergence issue.

Velocity. Figure 8.15a shows the differences of the velocity profiles of the experimental flight
test data, simulated HITL data, experimental PID flight test data, and the simulated HME esti-
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(a) Angular Velocity Variance (b) Angular Velocity Variance with Cross-correlation

Figure 8.13: Waypoint EKF1,1 Angular Velocity Variance

TGNC Waypoint Guidance: Position
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TGNC Waypoint Guidance: Position (off-diagonal components)
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(b) Position Comparison with Cross-correlation

Figure 8.14: TGNC Position Comparison
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mation. The HME estimates are fairly accurate and closely follow the experimental velocities.
Figure 8.15b shows the velocity estimations with corss-correlation. It shows there is not a big dif-
ference between including or neglecting cross-correlation in velocity estimations despite the P95

divergence issue when including cross-correlation.

TGNC Waypoint Guidance: Velocity
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(a) Velocity Comparison

TGNC Waypoint Guidance: Velocity (off-diagonal components)
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(b) Velocity Comparison with Cross-correlation

Figure 8.15: TGNC Velocity Comparison

Quaternions. Figure 8.16a shows the differences of the quaternion profiles of the experimental
flight test data, simulated HITL data, experimental PID flight test data, and the simulated HME
estimation. The HME estimates are very accurate and closely follow the nominal trajectories, and
q2 in the experimental and HITL data remains zero. Even though including the cross-correlation
covariances increases the confidence in the quaternion estimations, the overall quaternion estima-
tion profiles are similar when comparing Figure 8.16a and 8.16b. The HME quaternion estimation
stops due to the P95 element diverging.

Angular Velocity. Figure 8.17a shows the differences of the angular velocity profiles of the
experimental flight test data, simulated HITL data, experimental PID flight test data, and the
simulated HME estimation. There is not a significant difference with cross-correlation covariances,
as shown in Figure 8.17b. The HME estimates are very accurate and closely follow the nominal
trajectories. In the experimental ωz, there is a spike due to a slight twist upon landing on the
uneven grass.
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TGNC Waypoint Guidance: Quaternions
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(a) Quaternion Comparison

TGNC Waypoint Guidance: Quaternions (off-diagonal components)
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(b) Quaternion Comparison with Cross-correlation

Figure 8.16: TGNC Quaternion Comparison

TGNC Waypoint Guidance: Angular Velocity
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TGNC Waypoint Guidance: Angular Velocity 
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Figure 8.17: TGNC Angular Velocity Comparison
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8.5 Comparison of Control Variables

Motor Spin Rate Comparison. Figure 8.18a shows the differences among the motor spin rate
profiles of the experimental flight test data, experimental PID flight test data, and the simulated
HME estimates. The PID motor spin rates are the highest and cause the quadcopter consume the
most energy, which leads to shorter flight time. The HME acoustic motor spin rates tend to be
slower by a factor of approximately 100 (rad/s)2, which conserves the most energy. Overall, the
acoustic model estimates lower values and does not yield any negative values because there are
no negative SPL measurements. This leads to some modeling inaccuracies because it implies that
the quadcopter motors will never spin in the opposite direction to decelerate. Contrarily, spinning
in the opposite direction occurs in the E Guidance and PID motor spin rates as shown by the
negative values at the beginning and end of the maneuver. The simulated HME estimates choose
the motor spin rates based on acoustics. The motor spin rates with E Guidance are generally
slower than the PID motor spin rates. Figure 8.18b shows the profiles of the motor spin rates with
the cross-correlation terms of P, which does not yield any increase in accuracy or performance
without the cross-correlation terms. Overall, there is no significant effect on the motor spin rates
because the cross-correlation terms do not impact the motor spin rates computations.
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Figure 8.18: TGNC Motor Spin Rate Comparison

HME Motor Spin Rate Comparison. Figure 8.19a shows the differences among the HME
motor spin rate profiles. The motor spin rates for EKF2,1 and EKF2,2 are the same because they
use the same acoustic measurements to estimate the motor angular velocities. The motor spin
rates in EKF1,1 uses the Burgers thrust model and diverges to a high value of 1.1328 · 1017 (rad/s)2.
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The Staples thrust model also diverges to a slightly smaller value of 9.7723 · 1016 (rad/s)2. For
the acoustic EKFs, the motor spin rates in EKF2,1 and EKF2,2 peak at 2.2434 · 104 (rad/s)2. The
Burgers and Staples models do not model the quadcopter thrust accurately because they diverge
and significantly exceed the maximum motor spin rate values.
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Figure 8.19: TGNC HME Motor Spin Rate Comparison

Motor Spin Rate Analysis. Approximating the max motor angular velocity involves utilizing
the motor’s KV (rpm/V) rating and the quadcopter’s battery voltage. Multiplying KV and the
battery voltage gives rpm. Converting rpm to rad/s with a factor of 2π rad

60s and then squaring gives
the approximate max motor spin rate. The DJI M100 has a 6S battery with a max voltage of 26.1 V
(4.35 V/cell) or a nominal voltage of 25.8 (4.3 V/cell). Using the max voltage and DJI KV rating of
350 rpm/V gives:

ω2
i,max ≈ (350

rpm
V
· 26.1V · 2π

60
)2 = 915, 112

rad
s

2

(8.9)

This approximate max motor spin rate is considerably smaller than the values from the Burgers
and Staples thrust models, i.e., order of 1016 or 1017 (rad/s)2. However, the motor spin rate esti-
mates from acoustics is within a physically possible range, i.e., order of 104 (rad/s)2. The motor
spin rates with E Guidance peak at 1.4201 · 106 (rad/s)2, which is outside the physically possible
range but much closer than the Burgers and Staples thrust models. Recall that the motor spin
rates with E Guidance utilize a static thrust model, which is not valid in dynamic conditions [100].
Contrarily, it is the static thrust model that demonstrates higher accuracy than the Burgers and
Staples dynamic thrust models.
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8.6 TGNC Integration

Figure 8.20 shows a block diagram for the integration of the targeting, guidance, navigation, and
control functions described in this chapter, and it resembles the proposed TGNC block diagram
in Fig. 1.1. Table 8.3 shows the inputs and outputs of the TGNC functions. Recall that the HME

Figure 8.20: Proposed Integrated TGNC Block Diagram for Waypoint Guidance Maneuver

results were simulated, and HME could not be implemented onboard because the DJI M100’s
Raspberry Pi cannot read the NoiseLab-Lite SPL measurements in real-time.

Table 8.3: Inputs and Outputs of TGNC Functions

Name Inputs Outputs
Targeting State Estimation Target States
Guidance Distance to Waypoint (Target Point) EG Position Commands
Control EG Position Commands Motor Spin Rates

Navigation Measurements (GPS, IMU, SPL) State Estimation

Applying TGNC to Fixed-wing Aircraft. Overall, the TGNC results do not easily translate to
fixed-wing aircraft. First, the state vector and E Guidance would be the same. Second, HME would
be different because of the different dynamical model equations. Third, the Pontryagin function
would have a different form, which would lead to different extremal control laws and a different
control vector with less motors but would possibly include the control surfaces such as ailerons,
elevators, and rudder. Targeting and onboard implementation would be different because DJI
does not have fixed-wing aircraft at the time of this writing. Staples has a pure pursuit controller
function with quadcopters using a look ahead or lead parameter to determine target points further
ahead on the nominal trajectory [143]. Even though he showed this for quadcopters, it could
probably extend to fixed-wing aircraft too depending on the velocity and turning radius. If there
are no constraints on the angles, then aerobatic fixed-wing aircraft could probably perform the roll
maneuver.

Concluding Remarks. There are some potential reasons why the static thrust model produces
more motor spin rate values closer to the acceptable range. First, not having sufficient flight test
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data to find adequate values for ηL in the Burgers thrust model or values for the constants, k1 and
k2, in the Staples thrust model causes inaccuracies. Second, Staples shows that his model tends to
underestimate dynamic thrust by as much as 15-30% [104]. Third, there are currently no citations
for the Burgers thrust model exist, which is a general model such that it applies to propellers and
motors. However, this model may not be valid for quadcopters and has the largest divergence
and errors among all the thrust models. Fourth, the acoustic motor spin rate model is within
physical limits. Future work may include further investigation into dynamic thrust models for
quadcopters. Finally, simulations of the integrated targeting and re-targeting procedures requires
a set of studies outside the scope of the proposed research but are considered potential future
research topics.
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CHAPTER 9
RECOMMENDATIONS AND NOVELTIES

9.1 Author’s Recommendations

For researchers and engineers in GNC studies, the author would like to recommend more stud-
ies towards developing UAV models. Determining accurate UAV models as the static thrust and
dynamic thrust models considered here have some assumptions, which leads to inaccuracies. An-
other recommendation is to consider more UAV guidance and targeting problems because they
are not as prevalent as UAV control problems. Generally, control problems dominate research
studies, followed by navigation problems, and then guidance and targeting problems are the least
popular. The author recommends DJI platforms with OSDK capabilities for research with non-
aerobatic applications. The DJI OSDK functions and documentation are user-friendly and avoid
issues of possibly affecting the underlying default flight controller code, making debugging and
troubleshooting complicated. Another recommendation is to consider more problems implement-
ing TGNC in racing drones to compare who has better piloting skills: the pilot or the computer
(similar to the human vs. the computer in chess). TGNC developments in racing drones may open
new research fields and studies for autonomous applications in racing drones or larger aircraft and
spacecraft.

9.2 Proposed Novelties

1. Modified original E Guidance and derived attitude E guidance
2. Extended E Guidance methods to three and four polynomials
3. Utilized the switching function for max-intermediate thrust arcs for takeoff maneuver
4. Integrated translational E Guidance with extremal control using the Hamiltonian formal-

ism and the indirect (adjoint) method to generate extremal trajectories for the takeoff and
waypoint guidance maneuvers

5. Integrated rotational E Guidance with extremal control using the Hamiltonian formalism
and the indirect (adjoint) method to generate extremal trajectory for the roll maneuver

6. Considered acoustic parameters to estimate motor spin rates
7. Developed a HME framework with EKFs for UAVs to provide estimations for states and

motor angular velocities, and this is the first time that HME has been used for UAVs
8. Simulated an exponential braking guidance law for UAVs through HITL

In Cherry’s original derivations, he chose p1(t) = 1, p2(t) = τ = T − t [117]. The author chose
different polynomials: p1(t) = τ, p2(t) = τ2 for the takeoff maneuver and p1(t) = τ2, p2(t) = τ3
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for the waypoint maneuver. Cherry originally applied E Guidance to only translational acceler-
ation, so extending E Guidance to angular acceleration leads is novel and practical for rotational
maneuvers like the 360◦ roll maneuver.

Combining E Guidance with extremal control satisfies the boundary conditions to solve the
optimal control problem to yield extremal control laws for the takeoff, waypoint, and roll maneu-
vers. Using only the Hamiltonian formalism with the indirect method to solve the optimal control
problem would not satisfy the boundary conditions, as mentioned in "Velocity and Altitude Pro-
file Solutions of the Intermediate Thrust Arc" of subsection 6.4.1. Ultimately, the guided trajectory
from E Guidance is extremal for the takeoff, waypoint, and roll maneuvers.

Incorporating acoustics and several EKFs for state estimation through HME has not been at-
tempted for UAVs. The standard approach uses one EKF with multiple sensors but does not con-
sider acoustics. The addition of acoustics provides a new approach and perspective for state esti-
mation methods in UAVs. Even without acoustics, multiple EKFs in an HME framework would
capture more parameters and factors than a single EKF, which leads to versatile state estimation
by considering several different models and parameters.
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CHAPTER 10
CONCLUSION

10.1 Main Conclusions

First, utilizing E Guidance allows one to solve the two-point boundary problem and satisfy the
boundary conditions without having a specific dynamical model. Second, extending E guidance
to three or four polynomials may solve the boundary conditions but is impractical due to moving
away from the target point. A potentially useful application involves avoiding an incoming ob-
stacle with a desire to move forward to reach a target point behind the incoming obstacle. Third,
utilizing the exponential braking guidance law allows one to achieve the target point and satisfy
the boundary conditions without having a dynamical model. Fourth, first-order necessary condi-
tions demonstrate extremality for the takeoff, waypoint, and roll maneuvers. Fifth, incorporating
acoustics for estimation provides a different approach for navigation solutions but has several
underlying complexities, which make it challenging to model accurately. Sixth, the HME-EKF
framework has near real-time capabilities, so implementing HME-EKF onboard flight vehicles is
very likely today or in the near future. Seventh, the acoustic motor spin rate estimations tend
to provide underestimations, while the extremal control laws with the static thrust model tend
to provide overestimations. The Burgers and Staples dynamic thrust models in Ref. [102, 104]
provided extremely large and inaccurate motor spin rate estimations due to assumptions in mod-
eling, which demonstrates how complicated it is to generate accurate UAV dynamic thrust mod-
els. Eighth, comparing battery voltages between the PID and extremal controllers provides pilots
practical insight in preferring one controller over another if they desire to maximize battery life to
have longer flight times or higher position accuracy. Finally, the integrated GNC software demon-
strates a robust and accurate integrated GNC system for the waypoint maneuver.

There are some core research contributions from these main conclusions. First, extending E
Guidance to rotational maneuvers demonstrates attitude guidance in quadcopters through the
360◦ roll maneuver. Second, E Guidance extensions with higher order integration of three func-
tions have some impractical results such as moving backward, but it can help avoid incoming
obstacles if it does not need to satisfy the velocity terminal conditions. Third, translational E Guid-
ance satisfies the boundary conditions for the optimal control problem, which leads to extremal
control and extremal trajectories for the takeoff and waypoint maneuvers. Fourth, utilizing HME
with EKFs and acoustic parameters shows the impact of considering several different models and
parameters to have accurate state estimation. Simulation results have near real-time capabilities,
so onboard implementation is feasible.
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10.2 Future Studies

First, determining an accurate dynamic thrust model would be beneficial for estimation and con-
trol purposes. Inaccurate dynamical models led to enormous motor spin rate values due to as-
sumptions in the models that do not capture all the real-world variables and parameters. Second,
conducting flight tests of the exponential braking law will provide experimental results to com-
pare against the default PID controller, and obtaining experimental results leads to publishing
another paper. Third, deriving a UAV acoustic model would be novel and valuable. The author
attempted to determine a UAV acoustic model following the Hawkings and Lowson’s method
but, unfortunately, did not have much success. Having accurate UAV acoustic models would lead
to direct relationships between states and motor spin rates instead of using the curve fit approach
described in Ref. [122]. Fourth, second-order conditions of optimality are not considered because
the theory for second-order conditions of optimality is incomplete. Finally, conduct simulations
of the integrated targeting and re-targeting procedures to demonstrate real-time re-targeting for
dynamic obstacle avoidance.
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Table A.1: Roll Maneuver Results with Three Polynomials for E Guidance
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Guided Waypoint Maneuver x Results (430, 160, 100) [m]

p1 p2 p3 x(T) vx(T) xmin vx,min

(T − t)−1 + (T −
t)0

(T − t)0 (T − t)1 + (T − t)0 430 32.25 -107.5 -4.031

(T − t)0 (T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

430 0 -220.16 -10.48

(T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

(T − t)3 + (T −
t)2 + (T − t) +

(T − t)0

430 0 -325.23 -18.70

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

430 0 -442.75 -30.14

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

(T − t)5 + (T −
t)4 + (T − t)3 +

(T − t)2 + (T −
t)1 + (T − t)0

430 0 -560.08 -43.96

(T − t)−2 (T − t)−1 (T − t)0 NA NA NA NA

(T − t)−1 (T − t)0 (T − t)1 430 32.25 -107.5 -4.031

(T − t)0 (T − t)1 (T − t)2 430 0 -220.16 -10.48

(T − t)1 (T − t)2 (T − t)3 430 0 -334.34 -19.38

(T − t)2 (T − t)3 (T − t)4 430 0 -449.44 -30.75

(T − t)3 (T − t)4 (T − t)5 430 0 -564.90 -44.51

(T − t)4 (T − t)5 (T − t)6 430 0 -60.77 -60.77

exp((T − t)−1) exp((T − t)0) exp((T − t)1) NA NA NA NA

exp((T − t)0) exp((T − t)1) exp((T − t)2) NA NA NA NA

exp((T − t)1) exp((T − t)2) exp((T − t)3) NA NA NA NA

cos((T − t)0) cos((T − t)1) cos((T − t)2) 1309.9 33.03 -1762.2 11.95

cos((T − t)1) cos((T − t)2) cos((T − t)3) NA NA NA NA

sin((T − t)0) sin((T − t)1) sins((T − t)2) 1551.9 -118.52 1551.9 -
283.24

sin((T − t)1) sin((T − t)2) sins((T − t)3) NA NA NA NA

cos((T − t)0) sin((T − t)1) cos((T − t)1) −418.32 −10.46 -600.31 -44.87

cos((T − t)1) sin((T − t)2) cos((T − t)2) 436. 0 -25.30 -
312.07

cos((T − t)2) sin((T − t)3) cos((T − t)4) NA NA NA NA

sin((T − t)0) cos((T − 1)1) sin((T − t)2) 1345.9 34.39 -1835.2 13.10

sin((T − t)1) cos((T − 1)2) sin((T − t)3) NA NA NA NA

Table A.5: Guided Waypoint Maneuver x Results with Three Polynomials for E Guidance
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Guided Waypoint Maneuver y Results (430, 160, 100) [m]

p1 p2 p3 y(T) vy(T) ymin vy,min

(T − t)−1 + (T −
t)0

(T − t)0 (T − t)1 + (T − t)0 160 12 -40 -1.5

(T − t)0 (T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

160 0 -81.92 -3.898

(T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

(T − t)3 + (T −
t)2 + (T − t) +

(T − t)0

160 0 -121.02 -6.959

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

160 0 -164.74 -11.21

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

(T − t)5 + (T −
t)4 + (T − t)3 +

(T − t)2 + (T −
t)1 + (T − t)0

160 0 -208.40 -16.36

(T − t)−2 (T − t)−1 (T − t)0 NA NA NA NA

(T − t)−1 (T − t)0 (T − t)1 160 12 -40 -1.5

(T − t)0 (T − t)1 (T − t)2 160 0 -81.92 -3.898

(T − t)1 (T − t)2 (T − t)3 160 0 -124.41 -7.211

(T − t)2 (T − t)3 (T − t)4 160 0 -167.23 -11.44

(T − t)3 (T − t)4 (T − t)5 160 0 -210.20 -16.56

(T − t)4 (T − t)5 (T − t)6 160 0 -253.18 -22.61

exp((T − t)−1) exp((T − t)0) exp((T − t)1) NA NA NA NA

exp((T − t)0) exp((T − t)1) exp((T − t)2) NA NA NA NA

exp((T − t)1) exp((T − t)2) exp((T − t)3) NA NA NA NA

cos((T − t)0) cos((T − t)1) cos((T − t)2) 487.40 12.29 -655.72 4.446

cos((T − t)1) cos((T − t)2) cos((T − t)3) NA NA NA NA

sin((T − t)0) sin((T − t)1) sins((T − t)2) 577.44 -44.10 577.44 -105.39

sin((T − t)1) sin((T − t)2) sins((T − t)3) NA NA NA NA

cos((T − t)0) sin((T − t)1) cos((T − t)1) −155.65 −3.891 -223.37 -16.70

cos((T − t)1) sin((T − t)2) cos((T − t)2) 162.34 0 -9.415 -116.12

cos((T − t)2) sin((T − t)3) cos((T − t)4) NA NA NA NA

sin((T − t)0) cos((T − 1)1) sin((T − t)2) 500.81 12.80 -682.86 4.876

sin((T − t)1) cos((T − 1)2) sin((T − t)3) NA NA NA NA

Table A.6: Guided Waypoint Maneuver y Results with Three Polynomials for E Guidance
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Guided Waypoint Maneuver z Results (430, 160, 100) [m]

p1 p2 p3 z(T) vz(T) zmin vz,min

(T − t)−1 + (T −
t)0

(T − t)0 (T − t)1 + (T − t)0 50 3.75 -12.5 -0.4688

(T − t)0 (T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

50 0 -25.6 -1.218

(T − t)1 + (T − t)0 (T − t)2 + (T −
t)1 + (T − t)0

(T − t)3 + (T −
t)2 + (T − t) +

(T − t)0

50 0 -37.82 -2.174

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

50 0 -51.48 -3.505

(T − t)3 + (T −
t)2 + (T − t)1 +

(T − t)0

(T − t)4 + (T −
t)3 + (T − t)2 +

(T − t)1 + (T − t)0

(T − t)5 + (T −
t)4 + (T − t)3 +

(T − t)2 + (T −
t)1 + (T − t)0

50 0 -65.125 -5.112

(T − t)−2 (T − t)−1 (T − t)0 NA NA NA NA

(T − t)−1 (T − t)0 (T − t)1 50 3.75 -12.5 -0.4688

(T − t)0 (T − t)1 (T − t)2 50 0 -25.6 -1.218

(T − t)1 (T − t)2 (T − t)3 50 0 -38.88 -2.254

(T − t)2 (T − t)3 (T − t)4 50 0 -52.26 -3.576

(T − t)3 (T − t)4 (T − t)5 50 0 -65.69 -5.176

(T − t)4 (T − t)5 (T − t)6 50 0 -79.12 -7.066

exp((T − t)−1) exp((T − t)0) exp((T − t)1) NA NA NA NA

exp((T − t)0) exp((T − t)1) exp((T − t)2) NA NA NA NA

exp((T − t)1) exp((T − t)2) exp((T − t)3) NA NA NA NA

cos((T − t)0) cos((T − t)1) cos((T − t)2) 152.31 3.840 -204.91 1.390

cos((T − t)1) cos((T − t)2) cos((T − t)3) NA NA NA NA

sin((T − t)0) sin((T − t)1) sins((T − t)2) 180.45 -13.78 180.45 -32.93

sin((T − t)1) sin((T − t)2) sins((T − t)3) NA NA NA NA

cos((T − t)0) sin((T − t)1) cos((T − t)1) −1.216 −1.216 -69.80 -5.218

cos((T − t)1) sin((T − t)2) cos((T − t)2) 50.73 0 -2.942 -36.287

cos((T − t)2) sin((T − t)3) cos((T − t)4) NA NA NA NA

sin((T − t)0) cos((T − 1)1) sin((T − t)2) 156.50 -213.39 -213.39 1.524

sin((T − t)1) cos((T − 1)2) sin((T − t)3) NA NA NA NA

Table A.7: Guided Waypoint Maneuver z Results with Three Polynomials for E Guidance
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APPENDIX B
VELOCITY PARTIALS

B.1 Burgers Thrust Model: Velocity Partials for Error Covariance Prop-
agation

∂v̇B,N

∂vN
= −(ACdρ0exp(−9.611 · 10−5U)(v∞,x(q2

0 + q2
1 − q2

2 − q2
3) + v∞,y(2q0q3 + 2q1q2)

− v∞,z(2q0q2 − 2q1q3))(q2
0 + q2

1 − q2
2 − q2

3)
2 − (SbηLρ0exp(−9.611 · 10−5U)

(4(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))

(q2
0 + q2

1 − q2
2 − q2

3)− (d2(16(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)

− v∞,z(2q0q2 − 2q1q3))(q2
0 + q2

1 − q2
2 − q2

3) + 16(2q0q2 + 2q1q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))− 16(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))− (18(2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))(q2
0 + q2

1 − q2
2 − q2

3)

− 2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))))/(Sbd2ηLρ0exp(−9.611 · 10−5U)

(q2
0 − q2

1 − q2
2 + q2

3)) + (6(2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))(q2
0 + q2

1 − q2
2 − q2

3)

+ 2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))))/(Sbd2ηLρ0exp(−9.611 · 10−5U)

(q2
0 − q2

1 − q2
2 + q2

3))− (4ACd(2q0q2 + 2q1q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3)

+ v∞,x(2q0q2 + 2q1q3)))/(SbηL)))/24 + 4(2q0q2 + 2q1q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))− 4(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3)))− ACdρ0exp(−9.611 · 10−5U)(2q0q2 + 2q1q3)

(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))(2q0q2 + 2q1q3)

+ 2ACdρ0exp(−9.611 · 10−5U)(q0q3 − q1q2)(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3)))

(B.1)
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∂v̇B,E

∂vE
= −((SbηLρ0exp(−9.611 · 10−5U)(4(v∞,y(q2

0 − q2
1 + q2

2 − q2
3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)− (d2(16(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)− 16(2q0q1 − 2q2q3)

(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)) + 16(2q0q3 + 2q1q2)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))

− (6(2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)

− 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q3 + 2q1q2)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/(Sbd2ηLρ0exp(−9.611 · 10−5U)

(q2
0 − q2

1 − q2
2 + q2

3))− (18(2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)

+ 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q3 + 2q1q2)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/(Sbd2ηLρ0exp(−9.611 · 10−5U)

(q2
0 − q2

1 − q2
2 + q2

3)) + (4ACd(2q0q1 − 2q2q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3)

+ v∞,x(2q0q2 + 2q1q3)))/(SbηL)))/24− 4(2q0q1 − 2q2q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)) + 4(2q0q3 + 2q1q2)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))) + ACdρ0exp(−9.611 · 10−5U)(2q0q1 − 2q2q3)

(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))(2q0q1 − 2q2q3)

+ ACdρ0exp(−9.611 · 10−5U)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)
2 − 2ACdρ0exp(−9.611 · 10−5U)(q0q3 + q1q2)

(2q0q3 + 2q1q2)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3)))/m

(B.2)
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∂v̇B,U

∂vU
= −(2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(2q0q1 + 2q2q3)(v∞,y(q2

0 − q2
1 + q2

2 − q2
3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))− (SbηLρ0exp(−9.611 · 10−5U)

((d2(16(2q0q2 − 2q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)

− v∞,z(2q0q2 − 2q1q3))− 16(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3))− 16(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3)

+ v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3) + (18(2ACdρ0exp(−9.611 · 10−5U)

(q0q1 + q2q3)(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3))− 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q2 − 2q1q3)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/

(Sbd2ηLρ0exp(−9.611 · 10−5U)(q2
0 − q2

1 − q2
2 + q2

3)) + (6(2ACdρ0exp(−9.611 · 10−5U)

(q0q1 + q2q3)(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3)) + 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q2 − 2q1q3)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/

(Sbd2ηLρ0exp(−9.611 · 10−5U)(q2
0 − q2

1 − q2
2 + q2

3)) + (4ACd(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3))/(SbηL)))/24

+ 4(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3)

+ 4(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))

− 4(2q0q2 − 2q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3)))

− ACdρ0exp(−9.611 · 10−5U)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3)

+ v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3))(q
2
0 − q2

1 − q2
2 + q2

3)

+ 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q2 − 2q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3)))/m)

(B.3)
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B.2 Staples Thrust Model: Velocity Partials for Error Covariance Prop-
agation

∂v̇S,N

∂vN
= −((17734023044399104Sbθ2

p((9321577804577424539648(2ACdρ0exp(−9.611 · 10−5U)

(q0q2 − q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))

(q2
0 + q2

1 − q2
2 − q2

3) + 2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(2q0q3 − 2q1q2)

(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1.5(4q2
0 − 4q2

1 − 4q2
2 + 4q2

3))

− (2330394451144356134912ACdρ0exp(−9.611 · 10−5U)(2q0q2 + 2q1q3)

(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1.5))((1517d)/(5000θp))
1.5)/

1085174480054693359375 + ACdρ0exp(−9.611 · 10−5U)(2q0q2 + 2q1q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))(2q0q2 + 2q1q3)

− ACdρ0exp(−9.611 · 10−5U)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)

− v∞,z(2q0q2 − 2q1q3))(q2
0 + q2

1 − q2
2 − q2

3)
2 − 2ACdρ0exp(−9.611 · 10−5U)(q0q3 − q1q2)

(2q0q3 − 2q1q2)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3)))

(B.4)
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∂v̇S,E

∂vE
= −((17734023044399104Sbθ2

p((9321577804577424539648(2ACdρ0exp(−9.611 · 10−5U)

(q0q1 + q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))

(q2
0 − q2

1 + q2
2 − q2

3)− 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q3 + 2q1q2)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1.5(4q2
0 − 4q2

1 − 4q2
2 + 4q2

3))

− (2330394451144356134912ACdρ0exp(−9.611 · 10−5U)(2q0q1 − 2q2q3)

(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1.5))((1517d)/(5000θp))
1.5)/

1085174480054693359375 + ACdρ0exp(−9.611 · 10−5U)(2q0q1 − 2q2q3)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3)))(2q0q1 − 2q2q3)− ACdρ0exp(−9.611 · 10−5U)

(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3))(q2
0 − q2

1 + q2
2 − q2

3)
2

− 2ACdρ0exp(−9.611 · 10−5U)(q0q3 + q1q2)(2q0q3 + 2q1q2)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3)

+ v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3)))

(B.5)

∂v̇S,U

∂vU
= ((17734023044399104Sbθ2

p((9321577804577424539648(2ACdρ0exp(−9.611 · 10−5U)

(q0q1 + q2q3)(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)− v∞,x(2q0q3 − 2q1q2)

+ v∞,z(2q0q1 + 2q2q3)) + 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)(2q0q2 − 2q1q3)

(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3))))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1/5(4q2
0 − 4q2

1 − 4q2
2 + 4q2

3))

+ (2330394451144356134912ACdρ0exp(−9.611 · 10−5U)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3))/

(38083524501102255Sbθ2
p((1517d)/(5000θp))

1/5))((1517d)/(5000θp))
1/5)/

1085174480054693359375− ACdρ0exp(−9.611 · 10−5U)(v∞,z(q2
0 − q2

1 − q2
2 + q2

3)

− v∞,y(2q0q1 − 2q2q3) + v∞,x(2q0q2 + 2q1q3))(q2
0 − q2

1 − q2
2 + q2

3))(q
2
0 − q2

1 − q2
2 + q2

3)

− 2ACdρ0exp(−9.611 · 10−5U)(q0q1 + q2q3)(2q0q1 + 2q2q3)(v∞,y(q2
0 − q2

1 + q2
2 − q2

3)

− v∞,x(2q0q3 − 2q1q2) + v∞,z(2q0q1 + 2q2q3)) + 2ACdρ0exp(−9.611 · 10−5U)(q0q2 − q1q3)

(2q0q2 − 2q1q3)(v∞,x(q2
0 + q2

1 − q2
2 − q2

3) + v∞,y(2q0q3 + 2q1q2)− v∞,z(2q0q2 − 2q1q3)))

(B.6)
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APPENDIX C
EXTRAMURAL RESEARCH AND COMMUNICATIONS WITH

COMMUNITY

C.1 List of Publications

This section provides a list of conference and journal papers that have been accepted, published,
submitted, and/or are under review.

Table C.1: List of Conference Papers and Conference Presentations

Ref. Conference Conference Dates Links

[131] ICUAS June 12-15, 2018 https://ieeexplore.ieee.org/document/8453467

[120] AAS/AIAA Jan. 13-17, 2019 http://www.univelt.com/book=7472

[119] ICUAS June 11-14, 2019 https://ieeexplore.ieee.org/document/8797766

N/A HESTEMP May 2017 https://tinyurl.com/hestempmay2017

N/A HESTEMP Dec 2017 https://tinyurl.com/hestempdec2017

N/A HESTEMP Dec 2017 https://tinyurl.com/hestempmay2018

N/A HESTEMP May 2019 https://tinyurl.com/hestempmay2019

Table C.2: List of Journal Papers

Ref Journal Status

[124, 123] Journal of Intelligent & Robotic Systems Published on 7/4/20

[121] Journal of Dynamic Systems, Measurement, and Control Under Review as of on 7/9/20

[122] International Journal of Micro Air Vehicles Under Review as of 10/5/20

ME 691 Seminars

• Autonomous Energy-Optimized Path Planning for Small UAS in Urban Environments
The author’s first ME 691 seminar was in Fall 2018 (11/15/18) and his summer 2018 intern-
ship work on path planning using the A* algorithm in urban environments.

• Integrated Guidance, Navigation, and Control for Unmanned Aerial Vehicles
The author’s second ME 691 seminar was in Spring 2020 (3/4/20) and discussed the HES-
TEMP, ACTUAS projects, and the results in Ref. [119, 120, 121].
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C.2 NASA Ames Research Center Internships

The author had three summer internships at NASA Ames Research Center in 2018, 2019, and 2020.
The project work in 2018 involved implementing a Path Planning System for UAVs in the (Safe
Autonomous Flight Environment) (SAFE50) Project under the Unmanned Aerial Systems Traffic
Management (UTM) project. The summer internship in 2019 involved more hardware and flight
tests:

1. LIDAR test 6/24/19 demonstrates LIDAR test on a mobile vehicle: https://youtu.be/

bu6QUslQjNo

2. Flight test on 7/11/19 shows tethered flight with LIDAR: https://youtu.be/lp7lKYjFPkA
3. DJI SITL on 7/29/19: https://youtu.be/tBMw5i7-DNo
4. Flight test on 8/16/19 demonstrates DJI OSDK functions and capabilities to autonomously

return to a specified point: https://youtu.be/NGpKISQY7yU

key takeaways from the 2019 summer internship are demonstrating DJI OSDK capabilities au-
tonomously during the flight test on 8/16/19, which became the backbone for the C++ codes
for the takeoff and waypoint guidance maneuvers in Ref. [121], [124], and [123] and accepting a
NASA ARC Pathways internship (civil servant) position, which provides employment opportu-
nities after graduation. The author presented his NASA ARC summer 2020 pathways internship
work at the Advanced Control and Evolvable Systems (ACES) seminar on 8/13/20. The project
involves using the HME framework for state estimation with acoustic parameters, which evolved
to the proposed HME structure in Ref. [122].

C.3 Online Material

The DJI M100 and its OSDK functions provide a method for implementing extremal control and
explicit guidance onboard in real-time. The link to the video is: https://youtu.be/0zox9P-rV0I
Links to Ref. [123, 124] and the video are on the ACTUAS website: http://manoa.hawaii.edu/
actuas/actuas-work-f2019-s2020/
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APPENDIX D
EDUCATIONAL AND EXTRACURRICULAR ACTIVITIES

D.1 Classes

D.1.1 ACTUAS Classes

The author coordinated ACTUAS classes for the members to learn about assembly, image process-
ing, and kinematics and dynamics of UAVs. Weekly assembly classes by Seth Kirchbaum involved
assembling a FliteTest 270 Chase Quad and a 650 Tarot quadcopter frame. James Thesken taught
image processing classes with topics such as edge detection, lane detection, detecting fruits, sig-
nificance of converting RGB to HSV, and using Mask R-CNN to detect coffee beans. The module
classes by Dr. Dilmurat Azimov involved airplane flight mechanics, PID control, kinematics, and
dynamics. The author subbed in for Dr. Dilmurat Azimov for the module classes when he was
unavailable.

D.1.2 Substitute Teaching

The author subbed in for Dr. Dilmurat Azimov for ME 451: Feedback-Control Systems in Spring
2020. ME 451 topics included dynamic models, feedback control elements and definitions, PID
control, time domain specifications, transfer functions, PID tuning, direction cosine matrix, quater-
nions, and Euler angles.

The author subbed in for Dr. Dilmurat Azimov for ME 696: Guidance, Navigation and Control
in Fall 2018. ME 696 topics included motion planning, Bug I algorithm, Bug II algorithm, quad-
copter attitude stabilization simulation using PID control, and how to change the PID coefficients
in Betaflight and Mission Planner.

D.2 University of Guam Workshop

The author provided presentations to the participants from May 28 to May 31, 2019. Presentations
included an introduction of the speaker’s background, assembling Tiny Whoop and Flybrix quad-
copters, flying tips, fundamentals of flight mechanics for airplanes with a paper plane activity,
and fundamentals of PID control. The last day had mini quadcopter flying competitions. More
details and pictures are available on the ACTUAS website: http://manoa.hawaii.edu/actuas/

actuas-outreach-university-of-guam-workshop-may-2019/
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D.3 University of Hawai‘i Drone Technologies Mentorship

The author has been part of University of Hawaii Drone Technologies (UHDT) since Spring 2014
and has served as a mentor since Fall 2016.

D.4 UH Manoa UAV Club Leadership and ACTUAS Mentorship

The author led the ACTUAS club activities by scheduling flight tests and classes, docuemnting
work, and weekly meetings with members. The author’s mentorship activities in ACTUAS im-
pacted his research within HESTEMP and EPSCoR projects and developed his leadership and
mentorship skills. Projects included UAS 3D Mapping and Parameter Calculations, Effect of
Physical Parameters (Mass) on Control of Quadcopters, Understanding the Fundamentals of Un-
manned Aerial Vehicles (UAV) using PID Controls, Quadcopter PID Control and Simulations with
Surveying Applications, Fixed-wing Drone Simulations and Applications for Surveying, Effect of
Physical Parameters (Mass and Length) on Control of Quadcopters, PID Tuning Methods, Air-
craft Noise Reduction Studies, ACTUAS - FWD & MC, Quadcopter Stabilization on Mars, and
Simulating Drone Stabilization on the Moon.

(a) MyTwinDream Fixed-wing Drone (b) 650 Tarot and FliteTest 270 Chase Quad

Figure D.1: ACTUAS Fixed-wing and Multicopter Platforms
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