
Architectural Tactics for Energy Efficiency:
Review of the Literature and Research Roadmap

Carlos Paradis
Information and Computer Sciences

University of Hawaii
cvas@hawaii.edu

Rick Kazman
Shidler College of Business

University of Hawaii
kazman@hawaii.edu

Damian A. Tamburri
Jheronimus Academy of Data Science

Technical University of Eindhoven
d.a.tamburri@tue.nl

Abstract

The energy consequences of software are rapidly
growing: at the high-end, server farms consume
enormous amounts of energy; at the low-end there
is ever-increasing reliance on battery-powered mobile
and Internet-of-Things (IoT) devices. However, there
has been little attention to how software architectures
can be designed for energy efficiency. While other
software qualities such as performance or availability
have been extensively studied, there is little research on
how to reason about energy-consumption as a first-class
quality. We provide a basis for reasoning about design
decisions for energy efficiency by deriving a set of
reusable architectural tactics derived from the research
literature, via a taxonomic literature review. We
used an open-search and snowballing methodology to
obtain primary studies, and then used thematic coding
to identify commonalities among the design strategies
described. The result of this process is a taxonomy of 10
architectural tactics for energy efficiency. These tactics
provide a rational basis for architectural design and
analysis for energy efficiency.

1. Introduction

The environmental consequences of software
are rapidly growing; for example, it is now a
well-publicized fact that data centers account for the
same amount of greenhouse gases as global aviation,
and the energy requirements of data centers will only
grow over time as our world becomes increasingly
connected [1]. Furthermore, with our fixation on our
smartphones, power consumption and battery-life are
among the quality attributes that software engineers
developing mobile applications must now worry about
[2]. However, decades of research into software
architecture cautions us that, to properly manage system
quality attributes, an architectural approach is required.
Simply put, coding alone is insufficient to address
complex system-wide properties. Thus we claim that

an architectural approach to energy efficiency is needed
for software-intensive systems [3].

But the literature on the energy efficiency of software
is fragmented. For example, Cloud systems typically do
not have to be concerned with running out of energy
(except in disaster scenarios), whereas this is a daily
concern for users of mobile devices and some IoT
devices. In cloud environments, on the other hand,
scaling up and scaling down are core competencies and
thus decisions must be made on a regular basis about
optimal resource allocation. Finally, the ergonomics of
mobile and IoT devices—–their size, form factors, and
heat output—–constrain their design spaces. And the
sheer number of IoT devices projected to be deployed in
the future makes their energy usage a concern.

To address this research gap, in this article we
derive a collection of architectural tactics—fundamental
architectural design techniques—for energy efficiency.
We do this through a taxonomic systematic literature
review process, which employs a thematic coding
technique borrowed from grounded theory to derive the
taxonomy.

2. Architectural Tactics Explained

Tactics are fundamental design techniques that an
architect can use to reason about and manage a quality
attribute [4]. Tactics, like design patterns, are techniques
that architects have been using for years. We do not
invent tactics; we simply capture, classify, and catalog
what architects actually have done in practice to manage
quality attribute response goals.

Tactics are design decisions that influence the control
of a quality attribute response. For example, if you
want to design a system to have low latency or high
throughput, there are a set of design decisions that you,
as an architect, could make to achieve this. You could
limit the rate of events (requests for service), or increase
concurrency, or introduce priorities and scheduling, or
limit the amount of processing that any single request
receives, and so forth. A combination of these tactics

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7197
URI: https://hdl.handle.net/10125/71488
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



can help you to achieve responses that are produced
within some time constraints.

Tactics are simpler than, and more primitive than
design patterns. Tactics focus on the control of a single
quality attribute response (although they may, of course,
trade off this response with other quality attribute goals).
Patterns, in contrast, typically focus on resolving and
balancing multiple forces—–multiple quality attribute
goals. Thus we like to say, by way of analogy, that
a tactic is an “atom” of design, whereas a pattern is
a molecule. Consider Figure 1, a set of architectural
tactics for performance [4]. The objectives in designing
for performance are to “Control Resource Demand”
and to “Manage Resources”. An architect wanting to
engineer a system with “good” performance needs to
employ one or more of these options. That is the
architect needs to decide if controlling resource demand
is feasible, and if managing resources is feasible. In
some systems the events arriving at the system can be
managed, prioritized, or limited in some way, perhaps
by filtering or aggregation. If this is not possible
then the architect can only manage available resources
in an attempt to generate responses within acceptable
time constraints. For example, if an architect is
designing a stock-trading system, dropping trades is
never acceptable, and so the only option is to manage
resources such that the system can keep up with peak
performance demands. Within the “Manage Resources”
category, an architect might choose tactics to Increase
Resources, Introduce Concurrency, Maintain Multiple
Copies of Computations, Maintain Multiple Copies of
Data, and so forth. These tactics then, of course, need
to be instantiated. As an example, an architect might
choose the Half-sync/Half-async pattern as a way of
introducing (and managing) concurrency [5] or might
choose a load-balanced cluster deployment pattern to
maintain multiple copies of computations [6].

To gain an understanding of the space of
architectural design possibilities for energy efficiency,
specifically the architectural tactics for energy
efficiency, we pursued a taxonomic literature review
strategy, as will be described next. Other approaches to
gathering and validating tactics are, of course possible
and have been pursued in the past such as expert
interviews [7] and mining of patterns repositories [8].

Tactics provide a top-down way of thinking about
design strategies, and this is useful in both design and
analysis. A tactics categorization begins with a set of
high-level design objectives related to the achievement
of a quality attribute, and presents the architect with a
set of (correspondingly high-level, abstract) options to
choose from. These options then need to be further
instantiated typically through some combination of

patterns, frameworks, and code.
In Bass et al. [4] one can find tactics categorizations

for the quality attributes of: availability, interoperability,
modifiability, performance, security, testability, and
usability. In addition we have created tactics for other
quality attributes, such as DevOps [9].

Figure 1. Performance Tactics

3. Research Design

To assess the state of the art in software-based
approaches to energy efficiency, we first conducted a
taxonomic systematic literature review using an “open
search + snowballing” methodology [10].

For the open search, we used Engineering Village
(Elsevier) and the databases Compendex and Inspec.
The search query we used is as follows:

(
((”energy conservation” or ”energy utilization” or
”energy consumption” ”energy management” or
”energy efficiency” or ”energy efficient” or ”energy
saving”)
WN KY)
AND
((”software production” or ”software maintenance”
or ”software development” or ”software creation”)
WN KY)
)
AND
(English WN LA)

Our initial literature search resulted in 160 papers,
and 128 after deduplication (99 from Compendex,
29 from Inspec), in addition to those identified via
snowballing as potentially of interest, based on their
titles, keywords, and abstracts. From these papers and
the citations found therein we selected 71 papers for

Page 7198



detailed scrutiny and evaluation. Many of these selected
papers were finally rejected as being irrelevant, trivial,
off-topic, or redundant based on independent reading
and consensus on the part of two of the authors. This
resulted in a final dataset of 39 primary studies that
received full scrutiny.

Subsequently, the primary study set was analysed
using a tailored version of grounded-theory, enacting
a process of open coding, where concepts found in
the papers are given labels if and only if they would
correspond to a specific tactic’s definition (e.g., sections
discussing the minimization of energy consumption
in software code by reducing the occurrence of
inter-module communication would be given the
“Communication Siloing” tactic code). This was
undertaken to determine candidate tactics, and to
represent them with codes. Eventually we summarized
those codes into categories. Each paper was read by
two coders and any differences in the codes assigned
were discussed and resolved. As per grounded-theory,
the aforementioned process continued paper by paper,
until theoretical saturation was reached, that is, when
no more novel codes were discovered. The next section
offers an overview of the results. We included, for
each paper, a determination as to whether they were
focused industrial problems. We found that all but
one (paper 21 in Table 2) were purely research based,
which is in agreement with paper 21 on the lack of
industrially-relevant research in the literature.

3.1. Inter-Rater Reliability Assessment

To further substantiate the selection of papers
and coding thereof, two observers were involved in
triangulating the paper selection and coding using
the well-known KrippendorffAlpha approach [11]
to Inter-Rater Reliability assessment (IRR). The α
score essentially measures a confidence interval score
stemming from the agreement of values across two
distinctly-reported observations about the same event
or phenomenon. In our case the value was applied to
measure the agreement between primary-study selection
vectors as well as coding application vectors. The
value was calculated initially to be 0.79 for the
primary study selection, hence α < .800, with 0.8
being a standard reference value for highly-confident
triangulated observations. Subsequently, a discussion
on the individual contrasting elements in the value
calculations was used to drive the agreement between
the two analyses up towards a sufficient alignment
through discussion.Similarly, the IRR Score for the
tactics coding eventually ended up to be much less
initially (5̃4% agreement) connected to the varied

nature of all potential tactics to be found in the target
primary studies. Again, to address the misalignment,
an instrumented point-by-point discussion was used to
create a coherent merged list of tactics, as reported in
the next section.

3.2. Energy Efficiency Tactics: Primary Study
Descriptive Statistics

Altogether, the primary studies dataset yields a
pretty positive picture for the field. On the one hand,
Fig. 2 outlines the citation trends over time with every
single dot indicating a paper instance and the Y-axis
indicating how many citations does that particular paper
have. The figure highlights indeed a slightly positive
trend (trend-line in light blue on the figure) with the
sector picking up pace as of the year 2012 and steadily
gaining interest, with occasional outlier seminal papers,
e.g., the work by Jing et al. [12].

Figure 2. Primary Studies, chronometric citation

trend.

At the same time, the type of venue in which
results are being produced, showcased, and published
(arranged between “conference” or “journal”) indicates
a relatively immature field, focusing primarily on
disseminating results for the topic over conferences
as opposed to more mature and consolidated journal
contributions (see Fig. 3).

Figure 3. Primary Studies, venues trend.

Page 7199



4. Tactics for Energy Efficiency

The tactics categorization that emerged from our
coding process is shown in Figure 4. Energy
efficiency is, at its heart, about optimally utilizing
resources. We therefore grouped the tactics into
three broad categories: Resource Monitoring, Resource
Allocation, and Resource Adaptation. As with existing
tactics categorizations for performance or availability
or modifiability these categories serve as a high-level
checklist for a software architect or a reviewer. But the
true design thinking goes into how those categories are
refined into specific tactics and how those tactics are in
turn translated into code, patterns, and components.

Figure 4. Discovered Tactics for Energy Efficiency.

We now examine each of those categories and their
constituent tactics, in detail.

4.1. Resource Monitoring

The tactics for resource monitoring are Metering,
Static Classification, and Dynamic Classification.

Metering: The Metering tactic involves collecting
data about the energy consumption of computational
devices, via a sensor infrastructure, in real time. At the
coarsest level the energy consumption of an entire data
center can be measured from its power meter. Individual
servers or hard drives can be measured using external
tools such as amp meters or watt-hour meters, or using
built-in tools such as those provided with metered rack
PDUs, ASICs (application-specific integrated circuits),
etc.

Static Classification: There are cases where
real-time data collection is infeasible. For example,
if an organization is using an off-premise cloud, they
might not have direct access to real-time energy data.
In such cases we need to statically classify devices
and computational resources, so that we can reason
and make decisions about them in terms of resource
allocation and adaptation. Such a classification might
be based upon benchmarking or on reported device
characteristics (such as a manufacturer’s specifications).

Dynamic Classification: In cases where a static
model of a device or computational resource is
inadequate, a dynamic model might be required. Similar
to the static classification tactic, dynamic classification
is needed in cases where real-time data collection is
infeasible. But, unlike static classification, dynamic
models take into consideration transient conditions
(such as workload) to determine energy consumption of
a device or computational resource. The model could be
a simple table lookup, a regression model based on data
collected during prior executions, or a simulation.

4.2. Resource Allocation

The tactics for Resource Allocation are Vertical
Scaling, Horizontal Scaling, Scheduling, and Brokering.

Vertical Scaling: Vertical scaling, also known as
“scaling up” involves adding or activating resources to
meet processing demands. For example, replacing a
CPU with a faster version of the same CPU, or adding
more memory to an existing server are examples of
Vertical Scaling. However, in the context of energy
efficiency, vertical scaling may be used to “scale
down”, that is removing or deactivating resources when
demands no longer require them. Scaling down may
involve spinning down hard drives, turning off CPUs,
running CPUs at a slower clock rate, or shutting down
current to blocks of the processor that are not in use.

Horizontal Scaling: Horizontal Scaling is a
traditional tactic used to improve the performance of
large-scale systems, such as server farms. The scaling
is achieved by adding additional servers, VMs, or other
resources to an existing pool of resources. For energy
efficiency, horizontal scaling means the removal or
idling of such resources. This may take the form of
moving VMs onto the minimum number of physical
servers (consolidation), combined with shutting down
idle computational resources. In mobile applications
horizontal scaling may be realized by sending part of
the computation to the cloud.

Scheduling: Scheduling is the allocation of tasks
to computational resources. In traditional operating
systems the goal of scheduling may be to keep resources

Page 7200



as busy as possible, to allocate resources fairly among
user tasks (which may have different priorities), or
to achieve some quality of service, such as meeting
deadlines. The point of scheduling in the context of
energy efficiency is to optimize energy usage, given task
constraints and respecting task priorities. Scheduling
provides the scaling decisions for either horizontal or
vertical scaling, based on data collected (using one or
more Resource Monitoring tactics) about the state of the
system being scheduled.

Brokering: A broker matches service requests
(from clients) with service providers, supporting the
identification and remote invocation of those services.
Traditionally brokers make these matches based on a
description of the service request (typically an API).
However in the context of energy efficiency this request
could be annotated with energy information, allowing
the requestor to choose a service provider based on
its (possibly dynamic) energy characteristics. For the
cloud, this energy information could be stored in a
”green service directory” populated by information from
metering, static classification, or dynamic classification
(the Resource Monitoring tactics). For a mobile device
the information could be from an app store. Currently
such information is ad-hoc at best, and typically
non-existent in service APIs.

4.3. Resource Adaptation

The tactics for Resource Adaptation are Service
Adaptation, Increase Efficiency, and Reduce Overhead.

Service Adaptation: Using the services of an
energy broker (implementing the Brokering tactic)
in a cloud context, or a controller in a multi-core
context, a computational task can dynamically switch
computational resources, such as service providers, to
ones that offer better energy efficiency, or lower energy
costs. For mobile devices this adaptation could be done
by a human consumer, but in a cloud environment or in
multi-core adaptation this function would typically be
automated.

Increase Efficiency: Perhaps the most obvious
tactic for resource adaptation is to Increase Efficiency.
This is taught to every Computer Science major who
takes a course in Data Structures and Algorithms. In
this context, increasing efficiency is applied to improve
the time or memory performance of critical algorithms
and, in doing so, this increase of efficiency will
also improve the energy efficiency of that software.
However increasing efficiency may also be achieved
by matching a service request to hardware that is
best suited to fulfill that request. For example, if an
algorithm can be parallelized this parallelization will

only result in increased efficiency if it can be allocated
to an environment that can host the required degree of
parallelization.

Reduce Overhead: The use of intermediaries
and abstractions (so important for modifiability)
increases the resources consumed in processing an
event stream. Hence removing these intermediaries
typically improves latency and throughput. This is a
classic modifiability/performance tradeoff. Separation
of concerns, another foundation of modifiability, can
also increase the overhead necessary to service an event
if it leads to an event being serviced by an ensemble of
components rather than a single component. The context
switching and inter-component communication costs
result in increased energy consumption, particularly
when the components are on different nodes on a
network. A strategy for reducing computational
overhead and energy demands is therefore to co-locate
resources and remove intermediaries and abstractions.
Co-location may mean hosting cooperating components
on the same processor to avoid the time delay of
network communication or it may even mean putting the
resources in the same execution container, to avoid even
the expense of a method call and its context-switching
costs.

5. Applying Tactics in Practice

A tactics categorization is a catalog of primitive
design concepts and a framework for architectural
reasoning. Additional work needs to be done to
determine how best to use these tactics in real-world
contexts and facing practical constraints. We now
describe four broad application areas of how tactics have
been used in practice in the past, and discuss how the
energy efficiency tactics may be used in practice.

5.1. Using Tactics in Design and Code Reviews

How can the tactics for energy efficiency be best
used in design and in reviews? Design and review
contexts are the most common and perhaps most
obvious uses for a collection of tactics. For example,
in Cervantes et al. [9], a practice of using tactics as
design analysis questionnaires is promoted. In this case,
each tactic is turned into a question. An interviewer uses
these questions to ask the architect if they considered
using the tactic, how it is implemented, and the rationale
for the way in which it was implemented or, if it was not
implemented, the rationale for its exclusion.

In this way, in a very short time (approximately
one hour per quality attribute reviewed) an analyst can
gain a broad overview of the architectural approaches
taken, or not taken, to address any quality attribute. We

Page 7201



thus propose that the tactics for energy efficiency can
similarly be used to this end.

5.2. Using Tactics to Inform Design or
Implementation Patterns

In addition, a tactics categorization could form the
basis for a set of design or implementation patterns.
To be clear, design patterns are not normally invented.
Instead they emerge from the design successes and
failures of many architects and architectures, over many
systems, and over time. Existing books and web-sites
of design patterns merely catalog what architects have
already determined to be best practices in design for
the quality attributes in question. Tactics can, however,
provide guidance to creators of such patterns, e.g.,
multiple tactics can be combined and used to annotate
or improve one or more patterns, to be jointly used in
pursuit of a specific quality goal (e.g. [13], [4]).

Consider the Broker pattern1, as shown in Fig. 5.
This pattern, if naively implemented, would likely not be
useful. The server shown in the diagram is a single point
of failure, and a potential bottleneck for performance.
There is no provision for security, such as authenticating
requestors, and there are no test interfaces.

Figure 5. Broker Pattern from MSDN.

Thus the pattern is a skeleton, but in practice an
architect could use tactics to improve this pattern so
that it would be scalable, testable, robust in the face of
failures, and so forth (as was done, for example, in [14]).

Sets of design patterns for energy efficiency have
only recently begun to emerge. For example two recent
papers describe sets of energy efficiency patterns for
mobile devices [15] and embedded systems [16].

1https://msdn.microsoft.com/en-us/library/
ff648096.aspx

5.3. Using Tactics to Create Reference
Architectures

A reference architecture is a reference model
mapped onto one or more architectural patterns. A
mature reference architecture, like a design pattern,
has been proven in business and technical contexts,
and typically comes with a set of supporting artifacts
that eases its use. For example, the Microsoft
Application Architecture Guide [6] describes reference
architectures for web applications, mobile applications,
service applications, and so forth. An example reference
architecture for web applications is shown in Figure ??.

Figure 6. Web Application Reference Architecture

5.4. Creating “Best of Breed” Implementation
Examples

Finally, a set of tactics need to eventually be realized
in code. The majority of developers work best from
examples, rather than abstractions. Thus it is imperative
to have running code exemplifying as many tactics
as possible, in as many different contexts as possible
(operating system, cloud versus mobile, language of
implementation, etc.).

Many example implementations of the tactics
described here already exist. In the Appendix we have
provided the full set of 39 references that were chosen
for deriving the tactics, which include algorithms and
implementation examples.

Page 7202



6. Discussion and Research Roadmap

A set of tactics, however well-motivated, is still quite
abstract. This can be both a curse and a blessing. We
dealt with one part of this challenge in the previous
section: how to apply tactics in practice. But the
abstraction has a benefit as well: it can stimulate creative
thinking in terms of how tactics can be applied to
improve the state of the art in software architecture. We
now turn to some of these considerations.

6.1. Observations and Lessons Learned

There are a number of studies that could and should
be undertaken to understand the use of these tactics
and the tradeoffs between several crucial system quality
attributes—energy efficiency, performance, availability,
usability, and modifiability, and how these tradeoffs are
affected by practical contextual factors.

For example, studies could implement tactics and
measure resource usage, efficiency, and performance
of code with and without employing a tactic. The
impact of parallelism is a particular intriguing area for
investigation, and there is little in the way of guidance
for architects and developers at the moment in this
technology area.

In terms of studying the tradeoffs, at the moment
only the tradeoffs between performance and energy
efficiency have been examined in any depth, as
evidenced by our search of the literature. But energy
efficiency additionally has implications for usability (if
response times are slowed or screens are dimmed, or
features are turned off), for availability (if backups are
taken off-line and redundant resources are spun down,
resulting in longer recovery times after failures), and for
modifiability.

Amongst these quality tradeoffs, the greatest
importance is to gain an understanding of the
consequences of modularization (and buy versus build)
decisions. This has received scant attention from the
research community. For example, in [17] the authors
reported on a study where they concluded that the use of
frameworks and external libraries is detrimental to the
energy efficiency of large applications.

In [9] the authors examined tradeoffs between
latency, energy usage, and modifiability in mobile
applications and showed that certain architectural
choices in the implementation of the MVP
pattern—bundling or dropping messages, realizing
the Reduce Overhead tactic—can improve energy
consumption by 30% without negatively impacting
latency or modifiability. Similarly in [3] the authors
demonstrated that, with some modest changes to

communication protocols (realizations of the Reduce
Overhead and Increase Efficiency tactics), an IoT
application could reap 86% energy savings.

But these are just a few small studies, barely
scratching the surface of the entire decision-space,
and many important research questions remain. It is
crucial to have a framework that enumerates the relevant
contextual factors, and aids in reasoning about the
consequences of modularization decisions and adoption
of off-the-shelf components on energy efficiency. For
example, we could study the effects of varying degrees
of modularization, such as layering—and their effects
on energy efficiency. But the tradeoff with modularity is
just one dimension. We also want to know, for any level
of modularity, the consequences on time-to-market and
evolvability. In this way a project manager or architect
could make reasoned decisions about such tradeoffs.

Thus, a framework that includes all relevant quality
attributes—energy efficiency, performance, modularity,
and so forth—is necessary to support an architect’s
reasoning. And such a framework can only be validated
through empirical research.

6.2. Future Work: A Research Roadmap

There are a number of studies that should
be undertaken to understand the architecture
tradeoffs between several crucial system quality
attributes—energy efficiency, performance, availability,
usability, and modifiability—and how these tradeoffs
are affected by practical contextual factors. Of
these quality attributes, only the tradeoffs between
performance and energy efficiency have been studied in
any depth, as evidenced by our extensive search of the
research literature. But energy efficiency additionally
has implications for usability (if response times are
slowed or screens are dimmed), for availability (if
backups are taken off-line, resulting in longer recovery
times after failures), and for modifiability.

Amongst these quality tradeoffs, the greatest
importance is to gain an understanding of the
consequences of modularization (and buy versus build)
decisions. This has received scant attention from the
research community. Capra et al. [17] reported
on a study where they concluded that the use of
frameworks and external libraries is detrimental to the
energy efficiency of large applications. But, again,
while these studies are a good start, many crucial
research questions remain. It is important to have
a framework that enumerates the relevant contextual
factors, and aids in reasoning about the consequences of
modularization decisions and adoption of off-the-shelf
components on energy efficiency. So, for example,

Page 7203



we could study the effects of greater or lesser degrees
of modularization–such as layering–and the correlation
of modularity measures to energy efficiency. But the
tradeoff with is just one dimension of the problem.
We would also want to know, for any given level of
modularity, the consequences on time-to-market and
evolvability. In this way a project manager or architect
could make reasoned decisions about such tradeoffs.

Thus a framework that includes all relevant quality
attributes–energy efficiency, performance, modularity,
and so forth–is necessary to support an architect’s
reasoning. And such a framework can only be validated
through empirical research.

7. Conclusions

This paper has described a taxonomic systematic
literature review process that we applied to the topic of
energy efficiency in software-intensive systems, and the
subsequent grounded-theory-based classification of the
concepts found within the resulting papers. The point
of this process was to derive a novel set of tactics for
energy efficiency to address a research gap–that studies
of energy efficiency of software are rather fragmented
and no authoritative set of design approaches had thus
far been described. Each of these tactics was defined and
linked back to the papers from which they were derived.

Based on this set of tactics a number of
real-world application contexts were described:
using tactics in design and analysis (tactics-based
questionnaires), creating and augmenting patterns,
creating reference architectures, and creating “best of
breed” implementation examples.

Finally, we provided a brief discussion on the need
for experimental validation studies, and sketched the
outline for a study on an area of research that is currently
lacking, that is, understanding the tradeoffs between
modularity and energy efficiency. It is hoped that this
paper can serve as the foundation for a program of
research, experimentation, and practice that will lead
to a strong engineering foundation for the construction
and evolution of systems that treat energy efficiency as
a first-class quality attribute.

References

[1] D. M. Quan, A. Somov, and C. Dupont, “Energy
usage and carbon emission optimization mechanism
for federated data centers.,” in E2DC (J. Huusko,
H. de Meer, S. Klingert, and A. Somov, eds.), vol. 7396
of Lecture Notes in Computer Science, pp. 129–140,
Springer, 2012.

[2] A. Frank, R. Asuncion, and M. Frank, “Smart
optimization of energy consumption using iot.,” in
MENACOMM, pp. 1–6, IEEE, 2019.

[3] R. Kazman, S. Haziyev, A. Yakuba, and D. A. Tamburri,
“Managing energy consumption as an architectural
quality attribute.,” IEEE Software, vol. 35, no. 5,
pp. 102–107, 2018.

[4] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice. Addison-Wesley, 3rd ed., 2012.

[5] S. A. Chowdhury, A. Hindle, R. Kazman, T. Shuto,
K. Matsui, and Y. Kamei, “Greenbundle: an empirical
study on the energy impact of bundled processing.,” in
Proceedings of ICSE ’19, pp. 1107–1118, IEEE / ACM,
2019.

[6] Microsoft, Microsoft Application Architecture Guide.
USA: Microsoft Press, 2nd ed., 2009.

[7] J. Scott and R. Kazman, “Realizing and refining
architectural tactics: Availability,” 2009.

[8] J. Ryoo, P. A. Laplante, and R. Kazman, “Revising
a security tactics hierarchy through decomposition,
reclassification, and derivation.,” in SERE (Companion),
pp. 85–91, IEEE, 2012.

[9] H. Cervantes and R. Kazman, Designing Software
Architectures: A Practical Approach. Addison-Wesley
Professional, May 2016.

[10] S. Jalali and C. Wohlin, “Systematic literature studies:
database searches vs. backward snowballing.,” in ESEM
(P. Runeson, M. Höst, E. Mendes, A. A. Andrews, and
R. Harrison, eds.), pp. 29–38, ACM, 2012.

[11] K. Krippendorff, Content Analysis: An Introduction to
Methodology. Beverly Hills, CA: Sage Publications,
Inc., 1980.

[12] S. Jing, S. Ali, K. She, and Y. Zhong, “State-of-the-art
research study for green cloud computing,” The Journal
of Supercomputing, vol. 65, pp. 445–468, 2011.

[13] N. Harrison and P. Avgeriou, “How do architecture
patterns and tactics interact? a model and annotation,”
Journal of Systems and Software, vol. 83, no. 10,
pp. 1735–1758, 2010.

[14] N. Harrison and P. Avgeriou, “Incorporating fault
tolerance tactics in software architecture patterns,” in
SERENE ’08: Proceedings of the 2008 RISE/EFTS Joint
International Workshop on Software Engineering for
Resilient Systems, pp. 9–18, ACM, 2008.

[15] L. Cruz and R. Abreu, “Catalog of energy patterns for
mobile applications,” Empirical Software Engineering,
vol. 24, pp. 2209–2235, 2019.

[16] M. Schaarschmidt, M. Uelschen, E. Pulvermuellerm, and
C. Westerkamp, “Framework of software design patterns
for energy-aware embedded systems,” in Proceedings
of the 15th International Conference on Evaluation
of Novel Approaches to Software Engineering (ENASE
2020), 2020.

[17] E. Capra, C. Francalanci, and S. Slaughter, “Measuring
application software energy efficiency.,” IT Prof., vol. 14,
no. 2, pp. 54–61, 2012.

8. Appendix

Page 7204



Table 1. References.

ID Reference Industry
1 Sarah Abdulsalam, Ziliang Zong, Qijun Gu, Meikang Qiu. “Using the Greenup, Powerup, and Speedup

metrics to evaluate software energy efficiency”. In Proceedings of the Sixth International Green and Sustainable
Computing Conference (IGSC), 2015.

No

2 Nadine Amsel, Zaid Ibrahim, Amir Malik, Bill Tomlinson. “Toward sustainable software engineering”.
Proceedings of the 33rd International Conference on Software Engineering (ICSE), 2011, pp. 976-979.

No

3 Luca Ardito, Maurizio Morisio, “Green IT – Available data and guidelines for reducing energy consumption in
IT systems”. Sustainable Computing: Informatics and Systems, 4, 1, March 2014, pp. 24-32.

No

4 L. Ardito, G. Procaccianti, M. Torchiano A. Vetrò, “Understanding Green Software Development: A Conceptual
Framework,” IT Professional, 17, 1, Jan.-Feb. 2015, pp. 44-50.

No

5 A. Bhardwaj S. Saurav, “A portable platform to estimate power consumption of software modules,” International
Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), 2016, pp. 1-6.

No

6 P. Bartalos M. B. Blake, “Green Web Services: Modeling and Estimating Power Consumption of Web Services”.
IEEE 19th International Conference on Web Services, 2012, pp. 178-185.

No

7 T. W. Bartenstein Y. David Liu, “Green Streams for data-intensive software,” 35th International Conference on
Software Engineering (ICSE), San Francisco, CA, 2013, pp. 532-541.

No

8 Suparna Bhattacharya, K. Gopinath, Karthick Rajamani, Manish Gupta. “Software Bloat and Wasted Joules: Is
Modularity a Hurdle to Green Software?”. Computer 44, 9, September 2011, pp. 97-101.

No

9 E. Capra, C. Francalanci S. A. Slaughter, “Measuring Application Software Energy Efficiency,” in IT
Professional, 14, 2, March-April 2012, pp. 54-61.

No

10 Eugenio Capra, Chiara Francalanci, Sandra Slaughter. “Is software ’green’? Application development
environments and energy efficiency in open source applications”. Information and Software Technology 54,
1, January 2012, pp. 60-71.

No

11 Kayun Chantarasathaporn Chonawat Srisa-an. “Energy conscious factory method design pattern for mobile
devices with C# and intermediate language”. Proceedings of the 3rd international conference on Mobile
technology, applications & systems, Article 29, 2006.

No

12 Samuel Chinenyeze, et al. “An Aspect Oriented Model for Software Energy Efficiency in Decentralised
Servers.” International Conference on ICT for Sustainability (ICT4S), 2014.

No

13 P. G. Flikkema, K. R. Yamamoto S. Boegli, “Starting from green: Energy-centric transformation of smart object
architectures,” IEEE Globecom Workshops, 2012, pp. 396-400.

No

14 Carlo Fragni, Luı́s Henrique Maciel Kosmalski Costa, “ECO–ALOC: Energy-efficient resource allocation for
cluster-based software routers”, Computer Networks, 56, 9, June 2012, pp. 2249-2261.

No

15 A. Hindle, “Green Software Engineering: The Curse of Methodology,” IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2016, pp. 46-55.

No

16 Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles Campbell, Stephen Romansky.
“GreenMiner: a hardware based mining software repositories software energy consumption framework”.
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR), 2014, pp. 12-21.

No

17 Si-Yuan Jing, Shahzad Ali, Kun She, Yi Zhong. 2013. “State-of-the-art research study for green cloud
computing”. Journal of Supercomputing 65, 1, July 2013, pp. 445-468.

No

18 M. A. Khan, C. Hankendi, A. K. Coskun, M. C. Herbordt. “Software optimization for performance, energy, and
thermal distribution: Initial case studies”, Proceedings of the International Green Computing Conference and
Workshops (IGCC), 2011, pp. 1-6.

No

19 Sedef Akınlı Koçak, Gülfem Işıklar Alptekin, Ayşe Başar Bener, “Evaluation of Software Product Quality
Attributes and Environmental Attributes using ANP Decision Framework”, Third International Workshop on
Requirements Engineering for Sustainable Systems, 2014.

No

20 Andreas Litke, Kostas Zotos, Alexander Chatzigeorgiou, George Stephanides, “Energy Consumption Analysis
of Design Patterns”, Proc. World Academy of Science, Engineering and Technology, 6, June 2005.

No

Page 7205



Table 2. References (continued).

ID Reference Industry
21 Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin Sadowski, Lori Pollock, James

Clause. “An empirical study of practitioners’ perspectives on green software engineering”. Proceedings of the
38th International Conference on Software Engineering (ICSE), 2016, pp. 237-248.

Yes

22 A. Markiewicz, P. N. Tran A. Timm-Giel, “Energy consumption optimization for software defined networks
considering dynamic traffic,” 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), 2014,
pp. 155-160.

No

23 Adel Noureddine, Romain Rouvoy, Lionel Seinturier. 2015. “Monitoring energy hotspots in software”.
Automated Software Engineering, 22, 3 (September 2015), pp. 291-332.

No

24 Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, Lionel Seinturier. “Runtime monitoring of software
energy hotspots”. Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2012, pp. 160-169.

No

25 Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. “What Do Programmers Know about
Software Energy Consumption?” IEEE Software 33, 3, May 2016, pp. 83-89.

No

26 Paula Petrica, Paula, Adam Izraelevitz, David Albonesi, Christine Shoemaker, “Flicker: A dynamically adaptive
architecture for power limited multicore systems”, ACM SIGARCH Computer Architecture News, 41, 3, 2013.

No

27 Giuseppe Procaccianti, Stefano Bevini, Patricia Lago, “Energy Efficiency in Cloud Software Architectures”,
27th Conference on Environmental Informatics, 2013, pp. 291-299.

No

28 Giuseppe Procaccianti, Héctor Fernández, Patricia Lago. 2016. “Empirical evaluation of two best practices for
energy-efficient software development”, Journal of Systems and Software 117, July 2016, pp. 185-198.

No

29 Giuseppe Procaccianti, Patricia Lago, Stefano Bevini, “A systematic literature review on energy efficiency in
cloud software architectures”, Sustainable Computing: Informatics and Systems, 7, September 2015, pp. 2-10.

No

30 G. Procaccianti, P. Lago G. A. Lewis, “A Catalogue of Green Architectural Tactics for the Cloud,” 2014 IEEE
8th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems,
2014, pp. 29-36.

No

31 C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock K. Winbladh, “Towards power reduction through improved
software design,” 2012 IEEE Energytech, 2012, pp. 1-6.

No

32 Cagri Sahin, Furkan Cayci, Irene Lizeth Manotas Gutiérrez, James Clause, Fouad Kiamilev, Lori Pollock,
Kristina Winbladh, “Initial explorations on design pattern energy usage”, Proceedings of the First International
Workshop on Green and Sustainable Software (GREENS), 2012, pp. 55-61.

No

33 Clauirton Siebra, Paulo Costa, Regina Miranda, Fabio Q. B. Silva, Andre Santos. “The software perspective
for energy-efficient mobile applications development”. Proceedings of the 10th International Conference on
Advances in Mobile Computing & Multimedia (MoMM ’12), 2012, pp. 143-150.

No

34 Nidhi Singh Shrisha Rao. “Meta-learning based architectural and algorithmic optimization for achieving
green-ness in predictive workload analytics”. Proceedings of the 28th Annual ACM Symposium on Applied
Computing (SAC ’13), 2013, pp. 1169-1176.

No

35 Jasmeet Singh, Kshirasagar Naik, Veluppillai Mahinthan, “Impact of Developer Choices on Energy
Consumption of Software on Servers”, 2015 International Conference on Soft Computing and Software
Engineering, Procedia Computer Science 62, 2015, pp. 385 – 394.

No

36 Yuzhong Sun, Yiqiang Zhao, Ying Song, Yajun Yang, Haifeng Fang, Hongyong Zang, Yaqiong Li, Yunwei Gao.
“Green challenges to system software in data centers”. Frontiers if Computer Science China 5, 3 (September
2011), pp. 353-368.

No

37 Ingolf Waßmann, Daniel Versick, Djamshid Tavangarian. “Energy consumption estimation of virtual
machines”. Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC), 2013, pp.
1151-1156.

No

38 Chenlei Zhang Abram Hindle. “A green miner’s dataset: mining the impact of software change on energy
consumption.” 11th Working Conference on Mining Software Repositories (MSR), 2014.

No

39 Benjamin Zhong, Ming Feng, Chung-Horng Lung. “A Green Computing Based Architecture Comparison and
Analysis”. Proceedings of the IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l
Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM), 2010, pp. 386-391.

No

Page 7206


