
Practical Challenges of Virtual Assistants and Voice Interfaces in Industrial
Applications

Marco Gärtler
ABB Corporate Research Center Germany

marco.gaertler@de.abb.com

Benedikt Schmidt
ABB Corporate Research Center Germany

benedikt.schmidt@de.abb.com

Abstract

Virtual assistant systems promise ubiquitous
and straightforward access to information,
applications, and physical appliances. Their
foundation on intent-oriented queries and support
of natural language makes them an ideal tool for
human-centric applications. The general approach
to build such systems and the main building blocks
are well-understood and offered as off-the-shelf
components. While there are prominent examples in the
service sector, other sectors such as the manufacturing
and process industries have nothing comparable. We
investigate the practical challenges of building a virtual
assistant using a representative and simplified case
from of knowledge retrieval domain. A qualitative study
reveals two significant obstacles: Firstly, while systems
can be tuned to tackle the most relevant types of question
tasks, user acceptance is lower than for comparable
GUI-based systems and, secondly, a disproportional
amount of effort to get all details and having a robust
system. Overall, implementing a virtual assistant for
an industrial application is technically feasible yet
requires significant effort and understanding of the
target audience.

1. Introduction

Virtual assistants (VA) and, more generally, Voice
User Interfaces (VUIs) spread over the last decade are
ubiquitously present today and continue to increase their
presence in our everyday life. In 2019 more than 140
million smart speakers were sold [31] and every major
smartphone platform comes with at least one virtual
assistant. In smartphones and other mobile devices,
services such as Siri (by Apple), Google Assistant
(by Google), or Cortana (by Microsoft) are constant
companions. There are the standalone counterparts
in our homes, such as Alexa or Amazon Echo (by
Amazon) or Google Home (by Google). In all those
cases, the products aim to provide simple, easy, and

intuitive access to basic functionality, like creating
alarms or notifications. They offer convenience in
interaction with other services such as home automation.
More generally, commercial services and open source
components to deal with text-to-speech, speech-to-text,
and intent recognition are readily available. Examples
are IBM Watson1, Cognitive Services [22] by Azure or
Amazon Transcribe2, and Amazon Polly3 by AWS.

The topic of VAs and VUIs has been studied
fairly intensively. Starting with dialog systems in
natural language [32], extending to spoken language and
integration of technical services in [5, 26, 17, 15] to
more design-driven and holistic views in [16, 14, 20, 8,
18, 3, 19]. There are many tutorials [21, 1, 23, 27, 4]
promising the easy creation of such systems. Among
them are several companies that use them to advertise
their components and services. Looking at the areas
of these VAs, there is a clear focus in the private
environment and the service sector. The everyday
aspects of VUIs and the implication for design in a
private environment have been studied by Porcheron et
al. in [29]. There is a surprising lack of attempts and
success stories in other industrial sectors. Schmidt et
al. in [30] discuss opportunities of VAs focusing on
operation support in the process industry and identified
related challenges and opportunities. Yet, there are few
attempts to build such more industry-oriented systems.

The research question addressed in this paper is –
why are VA systems limited to the private environment
and customer service? What are the potential reasons
for this? We investigate the degree to which state
of the art VA systems can support work tasks in
the industrial domain. While customization of a
ready-made framework would be most suitable, the
existing frameworks show vendor-specific limitations
in the design of intents and the communication with
backend services. Therefore, we decided to develop a
VA system using off-the-shelf components with a higher

1https://www.ibm.com/watson
2https://aws.amazon.com/transcribe/
3https://aws.amazon.com/polly/

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 4063
URI: https://hdl.handle.net/10125/71111
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

https://www.ibm.com/watson
https://aws.amazon.com/transcribe/
https://aws.amazon.com/polly/

degree of freedom regarding customizability.
The foundation section provides a specification of

VA systems and work tasks. Following studies of
information work and cognitive information processing,
we derive a four-level hierarchy of task complexity
addressed by a VA system for the industrial domain.
The VA architecture section 3 specifies the typical
components shared by most VA systems. To investigate
work task coverage for the industrial domain, we
built a VA system, addressing questions on all
four complexity levels to be compared to alternative
software solutions (i.e., Excel, Business Intelligence
Application). We expect this system to be a blueprint
for analytics-oriented VA systems. Our proof of concept
uses the following building blocks: a component
for speech-to-text, a component to recognize intents,
a simple analytic service, and a component for
text-to-speech. Besides the analytical service, we use
only readily available components and services.

The evaluation asked the participants to perform
information extraction tasks, using standard tools
and the VA. The tasks were aligned with the four
complexity levels and included extraction of plain
values, aggregations, or comparisons on a large database
(Section 4). The study has been designed to reflect
activities in the industrial domain, like monitoring
process variables in different regions and comparing
them to historic values or other process variables. The
setup and the first results of a qualitative evaluation are
shown in Section 5. The section also contains insights
into the acceptance of users and lessons learned during
development.

2. Foundations

VAs or VUIs typically are intent-oriented support
systems that make use of an infrastructure of digital
services. Intent-orientation basically stands for a
system that targets the fulfillment of user intents.
Intent-orientation is an obvious goal for every type
of user interface. Still, for most applications, goal
achievement requires to take a substantial amount of
decisions by interacting with the UI. Formatting a text
in a word processor is an example – despite just saying
“make it look like a letter”, it is required to execute
multiple formatting steps. For intent-oriented interfaces,
the intent is expressed in natural language, and the
number of interaction steps required for fulfillment
is minimized. This minimization is achieved by
removing options or by deriving required information
from contextual information sources.

Today’s VA systems build on three foundations:
1) Augmentation of the human intellect: The idea of

high-powered electronic aids embedded in everyday life
and support in solving problems [10], 2) Conversational
agents, dialog systems: Systems capable of using
natural language as user interface, to extract intents from
natural language and establish a context understanding
from a dialog, 3) Service growth: an increasing number
of small and focused services made available to large
user groups – as an effect, the number of services used
per user is steadily increasing (e.g., app downloads,
number of apps available). The combination of these
elements is the state of the art of VA systems. A
highly personalized multi-modal system with a strong
focus on speech that is available on multiple devices
and integrates contextualized and customized access to
numerous digital services.

A first concrete vision was established in 1987 in
the Apple commercial for the “Knowledge Navigator” 4.
Since then, various research prototypes were developed
and evolved into commercial products, like the Calo
assistant (Cognitive assistant that learns and organizes)
[2], which became Apple’s Siri product.

While the commercial systems available are
comparable concerning their components and the
application domain – speech recognition/synthesis,
natural language understanding, intent model with
service integration for consumer domain – their actual
capabilities still differ. For example, an investigation
of the question-answer capabilities showed that Google
and Alexa perform considerably better when confronted
with general knowledge questions [7].

Still, general knowledge is not the actual core of the
systems. To investigate the typical applications which
are realized with VA systems, the basic skills and skill
extensions for Alexa and the Google assistant have been
reviewed5. As the latter offers an open eco-system
that allows third parties to provide their own abilities,
these were selected. In general, it shows that one
can distinguish between skills that focus on knowledge
access and those which focus on triggering functionality.
An example of knowledge access is the response to a
question based on a knowledge base like Wikipedia. An
example for triggering a functionality is the assistant’s
use as remote control for the heating system in the
house.

Typical usage scenarios include the following:

• Knowledge-based systems, to query structured
knowledge bases

• Remote controlling devices or applications (e.g.,
radio)

4https://en.wikipedia.org/wiki/Knowledge_
Navigator

5https://www.amazon.com/alexa-skills/,
https://assistant.google.com/explore

Page 4064

https://en.wikipedia.org/wiki/Knowledge_Navigator
https://en.wikipedia.org/wiki/Knowledge_Navigator

• Media access

• Gaming, fun

• Location-based services, orientation

• Self-organization

• Stub to arbitrary services

Beyond the consumer domain, VA systems are
rarely used. The exception is hands-free interaction,
like integrating Microsoft’s Cortana VA into the
Hololens Augmented Reality Headset. Information
work still relies on graphical user interfaces used with a
combination of mouse, keyboard, and touch. We follow
the perspective of the technology acceptance model and
expect that perceived usefulness and ease-of-use are
major influence factors for VA adoption [9]. Following
this, VAs success for information work depends on the
degree to which people believe that they increase job
performance. The lack of adoption for information work
can be related to an insufficient capability to optimize
the respective work activities.

A review regarding the application of VAs in the
industrial domain was conducted by [30]. They
highlight the potential of making a heterogeneous
landscape of digital services accessible to a workforce.
Especially the situation-specific selection of services
and the usage orchestration in a proactive manner are
mentioned. Another highlighted aspect is the interaction
modularity. Voice user interfaces allow easy context
switches. Although information comes from different
sources, voice interfaces give a continuous interaction
frame which does not change. The review does not
investigate the type of information required for work
execution. Analysis of information work execution [25]
and work that involves controlling complex systems
– frequently focusing air traffic controllers [6] –
show the critical role of providing access to specific
information and simplifying its comprehension based
on the situation and job requirements. An example
is a business intelligence application with charts. The
information worker will select a suitable chart for his
question and will try to read out the response from the
very rich information every chart contains.

An example for the industrial domain. An operator
in a process plant monitors the production process of a
batch. The VA is connected to an anomaly detection
system, sensors on pipes, and the control system.
The VA informs the operator that some production
parameters are anomalous, based on the information
from the anomaly detection system. The operator asks
the system to show the anomaly, then to explain the
characteristic of the anomaly. The system summarizes
the anomaly characteristic. The anomaly is connected to

the flow of material. The system recommends the usage
of additional flow sensors to spot the exact location
of the error. The operator acknowledges. Next, the
system shows the sensor output over the production
process. The operator spots the area of the error and
asks the system whether an alternative route for the
material exists. Based on the control system data, the
VA recommends an alternative routing of the material
as a preliminary fix of the error.

Along this line, we assume that VAs are only
successful if they support access to situation-specific
information and related cognitive comprehension at
least as useful as existing solutions. To investigate this,
we will focus on reading out information from a large
database with temporally structured information, like
sensor values over time. This domain is typically taken
over by chart visualizations used in control systems and
business intelligence systems.

A systematic evaluation has been made by [28].
He shows basic processes of information extraction,
which are applied to graphs. Size, position, grouping,
shape, and connectedness combined with scales and text
are optimized to read out information. The usefulness
of charts lies in their ability to provide information
that solves information work tasks. Considering the
workplace of a control room operator in a chemical
plant, we see a good fit for the mentioned tasks.
Therefore domain examples are provided. The tasks are:
1) reading out single values from a coordination system
(e.g., the current reading of a sensor), 2) operations on
values and trend (e.g., trend of one or multiple signals),
3) value identification criteria (e.g., all points in time,
when temperature exceeded the threshold during the last
shift), 4) comparing (e.g., how did the sensor trajectory
change after modification of the batch recipe).

This paper will investigate the coverage of tasks
belonging to the mentioned four levels and the
acceptance of such a system. The studied system will
be configured to address the mentioned task levels: 1)
reading out value, 2) simple operations on values, 3)
identification of values by criteria and 4) comparison of
values. An evaluation has been conducted to 1) assess
whether a state of the art VA covers the mentioned four
levels of information access, 2) whether comprehension
of the user is good enough to outperform existing
solutions with classic chart-based interfaces.

3. Virtual Assistant Architecture

For our proof of concept, we consider VAs that,
like Siri (by Apple), Google Assistant (by Google), or
Cortana (by Microsoft), are independent services but
do not require a dedicated device. More precisely,

Page 4065

the user should be able to freely interact with the
assistant without interfering with the usual activities.
The requests are issued in natural language, either
spoken or typed; similarly, the response is always given
in natural language, both as text and speech. We use the
tutorial from Rasa [27] as inspiration and loosely follow.

1 // 2

��
user

::

3
**

��

4jj

6

dd

5oo

Step Description
1 Pre-Processing, e.g., speech-to-text
2 Intent Recognition
3 Delegation to and execution of specific

services for intents
4 Invocation of local services
5 Augmentation of results
6 Post-Processing, e.g., text-to-speech

Figure 1: General Interaction with a Virtual Assistant
(dashed boxed).

The general process is shown in Figure 1. The user
sends a request to the VA. This can be a text command,
a spoken command, or a trigger associated with such a
command. The request is pre-processed, which includes
the conversion of speech and ends in a normalized text.
This text is parsed. Intents and associated parameters
are identified. In the configuration, one or more
services are linked to each intent. The corresponding
services are executed, which might invoke further
services of the hosting infrastructure. Once the results
are obtained, they are first augmented with local
information, second post-processed, which includes the
transformation back to natural language and the creating
of a suitable audio output. Finally, everything is
bundled in the response. While this description is given
in a synchronous and blocking way, it can also be
implemented asynchronously, i.e., the request to the VA
does not block the interaction with other applications
or even the assistant itself. This flow can also easily
be extended to include services to trigger proactive
information delivery for the user.

Table 1: List of components tested in our proof of
concept.

Step Component Open
Source

Cloud
Service

1, 6 Azure Cognitive Services
(ACS) - Speech

x

1, 6 Web Speech APIa embedded in
browser

1 Mozilla DeepSpeechb x
1 Amazon Transcribec x
1 Google Cloud

Speed-to-Textd
x

2 RASAe x x
2 ACS - Language

Understanding
x

2 Amazon Lexf x
2 Google Natural Languageg x
6 MARYh x
6 Amazon Pollyi x
6 Google Cloud

Text-to-Speedj
x

ahttps://developer.mozilla.org/en-US/docs/
Web/API/Web_Speech_API

bhttps://github.com/mozilla/DeepSpeech
chttps://aws.amazon.com/transcribe/
dhttps://cloud.google.com/speech-to-text
ehttps://rasa.com/
fhttps://docs.aws.amazon.com/lex/index.html
ghttps://cloud.google.com/natural-language/
hhttp://mary.dfki.de/
ihttps://aws.amazon.com/polly/
jhttps://cloud.google.com/text-to-speech

3.1. Selected Components

With our development team, we looked at the
individual components, did isolated tests and based on
those results judged their usability for building our VA.
A list of these components and their associated steps
is given in Table 1. We focused on open source tools
and Azure components as both were easily available to
us. Reading the online documentation and different blog
posts, we believe that the other cloud services will act
similarly, both with respect to effort for implementation
and produced quality. Given the scope of our activity
and limited budget, an in-depth comparison could not be
done; next we summarize our findings from this phase.

For the speech recognition, the new Web Speech
API was a positive surprise. Our phrases with everyday
language were often successfully recognized and results
matched with the commercial one. Both had problems
when using specific terms from the industrial domain.
Azure Cognitive Services has options to customize

Page 4066

https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://github.com/mozilla/DeepSpeech
https://aws.amazon.com/transcribe/
https://cloud.google.com/speech-to-text
https://rasa.com/
https://docs.aws.amazon.com/lex/index.html
https://cloud.google.com/natural-language/
http://mary.dfki.de/
https://aws.amazon.com/polly/
https://cloud.google.com/text-to-speech

Table 2: Excerpt from the database.

Index Time State F. State . . .
1 01.2019 Germany BW . . .
2 01.2019 Germany NRW . . .
3 01.2019 Switzerland Aargau . . .

Index . . . City target forecast value
1 . . . Aach 93 92.95 63.49
2 . . . Aachen 82 73.09 45.19
3 . . . Aarau 93 93.40 82.73

a language mode by (re-)training, which gives the
possibility to improve recognition. For our initial test,
we did not consider this option. The results with
Mozilla DeepSpeech were mixed. The out-of-the-box
model performed badly; after training with some texts
from the domain, the recognition rate was acceptable
and comparable to the other components. The training
option is similar to the customization of the Cognitive
Services. Also, on the speech synthesis part, the
new Web Speech API performed very well. Here,
some testers even ranked the audio better compared to
the commercial one. The option to customize Azure
Cognitive Services was not evaluated. The results from
MARY felt short. However, due to the enormous
number of parameters that can be tuned, this comparison
is likely unfair. It requires more effort and knowledge of
the solution compared to the other two.

For the intent recognition, both RASA and Azure
Cognitive Services performed equally well and required
the same training amount on our initial samples. In both
cases, the training set required examples of requests with
variations. We used Chatito6 to specify the structure
of phrases and their components; the tool generates the
samples from that. RASA’s base configuration only
lacked in the recognition of parameters, which could be
fixed with a proper configuration.

4. Research Virtual Assistant
Demonstrator

For our demonstrator, we wanted to pick an
example that feels realistic to an industrial setup, while
an evaluation could be done without extensive prior
knowledge or on-boarding. We selected a scenario
based on control room operators that were inspired by
the challenges described in [30]. An operator monitors
the plant status and, if necessary, makes adjustments to
the automation program in order to optimize production
to return to steady states, and to avoid dangerous
situations. Thus a VA enables him to extract status

6https://rodrigopivi.github.io/Chatito/

Table 3: Sample requests with their levels. Relevant
parameters are marked in italic.

Level Task
L0 What is the forecast for Bad Dürrheim in

August 2019?
What is the target for Nordrhein-Westfalen?
What is the value for Austria?

L1 What is the aggregation of the value for
Baden in Aargau in Q3 2019?

L2 Who are the three locations with the best
forecast in Austria in July 2019?

L2 When was the worst performance of Berlin
with respect to target?

L3 Compare Heidelberg and Mannheim with
respect to their value in 2019.
For Q4 2019 compare the forecast of Wien
to its value.

information, aggregate and compare them would be a
natural fit. Names and references to equipment would
be encoded in technical terms that are not directly part of
the natural / everyday language. Also, there is a typical
hierarchy in the system that should ideally be reflected
in the demonstrator.

4.1. General Setup

We reduced and abstracted this scenario of the
control room operator: The technical terms will be
represented by the name of cities in Austria, Germany,
and Switzerland taken from lists in Wikipedia7 and
the hierarchical information of federal states and states.
The status information will be given by three values,
a raw value, a forecast prediction, and a target over
a time period of one year on a monthly basis. A
sample is shown in Table 2. While this may seem
like an immense simplification, we will see in 4.2 that
there are still many challenges. The associated tasks of
information retrieval are grouped in by the four levels
of task complexity introduced in the foundation section
(L0 = reading out value, L1 = simple operations on
values, L2 = identification of values by criteria and L3 =
comparison of values and examples are given in Table 3.

On the first level L0, there is the retrieval of
values, forecasts, or targets for a specific location and
optionally, a given time. If no time is given, the
latest entry should be used. If a location is only

7https://de.wikipedia.org/wiki/Liste_
der_St%C3%A4dte_in_Deutschland, https://de.
wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_
%C3%96sterreich, https://de.wikipedia.org/wiki/
Liste_der_St%C3%A4dte_in_der_Schweiz

Page 4067

https://rodrigopivi.github.io/Chatito/
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_Deutschland
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_Deutschland
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_%C3%96sterreich
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_%C3%96sterreich
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_%C3%96sterreich
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_der_Schweiz
https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_der_Schweiz

specified via federal state or state, then the sum of all
its entries is considered. The next level L1 adds basic
aggregation in time. For example, “in Q2 of 2019” or
“from April to September”. If no specific time range
is given, the last quarter is assumed. The level L2
asks for lists of the top k best or worst performers
comparing the value to the target or forecast’s value.
Like L0, a location or a time can be specified, with
the same default behavior when omitted. On the
final level L3, a comparison of different locations at
a specific time or different time points at a specific
location needs to be done. These levels approximately
correspond to the number of conceptual operations a
user would need to perform if only the raw table is
available. L0 is access and optionally summation,
L1 requires the filtering and summation of entries,
L2 needs calculating intermediate values, sorting, and
slicing and the last level L3 combines operations of
L1 and L2. While a more sophisticated metric for a
cognitive load such as [12] potentially allows for deeper
insights, our approximated categorization, with its
intuitive notion is sufficient for our evaluation. Overall,
the tasks (and their complexity) easily correspond to
activities in industrial applications. Especially to KPI
operations or work with process variables in different
plant segments, relevant for production in chemical
processes. The tasks on the first two levels represent
generic requests to obtain data and perform simple
aggregation. Most industrial applications have such
tasks in general; the properties such as names, locations,
and time frames will always be domain-specific and
thus differ naturally. Our data set has over 2000
unique locations and even duplicated names for cities,
comparable to data set of small to mid-sized industrial
setups. The more complicated tasks (L2 and L3) do
not carry over directly. In our case, we selected these
because our testers have backgrounds in data science
and analytics, and thus, these tasks are familiar to
them. In general, similar tasks that require aggregation,
ranking, sorting, slicing, and comparison can be found
across industrial applications. Similarly, to the previous
deviations in properties, here, the goal and order of such
operations are always very domain-specific and thus
differ. Still, the dynamic arrangement and the variations
in parameters are comparable to our tasks on L2 and
L3. Summarizing, we see in our constructed tasks a fair
and unbiased representation of activities that arise in the
context of industrial applications.

4.2. Building the Demonstrator

Next, we describe our experiences in combining the
components of Section 3.1.

We started with RASA to identify intents and extract
relevant entities. It requires a set of examples in order
to build a model. We did not have a historic set of
recorded actions. Thus we needed to generate a training
set. As suggested in the documentation of RASA, we
used Chatito (https://rodrigopivi.github.
io/Chatito/) to create a sample file. Chatito uses
a DSL to specify the structure of phrases and the list
of available entities. A challenge appeared in the
identification of locations. For the training, the defined
entities for city, federal state, and state in the same way
as the database columns. We expected that RASA is
able also to identify the type of the location. However,
the skew distribution of names, i.e. 3 states, 49 federal
states, and over 2400 cities, leads to the bias in the
training set that RASA will most likely see cities as
standalone locations. Similarly, for phrases like “city
in . . .”, a federal state is much more likely than a state.
We decided to keep that limitation and make a proper
identification in the service level. Furthermore, we
configured RASA to flexibly extract entities and not rely
on fixed lists. Thus, typos in names are not corrected.

This trade-off in RASA that types of locations may
be inconsistent and that inputs differ from the technical
source labels leads to creating an auxiliary module
in the service layer. This module normalizes given
locations and time frames. In our case, the underlying
SQL database did not support full-text search. We
implemented a periodical crawl of the entries, built a
local data set, and used an established library for fuzzy
searches. Our backend to map intents to services is
written in NodeJS. Therefore we selected the library
Fuse.js8. As some of the city names have uncommon
forms, e.g. “Singen (Hohentwiel)”, “Falkenstein/Harz”
or “Eisleben, Lutherstadt”, we added a heuristic to
obtain a normalized form that humans use. Overall,
this strategy should cover most issues with misspellings
or deviations from technical labels in the database.
Unfortunately, this increase in convenience also
increases the level of ambiguity. The normalization
raises the number of truly duplicated names from the
original 13 to 30. The total number rises even to over
200 if we consider close matches, i.e. names with a
search score of less than 0.1. Most of these classes,
similar to the duplicates, have few members and are
expected. Examples are “Feldkirch” and “Feldkirchen
in Kärnten”, “Weingarten” and “Leingarten”, and
“Bendorf”,“Erbendorf” and “Dübendorf”. To our
surprise, there are also classes with more than 10 entries.
The maximum class has 93 members. It turns out
these cases are names that are sub-strings of other cities,
e.g. “Burg”, “Lingen” or “Stein”.

8https://fusejs.io/

Page 4068

https://rodrigopivi.github.io/Chatito/
https://rodrigopivi.github.io/Chatito/
https://fusejs.io/

The necessity and complexity of this auxiliary
module is clearly due to our specific data set. One can
expect that technical names in an industrial setup are
more homogeneous. While this is true for the underlying
specification, one can also expect that users tend to
use related abbreviations or made-up alternatives and
overall will make mistakes. A direct comparison is only
possible on specific data and thus is skipped. Based on
the testers’ feedback, it feels realistic with respect to
industrial setups in the process industries.

5. Evaluation

We describe our setup and our evaluation, first.
Followed by observations and lessons learned from the
agile development of the prototype and the evaluation.
The reported research roughly follows a design science
approach [13]. To explore the adoption topic of VAs
in the industry (Motive), we have decided to investigate
this topic from the user acceptance perspective based on
prototype implementations (Objective). VA prototype
design has been studied and resulted in the development
of an industry-oriented VA (Design and Development).
In the evaluation, we used a laboratory setup to explore
user acceptance of the developed VA prototype in a
comparative setup with other tools. With a focus on
qualitative data collection from participant observation,
semi-structured interviews with guiding questions, the
approach applies ideas from grounded theory [11].

5.1. Setup

The evaluation setup was as follows. Using snowball
sampling we identified 6 professionals who work in
industrial automation. All professionals were male
and have hands-on experience in process automation,
having positions in R&D and product development. The
goal was to capture process industry’s mindset, even
though the demonstrator presents generalized tasks. We
scheduled a meeting with every participant and gave a
short introduction to three systems, shown in Figure 2.
The first application is Excel, with the raw data used
for the demonstrator (Figure 2a). The user was allowed
to add filters, change the sorting, create pivot tables
and other means of auxiliary help. The second one is
a business intelligence implementation of the analytics
questions using Power BI (Figure 2b). Users were
allowed to freely interact with the UI, selecting different
inputs or time frames, but did not get administrative
permissions to change the general view. The third
application is our assistant demonstrator, accessible via
a web site either on a desktop PC (Figure 2c) or a mobile
phone (Figure 2d).

The participants spent ten minutes with each tool.

(a) Excel (b) Power BI

(c) Virtual Assistant (desktop)

(d) Virtual Assistant (mobile)

Figure 2: Screenshots of the different tools used in the
evaluation

The order of tool usage was random. The participants
had a sheet with tasks to be conducted with each
tool. They were asked to work on those tasks, but
also to explore the tool in general. During this time,
we observed them and took notes. After this, we
interviewed the participants and obtained a summary
of their experience in short statements. We asked
them to consider the difference between the systems in
their statements. Based on the field notes, we asked
additional questions, if we felt important situations were
not mentioned, or if we felt that there was a mismatch
between the response and our observation. Like this,
we strived for an alignment between field notes and
interviews. We iteratively generated clusters from
the data. The final clusters were organized regarding
technology acceptance and usability to address our
research question regarding potential reasons, why VAs
are not used in industrial setups. Here, we organized
using Nielsen’s five qualities of usability [24] and
perceived ease-of use and perceived usefulness as two
(connected) key factors of the technology acceptance
framework [9]. Only memorability was not considered,

Page 4069

as the setup did not provide any insights into this.

5.2. Analysis

We report our findings, using usability qualities,
perceived ease-of-use and perceived usefulness.

Learnability (Ease-of-use) The decision for speech
commands was the biggest challenge for all participants.
Even in our small and relatively homogeneous group of
testers, we saw a wide range of different formulations.
Frequently users mentioned that they were uncertain
regarding the commands the assistant was capable
of. Some testers used code-like patterns, like “sum,
value, Ladenburg, October, November, December”,
while others went for short descriptions using complete
sentences with polite forms, like “Hi there. Please, fetch
the values for Ladenburg. You should use the time frame
from October to December.” Once a list of example
phrases was provided, the variety decreased.

Interaction with Excel and Power BI did not require
further explanation, but was immediately possible. This
might be due to a bias in our tester group because Excel
and analytic tools, in general, belong to their utility belt.

Errors (Ease-of-use) The overall number of errors
with Excel and Power BI was smaller than with the
virtual assistant, due to the complexity of learning the
voice commands. Only few times the voice recognition
was not able to do the text-to-speech correctly. One
participant started to argue with the assistant “I told you
to show me the sum. Listen to me.”, which generated
new voice recognition errors. This humanization of
technology did not happen with Excel and Power BI.
An interesting observation was the boundary matching.
Two participants started to create new questions. “Let us
see whether you can answer ...” In a play-like process
they created new questions, slowly increasing question
complexity, until the system generated errors.

Satisfaction (Ease-of-use) The assistant was the
only tool that aroused curiosity. Observations like
testing the system boundaries or modifying questions,
just to get the response showed joy of use. Also for some
basic tasks, the immediate response was commented by
support, like “That was quick.” or “Thank you.” It is
unclear, whether curiosity and joy of success stay intact
for longer usage periods. The testers considered the VA
as modern, but some also stated that the topic is hype.
Excel and Power BI were considered a commodity.

Efficiency (Usefulness) The immediate response in
natural language from the VA was considered beneficial
in general. The feedback was very mixed concerning
the length of the spoken answer. Some preferred
to have just the answer, while others liked better
complete sentences with repetition of the question.

The overall tendency was at least neutral and mostly
positive. All testers had extensively worked with
Excel and analytic tools similar to Power BI. Thus
it is no surprise that these were considered as a true
baseline. Most participants stated that they would
use a VA for low to medium complexity tasks, if
available. The ability to work seamlessly in parallel
with the VA on the mobile phone and the task sheet
was noted positively. The often referenced cognitive
overhead [25] of switching between applications or the
requirement to translate expressions and intents was
noted by one participant: “This captures data from
different sources, right?”. The participants noted the
relevance of hands-free interaction and the options to
seamlessly embed interaction with other tools. One
considered that “In the future, this will be so good...”,
indicating that such systems are still considered to be in
early stage.

While all testers expected just the result, for
example, the number, the list of cities, or dates, they also
wanted to have a way validate the interpretation of the
input and the result easily. Again, complete sentences
with the repetition of the entities were perceived as
complicated.

Task Success (Usefulness)
Tasks regarding basic complexity questions were

solved very quickly with all tools. For medium and high
complexity tasks on the assistant, there was confusion
regarding the correct questions. Nevertheless, once the
question was identified, people were surprised by an
“answer exactly fitting to the question.” One stated that
the assistant is “simpler, when you know it”. From the
direct observations, how our testers interacted with the
VA, it became quickly apparent that an assistant can
provide immediate access to the required information in
general and that our limited prototype already serves this
purpose by addressing all complexity levels.

Summarizing, our evaluation indicates that our
VA is a capable tool to provide direct access to the
required information. The four complexity levels
can be addressed, although complex question requires
improvement – primarily due to verbose text answers
on level 3 and 4. We expect high user acceptance,
if a scenario is covered with clear question and
answer schemes, requiring good understanding of the
usage scenarios, close interaction monitoring and quick
improvements based on user feedback.

5.3. Lessons Learned During and After the
Implementation

The whole prototype was created by a small team
of five developers. They worked on it as a side project

Page 4070

over roughly four months. Early on, we adopted an
agile manner and used mocks and placeholders during
the development. We want to highlight a few items
that took us a little bit by surprise as they did not
appear during our scouting and research phase. Firstly,
proper architecture and integration scenarios. We used a
micro-service architecture due to the number of different
components and their individual scope. While the
general structure was very clear, trying to create a
stand-alone and an integrated VA on the same basis
did not work for us. Early on, we dropped the way
for an integrated version completely. Secondly, internal
communication paths, interruptions, and canceling are
challenging as different components provide different
results that are merged in the UI. Adopting finite
state machines (FSM) helped us to keep the overview.
Thirdly, the handling of non-success states and errors is
similar to the previous item, hard, and the corresponding
paths should be ideally never taken. We also used an
FSM-inspired approach and tried to cover the different
scenarios with tests. Even in our small prototype, we
noticed that a significant amount of time is invested here.
Finally, building a good language model. Having early
and continuous access to a realistic tester group is very
valuable and lead to steady improvements. Looking at
it from a scalability and extensibility point of view, we
expect that even a small number of supported tasks can
lead to a large number of phrases, and that is not always
possible to match a phrase to a single task uniquely.

6. Conclusion

VA or VUI systems become an increasingly usual
application type. Nevertheless, the systems are not
yet common in non-consumer facing domains. We
investigated this further with respect to the ability
of a state of the art system to address reading out
information typically required in information work and
the acceptance of the realization of these tasks by VAs.
For this purpose, we focused on tasks with different
complexity and conducted a user study, comparing the
acceptance of the VA compared to Excel and Power BI.

The available technologies cover the core necessities
for the development of virtual assistant applications:
speech recognition and synthesis, natural language
understanding, and intent definition with service
integration. The convenience for our industrial
setup was low, and we faced limitations early on.
Customization of speech recognition is necessary and
requires substantial effort. Furthermore, the entity
extraction from natural language in domains with many
variants and synonyms is difficult and will, in many
cases, require dedicated post-processing. Another

limitation of the considered domain is that most existing
components are cloud services. The development of
on-premise applications is possible, but the component
assortment is smaller and requires more configuration
effort.

The user study has shown that it is possible
to develop a virtual assistant for a given domain,
covering all 4 complexity levels with manageable effort.
Nevertheless, providing a first virtual assistant is just
a first step in an incremental development process.
Further design support for virtual assistants, like it
is available for a graphical user interface, would be
beneficial. Beyond this, we have identified a number
of lessons learned, which are likely to support user
experience and general user acceptance of a virtual
assistant.

The study showed that design of commands and
language seems to be a major obstacle for user
acceptance. Users felt most familiar with simple
requests, but once they had more complex goals it was
challenging to generate the request and have a response
of the right length and focus. Future research should
investigate language design for VAs further, especially
for tasks of higher complexity. Possible directions
are languages for formulating complex queries, as
we realized that people were quickly adjusting their
language to a shortened command language. Another
research direction could be the dynamic generation of
focused responses to queries. The goal should be
immediate and focused answers by a VA. This could
lower cognitive burden and position in contrast to
todays’ trend with BI tools to share complex charts or
tables which aggregate large amounts of information.
Next to language, we see a challenge in the close
investigation of the information workers’ workflows to
align a solution to daily work. The work presented
in this paper applies a system-comparative approach to
investigate VA acceptance. Future investigations should
also investigate VAs separately, to have an unbiased user
feedback regarding acceptance.

“Hello world” assistants are easy to implement.
Addressing high complexity tasks and addressing a
complex domain without the user losing orientation is
a bigger challenge. Despite the mentioned limitations,
the study participants enjoyed the simplified access
to information the system offered, and were looking
forward to future iterations the system. Therefore, we
see clear potential in these systems and the need for
further research.

References

[1] Amazon: Build Skills with the Alexa Skills Kit (2019)

Page 4071

[2] Ambite, J.L., Chaudhri, V.K., Fikes, R., Jenldns, J.,
Mishra, S., Muslea, M., Uribe, T., Yang, G.: Design
and implementation of the CALO query manager.
Proceedings of the National Conference on Artificial
Intelligence 2, 1751–1758 (2006)

[3] Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A.,
Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett,
P.N., Inkpen, K., Teevan, J., Kikin-Gil, R., Horvitz, E.:
Guidelines for human-AI interaction. In: Conference on
Human Factors in Computing Systems (2019)

[4] Baker, J.: Voice User Interfaces (VUI) — The Ultimate
Designer’s Guide (2018)

[5] Barker, P.: Wired for Speech: How Voice Activates the
Human-Computer Relationship. The Electronic Library
24(2) (mar 2006)

[6] Bentley, R., Hughes, J.A., Randall, D., Rodden,
T., Sawyer, P., Shapiro, D., Sommerville, I.:
Ethnographically-informed systems design for air
traffic control. In: Proceedings of the Conference on
Computer-Supported Cooperative Work. pp. 123–129.
Publ by ACM, New York, New York, USA (1992)

[7] Berdasco, López, Diaz, Quesada, Guerrero: User
Experience Comparison of Intelligent Personal
Assistants: Alexa, Google Assistant, Siri and Cortana.
Proceedings 31(1), 51 (2019)

[8] Campagna, G., Ramesh, R., Xu, S., Fischer, M.,
Lam, M.S.: Almond: The architecture of an
open, crowdsourced, privacy-preserving, programmable
virtual assistant. 26th International World Wide Web
Conference, WWW 2017 pp. 341–350 (2017)

[9] Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User
Acceptance of Computer Technology: A Comparison
of Two Theoretical Models. Management Science 35(8),
982–1003 (aug 1989)

[10] Engelbart, D.: Augmenting human intellect: a
conceptual framework, SRI Summary Report
AFOSR-3223. Engelbart, D. 1962, 1–65 (1962)

[11] Glaser, B.G., Strauss, A.L.: The Discovery of Grounded
Theory. Routledge (jul 2017)

[12] Ham, D., Park, J., Jung, W.: Model-based identification
and use of task complexity factors of human integrated
systems. Reliability Engineering and System Safety 100,
33–47 (2012)

[13] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design
science in information systems research. MIS Quarterly:
Management Information Systems 28(1), 75–105 (2004)

[14] Johnston, M., Chen, J., Ehlen, P., Jung, H., Lieske, J.,
Reddy, A., Selfridge, E., Stoyanchev, S., Vasilieff, B.,
Wilpon, J.: MVA: The multimodal virtual assistant. In:
SIGDIAL 2014 - 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, Proceedings
of the Conference. pp. 257–259 (2014)

[15] Jokinen, K., McTear, M.: Spoken Dialogue Systems.
Synthesis Lectures on Human Language Technologies
2(1), 1–151 (jan 2009)

[16] Kopp, S., van Welbergen, H., Yaghoubzadeh, R.,
Buschmeier, H.: An architecture for fluid real-time
conversational agents: integrating incremental output
generation and input processing. Journal on Multimodal
User Interfaces 8(1), 97–108 (nov 2013)

[17] Kouroupetroglou, G., Spiliotopoulos, D.: Usability
methodologies for real-life voice user interfaces.
International Journal of Information Technology and
Web Engineering 4(4), 78–94 (2009)

[18] Liao, Q.V., Hussain, M.M.U., Chandar, P., Davis, M.,
Khazaen, Y., Crasso, M.P., Wang, D., Muller, M., Shami,
N.S., Geyer, W.: All work and no play? Conversations
with a question-and-answer chatbot in the wild. In:
Conference on Human Factors in Computing Systems -
Proceedings. vol. 2018-April (2018)

[19] Lopatovska, I., Rink, K., Knight, I., Raines, K., Cosenza,
K., Williams, H., Sorsche, P., Hirsch, D., Li, Q.,
Martinez, A.: Talk to me: Exploring user interactions
with the Amazon Alexa. Journal of Librarianship and
Information Science 51(4), 984–997 (2019)

[20] Luger, E., Sellen, A.: "Like Having a Really Bad PA":
The gulf between user expectation and experience of
conversational agents. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
pp. 5286–5297. ACM, New York, NY, USA (may 2016)

[21] Machiraju, S., Modi, R.: Developing Bots with
Microsoft Bots Framework, vol. 0. Apress, Berkeley, CA
(2018)

[22] Microsoft: Übersicht Cognitive Services (2017)

[23] Mortensen, D.: How to Design Voice User Interfaces
(2019)

[24] Nielsen, J.: Usability 101. Nielson Norman Group
(2012)

[25] Oliver, N., Smith, G., Thakkar, C., Surendran,
A.: SWISH: semantic analysis of window titles
and switching history. In: Proceedings of the 11th
international conference on Intelligent user interfaces.
pp. 201–209. ACM Press (2006)

[26] Owda, M., Bandar, Z., Crockett, K.: Conversation-Based
Natural Language Interface to Relational Databases.
2007 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology -
Workshops (March 2015), 363–367 (nov 2008)

[27] Petraityte, J.: Build an AI voice assistant with Rasa Open
Source and Mozilla tools

[28] Pinker, S.: A Theory of Graph Comprehension. In:
Artificial intelligence and the future of testing, pp.
73–126. Lawrence Erlbaum Associates (1990)

[29] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.:
Voice interfaces in everyday life. In: Conference on
Human Factors in Computing Systems - Proceedings.
CHI ’18, vol. 2018-April. Association for Computing
Machinery, New York, NY, USA (2018)

[30] Schmidt, B., Siddharthan, S., Borrison, R., Cohen,
A., Dix, M., Gärtler, M., Hollender, M., Klöpper, B.,
Maczey, S., Siddharthan, S.: Industrial virtual assistants
- Challenges and opportunities. In: Adjunct Proceedings
of the UbiComp/ISWC 2018. pp. 794–801. ACM, New
York (2018)

[31] Watkins, D.: Global Smart Speaker Vendor & OS
Shipment and Installed Base Market. Tech. rep., Strategy
Analytics (2020)

[32] Weizenbaum, J.: ELIZA—A Computer Program For
the Study of Natural Language Communication Between
Man And Machine. Communications of the ACM 26(1),
23–28 (1983)

Page 4072

	Introduction
	Foundations
	Virtual Assistant Architecture
	Selected Components

	Research Virtual Assistant Demonstrator
	General Setup
	Building the Demonstrator

	Evaluation
	Setup
	Analysis
	Lessons Learned During and After the Implementation

	Conclusion

