
Demand Forecasting Intermittent and Lumpy Time Series: 

Comparing Statistical, Machine Learning and Deep Learning Methods 
 

 
Daniel Kiefer 

ESB Business School, Reutlingen University 

Daniel.Kiefer@Reutlingen-University.de 

Florian Grimm 

ESB Business School, Reutlingen University 

Florian.Grimm@Reutlingen-University.de 

 

Markus Bauer 

Karlsruhe Institute of Technology (KIT) 

Markus.Bauer3@Partner.Kit.edu 

 

Clemens van Dinther 

ESB Business School, Reutlingen University 

Clemens.van_Dinther@Reutlingen-University.de 

 

 

Abstract 
Forecasting intermittent and lumpy demand is 

challenging. Demand occurs only sporadically and, 

when it does, it can vary considerably. Forecast errors 

are costly, resulting in obsolescent stock or unmet 

demand. Methods from statistics, machine learning and 

deep learning have been used to predict such demand 

patterns. Traditional accuracy metrics are often 

employed to evaluate the forecasts, however these come 

with major drawbacks such as not taking horizontal and 

vertical shifts over the forecasting horizon into account, 

or indeed stock-keeping or opportunity costs. This 

results in a disadvantageous selection of methods in the 

context of intermittent and lumpy demand forecasts. In 

our study, we compare methods from statistics, machine 

learning and deep learning by applying a novel metric 

called Stock-keeping-oriented Prediction Error Costs 

(SPEC), which overcomes the drawbacks associated 

with traditional metrics. Taking the SPEC metric into 

account, the Croston algorithm achieves the best result, 

just ahead of a Long Short-Term Memory Neural 

Network. 

1. Introduction 

Demand forecasts are essential for most companies, 

indeed effective forecasts can represent a competitive 

advantage in decision support, as these forecasts are 

used as an input for production, transportation, sourcing, 

and inventory planning as well as strategic purposes 

such as supply chain planning [1]. 

A demand forecast is the best estimate of a future 

demand for a defined period [2]. Any error in 

forecasting can be particularly harmful to companies, 

hence forecasts must be as precise as possible [1, 3]. If 

forecasts are considerably higher than the actual 

demand, the company will produce or stock too many 

products that cannot be sold, which leads to increased 

costs and tied-up capital. In turn, forecasts lower than 

the actual demand lead to a loss of business 

opportunities due to a lower service level resulting from 

longer lead times [1]. 

Intermittent time series are characterized by multiple 

non-demand intervals. Demand occurs sporadically but 

in more or less equal amounts [4, 5]. Major differences 

in the size of the actual demand are related to lumpy 

time series [6, 7]. Figure 1 illustrates these demand 

patterns. Such demand patterns are especially difficult 

to forecast [8]. However, they are very common in real 

business, for example in heavy machinery, respective 

spare parts, aircraft service parts, electronics, maritime 

spare parts [9], automotive spare parts [10] as well as 

(fashion) retailing [11]. 

 
Figure 1. Intermittent and lumpy 

demand pattern [7] 

In order to predict intermittent and lumpy time 

series, different approaches have been used with varying 

degrees of success. These include statistical methods 

such as Holt-Winters [12], or machine learning methods 

such as Support Vector Regression (SVR) [13] as well 

as deep learning methods such as Long Short-Term 

Memory (LSTM) Neural Networks [14]. However, it 

remains unclear which meta-level method or specific 

model is most suitable for forecasting intermittent and 
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lumpy time series. This is because intermittent and 

lumpy time series have not yet been sufficiently 

researched [15] and also as a result of the historical lack 

of appropriate metrics, which were deliberately 

developed for assessing demand forecasts of this time 

series pattern [7].However, in saying this, the research 

field of machine learning and deep learning has also 

evolved rapidly. 

In this work, we apply methods from statistics, 

machine learning and the latest deep learning techniques 

to forecast demand of intermittent and lumpy time series 

and we analyze the advantages and disadvantages of 

each method in accordance with the Design Science 

Research (DSR) [16]. 

In addition, we assess the forecasts with a novel 

metric, the Stock-keeping-oriented Prediction Error 

Costs (SPEC), developed by Martin et al. [7] to evaluate 

demand forecasts of intermittent and lumpy time series. 

Evaluation using other metrics, for example the Mean 

Absolute Error (MAE), can lead to a disadvantageous 

selection of models, primarily because these do not 

account for (i) horizontal and vertical shifts in 

predictions over the forecasting horizon, (ii) temporal 

interaction between predictions of different points in 

time, and indeed (iii) opportunity or stock-keeping costs 

as regards units outstanding or in stock [7]. Moreover, 

we calculate the intermittence and lumpiness ratio of 

time series to gain a deeper understanding of which 

characteristics or magnitude of intermittence and 

lumpiness some methods perform better than others. For 

this purpose, a real-world data set is used. 

The remainder of this work is organized as follows. 

In Chapter 2, we review the existing literature on 

forecasting methods, evaluation metrics and 

measurement methods for intermittent and lumpy time 

series. Furthermore, the existing research gap is 

highlighted. Chapter 3 addresses the experimental 

design of this article to deliver answers to the identified 

research gap. In Chapter 4, the results of the statistical, 

machine learning and deep learning prediction methods 

are analyzed using a real-world data set. Special 

attention is devoted to the novel SPEC metric and the 

measured degree of intermittency and lumpiness of the 

time series. Finally, we provide a conclusion in Chapter 

5. 

2. Related Work and Research Gap 

For the analysis and preparation of the related work, 

the guidelines of Levy and Ellis [17] as well as Webster 

and Watson [18] are followed. Thus far, many different 

methods from statistics, machine learning and deep 

learning have been used to forecast intermittent and 

lumpy time series. In the following, promising models 

to forecast demand of intermittent and lumpy time series 

within the method categories are discussed in more 

detail. 

Croston [4] examined forecasting methods for 

intermittent time series and concluded that the 

exponential smoothing methods used thus far are not 

particularly well suited. Based on this finding, he 

developed his own method, which is now used as a 

baseline in numerous analyses. In their investigations, 

Syntetos and Boylan [19] came to the conclusion that 

Croston’s proposed method is biased and they therefore 

developed a new method. Further adjustments have 

since been made to Croston’s original algorithm [20]. 

Despite some criticism, empirical studies have shown 

that Croston’s method is superior to conventional 

methods [19, 21]. Other statistical forecasting methods 

that should be mentioned here include Holt-Winters [22, 

23], Theta [24] as well as Autoregressive Integrated 

Moving Average (ARIMA) [25]. In the M4 

Competition, these three methods are used as 

benchmarks on account of their good performance in 

time series prediction [26]. 

A machine learning approach that is frequently used 

and delivers good results in time series forecasting is 

Support Vector Regression (SVR) [27]. Hua and Zhang 

[28] combined the method with a logistic regression 

approach in which SVR predicted the occurrences of 

non-zero demand of spare parts. A study by 

Sapankevych and Sankar [29] demonstrated that it 

outperformed traditional statistical methods as well as 

deep learning techniques such as Multi-Layer 

Perceptron (MLP). Another machine learning method 

which was shown to achieve good forecasting results for 

time series is the XGBoost, an eXtreme Gradient 

Boosting framework [30]. It was the best method for 

electricity consumption prediction in a study by Deng et 

al. [31]. A quite similar machine learning method, the 

Random Forest, has also been successfully applied to 

forecasting electricity load, and has outperformed 

traditional statistical methods [32]. 

Deep learning methods are already successfully used 

for predicting time series and they have been shown to 

outperform classic statistical methods as well as 

machine learning methods [3, 33–36]. LSTM Neural 

Networks represent a further development of Recurrent 

Neural Networks (RNN), and were used for inventory 

forecasting by Abbasimehr et al. [35]. The results of the 

study on Neural Networks for demand forecasting 

intermittent time series by Kourentzes [3] were 

ambiguous due to different evaluation metrics. 

According to classic evaluation metrics such as the 

MAE, by comparison, the Neural Network was 

evaluated to be worse than the forecast result of Croston. 

However, where the service level was included as an 

evaluation metric, the Neural Network performed 

considerably better. Therefore, not only accuracy 
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metrics but also inventory metrics for insightful findings 

of intermittent demand are recommended [3, 33]. 

The selection of the evaluation metric is essential for 

the assessment of the forecast. Depending on the 

selected metric, the forecast or, specifically, its 

evaluation, can vary considerably. Choosing the suitable 

metric is exceptionally difficult, however. For example, 

the common Mean Absolute Percentage Error (MAPE) 

produces infinite or undefined values when actual 

values are zero, which are an integral part of intermittent 

time series [37]. 

Evaluating demand forecasts with traditional 

accuracy metrics can also result in misleading findings 

[3]. Hence, a novel metric, the SPEC, has been 

developed especially for evaluating demand forecast of 

intermittent and lumpy time series [7]. It closes the 

existing gaps mentioned in Chapter 1 of the RMSE, 

MASE, sMAPE, MAPE, MSE, MAE and so on. 

Therefore, a novel investigation of forecast methods 

with this evaluation metric is necessary. 

Furthermore, it is important to analyze under what 

intensity of intermittency and lumpiness the different 

methods achieve better or worse results. To date, no 

studies have shown at what level of intermittency or 

lumpiness different methods achieve the greatest 

accuracy. Syntetos and Boylan [38] as well as Kostenko 

et al. [39] and Williams [40] have all dealt with the 

classification of demand patterns, especially 

intermittent and lumpy demand patterns. For the 

purposes of directly calculating a ratio for each time 

series regarding intermittence and lumpiness, Williams 

[40] is most suitable. 

Nikolopoulos [15] also highlights the existing 

research gap in the context of studying demand 

forecasting models in the field of intermittent and lumpy 

time series. At the same time, the methods in 

Information Systems are rapidly developing. Hence, 

new developments in the field of deep learning should 

also be considered. The identified research gap leads to 

the following research questions: 

RQ 1: Do modern advanced deep learning methods 

achieve considerably better forecasts than classic, 

established statistical methods and machine learning 

methods in forecasting demand for intermittent and 

lumpy time series? 

RQ 2: Under which time series characteristics, in 

particular the degree of intermittent behavior and 

lumpiness of the time series, do deep learning methods 

achieve superior results and vice versa? 

 
1The Makridakis Competitions are a series of open competitions 

organized by Spyros Makridakis to evaluate and compare the accuracy 
of different forecasting methods. 

We conduct an empirical study using a publicly 

available data set that includes intermittent and lumpy 

time series. Subsequently, promising forecasting 

methods are examined using a novel suitable evaluation 

metric. The time series are then divided into classes 

based on the degree of intermittence and lumpiness. 

Thus, it is not only possible to identify the best, overall 

method, but also to analyze which methods are 

specifically suitable for different magnitudes of 

intermittence and lumpiness. 

3. Suggested Experimental Design 

In order to answer the aforementioned research 

questions and expand upon existing investigations, we 

propose an experimental design that is adapted to the 

shortcomings mentioned in the previous chapters 

regarding an appropriate metric as well as the 

highlighted methods. Figure 2 illustrates the suggested 

experimental design. 

For reasons of transparency, publicly available data 

is used. The M5 Competition1 is particularly suitable for 

this purpose, as it primarily contains intermittent and 

lumpy time series. The data is provided by Walmart and 

it comprises around 100,000 hierarchical daily time 

series at the SKU level with a length of 1,941 time-steps 

for each series (even if external feature data is available, 

we only use the univariate time series in this 

experiment). 

 
Figure 2. Suggested experimental design 

These time series are classified using the approach 

described by Williams [40]. In order to calculate the 

intermittence degree of a time series, the following 

formula is used: 

 
1

𝜆 �̅�
 (1) 

with: 

• 𝜆 mean (Poisson) demand arrival rate 

• �̅� the mean lead time duration 
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The higher the ratio, the more intermittent the 

demand. In order to calculate the lumpiness, the 

following formula is proposed: 

 
𝐶𝑉2(𝑥)

𝜆 �̅�
 (2) 

with: 

• 𝐶𝑉2(𝑥) squared coefficient of variation of 

demand sizes 

For the cut-off values, we adopt the values proposed 

by Williams, although we do not split Class D into D1 

and D2 but rather retain one class (D). Figure 3 below 

illustrates the cut-off values and the resulting classes. 

Time series classified with an A show little 

intermittence and lumpiness, B show intermittence, 

while C have frequent demands of widely-varying sizes 

(lumpiness), and D are highly intermittent and lumpy 

[40]. 

 
Figure 3. Categorization scheme [40] 

Figure 4 displays the classification of all-time series 

in the M5 Competition. As expected, there are fewer 

time series in Class A because it is a data set specifically 

for intermittent and lumpy time series. If Class A is not 

considered, the other classes are relatively 

homogeneously distributed. 

 
Figure 4. Intermittence and lumpiness 

classification 

30 time series are randomly drawn from each class 

(in total 120 time series are considered) with the numpy 

function random.choice, which are then predicted by the 

methods presented below (before transferring the data 

as an input to the models they are scaled using the 

sklearn.StandardScaler). 

As suggested by Bergmeir et al. [41], we evaluate 

the demand forecasts from the models on a rolling basis. 

In our experimental design, we operate on a four-fold 

basis. Figure 5 displays this approach. 

The 30 randomly-chosen time series are predicted 

using statistical, machine learning and deep learning 

methods. It should be noted that the forecasts are made 

on a rolling basis as shown in Figure 5, in which the next 

28 days are predicted. These forecasts are evaluated 

with the following metrics and the average value for the 

four-folds are calculated and discussed in Chapter 4. 

 
Figure 5. Forecasting on a rolling window 

In Chapter 2, we highlighted the importance of a 

suitable metric for evaluating the prediction of 

intermittent and lumpy time series in demand 

forecasting. In this analysis we calculate two evaluation 

metrics: first, the SPEC [7], and second, the MASE [42]. 

The ranking for the evaluation of the forecasting 

methods is based on the SPEC, in line with the 

arguments made in Chapters 1 and 2. 

𝑆𝑃𝐸𝐶𝑎1,𝑎2 = 

1

𝑛
∑ ∑ (𝑚𝑎𝑥 [0; 𝑚𝑖𝑛 [𝑦𝑖; ∑ 𝑦𝑘 − ∑ 𝑓𝑗

𝑡

𝑗=1

𝑖

𝑘=1

] × 𝑎1; 𝑚𝑖𝑛 [𝑓𝑖; ∑ 𝑓𝑘 − ∑ 𝑦𝑗

𝑡

𝑗=1

𝑖

𝑘=1

] × 𝑎2] × (𝑡 − 𝑖 + 1)

𝑡

𝑖=1

𝑛

𝑡=1

 (3) 

with: 

• 𝑛 length of time series 

• 𝑦𝑡  actual demand at time t 

• 𝑓𝑡 corresponding forecast 

• 𝑎1 𝜖 [0, ∞] opportunity cost 

• 𝑎2 𝜖 [0, ∞] stock-keeping cost 

Martin et al. [7] recommend selecting 𝑎1 and 

𝑎2 such that their sum is 1 (suggested relationship 𝑎1  = 

1- 𝑎2 ). In the case study the authors conclude that 𝑎1 =
0.75 and 𝑎2 = 0.25 are effective parameters for the 

evaluation of demand forecast. For further explanation, 

we strongly recommend the article by Martin et al. [7]. 
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The MASE [42] serves merely as a further comparison 

and basis for discussion. 

𝑀𝐴𝑆𝐸 =  𝑚𝑒𝑎𝑛(|
𝑒𝑡

1

𝑛−1
∑ |𝑌𝑡−𝑌𝑡−1|𝑛

𝑡=2

|) (4) 

with: 

• 𝑌𝑡 observation at time t 

• 𝐹𝑡 forecast of 𝑌𝑡 

• 𝑒𝑡 forecast error for the period 

(𝑒𝑡 =  𝑌𝑡 − 𝐹𝑡  ) 
• 𝑡 = 1, … 𝑛 

• 𝐹𝑡 =  𝑌𝑖−1 (one-step naïve forecast 

method) 

When MASE < 1, the proposed method results in 

smaller errors than the one-step naïve forecast method. 

Martin et al. [7] note that the interpretability of the 

MASE is difficult, especially in the context of demand 

forecasts of intermittent and lumpy time series. Through 

the comparison with the one-step naïve forecast, which 

will predict many zero values, the MASE value can be 

>1, although occurring demand was never correctly 

predicted by the naïve forecast, only the non-occurring 

demand (zero values). 

The following paragraphs present the models from 

the methods statistics, machine learning and deep 

learning that are used for the proposed experiment. The 

models were selected based on their forecasting ability 

for intermittent and lumpy time series. These are widely 

used in the literature and also to answer the research 

questions in this article. The results of the models are 

presented in Chapter 4. Table 6 in Chapter 7 contains 

the selected parameters for the respective models to 

forecast demand (for parameters that are not listed, the 

default value is used). 

Croston’s [4] method is a statistical method 

developed to forecast demand of intermittent time 

series. Initially, the average size of demand is estimated 

using exponential smoothing. Next, the average interval 

between demands is calculated. This is then used in the 

form of a constant model to predict future demand. It 

should be pointed out that the Croston method does not 

forecast probable periods with non-zero receivables. 

This method assumes that all periods have demand with 

equal probability. It uses exponential smoothing to 

smooth the interval between demand and non-zero 

demand separately, but updates both only when there is 

non-zero demand. The in-sample adjustment and point 

forecast are then essentially the ratio of the smoothed 

non-zero demand divided by the time interval between 

the demands. 

The Holt-Winters [22, 23] method is a triple 

exponential smoothing approach. Gamberini et al. [12] 

used it to forecast sporadic demand pattern successfully. 

In our experiment we use the model from the library 

statsmodels.tsa.holtwinter. 

The ARIMA is a well-known forecasting method 

used both by scholars and in business applications. 

ARIMA models are linear, time-discrete models for 

stochastic processes. They are primarily used for 

statistical forecasting of time series, especially in 

economics, social sciences and engineering [25]. In our 

experiment we use the Auto-ARIMA model from the 

library pmdarima and the imported auto_arima. 

XGBoosting [30] is a sequential technique that 

works on the principle of an ensemble. It combines a 

number of weak learners and offers improved 

forecasting accuracy. In our experiment we use the 

model from the library xgboost and the imported xgb. 

Random Forest [43] is a classification method 

consisting of several uncorrelated decision trees. All 

decision trees have grown under a certain type of 

randomization during the learning process. For a 

classification, each tree in that forest is allowed to make 

a decision and the class with the most votes decides the 

final classification. Random Forests can also be used for 

regression; hence, it is possible to use the Random 

Forest for time series prediction. In our experiment we 

use the model from the library sklearn.ensemble and the 

imported Random-Forest-Regressor. 

A Support Vector Machine (SVM) is mainly used as 

a classification method such as Random Forest but there 

is also the possibility for a regression, meaning both can 

be used for time series forecasting. Pai et al. [13] used 

and compared an SVM-Regression for forecasting 

seasonal time series. They concluded that an SVM is 

well-suited for this type of task. In our experiment we 

use the model from the library sklearn.svm and the 

imported SVR. 

An MLP consists of more than one layer and 

neurons. The simple perceptron is a simplified artificial 

Neural Network first introduced in 1958 [44]. The basic 

version consists of a single artificial neuron with 

adjustable weightings and a threshold value. It converts 

an input vector into an output vector and thus represents 

a simple associative memory. In our experiment we use 

the model from the library sklearn.neural_network and 

the imported MLP-Regressor. 

LSTM Neural Networks are often used to forecast 

time series. Due to their storage capacity and sequential 

cell operation, they are particularly suitable. They 

consist of one input, one forget, one remember gate as 

well as one output gate. In this way, in contrast to 

conventional Recurrent Neural Networks (RNNs), 

LSTMs enable a kind of memory of past experiences. 

Abbasimehr et al. [35] used LSTMs with great results in 

demand forecasting time series. In our experiment we 

use the model from the library tensorflow 2.0. Given the 

good prerequisites of LSTMs, two models are 
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developed and evaluated in Chapter 4. The second 

model receives an additional LSTM layer to analyze 

how and to what extent further layers and neurons can 

improve the prognosis. 

4. Results 

Table 1 below provides the ranks of the tested 

models evaluated with the SPEC for all forecasted time 

series (ranking is based on SPEC, see Chapter 3). 

Considering the novel SPEC (a lower value is better), it 

is clear that the statistical Croston algorithm performs 

best. Even the second-best model, the LSTM, has a 26% 

higher score. 

Comparing the result with a classic evaluation 

metric, the MASE (a lower value is better), the LSTM 

has a 54% lower value and is therefore superior 

compared to Croston. At the same time, the MASE 

value from the LSTM is < 1 and thus better than the 

naïve forecast. 

Table 1. Result of all classes 
 Ø SPEC  Ø MASE  Rank 

Statistic      

   Croston 4.75 (0%) 2.15 (0%) 1 

   Holt-Winter 7.41 (56%) 1.08 (50%) 4 

   Auto-ARIMA 6.93 (46%) 1.04 (52%) 3 
Machine Learning      

   Random Forest 8.19 (73%) 1.14 (47%) 5 

   XGBoost 12.01 (153%) 1.13 (48%) 9 
   Auto-SVR 9.98 (110%) 1.10 (49%) 7 

Deep Learning      

   MLP 10.15 (114%) 1.66 (23%) 8 
   LSTM 5.96 (26%) 0.98 (54%) 2 

   LSTM-2 8.57 (81%) 1.04 (52%) 6 

It is surprising that the LSTM-2 achieves worse 

results than the LSTM considering the SPEC. It seems 

that the additional layer with 28 neurons could not 

enhance the quality of the demand forecast in this setup. 

On the other hand, the LSTM-2 achieves the second best 

MASE value and is on par with the Auto-ARIMA 

model. Both achieved a 52% lower score than the 

Croston algorithm and are therefore better. However, 

regarding demand forecast the SPEC is more suitable 

for the selection of the best adequate model. 

Taking this metric into account, the Auto-ARIMA 

comes in third place and the Holt-Winter algorithm in 

fourth place. The statistical methods thus dominate the 

upper ranks compared to the other methods. 

The deep learning methods perform better on 

average with the SPEC metric than the machine learning 

methods. An exception is the Random Forest, which is 

in fifth place compared to all methods, thus better than 

the MLP as well as the LSTM-2. 

Comparing the MASE values, all methods are 

relatively close together. Only the Croston algorithm 

and the MLP scored particularly low. The remaining 

models achieve a better value than Croston within the 

range of 47–54%. Considering the SPEC metric, a 

striking result is made by the statistical methods: 

overall, they rank first. Deep learning ranks second and, 

overall, machine learning methods rank third. 

In the following, the individual forecast results of the 

four classes according to Williams are discussed. This 

should provide a better understanding of which models 

can handle which degree of intermittency and 

lumpiness, as well as how well the models are able to 

forecast them. 

Table 2 presents the ranks for the tested models 

considering the SPEC of the classified time series A 

(low intermittence and low lumpiness). Croston as well 

as the LSTM model did not change the rank, but the 

percentage differences declined and the result of the 

LSTM is now even closer to the best model, Croston. 

Croston’s lead is smaller in Class A compared to the 

other classes. The Holt-Winter and Auto-ARIMA 

models switched ranks. Thus, Holt-Winters triple 

exponential smoothing approach worked better for time 

series which are not intermittent and not lumpy (Class 

A) compared to the Auto-ARIMA. In this time series 

Class A, the LSTM-2 does not profit from the additional 

LSTM layer. 

Table 2. Class A 
 Ø SPEC  Ø MASE  Rank 

Statistic      

   Croston 2.02 (0%) 1.85 (0%) 1 
   Holt-Winter 3.45 (71%) 1.06 (43%) 3 

   Auto-ARIMA 3.76 (86%) 1.03 (44%) 4 

Machine Learning      
   Random Forest 4.29 (112%) 1.04 (44%) 7 

   XGBoost 5.25 (160%) 1.16 (37%) 9 

   Auto-SVR 4.05 (100%) 1.00 (46%) 6 
Deep Learning      

   MLP 4.31 (113%) 1.54 (17%) 8 

   LSTM 2.24 (11%) 0.96 (48%) 2 

   LSTM-2 3.99 (97%) 1.03 (44%) 5 

The results of Class B (intermittent) can be seen in 

Table 3 below. 

Table 3. Class B 
 Ø SPEC  Ø MASE  Rank 

Statistic      
   Croston 10.42 (0%) 1.59 (0%) 1 

   Holt-Winter 13.45 (29%) 1.16 (27%) 4 

   Auto-ARIMA 12.32 (18%) 1.12 (29%) 2 
Machine Learning      

   Random Forest 17.35 (67%) 1.27 (20%) 6 

   XGBoost 23.21 (123%) 1.20 (24%) 9 

   Auto-SVR 20.11 (93%) 1.09 (32%) 7 

Deep Learning      

   MLP 20.97 (101%) 1.49 (6%) 8 
   LSTM 12.38 (19%) 1.14 (28%) 3 

   LSTM-2 16.82 (61%) 1.07 (33%) 5 
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Regarding the SPEC values, Croston is again on the 

first rank. However, the Auto-ARIMA achieved a 

slightly better result than the LSTM with a 1% lower 

value. In this class, the Auto-ARIMA is also better than 

the LSTM considering MASE. The lowest MASE value 

was achieved by the LSTM-2, which ranks fifth for the 

more relevant SPEC. 

Table 4 presents the results for Class C, which 

contains the lumpy time series. Croston’s algorithm also 

achieves the best result measured by SPEC in this class. 

The LSTM network comes second with a 45% worse 

SPEC value. The Random Forest achieves third place 

with a 72% higher SPEC value compared to Croston. 

Clearly, Random Forest performs considerably better in 

this class than XGBoost and Auto-SVR. The other 

models achieve twice to three times worse results than 

Croston. If we consider the traditional MASE metric, 

the LSTM achieves the best (lowest) value and is the 

only model to achieve a value < 1. On average, the other 

models have a value about 50% better than Croston. It 

is noticeable here that the MLP performs particularly 

poorly. 

Table 4. Class C 
 Ø SPEC  Ø MASE  Rank 

Statistic      
   Croston 5.04 (0%) 2.18 (0%) 1 

   Holt-Winter 9.90 (96%) 1.07 (51%) 5 

   Auto-ARIMA 9.15 (81%) 1.04 (52%) 4 
Machine Learning      

   Random Forest 8.65 (72%) 1.15 (47%) 3 

   XGBoost 15.05 (198%) 1.10 (49%) 9 
   Auto-SVR 12.35 (145%) 1.06 (52%) 8 

Deep Learning      

   MLP 11.45 (127%) 1.68 (23%) 7 
   LSTM 7.29 (45%) 0.97 (56%) 2 

   LSTM-2 11.12 (121%) 1.04 (52%) 6 

Table 5 provides the results for class D, which 

consists of intermittent and lumpy time series. Across 

all classes, Croston always achieves the lowest SPEC 

value compared to the other machine learning and deep 

learning models. With a 34% gap, the LSTM achieves 

second place. While the LSTM-2 did not perform 

particularly well in the other classes, it took third place 

in this class, with a 56% gap to Croston. Of the machine 

learning models, it is mainly the Random Forest that 

performs relatively well, ranking in fourth with a 64% 

worse score compared to Croston. The Auto-ARIMA 

model also performs relatively well in this class, with a 

66% worse result than Croston. Yet it also achieves the 

lowest value, also < 1, in terms of the MASE metric. All 

other models achieve values >= 1, whereby both LSTM 

models stand out positively with the lowest MASE 

values after the Auto-ARIMA. 

 

Table 5. Class D 
 Ø SPEC  Ø MASE  Rank 

Statistic      
   Croston 1.51 (0%) 3.00 (0%) 1 

   Holt-Winter 2.83 (88%) 1.03 (66%) 6 

   Auto-ARIMA 2.49 (66%) 0.97 (68%) 5 
Machine Learning      

   Random Forest 2.46 (64%) 1.11 (63%) 4 

   XGBoost 4.54 (202%) 1.05 (65%) 9 
   Auto-SVR 3.40 (126%) 1.27 (58%) 7 

Deep Learning      

   MLP 3.87 (157%) 1.91 (36%) 8 
   LSTM 2.02 (34%) 1.00 (67%) 2 

   LSTM-2 2.35 (56%) 1.02 (66%) 3 

Based on the results presented, it is evident that the 

Croston algorithm is well suited to demand forecasting 

of intermittent and lumpy time series. It has a 

considerably lower stock prediction error cost compared 

to the other models. Furthermore, the computational 

time is very low compared to the deep learning methods 

and the handling is simple, which also makes it well 

suited to demand forecasting. 

5. Conclusion 

According to the current state of research it is 

unclear which methods from statistics, machine learning 

and deep learning are well suited to predict the demand 

for intermittent and lumpy time series. Past research has 

mostly compared only a few methods, and traditional 

metrics have been used to evaluate the models. These 

are not suitable for this problem and lead to the 

disadvantageous selection of models. At the same time, 

it is important to understand the results of the models in 

relation to the degree of intermittency and the degree of 

lumpiness. 

One main contribution of this work is the analysis of 

the performance of statistical, machine learning and 

deep learning methods to forecast intermittent and 

lumpy time series. To evaluate the performance a novel 

metric, the SPEC, developed for the purpose of 

evaluating demand forecasts of intermittent and lumpy 

time series was used. As a further basis for comparison, 

the MASE was calculated. In order to deliver more 

insights about the behavior of the methods, the time 

series were also classified by the level of intermittence 

and lumpiness. Therefore, it was possible to examine the 

results in more detail and make statements about the 

degree of intermittency and lumpiness, as well as which 

models perform better under which circumstances. The 

M5 Competition data set was used to provide empirical 

evidence of the performance from the assessed methods. 

Referring to RQ 1 of Chapter 2, it can be argued that 

in our analysis, modern deep learning methods, and 

especially LSTMs, achieved good but not the best 
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results. The Croston algorithm achieved the best results 

considering the SPEC. 

For RQ 2 in Chapter 2, the results of the established 

classes were considered in relation to the degree of 

intermittency and lumpiness. In the established Class D 

with intermittent as well as lumpy time series, deep 

learning procedures did not achieve directly superior 

results. RNN-specific LSTM architectures achieved 

second and third place but Croston’s algorithm achieved 

the best results. In Class C with lumpy time series, 

Croston also placed first and LSTM architecture second 

while third place was taken by the Random Forest model 

with a 76% worse result compared to Croston. Class B 

with intermittent time series was again dominated by 

Croston. With a result 18% worse than Croston, the 

Auto-ARIMA method took second place here. The 

LSTM architecture was slightly worse with 19%. 

Across all of the time series, it is clear that the models 

from the statistical area achieved very good results. 

From the area of deep learning, the LSTM architecture 

is to be mentioned. The machine learning models 

achieved below average results and could not prevail 

over the statistical or deep learning models with the 

exception towards the MLP, which achieved poor 

results. 

As far as MASE is concerned, the results differ from 

those of the SPEC metric, because in many cases 

machine and deep learning models achieve better results 

than statistical models. However, the traditional MASE 

metric has major drawbacks in selecting the best model 

in the context of demand forecasts in case of intermittent 

and lumpy time series (see Chapters 1 and 2). 

By developing the SPEC metric, Martin et al. [7] 

have made an essential contribution, inspiring us to use 

it to perform further in-depth detailed analysis in the 

context of demand forecasting of intermittent and lumpy 

time series. The scholars’ research focused on the newly 

developed metric itself, while in our case this metric is 

used for a new comprehensive comparison of methods 

to demand forecast intermittent and lumpy time series. 

Furthermore, the data set we used is publicly accessible 

and the examined methods as well as the parameters are 

also transparent. In addition, the classification of time 

series based on their degree of intermittency and 

lumpiness provides further important contributions to 

understand the suitability of a model. 

The presented results of this holistic study help to 

better understand forecast methods in the context of 

demand forecasting intermittent and lumpy time series. 

Demand forecasting is highly relevant in the area of 

logistics and supply chain. Through the analysis of nine 

forecast models with the novel metric SPEC it could be 

shown that statistical forecast methods can achieve 

greater results than with the described machine learning 

and deep learning methods. 

Our work provides new important insights, which 

are partly limited for various reasons and require further 

research. Due to the idea of transparency, a publicly 

accessible data set was used. It contains time series from 

Walmart. This data could contain a bias regarding the 

distribution or similar. Furthermore, it should be 

emphasized that univariate time series were used. By 

including additional external data, the results could lean 

in favor of machine learning and deep learning models. 

Although nine models from different methods for 

example machine learning have been tested extensively, 

they are not yet generally meaningful on a meta-level. 

Since rapid technological progress is being made, 

especially in the area of deep learning, and since there 

are also very successful hybrid models. 

Further studies, particularly with hybrid models of 

deep learning methods like the winner [45] of the M4 

Competition, should be conducted to explore and 

analyze more models to further develop them for 

intermittent and lumpy time series predictions. 
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7. Appendix 

Table 6 below contains the selected parameters for 

the respective models to forecast demand (for 

parameters that are not listed, the default value is used). 

Table 6. Selected parameters of the models 

 Parameter  Value 

Statistic    

   Croston    

 𝑎  0.4 

   Holt-Winter    

 Trend  Add 

 Seasonal  Add 

 Seasonal_periods  7 

   Auto-ARIMA    

 Start_p  1 

 Start_q  1 

 Max_p  3 

 Max_q  3 

 m  7 

 Start_P  0 

 d  1 

 Seasonal  True 

 D  1 

 Trace  True 

 Error_action  Ignore 

 Suppress_warnings  True 

 Stepwise  True 

Machine Learning    

   Random Forest    

 Bootstrap  True 

 Criterion  MSE 

 max_depth  50 

 max_features  Auto 

 max_leaf_nodes  None 

 min_impurity_decrease  0.1 

 min_impurity_split  None 

 min_samples_leaf  10 

 min_samples_split  2 

 min_weight_fraction_leaf  0.0 

 n_estimators  1000 

 n_jobs  -1 

 oob_score  False 

 random_state  1 

 verbose  False 

 warm_start  False 

   XGBoost    

 n_estimators  1000 

 Verbose  False 

   Auto-SVR    

 kernel  Rbf 

 degree  3 

 gamma  Scale 

 Coef0  0.0 

 tol  0.001 

 C  1.0 

 epsilon  0.1 

 shrinking=True  True 

 cache_size  200 

 verbose  False 

 max_iter  -1 

Deep Learning    

   MLP    

 hidden_layer_sizes  100,50,10 

 activation  ReLu 

 solver  Adam 

 alpha  0.001 

 batch_size  auto 

 learning_rate  invscaling 

 learning_rate_init  0.001 

 power_t  0.5 

 max_iter  1000 

 shuffle  True 

 random_state  1 

 tol  0.001 

 verbose  False 

 warm_start  False 

 momentum  0.9 

 nesterovs_momentum  True 

 early_stopping  False 

 validation_fraction  0.1 

 beta_1  0.9 

 beta_2  0.999 

 epsilon  1e-08 

   LSTM    

 Sequential_LSTM_Layer  28 

 return_sequences  True 

 Dense_Layer  1 

 batch_size  64 

 window_size  28 

 epochs  50 

 lr  0.1 

 optimizers  SGD 

 loss  Huber 

   LSTM-2    

 Sequential_LSTM_Layer  28 

 return_sequences  True 

 Sequential_LSTM_Layer  28 

 Dense_Layer  1 

 batch_size  64 

 window_size  28 

 epochs  50 

 lr  0.1 

 optimizers  SGD 

 loss  Huber 
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