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Abstract 
The growing consensus that human intelligence 

and artificial intelligence are complementary has led 

to Human-AI hybrid systems. As digital platforms 

incorporating human-AI hybrids, platform designers 

need to evaluate the influence of AI on human 

judgment, and how such hybrid systems perform. In 

this paper, we investigate: Are human decisions 

influenced by AI agents in high uncertainty 

environments, such as evaluating ICO projects? 

Under what situations are humans able to mitigate AI 

agents-induced errors? Our results suggest that in 

general, humans are influenced by AI agents. 

Humans tend to use AI as a filter to rule out low 

quality projects, while a high AI rating triggers 

human expert to apply their own judgment. 

1. Introduction

With the advancing of Artificial Intelligence (AI) 
technology, human AI hybrid systems are 
increasingly been used in various industries, such as 
health care, finance, e-commerce, politics and 
government, and much more (Fethi and Pasiouras 
2010 [1], Esteva et al. 2017 [2], Leachman and 
Merlino 2017) [3]. However, research has yet to 
understand how these systems perform, and how 
humans may be influenced by AI agents. The 
spectrum of the involvement of AI in the completion 
of a task can range from task augmentation, task 
assemblage, to task substitution (Constantinides 
2019) [4]. In this paper, we are interested in 
understanding how do AI agents influence human 
decision making in an AI augmented system? 

We focus on a context where the uncertainty is 
high, and the decision making is complex – the 
evaluation of Initial Coin Offerings (ICO). ICO is a 
fundraising mechanism by which startup companies 
sell crypto tokens in exchange for traditional fiat 
currency. We collected data from a leading ICO 
evaluation platform, where an AI agent first evaluates 
and rates ICOs based on an algorithm that takes into 

consideration observable and quantitative properties 
of the ICO. After this, human experts evaluate the 
ICO and provide their ratings.  

The return from investing in the ICO tokens 
depends on the eventual success of the projects, 
which depends on a myriad of factors; some of them 
are readily observable, while many other aspects such 
as vision and potential are not easily quantifiable. 
While AI algorithm can effectively collect 
information and perform consistently without the 
influence of emotions or biases, humans possess tacit 
knowledge that cannot be explicitly explained, 
especially in evaluating aspects like vision or 
potential. However, there is little empirical evidence 
on how human experts incorporate AI agent 
assessments into their decision making. In this paper, 
we are interested in understanding the following 
research questions. Is human decision making 
influenced by AI agents in a human-AI hybrid system 
in high-risk environments with high-failure 
probability? Does this depend upon whether the AI 
agent predicts success or failure?  

Our analysis finds that overall, human experts 
are influenced by the AI agent. When the AI agent 
rates a project low, human expert are likely to align 
with the agent. In contrast, when the AI agent rates a 
project high, human expert do not blindly follow it. 
Taken together, this suggests that in the context of 
high failure rate of the ICOs, human experts use the 
AI agent as a filter, quickly rejecting projects rated 
low by the agent, delving deeper into projects rated 
high. Essentially, we found a combination of 
algorithm appreciation (Logg et al. 2019) [5] and 
algorithm aversion (Dietvorst and Bharti 2019) [6] in 
this context, where the AI agent poses an asymmetric 
anchoring effect on humans. Finally, our analysis 
shows that overall, the hybrid human expert and AI 
system outperforms AI agent alone.   

We propose that the AI recommendations have 
an asymmetric anchoring effect on humans, where 
humans use AI agent as a filter, and pay more 
attention to the riskier recommendations (or rare 
events). 
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2. Prior theory and research

2.1. Artificial Intelligence 
Artificial Intelligence (AI) is defined as the 

“ability of a machine to perform cognitive functions 
that we associate with human minds” (Rai et al. 
2019) [7]. A non-exhaustive list of the abilities 
possessed by AI is the abilities to sense, comprehend, 
act and learn (Bawack et al. 2019) [8]. The advantage 
of using AI agents for accomplishing tasks (such as 
speed, accuracy, reliability, scalability), complement 
and extend human competencies such as creativity, 
empathy and judgment (Rai et al. 2019) [7]. The 
spectrum of involvement of AI in the completion of a 
task can range from task augmentation to task 
assemblage, to task substitution (Constantinides 
2019) [4]. Firms are beginning to recognize the 
ability of AI and humans to complement each other, 
and are beginning to deploy human-AI hybrid 
processes, which are intelligent systems where of AI 
agents and human agents work together.  

Our focus in this study is on task augmentation. 
A recent study by Microsoft suggests that 67% of 
business leaders and 64% of workers believe that AI 
will augment their work and not displace them, 
enabling them to do their existing jobs better or 
reduce repetitive task. (Raisch and Krakowski 2020) 
[8] argue that organizations adopting a broader
perspective comprising both automation and
augmentation can achieve complementarities that
benefit business and society. However, few studies
have investigated the dynamics between human and
AI in an AI augmented task context. Our paper is
among the first to provide insights on how humans
and AI can complement each other in completing
complex tasks.

2.2. Influence of AI on Decision Making 
With the increasing capabilities and applications 

of AI (Fethi and Pasiouras 2010, Esteva et al. 2017, 
Leachman and Merlino 2017), firms are beginning to 
implement AI in decision making. For example, 
(Edwards et al. 2000) conducted an analysis of AI for 
business decision making at three organizational 
decision making levels, i.e. strategic, tactical and 
operational decisions. Their findings show that: AI 
can be used to replace human decision makers for 
structured or semi-structured decisions, but it would 
be better to be used as a decision support tool for 
dealing with unstructured decisions at the strategic 
level in organizations. As the progress of AI 
technology enables researchers to create advanced 
machines, it is possible for AI to undertake more 
complex tasks that require cognitive capabilities such 
as making tacit judgments, sensing emotion and 

driving processes which previously seemed 
impossible (Mahroof 22019).  

Researchers have also presented a range of 
observations (Logg et al. 2019) regarding how 
humans react to advice from AI based systems in a 
decision-making context (Dietvorst and Bharti 2019; 
Dietvorst et al. 2015; Dietvorst et al. 2018).For 
instance, recent work by Dietvorst et al. (2018) 
provides empirical evidence to anecdotal references 
(Frick 2015; Harrell 2016) which suggest that people 
choose their own judgment over algorithm forecasts. 
This phenomen2on, termed as algorithm aversion 
(Dietvorst et al. 2015) embodies human bias against 
algorithmic advice, despite their established 
superiority in outperforming human effectiveness 
(Dawes et al. 1989; Grove et al. 2000).  

This aversion to algorithmic advice is 
particularly salient in contexts when the task outcome 
is incentivized, such as investing (Dietvorst et al. 
2018). Environments which involve high irreducible 
uncertainty (such as healthcare or medicine) are most 
likely to elicit algorithm aversion where individual 
willingness to use algorithms is exacerbated due to 
the need for outcome precision (Dietvorst and Bharti 
2019). However, the ability to modify the outcomes 
seems to alleviate human aversion to algorithmic 
advice, highlighting their desire for control over 
outcomes, particularly in an incentivized context 
(Dietvorst et al. 2018). Algorithm aversion is also 
influenced by individuals’ own expertise in decision 
making, and wanes when people lack expertise, 
leading to the contrasting phenomenon termed as 
algorithm appreciation, which motivates individuals 
to choose algorithmic advice over a human experts’ 
(Logg et al. 2019). Our study adds to this stream of 
research by understanding how humans make 
decisions in volatile markets after being exposed to 
the decisions made the AI agent. Insights from our 
study shed light on important considerations for 
platform designers aiming to use human-AI hybrid 
models for complex evaluation tasks. 

3. Theoretical background and hypothesis

development

In this study, we examine how assessments made 
by an AI agent influence the judgments of human 
experts in their evaluations of Initial Coin Offerings 
(ICOs). In our context, the platform AI agent assesses 
and assigns a rating to each ICO as soon as it is 
published on the platform. This rating is based on an 
algorithm that takes into consideration observable 
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and quantitative criteria of the ICO. All experts see 
the agent rating for an ICO before they rate the ICO.  

When AI agent evaluates ICOs, there are 
generally two types of assessments: either the agent 
deems that the ICO project does not have the 
potential to succeed in the long run, and thus 
provides a low rating, or the agent classifies an ICO 
project as high quality, and hence gives it a high 
rating.  In the ICO market, there is high likelihood of 
project failure and fraud, combined with the 
possibility of gaining extreme returns from a small 
number of projects. This particular context may lead 
people to react differently to these two types of 
evaluations. 

We first consider the case where the agent rates a 
project low. Prospect theory suggests that people are 
generally loss averse (Kahneman and Tversky 2013) 
—individuals assess their loss and gain perspectives 
in an asymmetric manner, the pain of loss a certain 
amount of money is more pronounced than the 
pleasure of gaining the same amount of money. For 
example, for some individuals, the pain from losing 
$1000 could only be compensated by the pleasure of 
earning $2000.Therefore, in a highly risky market 
where the probability of gain is very low, and 
investments in most projects will end up being losses, 
experts are likely to be more risk adverse and put 
high weight on low AI agent ratings. In this situation, 
AI agent’s low rating may have an "anchoring effect" 
on the experts (Strack and Mussweiler 1997; Tversky 
and Kahneman 1974), conditioning them to focus on 
the potential loss of the investment. 

The task of evaluating an ICO is complex. The 
true potential of an ICO depends on a myriad of 
factors and is extremely difficult to gauge, even for 
domain experts.ICO teams know significantly more 
about their offering than evaluators, inducing 
information asymmetry. The ICO platform has 
designed the AI agent to provide an assessment of 
each ICO based on an array of observable 
information. The intent is that the AI agent will offer 
an expert opinion that is unbiased. Of course, the 
accuracy of the agent’s assessment is an empirical 
question, but it is advertised as a reliable resource to 
facilitate the human experts and investors. Therefore, 
a risk adverse human expert who has access to the 
agent’s assessment should integrate its low rating into 
their own analysis processes. Banerjee explains that 
there is a rationale for agents to take considerations 
of prior agents’ evaluations, because these other 
decision makers may have some information that the 
agents do not have(Banerjee 1992). In our context for 
example, if human experts believe that the AI agent 
is reasonably good at collecting information, then the 
human experts are likely to be influenced by the 

agent. Thus, it is likely that the risk averse experts 
will put more weight on AI agent’s low rating and 
treat it as a signal of potential risk and give a low 
rating following the AI agent. Therefore: 

H1: When an AI agent provides a low rating to 

a project, subsequent human ratings are positively 

related to the AI agent’s ratings. 

 

Consider the case in which the agent gives a high 
rating. As discussed earlier, the high failure rate in 
the ICO market is common knowledge in the 
community (Rhue 2018), thus investors and experts 
are likely to be risk adverse. Also well-known is the 
fact that the AI agent can only incorporate objective 
and observable criteria into its assessment. Taken 
together, these two reasons increase humans’ 
skepticism of high agent ratings. This skepticism 
steers human experts away from the inclination to 
passively align with the agent’s judgment when the 
agent suggests an ICO project is worthy of 
investment, instead the skepticism motivates human 
experts to analyze such projects critically. Human 
experts on the platform have limited time and 
resources, and they choose to invest these resources 
into analyzing the projects that pass the agent test. In 
other words, humans may tend to use to the agent as 
a filter and consider only projects that pass through 
this filter worthy of detailed and critical examination. 

When applied carefully, human judgment is 
valuable because of the ability of humans to reason in 
a way that goes beyond executing rote calculations 
on available data (McAfee and Bynjolfsson 2017). 
As opposed to “explicit knowledge”, which is formal, 
codified and can be readily explained, humans 
possess “tacit knowledge”, the kind of knowledge we 
are often not aware we have, and is therefore difficult 
to transfer to a machine (Polanyi 1958). “We can 
know more than we can tell”, which came to be 
known as Polanyi’s paradox (Polanyi 1966), captures 
the fact that we tacitly know a lot about the way the 
world works, yet aren’t able to explicitly describe this 
knowledge. This tacit knowledge of human experts in 
the ICO market allows them to take into 
consideration sev22eral intangible aspects of the 
project such as the v2ision, innovativeness and 
potential, which are not accounted for in the agent’s 
evaluation. We therefore expect that humans will 
critically examine these projects and agree with the 
agent only when they believe that the agent’s 
evaluation is correct even after applying their own 
tacit knowledge. Critical examination will enable 
humans to detect spurious cases of high agent ratings 
and they are likely to disagree with the agent in these 
cases. Therefore: 
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H2.When an AI agent provides a low rating to a 

project, subsequent human ratings are not related to 

the AI agent’s ratings. 

Our context represents a particular type of 
system where humans are exposed to AI outputs 
before making decisions. Such systems have wide 
applications, such as helping physicians make 
diagnosis, or recommending product and services in 
e-commerce. In such systems, humans are aware of
the odds of an event happening, in our case, an ICO
project succeed in the long run, which is low.
Therefore, a rational human would infer this is a
high-risk context and one should be more cautious.
Thus, when AI recommends investing in a project,
careful evaluations based not only on observable
information, but also based on tacit knowledge is
needed. In contrast, when AI agent rates a project
poorly, it is very possible that the project does not
meet certain basic criteria. Given that AI is more
efficient in collecting and analyzing objective
information than human, the low rating would be a
worth considering signal of low quality. Hence, in
such systems, it is possible for humans to combine
the strengths of both human and AI intelligence to
achieve a better overall decision making. Therefore,
we hypothesis:

H3: Humans AI augmented systems can make 

better decisions than AI agents alone. 
Another interesting question that stems from our 

hypotheses is when and why humans deviate from 
the AI agent in their evaluations? In other words, 
what do human experts focus on or take into 
consideration when they make independent 
evaluations? Do these factors depend on whether the 
AI agent’s evaluation was favorable or unfavorable? 
And more importantly, when do these considerations 
help them make better decisions? We explore these 
questions in post-hoc analyses by taking a deeper 
look at the content of the reviews written by human 
experts. 

4. Method

4.1. Research Context 

Following related research in the ICO context 
(Bourveau et al. 2018), our data is collected from 
ICObench.com, which is one of the most prominent 
and comprehensive ICO reviewing and rating 
platform (Note that, the actual process of fund raising 
is not performed in ICObench.com or other rating 
sites). On ICObench.com, ICO teams promote their 
projects with a pitching video, white paper, 
descriptions of the projects and other related financial 
and team member information. Once a project is 

posted, the AI agent of the platform will provide a 
rating for the project. Then, a community of experts 
(people who are experienced and active in the ICO 
community) will provide reviews and ratings for 
these projects. Using these insights, investors can 
choose promising ICOs to invest.  

The platform displays the data of each ICO on 
three tabs. First, on the main page, ICO project 
related information is provided comprising a brief 
introduction, the project pitch, and the goals of the 
project. It also includes other details such as the 
token type, value of token in ICO, ICO soft cap, hard 
cap. The AI agent rating is presented on this main 
tab. Second, the ratings tab displays the experts’ 
reviews and ratings of the ICO and links to the 
profile page of each expert who rated the ICO. Third, 
the Team tab lists the profiles of the ICO team 
members. 

Each ICO project receives two types of ratings, 
one by the AI agent of this platform, popularly 
known as Benchy, and the second by experts, who 
are active members of the ICO Bench community 
and experienced domain experts. The Agent uses an 
algorithm taking into inputs of a number of objective 
and observable parameters to evaluate each of the 
ICO projects. The agent evaluates each ICO on 4 
major dimensions, namely, Team, ICO Information, 
Product Presentation and Marketing & Social Media. 
The human experts on the other hand provide a more 
subjective and qualitative evaluation. Each human 
expert provides a rating on a scale of 1 to 5 on three 
broad categories: Team, Vision and Product. Apart 
from the ratings the human experts also provide a 
textual review explaining their evaluations. 

4.2. Data 

We collected data of 2783 ICO projects, from 
January 2017 to December 2018. For each project, 
we collected individual expert ratings and reviews, 
the date the rating was provided, as well as ICO 
project data. Some of our dependent, independent and 
control variables were available in the data set, while 
others were constructed for the analysis. The 
descriptive statistics for these variables are presented 
in table 1. 
Dependent Variable 

Expert Rating is an average rating on a scale of 1 
to 5 given to an ICO project by each individual 
human expert based on three primary parameters of 
team, vision and product. It has a mean of 3.79 and a 
standard deviation of 0.584 and the distribution of the 
ratings is positively skewed. The distribution of the 
expert rating is presented in figure 1. 
Independent Variable 
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Agent Rating is the evaluation provided at the 
beginning by the artificial agent to each of the ICO 
projects. It has a mean of 3.71 and a standard 
deviation of 0.632 showing the agent is more 
conservative in its overall evaluations. The 
distribution of the agent rating is presented in figure 
2. Figure 3 shows the distribution of the difference
between expert ratings and agent rating.
Control Variables

PreICO is a binary variable, which indicates 
whether the projects have a Pre-ICO fund raising 
period prior to the official ICO.  
Price in ICO is measured as the value of each token 
in US Dollars sold during the ICO stage. 
Distributed in ICO is measured as the percentage of 
the token that will be distributed during the ICO.  
Softcap is the minimum amount of funding an ICO 
project team aims to raise during the ICO. Here 
Softcap is a categorical variable with the values of 0, 
1 or 2, where if the softcap information is not 
available on the icobench website, the whitepaper 
and the project website, then it is coded as 0. If the 
value of softcap is between 0 and 50 percentile then it 
is coded as 1, and if the softcap is higher than 50 
percentile, it is coded as 2.  
Hardcap is the maximum amount of funding an ICO 
team will accept during the ICO. Once the hard cap is 
reached, no future funding from investors will be 
accepted. Hardcap is a categorical variable, defined 
as 0, 1 or 2, where if the hardcap information is not 
available on the icobench website, the whitepaper 
and the project website, then it is coded as 0. If the 
value of softcap is below the 50thpercentile, it is 
coded as 1, and 2 otherwise. 
Success is a proxy for the quality of the project and 
potential to be successful. Prior research has used 
whether a token sold during ICO was successfully 
listed on exchanges after the ICO, and whether the 
ICO achieved its softcap, and amount raised in ICO 
to measure the success of ICO projects (Bourveau et 
al. 2018; Lee et al. 2019; Li et al. 2019; Lyandres et 
al. 2019). We use whether the ICO token is trading at 
a non-zero value one year after the ICO (considering 
if a token is successfully listed in an exchange and 
continued trading for one year) to measure the ICO 
project success. 

Table 1. Summary Statistics 
Variable Mean Std. Dev. Min Max 

Expert Rating 3.79 0.584 0 5 

Agent Rating 3.71 0.632 1.7 5 

PreICO 0.65 0.477 0 1 

Price in ICO 0.134 0.205 0 2.762 

Distributed in ICO 0.418 0.297 0 1 

Softcap 0.637 0.673 0 2 

Hardcap 1.231 0.844 0 2 

Success 0.179 0.383 0 1 

Figure 1. Histogram of expert ratings 

Figure 2.  Histogram of agent ratings 

Figure 3. Histogram of (Expert Ratings – 
Agent Rating) 

5. Analysis

In Table 2, we share our preliminary analysis 
where we regress the expert rating on agent rating. 
The results reveal a positive relationship between 
agent ratings and expert ratings while controlling for 
ICO project characteristics (0.437, p<0.001). 

Table 2. Linear Regression of effect of agent 
rating on expert ratings 

ExpertRating 

Agent Rating  0.437*** 
(0.014) 

PreICO 0.068*** 
(0.019)  

Price in ICO -0.016 
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(0.044)  
Distributed in ICO 0.101*** 

(0.030)  
Soft Cap 0.018 

(0.014) 
Hard Cap 0.012 

(0.011) 
Intercept  2.117*** 

(0.058)  

Note: * p<0.05; ** p<0.01; *** p<0.001 

However, the positive relationship between agent 
ratings and expert ratings could simply mean that 
both the bots and the experts happen to be correct (or 
incorrect) in their respective judgments of ICOs due 
to unobserved variables. The regression above does 
not allow us to make casual inferences about the 
effect that agent ratings have on expert ratings. 
Below, we share the challenges and our empirical 
strategies in examining whether agent ratings 
influence expert ratings. In particular, following prior 
literature, we use the system GMM model to address 
the issue of endogeneity of our dependent variable, 
Expert Rating, by using transformed regressors as 
valid instruments (Ghose and Han 2011, Li and Wu 
2018Aral, Brynjolfsson and Van Alstyne 2012, 
Yoganarasimhan 2012, and Sonier, McAlister and 
Rutz2011). 
5.2. Econometric Model 

We developed a dynamic model of expert ratings of 
ICOs. Our model is dynamic because we account for 
the fact that our y variable, namely, expert rating, 
depends on its lagged values, i.e., mean of aggregate 
ratings from previous periods. Such state-dependence 
is important to consider while studying outcomes that 
build on an “accumulated stock” over time. Recent 
examples of such phenomena studied using dynamic 
models include mobile-user content consumption 
(Ghose and Han 2011), sales (Li and Wu 2018), 
project output (Aral, Brynjolfsson and Van Alstyne 
2012), YouTube video views (Yoganarasimhan 
2012), and firm sales (Sonier, McAlister and Rutz 
2011). Our empirical specification is presented in the 
following model, where 

��� = � + � �
	 
(

���

	�
��	) +  ��� +  �� +  ���

Yij denotes the expert j’s rating for project i, Yij-1is the 
lagged average of the dependent variable, i.e., 
average rating by all experts before expert j for 
project i, Xi is a vector of project-specific expert-
invariant covariates. It includes our explanatory 
variable, agent rating. In addition, it also has all the 
control variables, namely, Preico, Price, 
DistributedInICO, Softcap and Hardcap, and����I is an 
expert-invariant unobserved project fixed effect. It 
captures other inherent characteristics of the ICO. εij

is the idiosyncratic error term that captures random 
shocks to the ICO evaluations. 
5.3. Estimation Strategy  

     The dynamic model used here for panel data 
analysis is System General Method of Moments 
(GMM) and this enables the explanatory variables to 
be treated as potentially endogenous. It is not difficult 
to see that most of our expert-varying variables Xi in 
this analysis can be potentially endogenous and can 
be correlated with ICOs’ fixed or expert-varying 
unobserved factors. An initial remedy to this issue 
might be to use the fixed-effect models. However, 
Nickell (1981) show that in a dynamic setting with 
finite T, fixed-effect estimators are inconsistent. To 
resolve this issue, a method of using instrumental 
variables (IVs) is suggested by Anderson and Hsiao 
(1981) and further developed by Arellano and Bond 
(1991). Their method which is also called “difference 
GMM,” is suitable for “small T, large N” panels. 
Assuming that εij’s are iid across I and j, the 
Arellano-Bond estimation starts by transforming all 
regressors, usually by “first-differences” or “forward 
orthogonal deviations” to eliminate fixed effect ηi. 
Then they show that longer lags of the regressors can 
be used as valid instruments, and applying the 
Generalized Method of Moments (GMM) provides a 
consistent and efficient estimator. However, Blundell 
and Bond (1998) show that in dynamic panel models 
where the autoregressive parameter (α) is moderately 
large and the number of time series observations is 
moderately small, the Arellano-Bond IVs (past levels 
of the regressors) convey little information about the 
transformed regressors (future changes) and therefore 
the weak instruments make the Arellano-Bond 
estimator perform poorly. By assuming an initial 
condition, Blundell and Bond (1998) shows that in a 
level (untransformed) equation one can use 
transformed regressors as valid instruments 
orthogonal to the fixed effects. Adding the new 
moment conditions to the set of Arellano-Bond 
moment conditions, they designed an efficient 
“system GMM” estimator that performs better than 
“difference GMM.” To run the system GMM model, 
we use xtabond2, a stata command written by 
Roodman (2006). With this command we use a two-
step option to make analysis robust to 
heteroscedasticity. Further, we use the robust option 
to apply the Windmeijer (2005) finite-sample 
correction to fix the downward bias of the system 
GMM standard errors. Roodman (2009) pointed out 
that too many instruments in system GMM models 
can result in over-fitting the endogenous variables. 
Therefore, we use the collapse option which creates 
one instrument for each variable and lag distance, 
rather than one for each time period, variable, and lag 
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distance. This approach in small samples can avoid 
the bias due to the rising number of instruments. 
Finally, we add the orthogonal option which requests 
the forward-orthogonal-deviations transformation 
instead of first differencing. We examine and show 
the validity of the group of IVs by using Hansen test 
and we have also recorded the AR (2) p-value to 
further validate our results and implied consistency 
across all the models. 
5.4. Model Specifications 

Model 1 is our baseline model. We run the model 
described above on the entire data set (Sample 1 in 
Figure X). For models 2 and 3, we use the same 
specification but run the models on different sub 
samples. In Model 2, we examine only instances 
where agent rating is low and in Model 3, only those 
observations where the agent rating is high (Sample 
3). While it might seem like an option to do an 
interaction analysis instead of sub-sample analysis, 
note that we are examining the effect of only one 
independent variable, AI Agent Rating, for low and 
high values of the same variable. 
We classify agent ratings greater than 4.3 as “high” 
and the rest as “low”. The rationale for this choice is 
as follows. In our sample, 15% of all projects were 
successful (following prior literature(Amsden and 
Schweizer 2018; Momtaz 2020),we classify a project 
as successful if the ICO token is trading at a non-zero 
value one year after the ICO). Hence based on the 
agent rating distribution, we choose the top 
15thpercentile (i.e. 4.3 and above) of the AI agent 
ratings as the cut off for successful rating. We repeat 
our analysis with different thresholds (4.0 and 4.6) 
and find that our results remain qualitatively 
consistent throughout. 

5.5. Results 

In Model 1 we estimate the effect of agent rating on 
expert rating using GMM estimation, controlling for 
lagged expert rating, preICO, Price in ICO, 
Distributed in ICO, softcap, hardcap and success. 
We see agent rating has a positive and statistically 
significant effect on expert rating (0.473, p<0.01). 
In model 2, which is the sample with low agent 
ratings, we observe that the agent ratings have a 
positive and statistically significant effect on expert 
rating (1.136, p<0.01). This shows that when AI 
agent rates a project low, experts are likely to be 
aligning with the agent.  
However, in model 3, which is the sample with high 
agent ratings, we do not find a statistically significant 
effect of the agent rating on expert ratings (p=0.322). 
This shows that when the agent is positive about the 
likelihood of success of an ICO, experts are possibly 

more cautious and wary of aligning with the agent’s 
assessment.   
In our main analysis, we choose 4.3 as the cut off 
because it is representative of the success likelihood 
in our sample.  

Table 3. System GMM Estimation of the 
Effect of Agent Ratings on Expert Ratings 

M1:  

Full Sample 

M2: 

Agent Low 

M3: 

Agent High 

Agent Rating 0.4727* 

(0.2826) 

1.1356*** 

(0.4306) 

-2.0199 

(2.0393) 

Lagged Rating 0.2747 
(0.3473) 

0.3521 
(0.3133) 

-0.2803 
(0.5315) 

Pre ICO -0.1197 
(0.2903) 

-0.3517 
(0.4389) 

0.4114 
(0.4715) 

Price in ICO -1.1948 
(1.0552) 

-1.2546 
(1.0264) 

3.4311 
(4.1724) 

Distributed in 

ICO 

0.2049 
(0.8876) 

-0.9296 
(0.7861) 

0.3646 
(0.8203) 

Softcap 0.2309 
(0.2007) 

0.2478 
(0.1884) 

-0.4635 
(6.4826) 

Hardcap -0.2215 
(0.3082) 

-0.2247 
(0.3064) 

-0.3255 
(0.3164) 

Success 0.3246 
(0.6183) 

0.3667 
(0.5539) 

-0.1501 
(0.8189) 

Intercept 1.2699 
(1.7895) 

-0.6952 
(1.2453) 

14.3155 
(10.3179) 

No. of 
Observations 

9339 6891 2448 

AR(2) p-value 0.464 0.570 0.700 

Note: * p<0.1; ** p<0.05; *** p<0.01 

5.6. Robustness Checks 

In order to verify the robustness of our results, we 
alter the threshold for “high rating” by the bot. In our 
main analysis, we choose 4.3 as the cut off because it 
is representative of the success likelihood in our 
sample. Adopting this procedure helps us to prove the 
trends remain consistent over a considerable range 
showing that the relation between humans and the AI 
agent hold generally. Using 4.0 and 4.6 as the 
benchmark agent ratings, we found that the results 
are qualitatively similar to the main models. We 
found that in both models, the AI rating has 
statistically significant effect on expert ratings for 
samples 1 (full sample), 2 (AI rates low), but not in 
model 3 (AI rates high). We also used three different 
dependent variables. We used the individual ratings 
provided by the Human Experts on each category of 
Team, Vision and Product (instead of the aggregate 
rating, which we used in our main analysis). Here, we 
show that even for each of the category-wise ratings, 
the results are qualitatively similar. 
Due to space constraints, we do not present these 
results.  
5.7. Evaluating Human and AI Performances 
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To test hypothesis 4, we perform the following 
analysis to compare human experts and AI agent’s 
performances. Based on the confusion matrix, we 
calculate the precision, recall, F score, as well as 
sensitivity and specificity for both AI and human 
experts. We also plot the ROC curve to compare the 
performances of AI and human experts. 
Although the AI agent has a high accuracy than 
human experts, we need to consider the context of the 
analyses. The fact that more than 80% of ICOs have 
historically failed, means that an AI agent which 
always predicts failure will be correct more than 80% 
of the time. In such situations, the two more 
meaningful model evaluation metrics are Precision 
and Recall. In our case, Precision indicates what 
proportion of ICOs rated as high quality actually 
succeeds. On the other hand, Recall indicates the 
percentage of total successful projects that are 
correctly rated high. The F1-score is a harmonic 
mean of the precision and recall which balances the 
use of precision and recall to measure performance. 
Human experts have higher precision, recall, and F1 
score, and thus outperform the AI agent. 

Figure 4. ROC/ AUC Curve for Human and AI 
Agents 
In addition, we also evaluated the sensitivity and 
specificity of human experts and the AI agent. 
Sensitivity indicates what proportion of the positive 
class is correctly classified, i.e. what proportion of 
successful ICOs is correctly predicted. Specificity 
indicates what proportion of the negative class are 
correctly classified, i.e. how accurate human and AI 
are in predicting the failed ICOs. These two metrics 
are graphically represented using a Receiver Operator 
Characteristic (ROC) curve for an easier 
understanding of the prediction performances. The 
ROC curve is a probability curve that plots the True 
Positive Rate against False Positive Rate at various 
threshold values. TPR is same as sensitivity/recall 
while FPR is (1-specificity) or the proportion of the 
negative class that got incorrectly classified. The 

Area Under the Curve (AUC) is the measure of the 
ability of a classifier to distinguish between classes 
and is used as a summary of the ROC curve. The 
higher the AUC value the better is the prediction 
performance. Based on ROC/AUC analysis, we can 
see that the agent performs about at the level of 
random chance, and the human experts perform only 
slightly better. 

6. Discussion

Our study provides useful findings on human 
behaviors in settings where humans perform a 
complex task incorporating advice from an AI agent. 
We find that humans’ ratings of initial coin offerings 
outperformed the ratings of the AI agent alone, and 
strike a better balance between precision and recall. 
We noted that neither the human experts nor the 
agent had very good performance in our particular 
context. Human ratings were influenced by the 
ratings given by the AI agent, but in an asymmetrical 
manner. In our context, 80% of the projects failed, so 
as we theorized, human experts’ decisions were 
aligned with that of the AI agent’s when the agent 
rated a project low, but were not aligned when the 
agent rated a project high. Thus, we conclude that 
most experts used the agent’s assessments to screen 
out projects and usually concurred with the agent 
when it gave low ratings. When an agent gave high 
ratings to a project, the human experts focused more 
carefully on it, and made judgments independent of 
the agent’s assessment. In other words, a high agent 
rating triggered experts to apply their own judgment, 
which was not materially influenced by the agent’s 
ratings. We suggest that in high risk contexts, AI 
poses an asymmetric anchoring impact on humans. 

There are several reasons for the asymmetric 
anchoring we observe. First, predicting success is a 
much riskier bet than predicting failure in the ICO 
market with its high failure rate. Second, it is possible 
that the humans are using the agent as a filter or a 
first check. When the agent rates low, humans 
interpret that as the project not even meeting a 
threshold and may not give it full consideration. But, 
when the agent rates high, it passes the first check, 
and experts give these projects due attention, after 
which they agree or disagree with the agent.  

The tendency of human experts to align their 
ratings with those of the AI agent has to do with the 
nature of the task at hand. The true potential of an 
ICO is extremely difficult to evaluate, and when 
faced with such problems that are highly complex 
and uncertain in nature, it is likely that humans lean 
on objective signals. It is important for the designers 
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of human – AI hybrid systems and platforms to bear 
this in mind and carefully consider when, whether, 
and to whom the work of the agent should be made 
visible. 

We use three different measures of prediction 
quality to compare the performances of the agent and 
the human and to analyze if adding a human to the 
mix adds value. Overall, the AI agent has a higher 
accuracy than the human in its predictions, but this is 
largely driven by the fact the agent is more 
conservative in its assessments. We then find that 
humans perform better at both precision and recall, 
thus a higher F1 score overall. Humans are also better 
at distinguishing between the two classes, namely 
high-quality and low-quality projects, as depicted in 
the ROC curve in Figure 4.  

Our study has several limitations. First, we use 
whether the ICO token is trading at a non-zero value 
one year after the ICO as the measure for success. 
We choose this measure based on prior research 
(Amsden and Schweizer 2018; Momtaz 2020) but we 
recognize that success is multi-dimensional and there 
are several other ways to measure it. Second, our 
understanding of Benchy, the platform agent’s 
algorithm is limited. While we are aware of some of 
the inputs to the algorithm based on the information 
on icobench.com, we don’t know the details of the 
algorithm, and are unable to factor it into our 
analysis. Finally, we acknowledge the limitation on 
the generalizability of our results which like all 
empirical results are contingent on the characteristics 
of the problem at hand, the context, and the market 
we examine. 

We believe the findings offer three implications 
for theory and future research. First, our results show 
that in this form of human-AI partnership, human 
experts rely on the AI agent to screen out projects 
and focus their attention on projects the AI has rated 
highly. Our findings are influenced by our research 
context which is characterized by (a) the complexity 
of the task at hand (b) the volatile nature of ICOs and 
the risks involved, (c) the skewness of the outcomes 
– the algorithm is used to identify rare events, and
(d) the sequential nature of task completion (the AI
agent completes the task first and the human experts
use the AI agent’s assessment in their own
judgment). Future research can verify this finding in
similar contexts, such as diagnose of rare diseases,
and identifying investment opportunities.

Second, our study opens avenues for future 
research on the human–AI partnership. It is well-
known that human bias can creep into algorithms 
(Chan and Wang 2017, Dastin 2018), and humans 
exhibit bias for or against AI algorithms (Dietvorst et 
al. 2015, Luo et. al 2019, Al-Natour et al. 2006, 

Benbasat and Wang 2005). Adopting prospect theory 
into human AI interaction context, our study shows 
how humans weigh positive and negative AI 
recommendations differently due to risk aversion 
tendencies. This brings up interesting questions, 
when designing AI augmented systems, should we 
take human cognitive biases into consideration? How 
to best design systems for different contexts? 

Third, our study builds on research in the human 
and Decision Support Systems interaction area and 
investigates human behavior when interacting with 
Intelligent Decision Support Systems. Unlike prior 
research suggests AI algorithm appreciation or 
aversion in different contexts, our study finds an 
asymmetric anchoring effect of the AI agents on 
human in contexts with high risk and uncertainty. 

Our findings also have three implications for 
users and designers of human–AI hybrid systems. 
First, system designers need to carefully contemplate 
on the desired roles of the agent and the human. How 
important is the independence of human judgment in 
the context? Is the intended role of the agent that of 
an assistant that makes the human’s job easier via a 
preliminary pre-screening analysis? Or are the agent 
and human meant to act as independent, 
complementary undertakers of the task, given the 
comparative strengths of AI agents and humans? 
Depending on the intended role, system designers 
need to decide whether to expose the human to the 
work product of the agent.  

Second, if humans are inclined to use the AI 
agent as a filter for screening, there may be value in 
designing AI agents that do just that. In other words, 
instead of aiming to have the AI do the same job as 
the human, we could potentially get better results if 
we focused on creating AI agents that weed out 
distinctly poor prospects and create shortlists for 
humans to examine carefully.  

Finally, our study shows that we cannot put 
humans and AI together to solve complex problems 
and expect superior performance to naturally emerge. 
From a team-building perspective, just as we train 
team members of complementary strengths to work 
with each other effectively, in a world with 
increasing integration between human and artificial 
intelligences, we see the need for the deliberate and 
systematic training of humans to work effectively 
alongside AI counterparts.   
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