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SUMMARY 

The acquisition of traffic system information, especially the vehicle speed and trajectory 

information, is of great significance to the study of the characteristics and management of the 

traffic system. The traditional method of relying on video analysis to obtain vehicle number and 

trajectory information has its application scenarios, but the common video source is often a camera 

fixed on a roadside device. In the videos obtained in this way, vehicles are likely to block each 

other, which seriously affects the accuracy of vehicle detection and the estimation of speed. 

Although there are methods to obtain high-view road video by means of aircraft and satellites, the 

corresponding cost will be high. Therefore, considering that drones can obtain high-definition 

video at a higher viewing angle, and the cost is relatively low, we decided to use drones to obtain 

road videos to complete vehicle detection. 

 

In order to overcome the shortcomings of traditional object detection methods when facing a large 

number of targets and complex scenes, our proposed method uses convolutional neural network 

technology. We modified the YOLO v3 network structure and used a vehicle data set captured by 

drones for transfer learning, and finally trained a network that can detect and classify vehicles in 

videos captured by drones. At the same time, a self-calibrated road boundary extraction method 

based on image sequences was used to extract road boundaries and filter vehicles to improve the 

detection accuracy of cars on the road. Using the results of neural network detection as input, we 

use video-based object tracking to complete the extraction of vehicle trajectory information. 

Finally, the number of vehicles, speed and trajectory information of vehicles were calculated, and 

the average speed and density of the traffic flow were estimated on this basis. 
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In our actual experimental results, the proposed model can achieve a detection accuracy of more 

than 98% under different weather, lighting conditions and traffic flow scenarios. On the basis of 

the obtained vehicle trajectory data, we can also complete the estimation of the average speed and 

average density of the traffic flow on the test road. With reference to the Level of Service (LOS) 

measurement index for ordinary expressways and the actual speed limit of the test road, the average 

density of vehicles calculated can accurately reflect the degree of vehicle congestion on the road, 

which can provide a reference for the intelligent traffic management system. The data obtained 

from the experiment can be used as a reference data set for studying the safety index of freeway 

traffic system and connected vehicles after manual calibration. 

Keywords: Drone-Based, Convolutional Neural Network, Transfer Learning, Road 

Boundary Extraction, Computer Vision, Perspective Transform, Traffic Flow Parameter 

Estimation, Speed Estimation 
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CHAPTER 1- INTRODUCTION 

With the development of intelligent transportation technology, the emergence of new 

technologies such as connected vehicles and unmanned vehicles has brought new challenges 

to the design of modern transportation systems. Considering the data requirements in the 

development of these complex and data-intensive technologies, the past traditional 

transportation system information acquisition technologies seem to have difficulty meeting 

the requirements of real-time speeds and positions. In the past decade, with the advancement 

of computer hardware and theoretical research, the research on convolutional neural 

networks (CNN) has made great progress. This technology is widely used in natural language 

processing, object detection and classification models. This thesis applies neural network to 

vehicle detection, combined with computer vision technology to propose a new method to 

obtain detailed and macro parameters of vehicles on the road from videos taken by drones. In 

the first chapter, we focus on the background and motivation of this research, formulate our 

research goal and summarize our contributions. 

 

1.1 General Background  

The dynamic parameters of the transportation system play a vital role in the management of 

the transportation system. These data are also essential for traffic system analysis. Especially 

now connected vehicle research has entered a new stage, high-quality traffic system dynamic 

parameter data (e.g., speed, density, delay, trajectory data) can provide strong support for the 

development of related control systems. For now, mainstream vehicle dynamic parameters 
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collection methods include video analysis, GPS (Global Positioning System) probe car, 

Radar and magnetic field sensors and other methods [1].  

 

In the past few decades, video processing technology has made great progress, but due to the 

fixed angle of CCTV cameras on the roadside infrastructure, the traditional CCTV system is 

unable to provide video of vehicle driving without mutual occlusion. Therefore, the method 

of analyzing the traditional road surveillance system video still faces limitations. As for the 

method of using probe cars equipped with GPS devices to monitor the road condition, 

although this method can be used to estimate the vehicle's driving time on a particular road 

and give information such as the degree of congestion. However, due to the limitation on the 

number of probe vehicles, it is impossible to cover all roads at the same time. In addition, this 

method can only obtain fuzzy information about the road system, which cannot provide 

information such as the number of vehicles and accurate vehicle speed. Radar sensors have 

been widely used to monitor the number and speed of vehicles on the road, and provide a 

certain degree of protection for the safety of high-speed roads. But once the number of 

vehicles is too large, this system is not able to provide accurate data. Other methods also 

have applications in specific situations, such as using magnetic induction coils to estimate the 

speed and number of vehicles, but they also produce obvious errors when vehicles are 

congested on the road, so their application scenarios are also limited.  
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1.2 Research Motivation and Objectives 

From the above comparison, we can see that traditional traffic parameter acquisition methods 

have their own limitations. Through complex operations, we may be able to obtain good 

results, but the corresponding costs will also increase. To this end, we hope to propose a new 

traffic monitoring method that can obtain vehicle trajectory extraction, carry out statistics on 

the number of vehicles and speed estimation, and ensure the accuracy of the results without 

spending high manpower and material costs. 

 

Among all the methods mentioned above, video analysis method may be affected by weather 

and light conditions but it still can give reliable dynamic traffic system information. 

However, if we continue to use the road video obtained by the traditional fixed-view CCTV 

system, we will still face the problem of not being able to accurately locate the vehicle and 

estimate the vehicle speed. Although we can use higher altitude videos taken by helicopters 

to avoid mutual occlusion between vehicles, from an economic point of view, we cannot use 

helicopters and other aircraft to obtain road videos from aerial photography at different time 

periods every day. Taking these factors into consideration, we decided to use drones for road 

video recording. At present, consumer-grade drones on the market can already record 

4K+30fps videos from a high-view and achieve a flying height of up to 500 meters and a 

flying distance of about 2 kilometers. At the same time, the price of a drone is generally one 

thousand to several thousand dollars. In contrast, a road surveillance camera with a fixed 

angle of view costs about ten times more, not to mention the high cost of a single helicopter 

flight. 
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Based on these conditions, the research goal of this thesis is to study, design and implement a 

system that uses drones to obtain high-view road videos, uses trained neural network to 

complete vehicle detection and obtain vehicle trajectories, and then uses computer vision 

technology to complete the estimation of vehicle speed. Our goal is to explore whether such a 

system can provide accurate and reliable road macro dynamic parameters, and try to find out 

what improvements can obtain better efficiency of this system, and propose new goals for 

future work. 

 

1.3 Overview of Research Contribution 

The advantage of our research is that this system uses drones to obtain high-view road videos 

that cannot be obtained by traditional road monitoring systems, which can effectively reduce 

the error caused by mutual occlusion of vehicles and improve the accuracy of the results 

from the root cause. At the same time, unlike the existing articles that use drones to hover 

over a fixed point to complete vehicle detection on a fixed road segment, our drone uses a 

pre-set route to obtain a road monitoring video. Therefore, the accurate position and 

trajectory of the vehicle on a longer road can be obtained. On this basis, our research is 

combined with neural network technology, which can avoid the traditional object detection 

process that requires complex parameter adjustment in different environments. Our main 

contributions are listed below. 
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• Transfer-Learning-Based Neural Network for Vehicle Detection. In this work we 

tried to train a neural network using transfer learning (TL) technology according to the 

previous researches. Built on the basis of YOLO v3 (You Only Look Once version 3.0) 

neural network, we modified the structure of the original network and retrained it with a 

small dataset for drone-based vehicle detection competition. The process was finished on 

Google Colaboratory platform and the network worked pretty well in our experiments. 

Although the speed of detection on videos with resolution of 1920×1080 is only about 5 

frames per second, the accuracy on our test videos is above 96% on average. If we 

reduce the resolution of videos, we can acquire higher process speed. 

 

• Computer Vision-Enabled Self-Calibrated Road Boundary Detection.  In order to 

improve the accuracy of vehicle detection and avoid the interference of roadside vehicles 

and vehicles on branch roads, we proposed a computer vision-based self-calibrated road 

boundary detection method. This method combines the Hough transform in digital image 

processing to complete the preliminary detection of straight lines in the picture, and then 

uses the boundary positions of the initial several frames and the relationship between two 

consecutive frames to complete the preliminary extraction of the boundaries. On this 

basis, the precise road boundaries are further determined based on the positions of the 

vehicles detected in the current picture. 

 

• Vehicle Tracking and Trajectory Extraction. Considering the errors that may occur 

when only using neural network for vehicle detection, for example, the network 

incorrectly recognizes objects as vehicles, and some vehicles are not detected. At the 
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same time, in order to obtain the precise trajectory and speed information of each car, we 

used OpenCV to complete the further tracking of the vehicles based on the detection 

results of the neural network. This method can further improve the accuracy of vehicle 

detection and complete the recording of each vehicle's trajectory. 

 

• Traffic Flow Parameter Estimation. On the basis of vehicle detection and extracted 

vehicle position information, we have realized the estimation of macroscopic parameters 

of traffic flow. In the final output, we can count the total number of vehicles on the 

current frame and the cumulative total number of vehicles from the beginning of the 

video, and the speed of each vehicle is also marked on the corresponding vehicle. At the 

same time, we can count the density and average speed of vehicles over time. 

 

• Calibrated Vehicle Trajectory Dataset. On the basis of the results of our experiments, 

we processed the videos taken by the drones and manually corrected the results to obtain 

a data set with accurate vehicle trajectories. This data set can be used for road system 

safety factor evaluation, and can also be further used as a benchmark data set for 

subsequent system improvements. 

 

1.4 Thesis Organization  

In this introduction chapter we have outlined the general background of this work, the 

motivation and goal of our research, and a summary of the work’s major contribution. The 

rest of this thesis is focused on the construction of our proposed method.  After reviewing 
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related work, we will elaborate on the research methodology of our work. Later, after 

discussing the details of our proposed method, we will summarize the process of the entire 

system and conduct a series of experiments under different conditions. Details of the content 

of the subsequent chapters are listed below. 

 

• Chapter 2 reviews the literatures of works mostly related to our research. This chapter 

includes background of objective detection, convolutional neural network and transfer 

learning, road boundary extraction, vehicle tracking and traffic flow parameter 

estimation. By reviewing related work, this chapter provides a theoretical basis for our 

system design. 

 

• Chapter 3 gives details of our research methodology. We provide the design and system 

architecture to give a whole view of our work. Then we dig deeper into how the various 

parts of the proposed system cooperate closely to complete the detection of vehicles on 

the road and the estimation of traffic macro parameters. 

 

• Chapter 4 shows the results of the experiments done using our proposed model and the 

analysis of the final results. In this chapter, we detailed the hardware equipment and 

software environment used in this research. After using the drone to obtain the road 

video, by processing and detecting the video, the statistics of the number of vehicles on 

the road and the extraction of the trajectory of the detected vehicles are completed. On 

this basis, we completed the estimation of the speed of the detected vehicles and the 

estimation of traffic flow parameters. 
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• Chapter 5 puts forward some of the current limitations by reviewing and summarizing 

the methods we proposed. The current algorithm only uses a CPU as the main unit of 

calculation and cannot reach the speed of the GPU, so real-time detection is not 

achieved. In addition, we need to continue training the neural network to improve the 

detection accuracy of different vehicles in different scenarios, so as to further improve 

the overall performance of the algorithm. 

 

• Chapter 6 makes a summary of this research and gives conclusions about the research 

results. This paper proposes a new method that uses video taken by drones as input, 

combined with convolutional neural networks and traditional computer vision 

technology to complete vehicle detection and vehicle trajectory extraction. On this basis, 

the macro parameters of traffic flow are estimated, and the results obtained by the 

proposed method can provide detailed and accurate traffic parameter data sets for future 

research on intelligent vehicle network. 
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CHAPTER 2 - LITERATURE REVIEW 

This chapter reviews some of the works most relevant to our research. These researches 

provide references and theoretical basis for our proposed method. This chapter is divided into 

four main sections: video-based vehicle detection related works, convolutional neural 

network related works, road boundary extraction related works, drone-based vehicle 

tracking-related researches. All the solid results of these previous works have provided us 

with theoretical basis and inspired us to use drones to record videos to overcome the inherent 

disadvantages of traditional vehicle detection systems such as fixed viewing angles and 

vehicle occlusion problems.  

 

2.1 Video-Based Vehicle Detection  

Video-based vehicle detection systems can generally be divided into two categories for two 

stages: hypothesis generation (HG) models and hypothesis verification (HV) models [2]. 

Generally, HG models extract the regions of the picture that most likely contain the vehicles 

using the characteristics of the vehicles. The results obtained by using HG models need to be 

evaluated using hypothesis verification models. The common technique in this step is 

machine learning. Sometimes, the models of the second step also need to classify the 

detected vehicles into the correct types. This kind of methods are usually considered as two-

stage methods. 
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Since most vehicle detection systems are based on video, correspondingly, these methods 

usually rely on features or motion to complete vehicle detection. Feature-based methods use 

prior knowledge to detect the vehicles in the frame. Motion-based approaches rely on the 

differences caused during the motion process of vehicles to distinguish between the vehicle 

and the background. The result of this step is usually used as input to HV models. Here we 

mainly review HG models which can predict the positions of vehicles in the images. 

 

2.1.1 Feature-Based Methods 

Feature-based methods need to use information from the frame to decide the regions of 

interest where vehicles may exist. Here we give review on several approaches using color 

space, edges, vehicle lights. 

 

1) Color 

When trying to identify a vehicle from the image, a very intuitive phenomenon is that the 

color of the vehicle is generally different from the road. Although the vehicle may be 

difficult to recognize directly due to factors such as light, weather, and background texture, 

its color would always maintain its own characteristics compared with the surrounding 

background [3]. In the pictures captured by most photographic equipment at present, in the 

color space composed of three elements of red, green and blue (RGB space), the colors of all 

objects can be displayed with different numerical combinations of these three variables. 
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Therefore, when we want to detect a vehicle with a certain color, such as a red car, we need 

to analyze the value of the red channel in the RGB space. 

 

2) Edges 

Consider that the vehicle can usually be simplified as a three-dimensional structure similar to 

a cuboid. Therefore, when we observe from the front or rear of the vehicle, we will always 

notice that there are lines that are parallel or perpendicular to the coordinate axis of the 

viewing angle system, such as windows, trunks and other parts of the vehicle. As an inherent 

property of the vehicle, even if the vehicle is in the process of moving, we can always detect 

these edges to determine the boundary of the vehicle [4]. 

 

3) Vehicle Lights 

The aforementioned vehicle detection methods have their own advantages in different 

application scenarios, but when the detection environment is night, these methods will lose 

their advantages. In the case of poor lighting conditions at night, the outline, shadow, color 

and other information of the vehicle will become difficult to obtain. In this scenario, the 

vehicle's lights can be used to easily identify the vehicle from a low-brightness or completely 

black background [5]. 
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2.1.2 Motion-Based Methods 

The vehicle detection method mentioned above can be applied separately in each frame of 

the video. Only need to use the prior knowledge of the vehicle, we can detect the vehicle 

from a static picture. However, in the video of road traffic flow, the vehicles are often in a 

moving state. At this time, in the absence of prior knowledge, we can distinguish them from 

the static background with the help of the movement of the vehicles. Such methods often 

require a series of continuous pictures to provide information about vehicle movement and 

background. These methods can be divided into non-parametric methods and parametric 

methods. 

 

1) Non-parametric Methods 

When it comes to using movement to detect vehicles, the most intuitive method is to compare 

two consecutive frames [6], and determine the position of the moving vehicle by extracting 

the pixels whose pixel values have changed in the two frames before and after and comparing 

them with the set threshold. The threshold selection of this method is affected by the lighting 

conditions and the segmentation results may appear gaps as the detection object moves 

slowly. For this reason, some researchers proposed the method using frame 𝐹𝑖 and 𝐹𝑖+5 to 

calculate the difference to detect the slow-moving vehicles [7], but when the vehicles are 

moving fast, different vehicles may overlap, resulting in detection errors. 
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Another detection method is to subtract the background from the current frame to obtain the 

moving vehicle detection result [8]. However, due to the presence of slow-moving or parked 

vehicles, the background of this method will be quickly filled up by these relatively static 

vehicles in practical applications, resulting in incorrect recognition. 

 

2) Parametric Methods 

Common parameterization methods include optical flow method and background modeling 

method. The relative movement between the object and the observer causes optical flow. 

Using optical flow algorithm, we can perceive and track the displacement of the vehicle. By 

moving the centroid of the vehicle between consecutive frames and calculating the speed of 

the vehicle, we can estimate the distance of the vehicle [9].  

 

Different from the optical flow method, in the background modeling method, the background 

is regarded as motionless, and any moving objects are regarded as part of the foreground. In 

order to identify moving objects, this method usually includes background initialization, 

foreground object detection and background update. In this way, by continuously updating 

the background, the separation of the moving object and the background can be accurately 

completed [10]. 
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2.2 Convolutional Neural Network and Transfer Learning 

In the previous section, we reviewed some of the common methods of vehicle detection. In 

contrast, in the field of computer vision, the model needs to finish the detection and label the 

corresponding object types of every instance of objects in the screen in object detection task.  

At this time, traditional object detection methods may not be able to meet this demand.  

 

At first, when the neural network showed good performance, it was limited by the 

development of hardware and theory, which restricted further development. After a long 

period of stagnation, with the development of AlexNet [11], researchers in the field of 

computer vision discovered the great potential of convolutional neural networks and applied 

them to object detection [12], image classification [13], image segmentation [14] and other 

fields. Compared with traditional object detection and classification methods, neural 

networks can better extract and learn higher abstract level object features, and can accurately 

complete target contour extraction and object classification. The performance of traditional 

target detection methods will gradually saturate when faced with a large amount of data, that 

is, as the amount of data increases, although its performance will be improved, the gain 

brought by the larger amount of data is very limited. However, the neural network can get 

better performance through the training of large amounts of data in the right scenario.  
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2.2.1 Convolutional Neural Network 

By using window sliding detection technology [15], we can reduce the time complexity 

required for target detection tasks. This method first requires a window with a preset size, 

and then gradually slides the window across the entire screen, and at the same time classifies 

and labels the items in each window to complete the identification of all objects in the screen. 

In order to complete the detection and classification of items, we need to train a classifier that 

can recognize different objects. Just like teaching children what a car is, we need to give 

positive examples that include cars and negative examples that do not. The training of the 

classifier is completed with the help of the preset loss function and other measures. As the 

convolutional neural networks have great potential in object detection, classification, and 

image segmentation. After years of development, we now have art-of-the-state neural 

networks like R-CNN [16], Faster R-CNN [17], YOLO [18] series and SSD [19].  

 

CNNs use the deep learning algorithms and usually deal with high dimensional data like 

images and videos. To obtain a higher level of abstraction of input features, CNNs usually 

have a multi-layer architecture, which may contain layers like convolutional layer(s) (conv), 

fully connected layer(s) (FC) and etc. [20] Here we briefly introduce some constituent layers 

of the convolutional neural network to understand the structure and corresponding functions 

of CNNs. 

 

1) Convolutional Layer 
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The convolutional layer is an indispensable structure of CNN. The input picture or other 

data is operated with the convolution kernel, that is, a two-dimensional activation map is 

output by calculating the dot product of the data and the convolution kernel. Through this 

step, the network can learn which filter should be activated when a particular feature 

appears. Neurons that lie in a same feature map share same weight parameters and 

therefore the network would not need to set weight parameter for each of them, which 

can reduce the complexity of the whole network [21]. 

 

As the figure bellow shows, set a 3×3 sub-block of the input matrix as M with elements 

𝑚𝑖,𝑗 and the kernel as matrix K, then we have 

 

𝑀 ⊗ 𝐾 =  
1

9
∗ ∑ 𝑚𝑖,𝑗

𝑖=2,𝑗=2
𝑖=0,𝑗=0 = 3                                           (1) 

 

The definition of convolution operation in CNN is different from mathematical two-

dimensional convolution. The convolution operation here means the elements at the 

corresponding position of matrix are multiplied and added up [22]. After completing the 

convolution operation of the first sub-block, move one stride S to the next sub-block and 

perform the same operation until the entire input matrix completes the convolution 

operation. 
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Figure 1:Convolution Calculation Visual Diagram. 

 

Figure 2:This picture shows the process of a simple convolution operation.  

A convolutional layer usually has multiple convolution kernels to extract  

different features. From this link1. 

 

2) Activation Functions 

The activation function plays an important role, and the common functions are sigmoid, 

Tanh, ReLU, etc. [20] The graphs of some functions are shown below. Through the 

 
1 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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activation of these functions, the input signal is transformed into an output signal, which 

will be used as the input for the next layer. If there is no activation function, the output y 

of the entire network will be a linear combination of the input features x. 

 

 

               Figure 3: Commonly Used Activation Functions. 

 

3) Pooling Layer 

The role of the pooling layer is to down sampling to reduce parameter dimensions, 

remove redundant information, compress features, simplify network complexity, reduce 

calculations, reduce memory consumption, and so on. While using the pooling layer to 

reduce parameters, it can also make the network easier to converge. Common pooling 

methods include average pooling and maximum pooling. 

Take maximum pooling as an example here. 
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Figure 4: A max pooling operation with filter size (F) =2 and stride (S) = 2. 

 

4) Fully Connected Layer 

Each node of the fully connected layer is connected to each node of the previous layer, so 

that the previously obtained features can be integrated for classification or regression. 

Because of this feature, this structure needs to consume a lot of memory resources. For 

example, an FC layer has 1024 nodes, and the output of the upper layer also has 1024 

nodes, so 1024*1024 parameters are needed for transmission (without bias parameters). 

 

 

Figure 5: The structure and the output of FC layer.  𝒙𝒊 stand for the output of last layer. 



30 

 

 𝑾𝒎,𝒏 stand for the weight parameters. 𝒃𝒌 stand for the bias parameters. 

 

5) Loss Layer 

The loss layer can measure the difference between the network prediction result and the 

ground truth, thereby changing the network training parameters to optimize the network. 

Common loss functions include Softmax, Cross-entropy, etc. 

 

According to the process of the neural network to complete the target detection, they can be 

divided into two categories: two-stage methods and one-stage methods. 

 

a) Two-Stage Methods 

In the two-stage detection method, the first stage completes the proposal of the regions of 

interest (ROI) or the locations of the target objects, and then the second stage completes the 

detection and classification of these proposals and marks the result with bounding boxes. 

 

As a representative of this type of neural network, R-CNN [16] is also the first model to use 

convolutional neural networks to complete two-stage target detection. The structure diagram 

of the R-CNN network is shown in the figure. The structure of the first stage uses the input 

picture to propose the ROI to be classified through the algorithm. The second stage of the 

convolutional neural network consists of 5 convolutional layers and two fully connected 

layers, which is able to classify the proposed areas from first stage.  
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Figure 6: R-CNN structure from [13]. 

 

b) One-Stage Methods 

The one-stage method, as the name suggests, is to merge the ROI proposal and classification 

into one step. While using the input features for object detection, prediction of the category 

of the object is also done. The representative of this kind of method is the YOLO [18] series 

neural network. After processing the characteristics of the input picture, the YOLO network 

divides the picture into a fixed number of grids, and each grid predicts a fixed number of 

bounding boxes with confidence. The confidence score is obtained by multiplying the object 

detection probability by the intersection ratio of the predicted box and the actual box. When 

the confidence score exceeds a preset threshold, the YOLO network considers that a certain 

category of object has been detected in the area.  

 

2.2.2 Transfer Learning 

While training a NN, researchers usually need numerous labeled samples to “feed” the 

complex network so that it would be able to identify different objectives and achieve high 
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accuracy. However, researchers may not be able to acquire big data set containing ten 

thousand of labeled pictures to train their own models. To solve this, scientists proposed a 

method called transfer learning (TL) to make it possible to train a network for new tasks 

using a pre-trained model. Transfer learning relaxes the assumption that the training data 

must be independently and identically distributed (i.i.d.) with the test data [23]. Therefore, 

compared with normal neural network training, transfer learning can greatly reduce the 

computational complexity, data set size, and training time.  

 

 

Figure 7: A simple neural network structure with 2 hidden layers. 
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Figure 8: Learning Process of TL from [23]. 

 

Deep neural networks have been widely used in various scenarios, so a large amount of 

transfer learning methods have also been proposed to train networks that meet different 

needs. Based on the techniques used in TL, transfer learning can be divided into four types: 

instance-based transfer learning, mapping-based transfer learning, adversarial-based transfer 

learning and network-based transfer learning [23]. Like the fig shows, the second model can 

be retrained by using a small data set to identify trucks based on a network trained to detect 

cars. 
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Figure 9: A network trained using TL method. The input and output layers are adjusted  

to satisfy the need of new task, but the hidden layers structure is the same as the Fig.8’s. 

 

2.3 Road Boundary Extraction 

A large number of algorithms have been developed to extract road boundaries under different 

scenarios. Videos for analysis are usually from three main sources according to the view 

difference: low view from cameras fixed in or on vehicles, mid-height view from planes like 

helicopters and high view from satellites. However, with the wide application of UAVs, it is 

easier to acquire mid-height view videos of roads. This thesis focuses on analyzing videos 

taken by UAV and then needs to extract road boundaries from mid-height view videos. 

 

Without considering special scene requirements, most road boundary extraction algorithms 

can be divided into two types: feature-based and model-based methods [24]. Usually, feature-

based methods need to separate the road boundary according to the differences between lanes 

and backgrounds. When processing video, the commonly used features are generally color 
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space, edges, and patterns that recur in special cases. In [25], the color space of the picture is 

used for processing. The values of R, G and B channels are all considered to propose the 

regions where may contain road areas. In this way, the image area with a specific color can 

be extracted, but the result is easily affected by light, shadow and camera angle. While using 

edge features, since the image pixels on both sides of the edge will change drastically, the 

common method is to use this feature to extract the edge, and then further filter out the road 

boundaries [26]. Some would use Hough transformation method to find candidate lines and 

then find out most likely results as boundaries [27]. In [28] and [29], the method incorporated 

morphological operations and gradients to find edges as road boundaries. However, the edge-

based method may not give promising result once the lanes are not clearly shown in the 

pictures. In general, in order to obtain better processing results, different methods usually use 

mixed features as input. 

 

In contrast, model-based methods may be more robust than feature-based approaches. As the 

model needs a lot of road samples to be built, the researchers usually collect different road 

samples with different contours, background colors and shadows. However, if the road has 

sudden changes on its color, texture or backgrounds, it may lead to wrong detection results. 

Normally, the model-based methods would represent the boundaries using models with prior 

knowledge. Then the aim of model-based methods would be trying to find out the fittest 

parameters for the models. Several different strategies for model fitting were proposed in [30, 

31]. In [30], a quadratic road surface model was first fitted by a RANSAC approach. Then 

the primary result was refined by a region growing-like process, driven by the 3D resolution 

and the uncertainty model of the sensor to give detected result. In [31], the author proposed 



36 

 

Least Square Estimation (LSE) based approach to fit a model for the road surface. Both 

feature-based and model-based methods would give results of lane boundaries but the model-

based methods are more inclined to express the results as concise mathematical expressions. 

 

In this paper, since the UAV usually flies under good weather conditions, we need to pay 

more attention to the spin of the UAV and the changes of features because the video 

collected do not have temporal and spatial stability. Due to this reason, model-based methods 

may not be robust, so hybrid of color, edge is used as input feature to extract road 

boundaries. To make the extraction result more reliable, relationship between two 

consecutive frames are also considered to avoid failure of edge detection. 

 

2.4 Drone-Based Vehicle Tracking  

In order to accurately calculate the number of detected vehicles and the speed of their 

movements, video-based object tracking technology is applied in this process. In this thesis, 

we are using videos obtained by drone to detect and track vehicles. Since the drone is also 

moving along the direction of the road, the estimated speed of vehicles that moving in the 

same direction with drone should minus the speed of drone to acquire real speed estimation 

result. As for those vehicles in the opposite direction with the drone, their speeds should add 

the drone speed to get their estimated speed. In such a scenario, drone-based vehicle tracking 

is simplified to video-based object tracking that needs to consider the movement of the lens. 

For computer vision researchers, moving object tracking has always been a challenging task. 
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In its development history, object tracking methods can be divided into two categories: 

generative model tracking and discriminative model tracking. 

 

Generative model is the research focus of early object tracking algorithms. Related 

algorithms include optical flow method [32], Mean-shift algorithm [33], Camshift algorithm 

[34] and so on. This type of algorithm first uses the characteristics of the target to build a 

target model, and then searches for the target characteristics in subsequent frames. If the 

matching features are found, it is considered that the target object is found, and the entire 

tracking process is iteratively completed in sequence. This type of method does not make full 

use of the background information. Therefore, due to the randomness and diversity of the 

appearance of the target, when the ambient light changes and the motion causes the target to 

rotate, blur or be blocked, the accuracy of the tracking result will be reduced. 

 

In contrast to the generative model, the discriminant model takes into account both target 

features and background information, and uses the difference between the target model and 

background information to extract the target [35]. This method is considered to have great 

potential through the testing and evaluation of data sets by researchers. After the filtering 

method in the communication field was introduced into the practice of object tracking, a 

method called correlation filtering showed surprising results in terms of speed and accuracy 

[36, 37, 38]. On this basis, with the development of deep learning technology, researchers 

have begun to use neural networks to complete target detection and tracking. 
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This research uses the results of neural network detection as input for object tracking, and 

uses the discriminative correlation filter tracker with channel and spatial reliability to build a 

tracker list to track one or more target vehicles in the picture. This type of tracker can 

accurately track the vehicles detected in the picture, and save the position of each vehicle in 

each frame, which is used to calculate the moving speed of the vehicle and extract the 

trajectory data set. 

 

CHAPTER 3 - RESEARCH METHODOLOGY 

This chapter gives details in each step of our drone-based computer vision-enabled self-

calibrated traffic flow parameter estimation model. The system's module composition, key 

algorithm design and parameter calculation process are provided in detail. 

 

3.1 System Architecture and Algorithm Design 

As the figure 10 shows, the proposed method has five key modules to process the videos 

taken by a drone: (1) vehicle detection CNN (2) road boundary extraction (3) vehicle 

tracking (4) perspective transformation (5) parameter estimation. 
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Figure 10: The Flow Chart of the Proposed Approach. 

 

3.2 CNN Network Design and Transfer Learning Mechanism  

3.2.1 Modified YOLO v3 Network 

For this project, the model used for transfer learning is You Only Look Once version 3 

(YOLO v3) [39]. You only look once (YOLO) is a state-of-the-art, real-time object detection 

system. The version used is YOLO v3, which is able to classify about 80 different kinds of 

objects. The key architecture of YOLO v3 is darknet53, which is a convolutional neural 

network comprises of 53 convolutional layers. 
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Figure 11: YOLO v3 Structure. 

 

Figure 11 shows the detailed structure of YOLO v3. The structure used is the YOLO v3 pre-

trained structure. The input picture is processed and resized to a size of 416 × 416 × 3. After 



41 

 

the processing by Darknet 53, in order to perform feature extraction and detection of objects 

of different sizes, the subsequent network structure uses tensor stitching to stitch together the 

results of different processing stages to extract feature maps of different scales. Finally, in the 

output y1, y2, y3, we got three feature maps of different scales respectively. Since there are 

80 types of objects to be recognized, the last dimension of the feature map, 255, is equal to 

3 × (5 + 80). We can see that the three outputs have different scales. This is because the 

network needs to detect objects of different sizes. Since the smaller feature map has a larger 

receptive field, the 13 × 13 size feature map is used to detect large-sized objects, the 

26 × 26 size feature map is used to identify medium-sized objects, and the 52 × 52 size 

feature map is used to identify small-sized objects. In this way, objects of different sizes can 

all be considered, and the detection ability of the network is enhanced. 

 

In the picture below, we show how YOLO v3 detects and classifies objects in the picture. 

The network divides the picture into S × S grids, and each grid is responsible for predicting B 

bounding boxes, the corresponding confidences and C classes probabilities. Each box needs 

to have five basic parameters (x, y, w, h, confidence). Therefore, the output dimension of the 

feature map we get is 𝑆 × 𝑆 × 𝐵 × (5 + 𝐶). After obtaining the feature maps of the picture, 

the subsequent fully connected (FC) layer is used to predict the classification probability of 

the object and give the coordinates of the bounding boxes. 
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Figure 12: YOLO v3 Detection and Classification. 

 

In our research, the types of vehicles that we need to consider only include cars, trucks, buses, 

vans, and motorcycles. Therefore, the dimension of the output tensor we get in actual training 

and detection is actually 30.  

3.2.2 Transfer Learning Mechanism   

Based on YOLO v3, to train our own CNN for vehicle detection, the transfer learning was 

achieved using a data set from a drone video detection contest named as “VisDrone 2018” [40]. 

The training data set contains 6287 labeled pictures (total 1.44 GB) with several cars in each 

of them. After setting the parameters, the model was trained for about 30 hours for 18000 

epochs and the final average training loss is 7.7. 
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Figure 13: Examples of Training Dataset. 

 

Figure 14: The Number of Objects Per Image of Dataset. 
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Figure 15: Occlusion Degree of Objects. 

 

The training process is completed on Google Colaboratory. By uploading training data to 

Google Driver and synchronizing the folder of the laptop with Google Driver, the training 

results can be synchronized to the laptop in time. The weight parameters of each training 

1000 epochs neural network will be saved once. 

 

 

Figure 16: Device Synchronization Process. 

 

After the training process, the network was used to detect vehicles in the video taken by a drone 

and saved their bounding box coordinates and centers into .txt files. The picture shows one 

frame of the output video and the boxes that mark vehicle locations in the frame. In the test 
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drone videos, the trained network can achieve an average accuracy of 94%. 

 

Figure 17: A screenshot of the output video. The markers show positions of the detected 

vehicles, the predicted vehicle type and the corresponding confidence level. 

 

3.3 Image Sequence Based Self-Calibration Design and Vehicle Tracking  

To calculate the dynamic parameters of traffic system, the model must acquire the boundaries 

of the road to distinguish the vehicles in the road from the vehicles in the background of the 

video. We propose a self-calibration road boundary extraction method based on image 

sequence. After completing the rough road boundary extraction, we need to filter out the 

vehicles on the road and further complete their tracking to extract the trajectory data of each 

vehicle for subsequent calculations. Section 3.3.1 illustrates the steps to extract precise 

boundaries from each frame of a video. It is worth noting that the road boundary extraction 

was actually carried out twice, the first time was to extract directly from the picture using 
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digital image processing technology, and the second time was to use the obtained vehicle 

position information as a reference for estimation. 

 

3.3.1 Road Boundary Extraction 

In general, this process is completed in two major steps. The first step is based on digital 

image processing technology, using OpenCV to complete the preprocessing of the image and 

extract all the boundary lines. Under ideal conditions, we assume that 5 standard road 

boundary lines can be detected in each frame. Then the leftmost and rightmost boundary 

lines are the outer boundaries of the road. However, considering the interference of light 

intensity and shadows, and the road boundary line may become inconspicuous due to wear 

and tear, it may happen that the boundary line cannot be detected. In the case that the drone is 

not flying at high speed, the background of the two consecutive frames will not change 

drastically. We can use the result of the previous frame as a substitute, but due to the 

interference of shadows from trees and roadside buildings, the outer boundary obtained in 

this step cannot be guaranteed to be accurate, and it may affect our subsequent calculations. 

Therefore, we need to obtain more accurate inner boundary lines. 

 

Taking the above factors into account, the second step is to use the outer boundary lines to 

complete the preliminary filtering process of the vehicles detected by the neural network. In 

the subsequent process, we will decide the locations of boundaries according to the positions 

of the leftmost and rightmost vehicles on the road. Similarly, the relationship between two 

consecutive frames is also applied here. After completing the above two steps, we can get 
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precise road inner boundary lines. The detailed process and principle of the algorithm are 

given below. 

 

(1) Read and turn a frame into gray scale picture, then adjust the brightness of the picture to 

lighten the dark part of the road boundaries. 

 

Figure 18: Left: original frame. Right: adjusted frame. 

 

(2) Perform adaptive threshold segmentation on the frame after Gaussian noise reduction and 

morphological operations on the segmented picture. 

 

Different from the global methods that use all pixel values to determine the segmentation 

threshold, the adaptive threshold segmentation method divides the screen into small 

neighborhoods for processing. In each neighborhood (a 19×19 size for the neighborhood 

is used in this study), the average value of the neighborhood's pixel values is calculated 

using the mean method or the Gaussian mean method as the threshold. All pixels greater 

than this threshold are set to 255, and those lower than this threshold are set to 0. 
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Figure 19: A simple example of Gaussian mean method in a neighborhood. 

 

After completing the segmentation operation, we need to use the closing operation of the 

morphological operation to complete the connection of the discontinuous lines in the 

picture to facilitate the subsequent straight lines extraction. The closing operation needs to 

perform a dilation operation on the picture first and then a corrosion operation to smooth 

the boundary of the object and connect the adjacent objects. Here we use a cross structure 

like the figure shows to perform all the operations. 

Dilation: If there is an overlapping area with structure A in the process of moving structure 

B, record the position. The set of all positions that overlap with structure A when moving 

structure B is the result of structure A's expansion under structure B. 

 

𝐴 ⊕ 𝐵 = {𝑧 | (𝐵̂)
𝑧

⋂ 𝐴  ≠  ∅}                                           (2) 

 

Erosion: If the intersection of structure B and structure A completely belongs to the area 

of structure A, save the location point, and all points that meet the conditions constitute the 

result of structure A being corroded by structure B. 
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𝐴 ⊖ 𝐵 = {𝑧 | 𝐵𝑧  ⊆  𝐴}                                                   (3) 

 

 

Figure 20:  Example of Dilation and Erosion operations. 

 

Figure 21: Result of adaptive threshold segmentation and morphological operations 
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(3) Use Progressive Probabilistic Hough Transform (PPHT) [41] to detect straight lines in the 

picture. 

The PPHT has been commonly accepted as one of the best line detection methods based 

on Hough transform theory. In polar coordinates, a straight line can be expressed as 

 

𝜌 = 𝑥 cos(𝜃)  + 𝑦 sin (𝜃).                                           (4) 

 

In this way, even a straight line perpendicular to the coordinate axis can be represented by 

a pair of parameters (𝜌, 𝜃). The steps show how to get straight lines with a length larger 

than a preset minimum value: 

 

a) Randomly select a new point to update the accumulator array, with contributions to 

all available bins (bin stands for a pair of (𝜌, 𝜃)). Then remove the selected pixel from 

the input image.  

b) Check if the highest peak that was modified by the new pixel in the updated 

accumulator is greater than a pre-defined threshold. If not then go to Step a). 

c) Find the longest segment from all lines with the parameter (𝜌, 𝜃) which was specified 

by the peak in Step b). The selected line can be expressed using the beginning point 

A and ending point B.  

d) Remove all the points of the longest line from the input image. 

e) “Unvote” from the accumulator all the pixels from the line that have previously voted. 

Then these points do not attend any other voting process. 

f) If the selected segment is longer than a pre-defined minimum length, then the point 
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pair of the beginning and ending points will be recorded as one of the output results. 

g) Go to Step a). 

 

Finally, we can have an output list containing all the segments that longer than the min 

length value. The list is saved as: 

 𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡 = {{(𝑥1, 𝑦1), (𝑥2, 𝑦2)}, … , {(𝑥𝑛−1, 𝑦𝑛−1), (𝑥𝑛, 𝑦𝑛)}},  

𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡, 𝑎𝑛𝑑 𝑤𝑒 𝑎𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒  

𝒏 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑.  

 

 

Figure 22: Result of Hough transform. 

 

(4) A mask designed based on prior knowledge was used to filter out the detected line clusters 

on the road. The filtered lines can be saved as: 

 𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡 = {{(𝑥1, 𝑦1), (𝑥2, 𝑦2)}, … , {(𝑥𝑚−1, 𝑦𝑚−1), (𝑥𝑚, 𝑦𝑚)}}. 
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(5) Use the K-means clustering method [42] to filter out the center points of each cluster, and 

use the average values of the slopes of the clustered lines as the actual slopes. 

Now the clustered lines will be saved as: 

𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡 = {(𝑥1, 𝑦1, 𝑘1), … , (𝑥𝑠, 𝑦𝑠, 𝑘𝑠)}, (𝑥𝑖 , 𝑦𝑖) 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡  

𝑎𝑛𝑑 𝑘𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑙𝑖𝑛𝑒. 

 

(6) Estimate the boundaries of the next frame considering that the boundaries of two 

consecutive frames will not change drastically, and compare with the detected boundaries 

to determine the actual boundaries of the current frame. 

 

 

Figure 23: Detected boundaries. Straight lines of different colors indicate that edges are  

at different positions on the road plane. Yellow points are the result of K-means clustering. 
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(7) Save all the detected road boundaries after K-means clustering (including road center lines) 

for later steps to determine more accurate locations of the road boundaries. 

 

3.3.2 OpenCV-Based Vehicle Tracking 

Based on the detected vehicle bounding box files, the vehicle trajectories are extracted using 

OpenCV CSRT tracker [43]. The process is performed with the following five steps: 

 

Step 1: Tracker Initialization 

For the first frame Fr0 of the video, read the corresponding bounding box file “frame0.txt” and 

initialize the tracker list with bounding boxes. 

 

The bounding boxes are saved in this form: 

{𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑥, 𝑐𝑦}, (𝑥, 𝑦) 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑙𝑒𝑓𝑡 𝑐𝑜𝑟𝑛𝑒𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒;  

𝑤 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥; ℎ 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡; 

(𝑐𝑥, 𝑐𝑦) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥. 

 

Step 2: Update Trackers 

Assume the current frame is Fri, update the trackers to get predicted bounding boxes using the 

current frame. 

 

Step 3: Match Prediction and Ground Truth 

Compare the predicted boxes with the detected boxes using CNN to find the boxes 
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corresponding to the vehicles in the scene. If a predicted box is not matched, maybe it is 

because that the NN did not detect the corresponding vehicle, the tracker will also be saved. 

 

Figure 24: Intersection over Union (IoU). 

 

In order to find the prediction box corresponding to the actual vehicle position, we use the 

Intersection over Union (IoU) [44] indicator for measurement. The predicted boxes are 

compared with the vehicle positions of the frame one by one, and their IoUs are calculated at 

the same time. If the preset minimum threshold is reached, then the corresponding bounding 

box is considered to be found. In the UAV's perspective, there is generally no mutual 

occlusion between vehicles, which can simplify the judgment process. 

 

 

Figure 25: Left: detection result of NN. Right: NN detection combined with object tracking.  

The cars marked as 37 and 38 are detected using our proposed method. At the same time,  

the white car in the lower left corner is no longer marked because it exceeds the ROI range. 
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Step 4: Test Boundary Conditions 

If the boxes reach the boundary conditions, the corresponding tracker is set to an unusable state 

and would not be updated in next frames. 

 

Assuming the center of a predicted bounding box is (𝑥𝑝, 𝑦𝑝), now that we have ensured that 

all the vehicles in the picture are in the ROI, we only need to consider the case where the 

ordinate exceeds the given range, that is: 

 

𝑦𝑝 < 𝑇𝐻𝑅𝑢𝑙 𝑜𝑟 𝑦𝑝 > 𝑇𝐻𝑅𝑙𝑙 , 𝑖𝑓 𝑥𝑝 < 𝑀𝐼𝐷; 

𝑦𝑝 < 𝑇𝐻𝑅𝑢𝑟 𝑜𝑟 𝑦𝑝 > 𝑇𝐻𝑅𝑙𝑟 , 𝑖𝑓 𝑥𝑝 > 𝑀𝐼𝐷 

 

Where 𝑇𝐻𝑅𝑢𝑙 , 𝑇𝐻𝑅𝑙𝑙 denotes the upper left and lower left thresholds of the left part of ROI 

respectively; 𝑇𝐻𝑅𝑢𝑟 , 𝑇𝐻𝑅𝑙𝑟 denotes the upper right and lower right thresholds of the right part 

of ROI respectively; 𝑀𝐼𝐷 denotes the center line’s x coordinate. The preset thresholds on the 

left and right sides may be different. This is because the camera angle of the drone may affect 

the heading of the vehicle during the flight, and thus affect the relative position of the center 

of the vehicle. 

 

Step 5: Determine the Final Positions of Road Boundaries 

According to the detected road boundaries and the coordinates of the left-most and right-most 

vehicle center points in the current frame, the road boundaries that actually need to be drawn 

in the current screen are determined. 

 



56 

 

Assume that in the current frame, the detected vehicles are arranged in order from left to right. 

The center coordinate of the leftmost vehicle is (𝑥𝑙𝑒𝑓𝑡 , 𝑦𝑙𝑒𝑓𝑡), and the center coordinate of the 

rightmost vehicle is (𝑥𝑟𝑖𝑔ℎ𝑡, 𝑦𝑟𝑖𝑔ℎ𝑡). Now that we have saved all the detected borders, if the 

borders on the left and right sides are all present, then by comparing with the leftmost and 

rightmost vehicle center positions, we can get the candidates for the precise borders on the left 

and right of the current frame.  

 

In the next step, we need to compare the candidates with the precise boundaries of the previous 

frame. The leftmost and rightmost boundaries of the previous frame are  

(𝑥𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1
, 𝑦𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1

, 𝑘𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1
, 𝑏𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1

)  for the left side and  

 (𝑥𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1
, 𝑦𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1

, 𝑘𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1
, 𝑏𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1

) for the right side. 

 

If the result of this frame is closer to the central area, then use the current candidates as the 

accurate boundary. At last, the leftmost and rightmost boundaries of the road obtained in the 

current frame are  (𝑥𝑙𝑒𝑓𝑡𝐹𝑟𝑖
, 𝑦𝑙𝑒𝑓𝑡𝐹𝑟𝑖

, 𝑘𝑙𝑒𝑓𝑡𝐹𝑟𝑖
, 𝑏𝑙𝑒𝑓𝑡𝐹𝑟𝑖

) for the left side 

and (𝑥𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖
, 𝑦𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖

, 𝑘𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖
, 𝑏𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖

) for the right side.  

 

If there is a left (right) side boundary that is not detected in the previous boundary extraction 

step, then we use the slope of the left (right) side boundary of the previous frame and the center 

coordinates of the vehicle in the outermost lane on that side to estimate the boundary.  

The missing leftmost or rightmost boundaries of the road obtained in the current frame would 

be  (𝑥𝑙𝑒𝑓𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑥, 𝑦𝑙𝑒𝑓𝑡 , 𝑘𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1
, 𝑏𝑙𝑒𝑓𝑡𝐹𝑟𝑖−1

) for left side 
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or (𝑥𝑟𝑖𝑔ℎ𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑥, 𝑦𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖
, 𝑘𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1

, 𝑏𝑟𝑖𝑔ℎ𝑡𝐹𝑟𝑖−1
) for the right side.  

 

3.4 Flow Parameter Estimation 

3.4.1 Perspective transformation 

When the human eyes receive the view of the real world, objects in the vicinity will look larger 

than those in the distance. This is often referred to as the perspective phenomenon. Because 

the camera has optical perspective characteristics similar to the human eye, two parallel 

straight lines on both sides of the road in real life will converge into a point in the distance in 

the picture. Before proceeding further, the model needs to perform perspective transformation 

[45] on the picture. 

 

Assume the original point coordinate in the frame is (𝑥, 𝑦), the transformation matrix is M and 

the corresponding coordinate in the transformed picture is (𝑥′, 𝑦′), we have 

 

[
𝑢
𝑣
𝑤

] = 𝑀 [
𝑥
𝑦
1

] = [

𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

] [
𝑥
𝑦
1

]                                          (5) 

𝑥′ =  
𝑢

𝑤
=

𝑎11𝑥+𝑎12𝑦+𝑎13

𝑎31𝑥+𝑎32𝑦+𝑎33
                                                (6) 

𝑦′ =  
𝑣

𝑤
=

𝑎21𝑥+𝑎22𝑦+𝑎23

𝑎31𝑥+𝑎32𝑦+𝑎33
                                                (7) 
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Based on the boundaries extracted, the algorithm transforms the ROI in the original frame into 

a rectangular picture to estimate the distance and then the speeds of vehicles move between 

two consecutive frames. 

 

Suppose the center coordinate of a car is (𝑥1, 𝑦1) in the current frame, and (𝑥1
′ , 𝑦1

′ ) in the 

transformed coordinate system. In the next frame, its center coordinate becomes (𝑥2, 𝑦2), and 

the transformed coordinate becomes (𝑥2
′ , 𝑦2

′ ). Since we assume that the picture will not change 

drastically between two consecutive frames, using the same actual ROI area size as a measure, 

the displacement of the center can be considered as the moving distance of the vehicle in two 

consecutive frames. 

 

𝐷 =  √(𝑥2
′ − 𝑥1

′ )2 + (𝑦2
′ − 𝑦1

′)2                                             (8) 

 

 

Figure 26: The Result of Perspective Transformation. The ROI in the left image  

was transformed into the picture on the right. The yellow point coordinates  

can be converted using matrix M mentioned above. 
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3.4.2 Parameter estimation 

a) Vehicle number  

After using neural network to complete the detection of vehicles, the model needs to calculate 

the number of vehicles running in the current frame and the total number of vehicles based on 

the detection results. Since the neural network may not recognize some vehicles during the 

process of detection, the following situations may occur while calculating the number of 

vehicles: 

 

1) All vehicles in the screen are detected by the neural network, and the result that should be 

displayed is the number of vehicles detected; 

 

2) Some vehicles in the picture are not detected by the neural network, but in the previous 

frame, some trackers were used to complete the tracking of these vehicles, and these 

trackers are still within the ROI range. At this time, the number of vehicles is the number 

of vehicles detected by the neural network plus the number of available trackers; 

 

3) All the vehicles in the picture are not detected by the neural network. If the trackers used 

in the previous frame are still within the ROI range, the number of vehicles in the picture 

is the number of available trackers. 

 

When calculating the total number of detected vehicles, after obtaining the number of vehicles 

in the current frame, the model only needs to count and add the number of new vehicles that 
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appear in each frame. However, it should be noted that the neural network may detect a car in 

the previous frame, but may not detect the same car in the subsequent frames. Under such 

circumstances, this car should not be treated as a new car. In fact, in order to deal with this 

situation, the model looks for the matching results of the vehicles detected in the current frame 

from the prediction results of the trackers in the previous frame. If the corresponding tracker 

is found, the model will no longer add a new tracker for this car. Instead, the model uses its 

current position to update the corresponding tracker. 

 

b) Vehicle speed 

After the detection and tracking of the vehicle is completed, the speed of the vehicles needs to 

be calculated and marked on the corresponding vehicle in the output video. When the neural 

network marks the position of the vehicle, the bounding box is marked with a rectangle that 

can include the outline of the vehicle (possibly including its shadow). However, in the tracking 

process, the tracker estimates the corresponding position of the next frame according to the 

size of the frame of the vehicle given in the previous frame, so the position of the center point 

of the vehicle may have a large drift. 

 

 

Figure 27: Center Drift. The detection result of the neural network may not  
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be accurate enough, which may cause the center to drift when tracking. 

 

To reduce the error caused by the drift of the center point of the vehicle, when calculating the 

speed of the vehicle, the moving distance of 5 consecutive frames is averaged, and the speed 

calculated using this value is regarded as the moving speed of the vehicle in these 5 frames. If 

the total number of frames that the vehicle appears is not an integer multiple of 5, then the 

moving distance of the last few frames is also averaged to estimate the speed. In addition, after 

the speed of the vehicle is estimated, considering that the drone is also flying in the direction 

of the road, vehicles traveling in the same direction as the drone need to subtract the speed of 

the drone. Correspondingly, the speed of the drone's flight needs to be added to the vehicle 

driving in the opposite direction to the drone. In this way, the true speed of the vehicle can be 

estimated.  

 

It is worth noting that in the first frame when a vehicle appears, the speed is 0 by default 

(because the position of the previous frame cannot be obtained). However, in order not to affect 

the display result in the video, the speed of the second frame is used as the speed of the first 

frame considering that the speed of the vehicle generally does not change drastically when 

running at high speed. 

 

c) Vehicle Average Speed  

The average speed of vehicles indicates the degree of congestion on the road. When the 

average speed of vehicles is higher than a certain value, it means that there is almost no 

congestion on the road and the traffic flow is almost free flow. When the road is heavily 

congested, the average speed of the vehicle becomes very close to zero. 
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Assuming that there are N vehicles on the road at time T, the average speed of each 

vehicle can be calculated using the detected vehicle trajectory data, denoted as 𝑉𝑖 , 𝑖 =

1,2, … , 𝑁. Then the average speed of vehicles on the road at this time can be simply 

estimated as the average of their speeds: 

𝑉𝑎𝑣𝑔. =  
1

𝑁
∑ 𝑉𝑖

𝑁
𝑖=1  ，𝑖 = 1,2, … , 𝑁                                            (9) 

 

d) Vehicle Density  

Generally speaking, we can calculate the density of vehicles per unit distance by dividing 

the total number of vehicles detected in a certain period of time by the total distance 

(usually 1 km is used as the unit distance). On this basis, we can further divide this result 

by the number of lanes to get the density of vehicles on each lane. In the case of this 

thesis, we only use the former as the parameter to measure traffic flow.  

 

Suppose that the starting time is 𝑇0 = 0, and it becomes 𝑇𝑖 after a period of time. During 

this time, the total number of detected vehicles is 𝑁, the number of lanes is 𝐿, and the 

average flying speed of the drone is 𝑉𝑑, and the flying distance is 𝑆𝑑 = 𝑉𝑑 × 𝑇𝑖. 

Considering the detection distance 𝑆𝑅𝑂𝐼 of the drone’s ROI, we can calculate the average 

density of vehicles at time 𝑇𝑖: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑁/𝐿

𝑆𝑑+𝑆𝑅𝑂𝐼
                                                 (10) 
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CHAPTER 4 - EXPERIMENTAL TESTS 

 

4.1 Testing Hardware and Environment   

The UAV used for recording videos of freeway is DJI Phantom 4 Pro. The drone is 

controlled by a remote controller. An iPad mini installed with flight control software is used 

as the flight control panel and the display screen. The drone itself is equipped with a GPS 

device and is able to be automatically stabilized against wind disturbances. According to the 

user manual, the drone could reach a height of 500 m and a max control range of 7000 m. 

The flight process can be controlled manually or be autonomous by the aid of GPS system, 

which makes it possible to follow preprogrammed waypoints. The camera is fixed on the 

gimbal at the bottom of the drone, and can achieve a shooting angle from -90° to +30°. In the 

recording mode, it can record 4K (3840×2160 30fps) videos and save them in the form 

of .mov to a MicroSD card. Some screenshots are shown in the following section, which 

were recorded by the drone on freeway following the pre-programmed waypoints.  
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Figure 28: Configuration of Hardware.  

 

 

Figure 29: Preset Waypoint Information. 

 

As for the code running environment, the neural network was constructed under Python 3.7 

in Ubuntu 18.04 system frame. The vehicle tracking module uses OpenCV 3.4.2 to read and 
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process video and images. The final codes run on a laptop computer that uses an I7 6700HQ 

model CPU and 16 GB RAM.  

 

4.2 Testing Scenarios and Data Collection  

4.2.1 Testing Scenarios 

In order to test the performance of our proposed model in different scenarios, we used a 

drone to obtain videos of the same road at different times. The road section selected in this 

experiment is on the H1 freeway in Honolulu, Hawaii, with a total length of about 880 meters 

on approximately a straight alignment. When recording videos by drone, one must consider 

that the UAV used is small in size and cannot resist strong wind. Therefore, we chose days in 

field when the winds are calm and the weather is sunny or cloudy, and different lighting 

conditions are also considered. Table 1 provides a detailed description. 
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Table 1 Description of Test Videos 
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4.2.2 Data Collection 

The hardware devices used in this experiment have been shown and explained in detail in the 

previous chapters. In order to avoid drone flight accidents that may be caused by manual 

operation, and try to keep the drone's viewing angle as stable as possible. With the help of 

specialized software, we have set up a series of fixed waypoints through many tests and 

adjustments, using the GPS function of the drone. After the drone takes off, turn on the 

automatic flight on the software, and the software will wirelessly transmit the waypoint 

information to the drone. Then the drone will automatically follow the preset route and fly at 

a constant speed. In this process, the camera of the UAV is used to complete the collection of 

road video information, and the videos were stored in the UAV's micro SD card in the 

4K+30fps .mov file format. 

 

4.3 Experimental Results and Analysis  

4.3.1 Model Calibration and Metrics of Evaluation 

To verify the effectiveness of our proposed model and calibrate the parameters, we first used 

a short video as verification data. This video is also from the H1 freeway and is about 27 

seconds long. The detailed description of this short clip is listed above. 
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Before we start the test, we first need to give definition of metrics to measure performance. 

Considering that the model we proposed is to detect the number of vehicles on the road, 

extract vehicle trajectory data then estimate vehicle speed, traffic flow density and average 

speed on this basis, we propose the following measurement standards for these data: 

 

1) Metrics of Evaluation for Vehicle Detection 

Table 2 Confusion Matrix 

 

Total Population 

Predicted Condition 

Positive Negative 

 

True Condition 

True True Positive (TP) True Negative (TN) 

False False Positive (FP) False Negative (FN) 

 

Start from the concept of binary classifier, Precision, which is the fraction of relevant 

instances among the retrieved instances, and Recall, which is the fraction of the total 

amount of relevant instances that have been retrieved, are commonly used in detectors 

performance evaluation [46]. They are defined as in the following equations: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 (12) 

 

In an ideal state, both the accuracy rate and the recall rate should be high, which shows 

that the model can accurately identify the correct result while ensuring a low error 
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recognition rate. Based on these two parameters, the F-measure is the trade-off between 

Recall and Precision, which have equal importance in the equation bellow: 

 

𝐹 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                            (13) 

 

2) Metrics of Evaluation for Traffic Flow Density 

According to the level of service (LOS) criteria table from [47], flow conditions are 

considered "free" when less than 12 vehicles per mile per lane are on a road. "Stable" is 

sometimes described as 12–30 vehicles per mile per lane. As the density reaches the 

maximum mass flow rate (or flux) and exceeds the optimum density (above 30 vehicles 

per mile per lane), traffic flow becomes unstable, and even a minor incident can result in 

persistent stop-and-go driving conditions. A "breakdown" condition occurs when traffic 

becomes unstable and exceeds 67 vehicles per mile per lane. 

Table 3 Level of Service for basic freeway sections for 70 km/h design speed [47] 

 

LOS 

 

Flow 

Condition 

Service  

Volume 

Speed Density 

(veh/h/lane) (miles/h) (veh/mile  

per lane) 

A Free 700 >60 <12 

B Stable 1100 >57 <20 

C Stable 1550 >54 <30 

D High Density 1850 >46 <40 

E Near Capacity 2000 >30 <67 

F Breakdown Unstable <30 >67 
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3) Metrics of Evaluation for Average Speed  

Since the freeway section used for the test contains forks and has different speed limits in 

different sections, we partially refer to the LOS standard table given above and the actual 

speed limit standards to investigate the average speed of the traffic flow. On this basis, a 

rough judgment of road congestion is given. 

 

In the test phase, after processing the 27-second video (marked as video No. 1), we got the 

following test results: 

Table 4 Preliminary Test Results 

Ground 

Truth 

TP Sample 

Number 

FP Sample 

Number 

FN Sample 

Number 

P R F-

measure 

90 88 2 0 97.78% 100% 98.88% 

 

Since the videos were taken by us using a drone, there is no corresponding data set 

containing the number and speed of vehicles. Therefore, in the result, the actual total number 

of vehicles (i.e. ground truth), TP, FP, and FN data are all manually counted.  

 

The speeds of the vehicles are saved in a .csv file. For the convenience of calculation, the 

speeds of the vehicles used in the calculation are in feet/s. By calculating their average value, 

we get an average vehicle speed of 14.66 miles/h (23.60 km/h) on the left lanes. Since the 

road in the test video is close to the fork, the speed limit is 25 miles/h. Considering this actual 

speed limit, the data we get is within a reasonable range. At the same time, referring to the 
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standards given above, this section of the road is already in severe congestion. The following 

results will also give a consistent judgment. 

  

As for the traffic density, through estimation, the total length of the 7-lane test section is 

about 160m (about 0.1 mile), and the total number of vehicles detected by the model is 88, so 

the traffic density on this road section during this time period 126 veh/mile per lane. 

According to the LOS standard listed above, this section of the road is actually in a state of 

congestion, and it has also been verified from the actual picture that vehicles on the left lane 

have already started to queue up. 

 

 

Figure 30:Actual Traffic Conditions in Congestion. 

The processed results of this test video prove the effectiveness of our model, and that the 

model can provide more accurate results. 
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4.3.2 Experimental Results 

After testing and adjusting the parameters of the model, this part gives the processed results 

of the remaining three longer videos. Here is the result of vehicle detection: 

1) Vehicle Detection 

Table 5 Experimental Results of Vehicle Detection 
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2) Vehicle Average Speed  

Table 6 Experimental Results of Vehicle Average Speed 

 

Number 

Estimated 

Average 

Speed (Left) 

Estimated 

Average 

Speed 

(Right) 

Flow  

Condition 

(Left) 

Flow  

Condition 

(Right) 

Actual  

Speed 

Limit 

2 53.60 

miles/h 

41.07  

miles/h 

High 

Density 

Near 

Capacity 

50 miles/h 

3 55.93 

miles/h 

42.68 

miles/h 

Stable High 

Density 

50 miles/h 

4 58.64  

miles/h 

44.49 

miles/h 

Stable High 

Density 

50 miles/h 

 

3) Vehicle Density 

Table 7 Experimental Results of Vehicle Density 

 

 

Number 

 

Detected 

Number of 

Vehicles 

Total 

Length of 

Road 

Section 

 

Number 

of Lanes 

 

Estimated 

Vehicle 

Density  

(veh/mile per 

lane) 

2 512 900 m 8 114 

3 661 1000 m 8 133 

4 506 900 m 8 113 
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4.3.3 Analysis of Results 

In the previous parts of this chapter, we have listed the evaluation criteria and experimental 

results respectively. From the experimental results, our model has a good performance in vehicle 

detection and speed estimation. In different scenarios, our proposed method can achieve a 

vehicle detection precision rate of over 98%. At the same time, the F value is also maintained 

above 98%. It shows that our model has excellent performance in both accuracy and recall.   

 

The estimated average vehicle speeds can also provide an intuitive judgment of the degree of 

road congestion. The average speeds of vehicles on the left and right lanes obtained from the test 

videos are shown in Table 6. The road flow conditions corresponding to them are also given. 

From the results, we can see that the average speeds of the vehicles in the lanes on the right are 

lower than those of the vehicles on the left. The reason for this result is that on this section of the 

road, the lanes on the right are uphill, so the average speeds of the vehicles are lower. Therefore, 

the estimated flow conditions of the right lanes are “near capacity” or “high capacity”, while the 

flow conditions of the left lanes are “stable” or “high capacity”.  

 

However, the estimation of traffic flow density is quite different from the actual result. Refer to 

the LOS standard table we quoted, when the vehicle density exceeds 67 veh/mile per lane, the 

road in this scenario should be nearly saturated. Vehicles are very likely to fall into long-term 

congestion on the road due to minor effects, such as an emergency braking of a vehicle. Going 

back to the scene we tested, we can judge from the video we actually recorded and the estimated 

average speed that the traffic flow is obviously in a relatively stable state and not close to the 
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maximum capacity. By analyzing the actual situation, the reason for this phenomenon is actually 

that the road section we used to record the video is not completely closed, that is, the road is 

connected by forks, so the total number of vehicles counted by our model includes vehicles 

entering and leaving the freeway at forks. In addition, refer to the results obtained by using the 

test video labeled 1, which also exceeds the standard line of 67 veh/mile. Since that section of 

road is relatively short, it can be approximated as a closed section of road. Therefore, the 

estimated result reflects the actual condition of the road, that is, the road is indeed congested. 

 

 

Figure 31:Road Fork on the Test Section. 

Based on the reasons listed above, we can explain the result that traffic flow density higher than 

the reasonable value in our test in this way: the test road section is not closed, so the estimated 

density value actually includes the traffic flow on the branch road, so the result is still 

reasonable. But this also reminds us that we need to be more rigorous in choosing test scenarios 

in subsequent tests, and try to choose closed roads to avoid the impact of traffic on branch roads. 
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In summary, our model has achieved a vehicle detection rate of more than 98% under different 

weather, light and traffic conditions, and can accurately estimate two key macro traffic flow 

parameters: the average speed of the traffic flow and density. The results obtained by the model 

can provide powerful support for road congestion analysis. At the same time, we also save 

detailed detection results, such as vehicle trajectory data and real-time speed of vehicles in .csv 

files. After manual calibration, these data can be used to estimate the safety index of the traffic 

system and for the research of intelligent traffic management systems. 

 

CHAPTER 5 - RESEARCH LIMITATIONS 

Although the method we propose can accurately detect vehicles and record vehicle trajectory 

information, and estimate the macro parameters of traffic flow, there are still some limitations. 

Mainly divided into the following aspects: 

1) The detection process is not real-time. Due to the limitations of the current hardware 

equipment, we are unable to complete the vehicle detection on the screen while the video 

obtained by the drone is returned. On the one hand, because the flight control and monitoring 

process uses Apple's iPad mini, and the data processing platform is a windows system laptop, 

the data cannot be transmitted to the processing equipment at the same time. On the other 

hand, we currently only use an Intel 6700 HQ CPU as the data processing unit, and it is 

difficult for us to achieve the 20fps real-time monitoring requirement without GPU 

acceleration. 
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2) Data acquisition is limited to the daytime when the weather is good. Due to the small size 

of the drone, it is susceptible to severe weather conditions, such as strong winds and rain, and 

cannot normally fly and record videos. At the same time, since the UAV does not have 

infrared photography function, it cannot fly and record videos at night. In addition, the 

battery capacity of the drone can only allow 30 minutes of continuous flight at a time. 

Perhaps with the development of drone technology, these problems can be solved. 

 

3) The detection of road boundaries is sometimes disturbed by the surrounding 

environment. Although the road boundary detection effect is better in the experiment, it will 

still be affected by the roadside building lines. Even if this effect can be eliminated to a 

certain extent with the help of the inter-frame relationship of two consecutive frames, further 

optimization may still be needed in more complex scenes. 

 

4) Changes in the height of the road will interfere with the estimation of vehicle speed. 

Although the drone can roughly estimate its height from the ground, it cannot automatically 

adjust the flying height according to the height from the ground when flying on a preset 

route. Therefore, when the road surface appears uphill or downhill, it may affect the results 

of the videos and thus affect the estimation of the vehicle speed. In our experiments, manual 

adjustment can ensure that the height of the drone from the road is always the same, but in 

more complex situations, we may need to seek better drone control algorithms and sensors to 

complete the drone's fixed altitude cruise. 
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CHAPTER 6 - CONLUSIONS 

This study provides a feasible and relatively accurate method for the dynamic parameter 

estimation of the transportation system. The proposed method integrates road boundary 

detection, vehicle detection and tracking, and vehicle speed estimation, and can further 

provide detailed road macro parameters on the basis of obtaining the basic structure 

information of the road system. From the experimental results, in the obtained freeway 

videos obtained by the UAV, our proposed method achieves about 98% vehicle detection 

accuracy on average, and provides highly reliable vehicle speed estimation results. On this 

basis, we can further calculate the vehicle density on the road and the average speed of the 

vehicle. Thus, the degree of vehicle congestion on tested road can be evaluated, which 

provides reference information for the intelligent traffic management system. 

 

This approach is proved to be an effective method different from traditional road detection 

methods. First of all, the use of drone to record the road system can achieve complete 

recording of an entire section of the road considering at a low budget level. The traditional 

fixed-angle road monitoring system needs to integrate the videos of different road segments 

to complete the vehicle detection and parameter estimation of the entire road. However, 

under the model we proposed, a single drone can be used to record video of the entire closed 

road. And because of the high angle of view, the video taken for vehicle detection will not be 

affected by the mutual occlusion between vehicles. Second, the proposed model can obtain 

both road boundaries and vehicle trajectories, which can provide a reliable navigation 

reference for smart vehicles when the GPS system cannot provide accurate road and 
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surrounding vehicle information. In addition, due to this method, accurate vehicle speed and 

position information can be obtained. In future research, we can also use this as input data to 

complete the evaluation of the road safety factor, and obtain accurate evaluation results 

through the statistics of possible vehicle collisions and acceleration and deceleration. 

 

After completing the construction of the entire model, we also noticed some directions for 

future work in the actual experimental process. First, we need to obtain more training data to 

train the neural network to improve the detection accuracy of different types of vehicles. 

Second, since the center position of the vehicle output by the tracker may have a large drift in 

different frames, the accuracy of the target tracking algorithm needs to be further improved. 

At present, in the vehicle detection stage, it takes about 220ms on average to complete the 

detection of one frame of video. In the future, we will further improve the detection speed by 

using better hardware and improved algorithms. Finally, due to the current limitation of 

computing power, we cannot achieve real-time detection of vehicles and output videos with 

calculated parameters. Next, we will try to develop more efficient algorithms to reduce 

resource consumption. 
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