
Detecting Repackaged Android Applications Using Perceptual Hashing

Thanh Nguyen
Dept of Computer Science

School of Computing
University of South Alabama

tnn1001@jagmail.southalabama.edu

J. Todd McDonald
Dept of Computer Science

School of Computing
University of South Alabama

jtmcdonald@southalabama.edu

William Bradley Glisson
Cyber Forensics Intelligence Center

Dept of Computer Science
Sam Houston State University

 glisson@shsu.edu

Todd R. Andel
Dept of Computer Science

School of Computing
University of South Alabama

jtmcdonald@southalabama.edu

Abstract

The last decade has shown a steady rate of

Android device dominance in market share and the
emergence of hundreds of thousands of apps
available to the public. Because of the ease of reverse
engineering Android applications, repackaged
malicious apps that clone existing code have become
a severe problem in the marketplace. This research
proposes a novel repackaged detection system based
on perceptual hashes of vetted Android apps and
their associated dynamic user interface (UI)
behavior. Results show that an average hash
approach produces 88% accuracy (indicating low
false negative and false positive rates) in a sample set
of 4878 Android apps, including 2151 repackaged
apps. The approach is the first dynamic method
proposed in the research community using image-
based hashing techniques with reasonable
performance to other known dynamic approaches
and the possibility for practical implementation at
scale for new applications entering the Android
market.

1. Introduction

The need for mobile security increases as
consumers migrate toward mobile devices as their
main form of communication. Research indicates that
mobile devices are not only being introduced into
legal context, but they are also being used to profile
individual activities and as a proxy for cloud
activities [1-5]. Coupling this information with
market statistics indicating that the number of
downloaded applications will reach 258.2 billion by

2022 [6] emphasizes corporate mobile device
security concerns [7, 8].

Furthermore, as Figure 1 indicates, Android
Operating System has been the dominant mobile OS
globally standing at around 85% of the world’s
mobile market for the recent past and is expected to
remain steady through 2023 [9]. Thus, attacking the
Android OS is attractive and potentially lucrative for
adversaries. Figure 2 illustrates trends in Android
malware samples, reported in a 2019 Nokia Threat
Intelligence Lab report [10]. The report indicates
there are nearly 20,000,000 Android malware
samples, increasing 31% from the previous year
signifying that Android is the target platform of
choice for malicious applications.

The emergence of repackaged applications has
been an issue for several years and continues to be
visible in the news [12, 13]. These applications are
the source of both pirated software and malicious
code because they utilize reverse engineered Android
code of existing apps to form the basis of a new app,
but with some newly inserted code. Both
academicians and practitioners are voicing their
concerns on this issue [14, 15].

Figure 1: Smartphone Market Share [9]

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6641
URI: https://hdl.handle.net/10125/64555
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

mailto:tnn1001@jagmail.southalabama.edu
mailto:jtmcdonald@southalabama.edu
mailto:glisson@shsu.edu
mailto:jtmcdonald@southalabama.edu

Figure 2: Android Malware Growth [11]
On the industry side, Trend Micro in 2014 issued

a report highlighting several instances of
cybercriminal activity targeting industries such as
banking, gaming, and communications [14]. The
study detailed: 1) South Korean banking apps with
Trojanized versions used for phishing attacks, 2) the
malicious repackaging of the classic Flappy Bird app
(which was downloaded 50 million times), and 3)
over 100,000 downloads of the repackaged version of
Blackberry Messenger from the Google Playstore—
one of the most popular instant messaging apps [14].

More recently, Nguyen et al. [15] demonstrated
the complete ineffectiveness of commercial and
open-source anti-virus Android apps in detecting a
malicious repackaged application (Snapchatz). Li et
al. [16] in a 2019 survey-based study also highlighted
the shutdown by federal authorities of alternative
Android market places because of app plagiarism
(repackaging or cloning) [17]. The same survey [16]
also recounted reports by Ustwo Games that only 5%
of the Android installations for one of its more
popular games were legitimate (as in paid for, and
not repackaged or cloned).

Academic researchers have observed the
emergence of repackaged applications into the
market for some time, with a study by Zhou and
Jiang [18] reporting that 80% of Android malware is
actually repackaged. The predominance of
repackaged apps and their effect on the Android user
community has thus spurred considerable study, as
researchers continue to look for better methods for
detecting repackaged applications and techniques for
code cloning or reuse detection. As Li et al. [16]
report in a recent survey, a six-year window has
produced 57 different proposed approaches, most of
which involve the use of static techniques based on
code similarity or heterogeneity. Static techniques are
most negatively affected by code obfuscation and
could be completely defeated by packing whereby the
code base is encrypted until execution. Likewise,
most of the studied techniques in Li et al.’s [16]
survey do not scale to millions of apps or are
evaluated on private datasets.

This paper presents a novel method for detection
of repackaged applications that can integrate

seamlessly into current application screening
approaches such as Google Bouncer or with third-
party markets. The approach is dynamic and relies on
visualizing component behavior of normal, vetted
applications and comparing those to behaviors of
submitted applications to a marketplace. The unique
aspect of this approach relies on the emulation of
Android apps so that their user interface interactions
are exposed. During emulation, screenshot images
are captured and then compared against known good
applications. Novel use of visual (perceptual) hashing
is incorporated into the framework whereby
similarity of application screenshot images can be
computed. A malicious, repackaged app that has UI
images with too much similarity to known UI images
becomes the basis for detection.

The remainder of this paper details further
background about the state of the art in repackaged
app and code cloning detection in Section 2. Section
3 describes the perceptual hashing methodology, of
which three different versions of the algorithm are
compared for effectiveness. Section 4 details the
experimental approach and data sets used, while
Section 5 discusses the experimental results. As a
contribution, this research provides: 1) The first
known method to leverage UI image analysis as a
detection basis, completely avoiding the need for
code or data examination; 2) A dynamic detection
approach based on average hashing with comparable
performance to other known dynamic techniques,
producing 88% accuracy on a publically available
data set; and 3) A scalable method and framework
which could be easily integrated into marketplace
vetting approaches, providing an alternative approach
to exiting static triage techniques.

2. Background

The influx of mobile devices and applications is

pressing the need for mobile security research.
Android applications are deployed in an Android
Package Kit (APK) format, which relies on
traditional ZIP compression [19]. Repackaging is a
predominant threat because malicious reverse
engineering of APK files is relatively easy given
standard open source tools that are readily available
[16]. In the traditional attack model, repackaged apps
are used primarily to insert ads that redirect
advertisement revenue [20, 21] or to insert malicious
code on top of benign code that will be spread by
unsuspecting end-users [22].

Furthermore, researchers have investigated the
use of code cloning as a means to identify malware
families in repackaged apps by detecting similar

Page 6642

functions or methods used by previous malware
generations [16]. Both areas of research (repackaged
and code cloning detection) are briefly summarized
in the following sections. Malware detection
approaches are broadly categorized as static and
dynamic, whereby static approaches use parts of the
APK file itself without running the application and
dynamic approaches require some type of sandbox or
emulation environment to execute the Android app
for collection of data [15].

2.1. Repackaged Application Detection

Repackaged applications remain a common

source for Android malware distribution because of
the ability of the malware to hide dormant in the
background attached to fully functional applications
[16]. This provides stealth for the malware as there is
no indicator of malware being installed for the end-
user. Hence, researchers are investigating methods
for detecting repackaged applications as revealed by
a 2019 study [16]. This study documents a systematic
literature review of repackaged detection research.
Table 1 provides a summary from the reported results
of the study, which covered 57 papers from 2012-
2017 related to Android cloning, plagiarism, reusing,
piggybacking, camouflaging, and repackaging.

Table 1: Research Summary [16]
Approach Category Papers Dynamic
Similarity computation 42 4
Runtime monitoring 5 5
Supervised learning 5 1
Unsupervised learning 4 0
Symptom discovery 1 0
Total 57 10

As Table 1 indicates, Li et al. [16] divide
repackaged detection approaches into five categories.
By far, the majority of research has focused on static
similarity analysis of bytecode or resource files
included in an Android APK. The proposed dynamic
technique described in our paper is unique from all
prior approaches studied in Li et al.’s [16] review
because it uses runtime emulation to generate images
of the Android app during dynamic execution. Of the
published studies using similarity computation and
supervised learning [16], five used dynamic
techniques that included analysis of layout group
graphs, HTTP distance, user interfaces [23], system
call sequences, and runtime API invocations. Of the
runtime monitoring techniques (which are all
dynamic), the analysis covered execution traces,
virtualized protection, package naming, and
watermarking [24, 25]. Watermark approaches [24,
25] differ in that they introduce prior known data
either in the manifest file or in the code itself that can

be recovered by execution or real-time examination
of the application: the proposed perceptual hashing
technique described in this paper does not require
alteration of original APKs.

User interface analysis proposed by Soh et al.
[23] also differs from the perceptual hashing
approach described in this paper because it translates
screen activity to a corresponding XML format and
then analyzes XML data. Soh et al. [23] also point
out that obfuscation preserves the semantics of I/O
behavior and thus user interface look-and-feel. The
appeal of repackaged apps is likewise that they
actually look like some original, well-known app
[15]. A contribution of our perceptual hashing
research also points to the feasibility of generating
dynamic data based on input generation, which Soh
et al. [23] observed was a hard problem to automate.

Other prior research points to the applicability of
the perceptual hashing method described in this paper
as a potential triage approach for realistic
marketplace environments. For example, Lindorfer
et al. [26] developed AndRadar, a framework for
crawling third-party markets and detecting malicious
applications. The researchers exhaustively crawled
16 third party markets between the time frame of
June and November 2013. Findings indicated that the
majority of third party market applications are ad-
aggressive applications and contained a fair number
of malicious applications. Out of 20,000 crawled
applications, 1,500 were found to be malicious in
behavior.

Zhou et al. [27] performed a systematic study on
six Android third-party marketplaces, and their
findings indicate that it is common to find
repackaging of legitimate applications. Based on this,
the researchers proposed DroidMOSS, an application
similarity system utilizing fuzzy hashing techniques
to produce a similarity score. Fingerprints, in this
case, were based off feature extraction techniques
that utilize meta-data inside of the Android
application. Results indicate that 5 to 13% of apps
hosted on these third-party websites were repackaged
[27]. Furthermore, manual investigation indicated
that the majority of these applications were changed
with ads to redirect end-users to targeted sites that
generate revenue for the adversary. The other major
threat, of course, is that additional code can include
other implanted malicious code, backdoors, or
ransomware.

Static detection techniques also include utilizing
APK application resource files [28] that require
pairwise application comparison. Researchers found
that the Google Play store has application similarity
of around 10.31% and third-party market such as
androiddrawer have similarity percentage of around

Page 6643

16.16% based off 550,000 application analyzed [28].
AnDarwin [29], a scalable framework that analyzes
Android applications for plagiarism, was used to
analyze 265,359 applications in various markets and
identified 36,106 as repackaged or rebranded
applications with 88 new variants of malware
discovered.

2.2 Code Cloning and Reuse Detection

As Tian et al. [30] point out, similarity-based

detection for repackaged malware faces quadratic
complexity for the number of apps analyzed, making
such techniques less appealing for large-scale
screening. Past published research on general-
purpose static Android malware detection has
included techniques that analyze permissions, code
hashes, API dependencies, control flow patterns,
Android intents and activities, resources, and even
code entropy [16]. Tian et al. [30] observe the reason
many techniques are not fully effective is that
analyses are performed on the entire app, which is
some mixture (normally 80% or more) of the original
code with some additional malicious code or
manipulated advertising. Presence of benign code in
repackaged apps can thus dilute features generated by
malicious code, which results in high false negatives
or missed detection, and researchers have found that
a majority of false negatives are caused by
repackaged malware [31].

Code cloning and reuse detection provide an
alternate static means to identify repackaging, and
relevant work is highlighted here for completeness,
all of which are referenced in the study by Li et al.
[16]. Bari et al. [32] define code cloning as the
coping and modifying of a code block. Su et al. [33]
denote the challenges in detecting code clones based
on behavior analysis. Ideally, we want to be able to
detect not only static code cloning but also code
blocks that do not match but operate in the same
manner. In its current state, behavioral code clone
detection utilizes functional equivalence of inputs
and outputs to classify code clones. The researchers
[33] argue that advances in dynamic code clone
detection can increase general behavioral code clone
detection: thus this research provides a new technique
with potential for future study that can enhance
ongoing research in clone detection.

For mobile code cloning, Juxtapp [34] provides
indicators of buggy code, evidence of significant
code reuse, or code blocks, which are instances of
known malware. Results from 58,000 Android apps
indicate there were 463 instances of confirmed buggy
code reuse and 34 instances of known malware
instances and pirated variants of paid apps. NiCad

[22] is a near-miss clone detector that functions by
extracting the Java source code from apps to create
code signatures. Results show that NiClad can detect
95% of previously known malware clones and
pinpoint them to certain malware family based on
clone detection. ViewDroid [35] profiles interactions
between users and apps (called view graph) to deal
with the problem of obfuscated code in repackaged
applications. View graphs thus capture user
navigation behavior and generate birthmarks that
could then be compared against candidate apps: the
proposed method in this research essentially
represents the analysis of birthmarks as well, but the
birthmark is fully captured in real use interface
images. Tian et al. [30] focus on detection using
code heterogeneity features to improve the
performance of traditional methods and achieved a
low false negative rate of 0.35% when evaluating
malicious apps and a false positive rate of 2.96%
when evaluating benign apps.

3. Perceptual Hashing Methodology

Dynamic detection avoids many of the issues with
static analysis. However, all dynamic techniques
require the execution of the target code. Dynamic
approaches, like the perceptual hashing approach
evaluated in this research, overcomes the difficulty of
obfuscation, encrypted files, and virtualization. This
research specifically focuses on the usefulness of the
approach to detect repackaged apps, and so is not
evaluated against all categories of Android malware.

Due to the extensive data set of images inside an
APK, it is difficult to compare and fingerprint each
image. Cryptographic hash functions can be used for
integrity, checking the exact duplicates of an image
[36]. However, a slight change in a bit in the data can
cause major variation in the hash. This is called the
avalanche effect, where a change in a small set of
data causes a dramatic change in the hash [36]. Thus,
it is not possible to distinguish images similar to one
another. For example, changes in size, rotation, pixel
modification, etc. will cause the hash to change
completely.

A perceptual hash is a fingerprint for multimedia
to derive various features of its content [37, 38].
Unlike cryptographic hash functions which rely
heavily on slight changes in the media to produce an
entirely different hash, perceptual hashes produce
“close” hashes depending on the amount of change
involved. Thus, a cryptographic hash function is used
to measure whether two images completely match,
whereas a perceptual hash generates a fingerprint that
can be compared using hamming distance to measure
image similarity. Figure 3 illustrates a perceptual

Page 6644

hash on a traditional image (3-a) as well as a
screenshot of an Android mobile app (3-b). In both
cases, an original image is reduced in size to some
standard dimension (8 x 8 pixels for example) and
then recolored typically to grayscale. Further
calculations are done on these reduced images to
produce perceptual hash fingerprints.

Thus, perceptual hashes can be used as a metric to
determine image similarity. The primary three
perceptual hashes that are widely used are average
hashing, perception hashing, and difference hashing.
Average hashing [37, 38] is the simplest form of a
perceptual hash. The method involves taking a
picture and changing it to grayscale and reducing the
picture to an 8x8 pixel size. Each pixel is then used to
generate an average pixel value. Lastly, the hash is
generated by comparing each pixel value to the
average to generate a 64-bit hash. Difference
hashing is similar to average hashing, but it relies on
gradient change rather than average pixel greyscale
for generating the hash [39]. The algorithm starts by
converting the image to grayscale. Next, the image is
downsized to an 8x8 square of gray values. The row
hash is calculated for each row from left to right. An
output of 1 is generated if the next grayscale value is
greater than or equal to the previous one. Otherwise,
a 0 bit is calculated if the value is less than. Finally,
the bits are concatenated to generate the final hash.

Figure 3: Example Perceptual Hash Images

Perception hashing relies on a discrete cosine
transform (DCT) instead of the average greyscale
[39]. The algorithm operates in the following
manner:

1. Reduce Image Size: The image is reduced to a
32x32.

2. Reduce Color: The image is converted to
grayscale to simplify computation.

3. Compute the DCT: The DCT separates the
image into a collection of frequencies and
scalars.

4. Computing Average Value: The DCT mean is
calculated.

5. Further reduce DCT: Each bit of the 64-bit
hash is set to 0 or 1 depending on whether
each of the 64 DCT value is above or below
the average value.

6. Construct Hash: The bits are concatenated to
make a 64-bit hash.

4. Experimental Data and Approach

The approach in this research will apply
perceptual hashes to dynamic screenshots of Android
apps that are extracted via a custom processing
engine. The goal of the experiments is to validate the
effectiveness of perceptual hash (pHash) algorithms
in identifying fake repackaged apps when the original
application has been previously recorded [38]. A
dataset of 576 trusted applications from the Google
Play Store was selected and verified that they are
virus-free using VirusTotal. Once the application set
is crawled from the Play Store, it is processed using
an Android VM Sandbox that supports dynamic
screenshot captures of its UI components.
Furthermore, the certificate and version info are
extracted from the APK. This app collection forms
the baseline images for further evaluation. Figure 4
depicts the experimental environment created for this
research.

Figure 4: Image Collection Environment
Each trusted (benign) application is processed

through the sandbox environment for analysis, which
exercises the application and creates one or more
screenshots. Captured screenshots are processed
through the perceptual hash function and stored in a
JSON database along with the application’s APK,
version info, and certificate. These screenshots of the
UI components act as the dataset for repackaged and
clone detection.

The test dataset consists of pairs of 2,151
repackaged apps obtained from AndroZoo [40].
AndroZoo is a growing collection of Android APK
collected from various sources that contain pairwise
original apps and a repackaged app version. The

Page 6645

original app becomes part of the trained benign data
set. The repackaged app is used to test the
effectiveness of different versions of the perceptual
hash algorithm.

4.1 Architectural Framework

Dynamic analysis is performed by utilizing a
sandbox environment. Specifically, the research
leverages the capabilities of DroidBox [41] to fit in
architecture for conducting perceptual hash
experiments. DroidBox was developed to offer
dynamic analysis of Android application and offers a
wide range of capabilities, including hashes for
analyzed packages, network traffic, and file
read/write operations among others. This research
leverages the sandbox part of the DroidBox emulator
image that automates the installation and startup
process for Android applications. Other emulators
could have been chosen, such as Android’s own
AnroidStudio [19] or more popular PC-based
applications such as Archon, Bliss, Bluestacks, or
Droid4x [42], to name a few. DroidBox was chosen
for its ease of setup in Linux environments, ease for
automating dynamic launching of APKs, ability to
connect via virtual networking, and its rich set of
analysis tools geared for capturing network traffic,
file read and write operations, information leaks, and
circumvented permissions [41]. The native tools
provided by DroidBox were envisioned to provide
additional data extraction capabilities for correlating
detection of repackaged apps, but future work will
focus on use of other emulation possibilities as
DroidBox is no longer being updated.

DroidBox required patching to allow for
screenshot capabilities and execution of the pHash
functions to create signatures of the application’s
layout. Furthermore, Droidbox only allows for one
application to be run at a time. To extend this
capability, a Docker container was created to run the
patched DroidBox. This Docker container, in
conjunction with a batch script, allowed the
automation of the dynamic analysis for Android apps
from the test set of benign and infected apps.

Figure 5 provides a deployment diagram of the
execution platform used to conduct experiments. A
Dell Precision T5600 Workstation with 128 GB of
memory and 2.30 GHz, Intel Xeon processor, was
utilized for all experiments. Ubuntu 16.04 operating
system installation was used as a Docker container
that executed DroidBox and an Android emulator.

The architecture required five different steps to
generate experimental data. First, DroidBox came
prepackaged for the Android 4.1.1 release. Thus, to
insert new functionality into the script, a custom

Python script was developed to patch DroidBox to
provide an experimental version for this research.

Step two of the process involved the creation of a
Docker container that is used to execute DroidBox.
This consisted of creating a DockerFile that specified
the build instructions for the container which
included: 1) Ubuntu 14.04 environment, 2)
commands for tinydb, pillow, and imagehash
libraries, 3) Android SDK and Android 4.1.2
emulator, 4) SSH to forward logs and traffic to the
emulator system, and 5) a VNC library to allow
control of the emulator screen. The third step
involved running the DroidBox Docker container to
automate mass, dynamic analysis of APKs.

Figure 5: Experimental Architecture

In step four, generated perceptual hash data.
During runtime of the sandbox, adb tool and monkey
tool were utilized in DroidBox for getting status
updates of the Android emulator. To begin image
collection, the monkey tool instantiated the APK and
timed screenshots were taken with the adb command.
Images were stored on the host machine every five
seconds. The ImageHash [43] library was utilized to
generate the average hash, perception hash, and
difference hash. The hashes were then inserted into a
centralized tinydb database in JSON format.

As the fifth and last step before analysis of image
hash data, the data were pre-processed to ensure
reliability. Hashes were obtained for the main
android display screen and the error screen if an
application crashed. All three databases were then
scanned for images matching the two-pre-processed
hashes. This ensured that the dataset does not contain
any error samples. Repackaged applications that were
not processed in the benign data set were removed to
ensure valid training pairs for an accurate prediction.

4.2 Evaluating Perceptual Hash Functions

To calculate the effectiveness of each perceptual
hash function, the best threshold for the hamming
distance is calculated to provide the highest accuracy

Page 6646

in detecting matching images in the image data set.
First, the repackaged data set is processed against the
trained benign dataset that has a matching
corresponding APK. The accuracy of each hash
algorithm is then generated with its corresponding
hamming distance between 1 and 16. For purposes of
the experiment, anything above a hamming distance
of 16 was considered too big of a distance and
indicated a mismatch. This process was repeated for
the set of benign applications not in the training set
(downloaded from Google Play store) so that a true
negative assessment could occur. Table 2 provides a
summary of terms, definitions, and calculations used
in reporting accuracy measurements in Section 5 (TP,
TN, FN, FP, TPR, FPR, TNR, ACC).

Table 2: Accuracy Measurements

TP True positives: Repackaged app correctly classified
TN True negative: App correctly classified as benign
FP False positive: Benign app classified as malware
FN False negative: Repackage app misclassified
TPR TP Rate = Sensitivity = TP/(TP + FN)
FNR FN Rate = FP/(FP + TN)
TNR TN Rate = Specificity = TN/(TN + FP)
ACC Accuracy = TP + TN/(TP + TN+ FP + FN)

5. Experimental Results

 The experimental phase consisted of evaluating
the three different proposed types of perceptual
hashing algorithms: average hash, PHash (perception
hash), and DHash (difference hash). Effectiveness in
detecting repackaged apps relies on similarity scoring
that assesses the closeness of dynamically visualized
app layouts. In total, 2,151 benign apps paired with
2,151 repackaged apps along with 576 benign apps
were analyzed. A set of screenshots for the first one
minute of the application run-time were generated for
each application. The evaluation criteria for
measuring effectiveness includes calculation of the
optimal hamming distance for the most accurate
detection of repackaged applications while also
having a low false-positive rate in benign
applications.

5.1 Average Hash Results

Average hash produced the best results out of the

three perceptual hashing algorithms. Figure 6
displays the results for the average hash with
corresponding hamming distances. The results
showed that TPR increases as hamming distance
increased until a breakpoint of 10. Furthermore, a
faster drop in TPR is seen with an increase in
hamming distance of 14. TNR for benign apps

showed its best results at a lower hamming distance.
The results indicate that at a hamming distance of 1,
there were 72 apps that matched 100% with a benign
app in the data set. This can be due to an application
taking a basic template or form layout from the
Internet. As hamming distance increased, TNR
steadily decreased as well, with more applications
being falsely detected. From the analysis, a hamming
distance of 10 provides the most accuracy for
detecting repackaged applications using the average
hash algorithm.

Figure 6: Average Hash Accuracy

5.2 Perception Hash

Results show that the perception hash produced

the least accurate results for repackaged detection.
Figure 7 displays the results for perception hash with
its corresponding hamming distance. The analysis
shows that perception hash follows the same trend as
an average hash. The increase in hamming distance
correlated with an increase in TPR until a critical
point at a hamming distance of 11 and 12. TNR
followed the same trend as in average hash. As
hamming distance increases, TNR steadily decreases.
The analysis shows that a hamming distance of 11 or
12 gives the best accuracy for TP and TN.

One potential reason for the poor performance of
this algorithm may stem from the fact than an image
that matches a wrongly identified benign sample pair
is classified as a false negative. In addition, each
screenshot contained the Android OS top and bottom
taskbars. These may have potentially increased the
similarity of each sample pair. Thus, this algorithm-
generated many more pairs of applications that were
similar to the repackaged APK, causing a higher
false-negative rate.

5.3 Difference Hash

Figure 8 displays the results for the difference
hash. Difference hash works very similar to the
average hash but utilizes its neighbors’ gradient for
computation of its hash [37, 38]. Thus, it was

Page 6647

expected to show similar results to the average hash.
However, the results were relatively close to the
accuracy of perception hash. This is due to the
accuracy of the algorithm. The algorithm is expected
to find more similar benign apps that are not in its
designated repackage pair; thus, this counts as a false
negative and resulted in a lower TPR. Furthermore,
the gradient of the android main interface is very
static and dark in nature already. This may result in a
higher similarity score for each image comparison.
TNR follows the same trend of decreasing in
relations to the increase of hamming distance.

Figure 7: Perception Hash Accuracy

Figure 8: Difference Hash Accuracy

5.4 Comparative Summary and Evaluation

Based on the results, the average hash is the most

effective perceptual hash algorithm for detecting
repackaged app. Figure 9 summarizes the overall
findings of the experiment. To increase the
effectiveness and accuracy of future iterations, we
will take into account cropping out the main UI.
Furthermore, there is an application that utilizes a
URL to load form layout, which tends to lower the
TPR. A repackaged app can simply change the URL
to a designated website and completely change the
whole form layout. Future research using perceptual
hashing of UI images will need to take this into
account.

 Figure 10 displays the receiver operating
characteristic (ROC) curve for the three approaches,
where transition points correspond to hamming
distances of 1-16. As a whole, the average hash

approach had the highest number of hamming
distances with the highest TPR and lowest
corresponding FPR. For all three approaches,
hamming distances of 10-12 produced the highest
accuracy, highest TPR, and highest TNR.

Figure 9: Algorithm Accuracy

Figure 10: Algorithm ROC Curve

In comparing the perceptual hashing approach to
other dynamic approaches, the user interface analysis
proposed by Soh et al. [23] reported results on a
dataset of 521 paired apps (benign and a repackaged
version), whereas we examined 2,151 pairs and an
additional 576 benign apps. Researchers reported an
FNR as low as 0.8% [23] whereas the best perceptual
hashing approach (average hash) generated an FNR
as low as 11%.

6. Conclusions and Future Work

The primary goal of this research is to evaluate
and implement a scalable and dynamic analysis
technique for sandboxing Android applications. The
primary goal of the sandbox environment supports
generating and extracting live screenshots of Android
apps, generating result outputs as perceptual hashes,
and storing them in a database. To this end, the
research successfully implemented a scalable Docker
container. Our final dataset consisted of 2,151 benign
app pairs, 2,151 repackaged app pairs, and 576
benign apps. Our findings indicate that average
hashing produced the best accuracy rate compared to
perception and difference hashing. The findings show

Page 6648

that with a hamming distance of 10, it is able to
match the repackaged app to its benign pair with an
accuracy rate of 88.16%.

The experimental framework and results show the
practical possibility of implementing a perceptual
hashing approach using available tools, software, and
emulation environments. In particular, the use of
image hashing as a basis for high accuracy
classification appears to be a viable starting point for
future triage techniques. Future work will focus on
better pre-processing of screenshot images to
eliminate universal similarities across all Android
apps such as the main UI features and elimination of
form layouts that can be configured by malicious
repackaged apps. To keep up with rapidly changing
Android AVD versions, future work will also
consider more adaptable sandbox environments
beyond DroidBox and the potential use of PC-based
analysis tools and sandbox emulators for image
generation and capture.

7. References

[1] Grispos, G., W.B. Glisson, J.H. Pardue, and M.
Dickson, Identifying User Behavior from Residual Data in
Cloud-based Synchronized Apps. Journal of Information
Systems Applied Research, 2015. 8(2): p. 4-14.

[2] Berman, K., W.B. Glisson, and L.M. Glisson.
Investigating the Impact of Global Positioning System
(GPS) Evidence in Court Cases. in Hawaii International
Conference on System Sciences (HICSS-48). 2015. Kauai,
Hawaii IEEE

[3] Grispos, G., W.B. Glisson, and T. Storer, Chapter 16 -
Recovering residual forensic data from smartphone
interactions with cloud storage providers, in The Cloud
Security Ecosystem, R.K.-K.R. Choo, Editor. 2015,
Syngress: Boston. p. 347-382.

[4] Grispos, G., W.B. Glisson, and T. Storer. Using
Smartphones as a Proxy for Forensic Evidence contained
in Cloud Storage Services. in Hawaii International
Conference on System Sciences (HICSS). 2013.

[5] McMillan, J., W.B. Glisson, and M. Bromby.
Investigating the Increase in Mobile Phone Evidence in
Criminal Activities. in Hawaii International Conference on
System Sciences (HICSS-46). 2013. Wailea, Hawaii: IEEE.

[6] Statista. Number of mobile app downloads worldwide in
2017, 2018 and 2022 (in billions). 2017.
https://www.statista.com/statistics/271644/worldwide-free-
and-paid-mobile-app-store-downloads/. Date of Last
Access: 09/03, 2019.

[7] Glisson, W.B. and T. Storer, Investigating information
security risks of mobile device use within organizations.
arXiv preprint arXiv:1309.0521, 2013.

[8] Glisson, W.B., T. Storer, G. Mayall, I. Moug, and G.
Grispos, Electronic retention: what does your mobile phone
reveal about you? International Journal of Information
Security, 2011. 10(6): p. 337.

[9] IDC. Smartphone Market Share. 2019.
https://www.idc.com/promo/smartphone-market-share/os.
Date of Last Access: 06/15, 2019.

[10] Hackology. Cyber Threat Intelligence Report 2019
2019. https://blog.drhack.net/threat-analysis-report-2019-
android-malware-wins/. Date of Last Access: 06/15, 2019.

[11] Dogtiev, a. App Download and Usage Statistics 2018.
http://www.businessofapps.com/data/app-statistics/. Date
of Last Access: 06/15, 20109.

[12] Micro, T. Malware in Apps’ Clothing: A Look at
Repackaged Apps. 2014. https://www.trendmicro.com/
vinfo/us/security/news/mobile-safety/malware-in-apps-
clothing-a-look-at-repackaged-apps. Date of Last Access:
09/03, 2019.

[13] Lakshmanan, R. ‘Agent Smith’ malware replaces legit
Android apps with fake ones on 25 million devices. 2019.
https://thenextweb.com/security/2019/07/10/agent-smith-
malware-replaces-legit-android-apps-with-fake-ones-on-
25-million-devices/. Date of Last Access: 09/03, 2019.

[14] Paper, A.T.M.R. Fake Apps. 2014.
https://documents.trendmicro.com/assets/wp/wp-fake-
apps.pdf. Date of Last Access: 09/03, 2019.

[15] Nguyen, T., J.T. McDonald, and W.B. Glisson.
Exploitation and Detection of a Malicious Mobile
Application. in Proceedings of the 50th Hawaii
International Conference on System Sciences. 2017.

[16] Li, L., T.F. Bissyande, and J. Klein, Rebooting
Research on Detecting Repackaged Android Apps:
Literature Review and Benchmark. IEEE Transactions on
Software Engineering, 2019.

[17] Rashid, F.Y. Feds Seize Alternative Android App
Markets For App Piracy. 2012. https://www
.securityweek.com/feds-seize-alternative-android-app-
markets-app-piracy. Date of Last Access: 09/03, 2019.

[18] Zhou, Y. and X. Jiang. Dissecting android malware:
Characterization and evolution. in 2012 IEEE symposium
on security and privacy. 2012. IEEE.

[19] Guide, A.D. Developer Guides.
https://developer.android.com/guide/. Date of Last Access:
09/03, 2019.

Page 6649

https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.idc.com/promo/smartphone-market-share/os
https://blog.drhack.net/threat-analysis-report-2019-android-malware-wins/
https://blog.drhack.net/threat-analysis-report-2019-android-malware-wins/
http://www.businessofapps.com/data/app-statistics/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://documents.trendmicro.com/assets/wp/wp-fake-apps.pdf
https://documents.trendmicro.com/assets/wp/wp-fake-apps.pdf
https://developer.android.com/guide/

[20] Gibler, C., R. Stevens, J. Crussell, H. Chen, H. Zang,
and H. Choi. Adrob: Examining the landscape and impact
of android application plagiarism. in Proceeding of the
11th annual international conference on Mobile systems,
applications, and services. 2013. ACM.

[21] Crussell, J., C. Gibler, and H. Chen. Attack of the
clones: Detecting cloned applications on android markets.
in European Symposium on Research in Computer
Security. 2012. Springer.

[22] Chen, J., M.H. Alalfi, T.R. Dean, and Y. Zou,
Detecting android malware using clone detection. Journal
of Computer Science and Technology, 2015. 30(5): p. 942-
956.

[23] Soh, C., H.B.K. Tan, Y.L. Arnatovich, and L. Wang.
Detecting clones in android applications through analyzing
user interfaces. in Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension.
2015. IEEE Press.

[24] Ren, C., K. Chen, and P. Liu. Droidmarking: resilient
software watermarking for impeding android application
repackaging. in Proceedings of the 29th ACM/IEEE
international conference on Automated software
engineering. 2014. ACM.

[25] Zhou, W., X. Zhang, and X. Jiang. AppInk:
watermarking android apps for repackaging deterrence. in
Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security. 2013.

[26] Lindorfer, M., S. Volanis, A. Sisto, M.
Neugschwandtner, E. Athanasopoulos, F. Maggi, C.
Platzer, S. Zanero, and S. Ioannidis. AndRadar: fast
discovery of android applications in alternative markets. in
DIMVA. 2014. Springer.

[27] Zhou, W., Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party android
marketplaces. in Proceedings of the second ACM
conference on Data and Application Security and Privacy.
2012. ACM.

[28] Zhauniarovich, Y., O. Gadyatskaya, B. Crispo, F. La
Spina, and E. Moser. Fsquadra: fast detection of
repackaged applications. in IFIP Annual Conference on
Data and Applications Security and Privacy. 2014.
Springer.

[29] Crussell, J., C. Gibler, and H. Chen. Andarwin:
Scalable detection of semantically similar android
applications. in European Symposium on Research in
Computer Security. 2013. Springer.

[30] Tian, K., D.D. Yao, B.G. Ryder, G. Tan, and G. Peng,
Detection of repackaged android malware with code-
heterogeneity features. IEEE Transactions on Dependable
and Secure Computing, 2017.

[31] Elish, K.O., X. Shu, D.D. Yao, B.G. Ryder, and X.
Jiang, Profiling user-trigger dependence for Android
malware detection. Computers & Security, 2015. 49: p.
255-273.

[32] Bari, M.A. and D.S. Ahamad, Code Cloning: The
Analysis, Detection and Removal. International Journal of
Computer Applications, 2011. 20(7): p. 34-38.

[33] Su, F.-H., J. Bell, and G. Kaiser. Challenges in
behavioral code clone detection. in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER). 2016. IEEE.

[34] Hanna, S., L. Huang, E. Wu, S. Li, C. Chen, and D.
Song. Juxtapp: A scalable system for detecting code reuse
among android applications. in DIMVA 2012. Springer.

[35] Zhang, F., H. Huang, S. Zhu, D. Wu, and P. Liu.
ViewDroid: Towards obfuscation-resilient mobile
application repackaging detection. in Proceedings of the
2014 ACM conference on Security and privacy in wireless
& mobile networks. 2014. ACM.

[36] Stinson, D.R., Some Observations on the Theory of
Cryptographic Hash Functions. Designs, Codes and
Cryptography, 2006. 38(2): p. 259-277.

[37] Bin, H., A Study and Analysis on a Perceptual Image
Hash Algorithm Based on Invariant Moments. Sensors &
Transducers, 2013. 159(11): p. 337.

[38] pHash. pHash: the Open Source perceptual hash
library. . http://www.phash.org/. Date of Last Access:
06/15, 2019.

[39] Hoyt, B. Duplicate image detection with perceptual
hashing in Python. 2017. http://tech.jetsetter.com/
2017/03/21/duplicate-image-detection/. Date of Last
Access: 06/15, 2019.

[40] Allix, K., T.F. Bissyandé, J. Klein, and Y. Le Traon.
Androzoo: Collecting millions of android apps for the
research community. in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). 2016.
IEEE.

[41] Desnos, A. and P. Lantz, Droidbox: An android
application sandbox for dynamic analysis. Lund Univ.,
Lund, Sweden, Tech. Rep, 2011.

[42] Authority, A. 14 best Android emulators for PC and
Mac of 2019! 2019. https://www.androidauthority.com
/best-android-emulators-for-pc-655308/. Date of Last
Access: 09/03, 2019.

[43] Imagehash. https://github.com/jenssegers/imagehash.
Date of Last Access: 06/15, 2019.

Page 6650

http://www.phash.org/
https://github.com/jenssegers/imagehash

