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Abstract 
 
The last decade has shown a steady rate of 

Android device dominance in market share and the 
emergence of hundreds of thousands of apps 
available to the public. Because of the ease of reverse 
engineering Android applications, repackaged 
malicious apps that clone existing code have become 
a severe problem in the marketplace. This research 
proposes a novel repackaged detection system based 
on perceptual hashes of vetted Android apps and 
their associated dynamic user interface (UI) 
behavior. Results show that an average hash 
approach produces 88% accuracy (indicating low 
false negative and false positive rates) in a sample set 
of 4878 Android apps, including 2151 repackaged 
apps. The approach is the first dynamic method 
proposed in the research community using image-
based hashing techniques with reasonable 
performance to other known dynamic approaches 
and the possibility for practical implementation at 
scale for new applications entering the Android 
market. 
 
1. Introduction  
 

The need for mobile security increases as 
consumers migrate toward mobile devices as their 
main form of communication. Research indicates that 
mobile devices are not only being introduced into 
legal context, but they are also being used to profile 
individual activities and as a proxy for cloud 
activities [1-5]. Coupling this information with  
market statistics indicating that the number of 
downloaded applications will reach 258.2 billion by 

2022 [6] emphasizes corporate mobile device 
security concerns [7, 8].  

Furthermore, as Figure 1 indicates, Android 
Operating System has been the dominant mobile OS 
globally standing at around 85% of the world’s 
mobile market for the recent past and is expected to 
remain steady through 2023 [9]. Thus, attacking the 
Android OS is attractive and potentially lucrative for 
adversaries. Figure 2 illustrates trends in Android 
malware samples, reported in a 2019 Nokia Threat 
Intelligence Lab report [10]. The report indicates 
there are nearly 20,000,000 Android malware 
samples, increasing 31% from the previous year 
signifying that Android is the target platform of 
choice for malicious applications.  

The emergence of repackaged applications has 
been an issue for several years and continues to be 
visible in the news [12, 13]. These applications are 
the source of both pirated software and malicious 
code because they utilize reverse engineered Android 
code of existing apps to form the basis of a new app, 
but with some newly inserted code. Both 
academicians and practitioners are voicing their 
concerns on this issue [14, 15].  

 
 

Figure 1: Smartphone Market Share [9]  
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Figure 2: Android Malware Growth [11] 
On the industry side, Trend Micro in 2014 issued 

a report highlighting several instances of 
cybercriminal activity targeting industries such as 
banking, gaming, and communications [14]. The 
study detailed: 1) South Korean banking apps with 
Trojanized versions used for phishing attacks, 2) the 
malicious repackaging of the classic Flappy Bird app 
(which was downloaded 50 million times), and 3) 
over 100,000 downloads of the repackaged version of 
Blackberry Messenger from the Google Playstore—
one of the most popular instant messaging apps [14].  

More recently, Nguyen et al. [15] demonstrated 
the complete ineffectiveness of commercial and 
open-source anti-virus Android apps in detecting a 
malicious repackaged application (Snapchatz).  Li et 
al. [16] in a 2019 survey-based study also highlighted 
the shutdown by federal authorities of alternative 
Android market places because of app plagiarism 
(repackaging or cloning) [17].  The same survey [16] 
also recounted reports by Ustwo Games that only 5% 
of the Android installations for one of its more 
popular games were legitimate (as in paid for, and 
not repackaged or cloned).  

Academic researchers have observed the 
emergence of repackaged applications into the 
market for some time, with a study by Zhou and 
Jiang [18] reporting that 80% of Android malware is 
actually repackaged. The predominance of 
repackaged apps and their effect on the Android user 
community has thus spurred considerable study, as 
researchers continue to look for better methods for 
detecting repackaged applications and techniques for 
code cloning or reuse detection.  As Li et al. [16] 
report in a recent survey, a six-year window has 
produced 57 different proposed approaches, most of 
which involve the use of static techniques based on 
code similarity or heterogeneity. Static techniques are 
most negatively affected by code obfuscation and 
could be completely defeated by packing whereby the 
code base is encrypted until execution. Likewise, 
most of the studied techniques in Li et al.’s [16] 
survey do not scale to millions of apps or are 
evaluated on private datasets. 

This paper presents a novel method for detection 
of repackaged applications that can integrate 

seamlessly into current application screening 
approaches such as Google Bouncer or with third-
party markets. The approach is dynamic and relies on 
visualizing component behavior of normal, vetted 
applications and comparing those to behaviors of 
submitted applications to a marketplace. The unique 
aspect of this approach relies on the emulation of 
Android apps so that their user interface interactions 
are exposed. During emulation, screenshot images 
are captured and then compared against known good 
applications. Novel use of visual (perceptual) hashing 
is incorporated into the framework whereby 
similarity of application screenshot images can be 
computed. A malicious, repackaged app that has UI 
images with too much similarity to known UI images 
becomes the basis for detection.    

The remainder of this paper details further 
background about the state of the art in repackaged 
app and code cloning detection in Section 2.   Section 
3 describes the perceptual hashing methodology, of 
which three different versions of the algorithm are 
compared for effectiveness.  Section 4 details the 
experimental approach and data sets used, while 
Section 5 discusses the experimental results.  As a 
contribution, this research provides: 1) The first 
known method to leverage UI image analysis as a 
detection basis, completely avoiding the need for 
code or data examination; 2) A dynamic detection 
approach based on average hashing with comparable 
performance to other known dynamic techniques, 
producing 88% accuracy on a publically available 
data set; and 3) A scalable method and framework 
which could be easily integrated into marketplace 
vetting approaches, providing an alternative approach 
to exiting static triage techniques. 

 
2. Background 

 
The influx of mobile devices and applications is 

pressing the need for mobile security research. 
Android applications are deployed in an Android 
Package Kit (APK) format, which relies on 
traditional ZIP compression [19]. Repackaging is a 
predominant threat because malicious reverse 
engineering of APK files is relatively easy given 
standard open source tools that are readily available 
[16]. In the traditional attack model, repackaged apps 
are used primarily to insert ads that redirect 
advertisement revenue [20, 21] or to insert malicious 
code on top of benign code that will be spread by 
unsuspecting end-users [22].  

Furthermore, researchers have investigated the 
use of code cloning as a means to identify malware 
families in repackaged apps by detecting similar 
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functions or methods used by previous malware 
generations [16]. Both areas of research (repackaged 
and code cloning detection) are briefly summarized 
in the following sections. Malware detection 
approaches are broadly categorized as static and 
dynamic, whereby static approaches use parts of the 
APK file itself without running the application and 
dynamic approaches require some type of sandbox or 
emulation environment to execute the Android app 
for collection of data  [15].  

 
2.1. Repackaged Application Detection 

 
Repackaged applications remain a common 

source for Android malware distribution because of 
the ability of the malware to hide dormant in the 
background attached to fully functional applications  
[16]. This provides stealth for the malware as there is 
no indicator of malware being installed for the end-
user. Hence, researchers are investigating  methods 
for detecting repackaged applications as revealed by 
a 2019 study [16]. This study documents a systematic 
literature review of repackaged detection research. 
Table 1 provides a summary from the reported results 
of the study, which covered 57 papers from 2012-
2017 related to Android cloning, plagiarism, reusing, 
piggybacking, camouflaging, and repackaging.   

 

Table 1: Research Summary [16] 
Approach Category Papers Dynamic 
Similarity computation 42 4 
Runtime monitoring 5 5 
Supervised learning 5 1 
Unsupervised learning 4 0 
Symptom discovery 1 0 
Total 57 10 

As Table 1 indicates, Li et al. [16] divide 
repackaged detection approaches into five categories. 
By far, the majority of research has focused on static 
similarity analysis of bytecode or resource files 
included in an Android APK. The proposed dynamic 
technique described in our paper is unique from all 
prior approaches studied in Li et al.’s [16] review 
because it uses runtime emulation to generate images 
of the Android app during dynamic execution. Of the 
published studies using similarity computation and 
supervised learning [16], five used dynamic 
techniques that included analysis of layout group 
graphs, HTTP distance, user interfaces [23], system 
call sequences, and runtime API invocations. Of the 
runtime monitoring techniques (which are all 
dynamic), the analysis covered execution traces, 
virtualized protection, package naming, and 
watermarking [24, 25]. Watermark approaches [24, 
25] differ in that they introduce prior known data 
either in the manifest file or in the code itself that can 

be recovered by execution or real-time examination 
of the application: the proposed perceptual hashing 
technique described in this paper does not require 
alteration of original APKs. 

User interface analysis proposed by Soh et al. 
[23] also differs from the perceptual hashing 
approach described in this paper because it translates 
screen activity to a corresponding XML format and 
then analyzes XML data. Soh et al. [23] also point 
out that obfuscation preserves the semantics of I/O 
behavior and thus user interface look-and-feel. The 
appeal of repackaged apps is likewise that they 
actually look like some original, well-known app 
[15]. A contribution of our perceptual hashing 
research also points to the feasibility of generating 
dynamic data based on input generation, which Soh 
et al. [23] observed was a hard problem to automate. 

Other prior research points to the applicability of 
the perceptual hashing method described in this paper 
as a potential triage approach for realistic 
marketplace environments.  For example, Lindorfer 
et al. [26] developed AndRadar, a framework for 
crawling third-party markets and detecting malicious 
applications. The researchers exhaustively crawled 
16 third party markets between the time frame of 
June and November 2013. Findings indicated that the 
majority of third party market applications are ad-
aggressive applications and contained a fair number 
of malicious applications. Out of 20,000 crawled 
applications, 1,500 were found to be malicious in 
behavior.  

Zhou et al. [27] performed a systematic study on 
six Android third-party marketplaces, and their 
findings indicate that it is common to find 
repackaging of legitimate applications. Based on this, 
the researchers proposed DroidMOSS, an application 
similarity system utilizing fuzzy hashing techniques 
to produce a similarity score.  Fingerprints, in this 
case, were based off feature extraction techniques 
that utilize meta-data inside of the Android 
application. Results indicate that 5 to 13% of apps 
hosted on these third-party websites were repackaged 
[27]. Furthermore, manual investigation indicated 
that the majority of these applications were changed 
with ads to redirect end-users to targeted sites that 
generate revenue for the adversary. The other major 
threat, of course, is that additional code can include 
other implanted malicious code, backdoors, or 
ransomware. 

Static detection techniques also include utilizing 
APK application resource files [28] that require 
pairwise application comparison. Researchers found 
that the Google Play store has application similarity 
of around 10.31% and third-party market such as 
androiddrawer have similarity percentage of around 
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16.16% based off 550,000 application analyzed [28].  
AnDarwin [29], a scalable framework that analyzes 
Android applications for plagiarism, was used to 
analyze 265,359 applications in various markets and 
identified 36,106 as repackaged or rebranded 
applications with 88 new variants of malware 
discovered.  

 
2.2 Code Cloning and Reuse Detection 

 
As Tian et al. [30] point out, similarity-based 

detection for repackaged malware faces quadratic 
complexity for the number of apps analyzed, making 
such techniques less appealing for large-scale 
screening. Past published research on general-
purpose static Android malware detection has 
included techniques that analyze permissions, code 
hashes, API dependencies, control flow patterns, 
Android intents and activities, resources, and even 
code entropy [16]. Tian et al. [30] observe the reason 
many techniques are not fully effective is that 
analyses are performed on the entire app, which is 
some mixture (normally 80% or more) of the original 
code with some additional malicious code or 
manipulated advertising. Presence of benign code in 
repackaged apps can thus dilute features generated by 
malicious code, which results in high false negatives 
or missed detection, and researchers have found that 
a majority of false negatives are caused by 
repackaged malware [31]. 

Code cloning and reuse detection provide an 
alternate static means to identify repackaging, and 
relevant work is highlighted here for completeness, 
all of which are referenced in the study by Li et al. 
[16].  Bari et al. [32] define code cloning as the 
coping and modifying of a code block. Su et al. [33] 
denote the challenges in detecting code clones based 
on behavior analysis. Ideally, we want to be able to 
detect not only static code cloning but also code 
blocks that do not match but operate in the same 
manner. In its current state, behavioral code clone 
detection utilizes functional equivalence of inputs 
and outputs to classify code clones. The researchers 
[33] argue that advances in dynamic code clone 
detection can increase general behavioral code clone 
detection: thus this research provides a new technique 
with potential for future study that can enhance 
ongoing research in clone detection. 

For mobile code cloning, Juxtapp [34] provides 
indicators of buggy code, evidence of significant 
code reuse, or code blocks, which are instances of 
known malware. Results from 58,000 Android apps 
indicate there were 463 instances of confirmed buggy 
code reuse and 34 instances of known malware 
instances and pirated variants of paid apps. NiCad 

[22] is a near-miss clone detector that functions by 
extracting the Java source code from apps to create 
code signatures. Results show that NiClad can detect 
95% of previously known malware clones and 
pinpoint them to certain malware family based on 
clone detection.  ViewDroid [35] profiles interactions 
between users and apps (called view graph) to deal 
with the problem of obfuscated code in repackaged 
applications. View graphs thus capture user 
navigation behavior and generate birthmarks that 
could then be compared against candidate apps: the 
proposed method in this research essentially 
represents the analysis of birthmarks as well, but the 
birthmark is fully captured in real use interface 
images.  Tian et al. [30] focus on detection using 
code heterogeneity features to improve the 
performance of traditional methods and achieved a 
low false negative rate of 0.35% when evaluating 
malicious apps and a false positive rate of 2.96% 
when evaluating benign apps. 

 
3. Perceptual Hashing Methodology 
 

Dynamic detection avoids many of the issues with 
static analysis. However, all dynamic techniques 
require the execution of the target code. Dynamic 
approaches, like the perceptual hashing approach 
evaluated in this research, overcomes the difficulty of 
obfuscation, encrypted files, and virtualization. This 
research specifically focuses on the usefulness of the 
approach to detect repackaged apps, and so is not 
evaluated against all categories of Android malware.  

Due to the extensive data set of images inside an 
APK, it is difficult to compare and fingerprint each 
image. Cryptographic hash functions can be used for 
integrity, checking the exact duplicates of an image 
[36]. However, a slight change in a bit in the data can 
cause major variation in the hash. This is called the 
avalanche effect, where a change in a small set of 
data causes a dramatic change in the hash [36]. Thus, 
it is not possible to distinguish images similar to one 
another. For example, changes in size, rotation, pixel 
modification, etc. will cause the hash to change 
completely.  

A perceptual hash is a fingerprint for multimedia 
to derive various features of its content [37, 38]. 
Unlike cryptographic hash functions which rely 
heavily on slight changes in the media to produce an 
entirely different hash, perceptual hashes produce 
“close” hashes depending on the amount of change 
involved. Thus, a cryptographic hash function is used 
to measure whether two images completely match, 
whereas a perceptual hash generates a fingerprint that 
can be compared using hamming distance to measure 
image similarity. Figure 3 illustrates a perceptual 
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hash on a traditional image (3-a) as well as a 
screenshot of an Android mobile app (3-b).  In both 
cases, an original image is reduced in size to some 
standard dimension (8 x 8 pixels for example) and 
then recolored typically to grayscale. Further 
calculations are done on these reduced images to 
produce perceptual hash fingerprints.  

Thus, perceptual hashes can be used as a metric to 
determine image similarity. The primary three 
perceptual hashes that are widely used are average 
hashing, perception hashing, and difference hashing. 
Average hashing [37, 38] is the simplest form of a 
perceptual hash. The method involves taking a 
picture and changing it to grayscale and reducing the 
picture to an 8x8 pixel size. Each pixel is then used to 
generate an average pixel value. Lastly, the hash is 
generated by comparing each pixel value to the 
average to generate a 64-bit hash. Difference 
hashing is similar to average hashing, but it relies on 
gradient change rather than average pixel greyscale 
for generating the hash [39]. The algorithm starts by 
converting the image to grayscale. Next, the image is 
downsized to an 8x8 square of gray values. The row 
hash is calculated for each row from left to right. An 
output of 1 is generated if the next grayscale value is 
greater than or equal to the previous one. Otherwise, 
a 0 bit is calculated if the value is less than. Finally, 
the bits are concatenated to generate the final hash. 

 

 
Figure 3: Example Perceptual Hash Images 

 

Perception hashing relies on a discrete cosine 
transform (DCT) instead of the average greyscale 
[39]. The algorithm operates in the following 
manner: 

1.  Reduce Image Size: The image is reduced to a 
32x32. 

2.  Reduce Color: The image is converted to 
grayscale to simplify computation. 

3.  Compute the DCT: The DCT separates the 
image into a collection of frequencies and 
scalars. 

4.  Computing Average Value: The DCT mean is 
calculated. 

5.  Further reduce DCT: Each bit of the 64-bit 
hash is set to 0 or 1 depending on whether 
each of the 64 DCT value is above or below 
the average value. 

6.  Construct Hash: The bits are concatenated to 
make a 64-bit hash. 

 
4. Experimental Data and Approach 
 

The approach in this research will apply 
perceptual hashes to dynamic screenshots of Android 
apps that are extracted via a custom processing 
engine.  The goal of the experiments is to validate the 
effectiveness of perceptual hash (pHash) algorithms 
in identifying fake repackaged apps when the original 
application has been previously recorded [38]. A 
dataset of 576 trusted applications from the Google 
Play Store was selected and verified that they are 
virus-free using VirusTotal. Once the application set 
is crawled from the Play Store, it is processed using 
an Android VM Sandbox that supports dynamic 
screenshot captures of its UI components. 
Furthermore, the certificate and version info are 
extracted from the APK. This app collection forms 
the baseline images for further evaluation. Figure 4 
depicts the experimental environment created for this 
research. 

 

 
Figure 4: Image Collection Environment 
Each trusted (benign) application is processed 

through the sandbox environment for analysis, which 
exercises the application and creates one or more 
screenshots. Captured screenshots are processed 
through the perceptual hash function and stored in a 
JSON database along with the application’s APK, 
version info, and certificate. These screenshots of the 
UI components act as the dataset for repackaged and 
clone detection.  

The test dataset consists of pairs of 2,151 
repackaged apps obtained from AndroZoo [40]. 
AndroZoo is a growing collection of Android APK 
collected from various sources that contain pairwise 
original apps and a repackaged app version. The 
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original app becomes part of the trained benign data 
set. The repackaged app is used to test the 
effectiveness of different versions of the perceptual 
hash algorithm.  

 
4.1 Architectural Framework 
 

Dynamic analysis is performed by utilizing a 
sandbox environment. Specifically, the research 
leverages the capabilities of DroidBox [41] to fit in 
architecture for conducting perceptual hash 
experiments. DroidBox was developed to offer 
dynamic analysis of Android application and offers a 
wide range of capabilities, including hashes for 
analyzed packages, network traffic, and file 
read/write operations among others. This research 
leverages the sandbox part of the DroidBox emulator 
image that automates the installation and startup 
process for Android applications. Other emulators 
could have been chosen, such as Android’s own 
AnroidStudio [19] or more popular PC-based 
applications such as Archon, Bliss, Bluestacks, or 
Droid4x [42], to name a few.  DroidBox was chosen 
for its ease of setup in Linux environments, ease for 
automating dynamic launching of APKs, ability to 
connect via virtual networking, and its rich set of 
analysis tools geared for capturing network traffic, 
file read and write operations, information leaks, and 
circumvented permissions [41]. The native tools 
provided by DroidBox were envisioned to provide 
additional data extraction capabilities for correlating 
detection of repackaged apps, but future work will 
focus on use of other emulation possibilities as 
DroidBox is no longer being updated. 

DroidBox required patching to allow for 
screenshot capabilities and execution of the pHash 
functions to create signatures of the application’s 
layout. Furthermore, Droidbox only allows for one 
application to be run at a time. To extend this 
capability, a Docker container was created to run the 
patched DroidBox. This Docker container, in 
conjunction with a batch script, allowed the 
automation of the dynamic analysis for Android apps 
from the test set of benign and infected apps.   

Figure 5 provides a deployment diagram of the 
execution platform used to conduct experiments. A 
Dell Precision T5600 Workstation with 128 GB of 
memory and 2.30 GHz, Intel Xeon processor, was 
utilized for all experiments. Ubuntu 16.04 operating 
system installation was used as a Docker container 
that executed DroidBox and an Android emulator.  

The architecture required five different steps to 
generate experimental data. First, DroidBox came 
prepackaged for the Android 4.1.1 release. Thus, to 
insert new functionality into the script, a custom 

Python script was developed to patch DroidBox to 
provide an experimental version for this research.   

Step two of the process involved the creation of a 
Docker container that is used to execute DroidBox.  
This consisted of creating a DockerFile that specified 
the build instructions for the container which 
included: 1) Ubuntu 14.04 environment, 2) 
commands for tinydb, pillow, and imagehash 
libraries, 3) Android SDK and Android 4.1.2 
emulator, 4) SSH to forward logs and traffic to the 
emulator system,  and 5) a VNC library to allow 
control of the emulator screen. The third step 
involved running the DroidBox Docker container to 
automate mass, dynamic analysis of APKs. 

 

 
Figure 5: Experimental Architecture 

In step four, generated perceptual hash data.  
During runtime of the sandbox, adb tool and monkey 
tool were utilized in DroidBox for getting status 
updates of the Android emulator. To begin image 
collection, the monkey tool instantiated the APK and 
timed screenshots were taken with the adb command. 
Images were stored on the host machine every five 
seconds. The ImageHash [43] library was utilized to 
generate the average hash, perception hash, and 
difference hash. The hashes were then inserted into a 
centralized tinydb database in JSON format.  

As the fifth and last step before analysis of image 
hash data, the data were pre-processed to ensure 
reliability. Hashes were obtained for the main 
android display screen and the error screen if an 
application crashed. All three databases were then 
scanned for images matching the two-pre-processed 
hashes. This ensured that the dataset does not contain 
any error samples. Repackaged applications that were 
not processed in the benign data set were removed to 
ensure valid training pairs for an accurate prediction. 
 
4.2 Evaluating Perceptual Hash Functions 
 

To calculate the effectiveness of each perceptual 
hash function, the best threshold for the hamming 
distance is calculated to provide the highest accuracy 
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in detecting matching images in the image data set. 
First, the repackaged data set is processed against the 
trained benign dataset that has a matching 
corresponding APK. The accuracy of each hash 
algorithm is then generated with its corresponding 
hamming distance between 1 and 16. For purposes of 
the experiment, anything above a hamming distance 
of 16 was considered too big of a distance and 
indicated a mismatch. This process was repeated for 
the set of benign applications not in the training set 
(downloaded from Google Play store) so that a true 
negative assessment could occur. Table 2 provides a 
summary of terms, definitions, and calculations used 
in reporting accuracy measurements in Section 5 (TP, 
TN, FN, FP, TPR, FPR, TNR, ACC). 

   
Table 2: Accuracy Measurements 

TP True positives: Repackaged app correctly classified  
TN True negative: App correctly classified as benign 
FP False positive: Benign app classified as malware 
FN False negative: Repackage app misclassified  
TPR TP Rate = Sensitivity = TP/(TP + FN) 
FNR FN Rate = FP/(FP + TN) 
TNR TN Rate = Specificity = TN/(TN + FP) 
ACC Accuracy = TP + TN/(TP + TN+ FP + FN) 

 
5. Experimental Results 
 
     The experimental phase consisted of evaluating 
the three different proposed types of perceptual 
hashing algorithms: average hash, PHash (perception 
hash), and DHash (difference hash). Effectiveness in 
detecting repackaged apps relies on similarity scoring 
that assesses the closeness of dynamically visualized 
app layouts. In total, 2,151 benign apps paired with 
2,151 repackaged apps along with 576 benign apps 
were analyzed. A set of screenshots for the first one 
minute of the application run-time were generated for 
each application. The evaluation criteria for 
measuring effectiveness includes calculation of the 
optimal hamming distance for the most accurate 
detection of repackaged applications while also 
having a low false-positive rate in benign 
applications.  
 
5.1 Average Hash Results 

 
Average hash produced the best results out of the 

three perceptual hashing algorithms. Figure 6 
displays the results for the average hash with 
corresponding hamming distances. The results 
showed that TPR increases as hamming distance 
increased until a breakpoint of 10. Furthermore, a 
faster drop in TPR is seen with an increase in 
hamming distance of 14. TNR for benign apps 

showed its best results at a lower hamming distance. 
The results indicate that at a hamming distance of 1, 
there were 72 apps that matched 100% with a benign 
app in the data set. This can be due to an application 
taking a basic template or form layout from the 
Internet. As hamming distance increased, TNR 
steadily decreased as well, with more applications 
being falsely detected. From the analysis, a hamming 
distance of 10 provides the most accuracy for 
detecting repackaged applications using the average 
hash algorithm. 

 

 
 

Figure 6: Average Hash Accuracy 
 
5.2 Perception Hash 

 
Results show that the perception hash produced 

the least accurate results for repackaged detection. 
Figure 7 displays the results for perception hash with 
its corresponding hamming distance. The analysis 
shows that perception hash follows the same trend as 
an average hash. The increase in hamming distance 
correlated with an increase in TPR until a critical 
point at a hamming distance of 11 and 12. TNR 
followed the same trend as in average hash. As 
hamming distance increases, TNR steadily decreases. 
The analysis shows that a hamming distance of 11 or 
12 gives the best accuracy for TP and TN.  

One potential reason for the poor performance of 
this algorithm may stem from the fact than an image 
that matches a wrongly identified benign sample pair 
is classified as a false negative. In addition, each 
screenshot contained the Android OS top and bottom 
taskbars. These may have potentially increased the 
similarity of each sample pair. Thus, this algorithm-
generated many more pairs of applications that were 
similar to the repackaged APK, causing a higher 
false-negative rate. 

 
5.3 Difference Hash 
 

Figure 8 displays the results for the difference 
hash. Difference hash works very similar to the 
average hash but utilizes its neighbors’ gradient for 
computation of its hash [37, 38]. Thus, it was 
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expected to show similar results to the average hash. 
However, the results were relatively close to the 
accuracy of perception hash. This is due to the 
accuracy of the algorithm. The algorithm is expected 
to find more similar benign apps that are not in its 
designated repackage pair; thus, this counts as a false 
negative and resulted in a lower TPR. Furthermore, 
the gradient of the android main interface is very 
static and dark in nature already. This may result in a 
higher similarity score for each image comparison. 
TNR follows the same trend of decreasing in 
relations to the increase of hamming distance. 

 

 
Figure 7: Perception Hash Accuracy 

 

 
Figure 8: Difference Hash Accuracy 

 
5.4 Comparative Summary and Evaluation 

 
Based on the results, the average hash is the most 

effective perceptual hash algorithm for detecting 
repackaged app. Figure 9 summarizes the overall 
findings of the experiment. To increase the 
effectiveness and accuracy of future iterations, we 
will take into account cropping out the main UI. 
Furthermore, there is an application that utilizes a 
URL to load form layout, which tends to lower the 
TPR. A repackaged app can simply change the URL 
to a designated website and completely change the 
whole form layout. Future research using perceptual 
hashing of UI images will need to take this into 
account. 

 Figure 10 displays the receiver operating 
characteristic (ROC) curve for the three approaches, 
where transition points correspond to hamming 
distances of 1-16. As a whole, the average hash 

approach had the highest number of hamming 
distances with the highest TPR and lowest 
corresponding FPR. For all three approaches, 
hamming distances of 10-12 produced the highest 
accuracy, highest TPR, and highest TNR.  

 

 
Figure 9: Algorithm Accuracy 

 

 
Figure 10: Algorithm ROC Curve  

In comparing the perceptual hashing approach to 
other dynamic approaches, the user interface analysis 
proposed by Soh et al. [23] reported results on a 
dataset of 521 paired apps (benign and a repackaged 
version), whereas we examined 2,151 pairs and an 
additional 576 benign apps. Researchers reported an 
FNR as low as 0.8% [23] whereas the best perceptual 
hashing approach (average hash) generated an FNR 
as low as 11%.   

 
6. Conclusions and Future Work 
 

The primary goal of this research is to evaluate 
and implement a scalable and dynamic analysis 
technique for sandboxing Android applications. The 
primary goal of the sandbox environment supports 
generating and extracting live screenshots of Android 
apps, generating result outputs as perceptual hashes, 
and storing them in a database. To this end, the 
research successfully implemented a scalable Docker 
container. Our final dataset consisted of 2,151 benign 
app pairs, 2,151 repackaged app pairs, and 576 
benign apps. Our findings indicate that average 
hashing produced the best accuracy rate compared to 
perception and difference hashing. The findings show 
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that with a hamming distance of 10, it is able to 
match the repackaged app to its benign pair with an 
accuracy rate of 88.16%.  

The experimental framework and results show the 
practical possibility of implementing a perceptual 
hashing approach using available tools, software, and 
emulation environments. In particular, the use of 
image hashing as a basis for high accuracy 
classification appears to be a viable starting point for 
future triage techniques. Future work will focus on 
better pre-processing of screenshot images to 
eliminate universal similarities across all Android 
apps such as the main UI features and elimination of 
form layouts that can be configured by malicious 
repackaged apps. To keep up with rapidly changing 
Android AVD versions, future work will also 
consider more adaptable sandbox environments 
beyond DroidBox and the potential use of PC-based 
analysis tools and sandbox emulators for image 
generation and capture.  
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