
Rose Gamble
University of Tulsa
gamble@utulsa.edu

Matt Hale
University of Nebraska - Omaha
mlhale@unomaha.edu

Abstract

This minitrack focuses on defining, creating, implementing, and evaluating self-adaptive systems for different domains.

1. Introduction

Self-adaptive systems research has been steadily emerging as a force behind the development of autonomous systems [1-3]. These systems may support one or more adaptive operations, such as self-healing, self-repairing, self-maintaining, self-coordinating, self-referencing, and self-securing, and can be applied to a wide variety of systems. These systems can include services, wearables, and IoT. The design and implementation of such systems can be extremely challenging [1]. As such, this field has a special interest in new software development methods, techniques, and frameworks that can facilitate more efficient processes to implement self-adaptive systems [1]. In addition, a significant challenge moving forward is to produce accurate models of self-adaptive systems that can enhance new or existing software development methods or provide improvements in decision making, performance, sustainability, security, and usability of new or existing self-adaptive systems [3].

2. References