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Abstract 

 
Explainable AI (XAI) has a counterpart in analytical 

modeling which we refer to as model explainability.  

We tackle the issue of model explainability in the 

context of prediction models.  We analyze a dataset of 

loans from a credit card company using the following 

three steps:  execute and compare four different 

prediction methods, apply the best known 

explainability techniques in the current literature to 

the model training sets to identify feature importance 

(FI) (static case), and finally to cross-check whether 

the FI set holds up under “what if” prediction 

scenarios for continuous and categorical variables 

(dynamic case).  We found inconsistency in FI 

identification between the static and dynamic cases. 

We summarize the “state of the art” in model 

explainability and suggest further research to advance 

the field. 

 

1. Introduction and Background 

 
Given the recent success of machine learning 

algorithms (MLAs) and the attendant angst 

surrounding the potential negative impact of AI on our 

society [23], explainable AI has now become an area 

of increased scrutiny and research.  Since MLAs, 

especially neural networks, tend to be “black boxes” 

and highly nonlinear in nature, it is often not clear, 

even to experienced practitioners, how particular 

decision outcomes are reached. This, in turn, leads to 

a vague apprehension that MLAs may soon outstrip 

human ability to understand and manage their results.  

Without addressing this existential concern explicitly, 

we tackle here a more focused and pragmatic 

dimension of the problem, namely how to interpret and 

explain prediction models.  

Explainability and interpretation are problems 

which have plagued analytical models as well.  For 

example optimization and advanced econometric 

models have typically met with significant resistance 

from management decision makers for whom they 

have been designed.  Translating mathematical 

expertise into decision-making expertise still remains 

a significant obstacle in gaining management 

acceptance of model artifacts. It is not unreasonable to 

expect that advances in model explainability and 

interpretation can help bridge this gap.  

Model explainability and interpretability are now 

being perceived as desirable, if not required, features 

of data science and predictive analytics overall.  Our 

objective here is to examine what these features may 

look like when applied to previous research we have 

conducted in the area of econometric prediction and 

predictive analytics [10].  We consider the domain of 

Lending Club loan applications. For our dataset, we 

perform three different analyses: 

1. Model Execution and Comparison.  Run and 

compare four different prediction models on the 

training set as shown in Table 1 (logistic 

regression, random forest, boosted gradient, 

multi-layer perceptron (MLP neural network));  

2. Explainability Model Execution and Comparison 

(training dataset only). For each model, apply 

existing model explainability techniques (Local 

Interpretable Model Explanation (LIME), SHAP 

(SHapley Additive exPlanations), GAM, and 

SKLearn to the static training dataset in order to 

assess the comparability of these approaches with 

respect major feature identification.   

3. What-if or Perturbation Analysis.  In the 3rd and 

final step, we examine how well the explainability 

models hold up under dynamic prediction 

situations wherein we perturb the major features 

identified in Step 2 and compare the 

explainability models to the static (training set) 

case. 

Most predictive model explainability approaches 

focus on the static part of the process whereas our 

contribution is to identify a more general approach to 

prediction model explainability for decision makers 

that holds up under both static and dynamic scenarios. 

 

2. Review of Selected Explainability 

Approaches to Prediction Models 
 

Several techniques have been developed to 

address the problem of explainable predictions. 

Broadly speaking, these techniques employ various 

forms of sensitivity analysis to identify a streamlined 

feature importance set (also called feature attribution) 

having the greatest impact upon a prediction.  These 

procedures vary depending upon how they measure 
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the impact of a feature upon a specific local (point) 

and/or global prediction.   

To differentiate local vs global explainability, 

consider a prediction model which targets customers 

who may be inclined to respond to a specific 

marketing campaign.  Local explainability is 

customer-specific, that is, it purports to explain what 

features, or attributes, influenced an individual 

customer to respond (or not) to the campaign ad(s).  

Global explainability on the other hand would try to 

identify a set of salient features which influenced all 

customers who responded.  The latter would clearly be 

useful in designing future marketing campaigns. 

 

Table 1.  Prediction models generated for 
explainability application 
 

Analytical 

Method 

Refs Description 

Logistic 

regression 

(Logit) 

[24] Discrete choice regression 

Random Forest 

(RF) 

[3,5,

8] 

Random Forest is a 

supervised learning algorithm 

which builds and merges 

multiple decision trees to 

obtain an accurate and stable 

prediction. 

Gradient 

Boosting 

(GBC) 

[6] Machine learning technique 

for regression and classificati

on problems, which 

generates a prediction model 

as  an optimization of a loss 

function across 

an ensemble of weak 

prediction models, 

typically decision trees. 

MLP Neural 

Net (N/N) 

[16] Implementation of Deep 

Neural Networks  

 

Recently, explainability techniques have 

been proliferating rapidly in response to the perceived 

need to render deep learning algorithms more 

transparent [15]. However,, there has been research in 

the past which explores the accuracy of model 

transparency.  For example, [2] uses Interactions-

based Method for Explanation (IME) [21] and 

EXPLAIN [19] to determine feature importance. IME 

computes feature importance by dropping a single 

feature and measuring contribution, whereas 

EXPLAIN processes permutations of subsets, 

iteratively dropping n features and measuring the 

resultant contributions. A weighted distance equation 

is then generated in order to compare the explanations 

of support vector machines (SVM), artificial neural 

nets (ANN), and k-nearest neighbors (KNN) to the 

learned structure of a decision tree to remove the 

subjectivity of the explanations globally.   

[7] approaches explainability and fairness in 

AI, from a philosophical perspective which intersects 

with our core message of the need for explainable 

predictions in industry. They discuss how nonlinear 

function approximators (Boosting / Bagging / Neural 

Nets) suffer from some issues of explainability due to 

the summation of multiple classifiers, the use of voting 

classifiers, hidden layers and activation function. They 

don’t discuss current “state of the art” in 

explainability, but rather ponder the overall pipeline of 

data collection, model construction, and model use.  

Our approach is more specific and closely aligned 

with recent explainability techniques shown in Table 

2, which we chose according to the criteria: 

1. Techniques must be “model agnostic” and thus 

readily adaptable to classifier- and regression-

based prediction applications.   

2. Techniques must have available Python code 

accessible from GitHub or equivalent sources.  

This relieves us from having to develop N/N-

based prediction models as well as writing code to 

implement explainable model algorithms. 

 

Table 2.  Model explainability techniques to be 
applied to models in Table 1. 
 

Explain- 

ability 

Technique 

Refs Brief Description 

SKLearn 

Feature 

Importance 

[13] SKLearn library  

LIME (Local 

Interpretable 

Model-agnostic 

Explanations) 

[17,18] Generates linear 

approximations to a 

model by random 

sampling in a local 

neighborhood and fitting 

a simpler linear model to 

the newly constructed 

synthetic data set. 

SHAP (SHapley 

Additive 

exPlanations) 

[11] An additive feature 

attribution method that 

generates a linear 

explanation model 

assigning an importance 

value to each feature 

reflecting its effect on the 

model. 

GAM (Global 

Attribute 

Model) 

[9, 14] GAM has a global vs. 

local focus, grouping 

similar local feature 

importance to form 

human-interpretable 

global attributions that 

best explain a particular 

subset of the data.   
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3. Process (Multiple Models Applied to 

Dataset) 

 
For our dataset, we sample 20,000 observations, 

enforcing class balance, from Lending Club's publicly 

sourced dataset (pertaining to active and past loans) 1- 

Active and past loans that have been fully paid or have 

no existing derogatory marks are classified as 'good 

loans'.  Conversely, 'bad loans' are instances where an 

individual has either defaulted or is currently 

delinquent. What we want to predict is whether an 

individual loan is “bad” (BadLoan vs. GoodLoan) 

because of factors such as payment defaults, late 

payments, high balances, etc.   

We start by running 4 standard models2: 

1. Logistic- this is the reference model due to its 

“easy” explainability [24] 

2. Random Forest [3,5,8] 

3. Boosted Gradient [4,6] 

4. Neural Network [16] 

Logistic regression is widely-used in industry 

(and has been for several decades); random forest, and 

gradient-boosted classifier are popular tree-based ML 

techniques.  For neural networks, we consider two 

estimation options: a simple SKLearn-estimated 

neural net and a richer neural net utilizing 

KERAS/TensorFlow.  The SKLearn neural network is 

a binary classification network with a single hidden 

layer consisting of 150 neurons. This was, for the most 

part, an 'out of the box' classifier.   We also train a 

multilayer perceptron (MLP) binary classification 

network with four hidden layers of arbitrary depth, 

utilizing batch normalization and probabilistic dropout 

for regularization. The network uses the rectified 

linear unit (relu) activation and optimizes based on 

cross-entropy loss with a variant of stochastic gradient 

descent (Adam).  Since we only need one N/N for 

comparison purposes and the MLP model is more 

robust (Table 3), we will not consider the SKLearn 

prediction model further in our analyses.  We will 

however still be using SKLearn as an explainability 

technique separate from its application as a prediction 

technique. 

Our 1st step is to compare the remaining 4 models 

with respect to how well they predict the classifier.  

Table 3 shows the comparative accuracy of the 

predictions with respect to the class attribute (good 

loan [+] or bad loan [-]). 

 

                                                           
1 Reference link to dataset:  

https://www.kaggle.com/wendykan/lending-club-loan-
data#LCDataDictionary.xlsx 
2 The software suite used for the analytics described in this 
paper consists of the Anaconda environment, Jupyter 
notebook, keras, tensorflow, various algorithms available via 

Table 3.  Prediction accuracy for each 
model 

Model Type Prediction 

Accuracy 

Logistic Regression 88.4% 

Random Forest 90.0% 

Gradient Boosting 94.1% 

MLP Neural Net 87.7% 

Simple (SKlearn) Neural Net 83.1% 

 

4. Comparison of Explainability Techniques 

 
A. SKLearn provides a standard library for 

identifying feature importance most often used on 

tree-based classifiers.  These feature importance 

measures can be based on gini importance (mean 

decrease impurity) or mean decrease accuracy.   Since 

SKLearn is widely used, we begin our ‘importance’ 

measures here.   

Figure 1 details the SKLearn feature 

importance for the Random Forest (RF) model. This is 

a typical representation format for easy visualization 

of the relative impact of features, or attributes, on a 

prediction model.   

 

 
 

Figure 1. Feature importance for random 
forest prediction as determined by SKLearn 

 
We did not make a concerted effort to 

optimize any of the models as we might, if we were to 

actually deploy one of these models, since our 

objective is to examine the explainability metrics 

across the models rather than the prediction accuracy 

for any specific model as in a usual deployment 

scenario.  

 

GitHub (e.g., SHAP and GAM), and the Python programming 
language 
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B. LIME (Local Interpretable Model-agnostic 

Explanations) [17, 18]: LIME (and related techniques 

SP-LIME and aLIME) generates linear 

approximations to a model by random sampling in a 

local neighborhood and fitting a simpler linear model 

to the newly constructed synthetic data set. The now 

explainable linear model’s weights can be used to 

interpret a particular (i.e., local) model prediction.  

This method can be applied to neural networks or any 

uninterpretable nonlinear model and is thus described 

as model agnostic. LIME is particularly useful for 

local interpretability but can be applied globally by 

summing all the individual point explanations.  

Although LIME was the first model explainability 

technique to appear in the literature, SHAP and GAM 

claim to be more general techniques that subsume 

LIME.  As a result (and because of space limitations), 

we will not consider global LIME here.  

 

C. SHAP (SHapley Additive exPlanations) [11, 12] 

The Shapley Value (SV) has its genesis in game theory 

where SV represents each player's input over all 

possible combinations of players.  This approach 

yields a model called the Shapley Value regression 

[11].  SHAP is an additive feature attribution method 

that generates a linear explanation model whose 

regression values are feature importance values for 

linear models in the presence of multicollinearity.  

This method assigns an importance value to each 

feature that represents the effect on the model 

prediction of including that feature. To compute this 

effect, a model is trained with that feature present, and 

another model is trained with the feature withheld and 

the impact difference on the prediction is then 

measured.     

Figure 2 shows a typical Shapley display 

graph for the Logistic Regression model. Each dot on 

the horizontal axis represents a row of the dataset with 

blue dots representing low values and red dots high 

values.  The feature attribution rankings (top to bottom 

in Figure 2) are based on Rank = ∑(|shap_score|) so 

the first feature has the highest sum of absolute shap 

scores.  Shapley graphs provide a clear ranking of 

feature importance, but can be displayed more 

intuitively as Feature Importance graphs by summing 

the absolute SHAP-scores (Figure 3). 

While the order is slightly different, nine of 

the ten most important features (calculated directly 

from the coefficients from the logit model) are in the 

SHAP Top 10 (Figure 2).  The “missing feature” from 

the SHAP top-10 is initial payment (it is 10th in 

importance with direct calculation and is 18th in SHAP 

calculation);  Loan-grade B is ranked 10th in SHAP 

while it is 13th in direct calculation).  The SHAP 

importance rankings seem quite consistent with the 

‘true values’ for the logit classifier 

Figure 2.  Shapley graph for logistic 
regression model 

 

.The Shapley Feature Importance graphs in Figure 3 

show considerable overlap suggesting that the same 

features are generally important in each of the models.  

In particular, the attributes total_pymnt appears in the 

top-10 for all four models, and the int_rate appears 

very important (except in the MLP).   The logit model, 

perhaps due to its linear index (between the choices), 

has more categorical features (loan-types) in its most 

important features. 

 

D. GAM (Global Attribute Model) [9, 14].  GAM 

explains the landscape of neural network predictions 

across subpopulations. GAM augments global 

explanations with the proportion of samples that each 

attribution best explains and specifies which samples 

are described by each attribution. The advantages of 

GAM’s global explanations 1) yield the known feature 

importance of simulated data, 2) match feature 

weights of interpretable statistical models on real data, 

and 3) are intuitive to practitioners through user 

studies.  

We run GAM on a subsample of 1000 

attribution values (on the MLP neural network) for 

each class for both balanced and unbalanced 

subpopulations. We then forced our subpopulations to 

explicitly map to our class labels to provide 

explanations for the target variable: one for the 

GoodLoan group and the other for BadLoan group, as 

shown in Figure 4.  As the figures (ranked by feature 
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Figure 3.  Shapley feature importance graphs 
for each model 

    

 

importance in descending order) show, 

last_pyment_amnt has the highest Feature Importance 

for the GoodLoan subgroup and the BadLoan 

subgroup indicating that it is a critical attribute in 

predicting loan defaults.  

It should be mentioned that there are 

additional explainability techniques not considered 

here, for example DeepLIFT [20] and Integrated 

Gradients [22] are both examples of gradient-based 

methods [1] and are primarily used in image 

recognition applications.  While a complete analysis of 

all explainability methods is beyond the scope of this 

paper, we mention DeepLIFT and Integrated 

Gradients because they are popular techniques for 

Deep Learning (N/N) models.   The explainability 

methods we have chosen for our analysis have specific 

relevance to prediction models, but also can, in 

principle,  be applied across broad classes of models 

including Deep Learning (N/N) models.  As we 

indicate in our future research discussion, we intend to 

expand our analyses to include a wider range of these 

explainability techniques. 

The previous techniques help shed some light 

on the prediction model black box by giving us a sense 

of feature importance for the training set utilized to 

develop the models.  Feature Importance graphs 

highlight the major influencers and allow us a more or 

less intuitive grasp of where to focus our attention.  For 

example, we can see from Figures 3 and 4 that the 

features int_rate, last_pymnt_amnt, and total_pymnt 

play prominent roles across (most) of the estimated 

models.  This can, at a minimum, serve as a basis for 

more detailed drill down analysis.  We should mention 

that we are not necessarily looking for consensus 

across models but rather we want to know whether 

feature importance metrics allow us to gauge the 

impact on predictions.  We now turn our attention to 

the dynamic case where we use the models to make 

predictions and examine Feature Importance in that 

context. 
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. 

 
 

 
 

Figure 4.  GAM explainability plots for loan 
application data set. 

 

5. Prediction 

 
We are interested in the case where the model will be 

utilized for prediction.  For example, a common use-

case would be in determining whether or not an 

applicant for a credit-card (or a loan) should be 

“accepted”.  If the answer is to accept the applicant 

(grant the ‘loan’ request), then an explanation to the 

may be useful for regulatory oversight and 

accountability.  However, in the case of rejecting an 

applicant (at least in the US), the bank is required to 

provide the applicant with reasons for refusing the 

application.   

These ‘explanations’ would be provided not only 

to the would-be customer but also to bank personnel 

who must interact with the applicant and to credit 

rating organizations.  Further, in many cases, 

suggestions for behavioral changes must be made to 

the applicant so that they will have a higher chance of 

acceptance in any subsequent applications.  Typically, 

“reason codes” are developed from the scoring models 

(often logit models) and these reason codes provide 

the basis for these explanations (and remediation 

suggestions).  As a result, both global (for model 

governance approval) and local (for individual 

predictions) explanations are not only useful but often 

required.  

In the current data-set we have utilized, we predict 

which loans will be “Bad” and which “Good”.  Since 

there are no “new applications” available, the 

approach we have taken, is to perform some simple 

“what if” perturbation analysis on a hold-out sample.  

We can then compare sensitivity of these predictions 

to the ‘feature importance’ results in the previous 

section.  This will allow us to see whether our feature 

importance hypotheses hold up equally well in a 

prediction scenario compared to the standard training 

data case. The process for perturbing continuous 

variables and categorical variables will vary slightly. 

For continuous features, we choose to focus on 

features that come across the importance horizon: the 

interest rate (int) which tended to have high 

importance, income (ann_income) which had low 

importance, and payment (total_pymnt) which was 

mixed.   

Our approach is to run multiple “what if” 

scenarios (between 0.5 and 1.5) vis-à-vis the base case, 

tweaking one feature while holding the others 

constant.  Ideally, we would like to see the sensitivity 

in the prediction scenarios mirror the feature 

importance suggested for the training set by the 

explainability techniques.  Figures 5A,B and Table 4 

show the results of our perturbations for the 

continuous variables.  Not surprisingly, logit 

prediction sensitivity follows expectations since 

model parameters are explicit.  The interest rate is the 

most sensitive; in fact, it is likely too sensitive and if 

the model were to be deployed more development 

would be required.  Further, the next two most 

sensitive are total and last payments.   
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Figure 5A.  Logit prediction sensitivities for 
perturbed continuous variables. (logit and 
random forest) 
 

Sensitivities for the RF are ‘generally’ 

consistent with SHAP-importance values.   The 

predictions are most sensitive to the interest rate (the 

3rd highest SHAP score) with predictions being 

second-most sensitive to total payment (highest shap 

score). Model predictions are quite insensitive to 

last_payment_amount (second highest SHAP score).  

Note also the “peculiar shape” of predictions for the 

interest rate: decrease in the interest rate lead to 

decreased probabilities, but increases in the interest 

rate also lead to decrease in the probabilities.  Such a 

“sign change” would be difficult to explain and would 

likely prevent model use in highly-regulated 

industries.  

Like the RF sensitivities, the GBC findings 

are again broadly consistent with expectations based 

on the SHAP importance values.   GBC model 

predictions are most sensitive to the interest rate (the 

highest SHAP score) with predictions being second-

most sensitive to last payment (third highest SHAP-

score).  Model predictions are quite insensitive to Tot 

Payment (second highest SHAP-score).   

Note also the “peculiar shape” of predictions 

for the both interest rate and total payment.  There are 

several ‘sign reversals” in the interest rate projections 

(though smaller than was observed in RF).   For Tot 

Payment, response is very flat for reductions, but large 

(and incorrectly signed) for increases.  Once again 

these “sign issues” would almost surely become real-

world deployment issues. 

For the MLP NN, we see consistent results—

in terms of agreement between sensitivity and feature 

importance.  Model predictions are most sensitive to 

total payment; second most sensitive to last payment 

and third most sensitive to installment.   Total payment 

has the highest SHAP-score but does not appear in the 

top GAM scores (for GoodLoan subpopulation).    Last 

payment has the second highest SHAP-score and was 

ranked as the most important feature by GAM.  

Installment was third in both SHAP and GAM.   We 

do see a small “sign reversal” of the marginal impact 

for total payments (around .5); this, however, is much 

smaller than what was observed for the RF and GBC 

models. 

 

 
 

Figure 5B.  Random forest (RF) prediction 
sensitivities for perturbed continuous 
variables. 
 

 

 
 
Figure 6A.  Gradient-boosted classifier (GBC) 
prediction sensitivities for perturbed 
continuous variables. 
 

For the categorical features, we consider loan 

grade and loan title.   Note that each category value 

results in a different independent variable (hot 

encoded).  In this case, we randomly select 0’s of a 

specific category, change some of these (in increasing 

proportions) to 1’s and measure impact on predicted 
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probabilities for these changes. 3  Table 5 and Figure 7 

shows the results of these perturbations 

 

 
 

Figure 6B.  MLP NN prediction sensitivities for 
perturbed continuous variables. 
 
 
Table 4.  Perturbation table for continuous 
features int, ann_incme, total_pymnt 

 
 

As before (and not surprisingly), the logit 

sensitivities conform with expectations.  Model 

predictions are more sensitive to Loan Grade A and 

Loan Grade D (both in top 10 in terms of feature 

importance) than to LoanTitle_CC (which is not in the 

top-15 of actual feature importance).  

In Figure 7B, we see that the RF model is 

very insensitive to changes in the categorical 

variables.  Given SHAP-scores for loan-types A and 

D, this is surprising. 

                                                           
3 For the ‘perturbation process’ for loan-type.  We increase 

the number of 1’s by 5% (randomly selected) and change 
other associated loan-type (for the new 1’s to be 0).  We do 
this replacement 25 times and average the 25 outcomes.  
Now we increase the number of 1’s by 5% (again) and 

The GBC and MLP NN are even more 

insensitive—so the charts for these two classifiers 

have been eliminated—as no useful information is 

provided. 

 

 

 

 
 
 
Table 5.  Perturbation table for categorical 
features Loan Type A, Loan Type D, 
Loan_Title_CC 
 

 
 

 

 

 
 

Figure 7A.  Logit prediction sensitivity for 
perturbed categorical features. 
 

repeat the process.  We do this until we arrive at twice the 
original number of 1’s in the test sample.  Hence, in the 
charts, 1 indicates that we effectively doubled the number of 
1’s, while .5 indicates that we have increased the number of 
1’s by 50%. 
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Figure 7B.  Random forest (RF) prediction 
sensitivity for perturbed categorical features. 
 

To summarize, we see that the sensitivities 

with respect to the continuous variables to be broadly 

consistent with expectations.  (This is especially true 

for the logit model—which is to be expected.)  For the 

other classifiers, there were some inconsistencies 

(either in relative sensitivity or in the projections 

themselves).  Other than the logit model, the MLP NN 

model yielded predictions most in line with 

expectations gleaned from the explainability 

measures.  

Likewise, the sensitivity of logit model 

predictions to perturbations in the categorical features 

follows expectations, e.g., loan-type D has a somewhat 

larger impact than does loan-type A. The other models 

yielded essentially unchanged estimates for changes in 

the categorical variables. 

 

6. Summary 

 
Explainable artificial intelligence (XAI) is a 

current research thrust devoted to demystifying “black 

box” models, especially involving neural networks.  In 

this paper, we have addressed a subset of XAI, namely 

explaining and interpreting prediction models.  In our 

example, we are interested in explaining a binary 

decision regarding credit card applications, whether to 

approve or deny an application.  When talking about 

explainability, we have to ask “explainable to whom”.  

In the latter case it is essential to present a coherent 

explanation to the applicant of why the credit card 

application was turned down.  However, applicants are 

not the only stakeholders; corporate interests also must 

weigh the risk of defaults against the potential revenue 

stream of issuing new credit cards. 

We have applied a portfolio of explanation 

techniques (LIME, SHAP, GAM) to determine which 

features have the biggest impact on this decision for a 

suite of different prediction models.  These methods 

allow us not only a mechanism for comparing different 

prediction models but also provide significantly 

improved insight into the workings of models both at 

the local and the global levels. However, our work 

suggests that complex model explainability methods 

are still in the nascent stage for some real world 

deployment use cases such as credit denial 

explanations. Teasing a consensus from the portfolio 

of these techniques across multiple models is not 

always straightforward and can become an extended 

exercise in tradeoff analysis.   

Our contribution has been to reveal a 

discontinuity between the static and dynamic 

explainability models which to our knowledge has not 

been identified in previous research. What we 

conclude from our experiment and suggest as future 

research are the following: 
 Preliminary explainability prediction models 

provide a distinct improvement over the “black 

box”. 

 Extend the portfolio of prediction models (to 

include at a minimum SVM, Bayesian classifiers 

and additional N/N) and explainability techniques 

(to include at a minimum DeepLIFT and 

Integrated Gradients) to be analyzed and 

compared. 

 Determining Feature Importance requires 

sophisticated statistical inference expertise and 

thus currently appears to be more useful to data 

scientists than to end users.  Although Feature 

Importance charts have an intuitive appeal, more 

detailed analyses, Shapley diagrams for example, 

are not intuitive and need to be aggregated for 

better comprehensibility. 

 This reveals a need for an Explainability DSS for 

decision makers that can integrate predictive 

modeling techniques with the explainability 

models associated with each.  Requirements for 

such a DSS constitute a promising area of further 

research. 

 More research is needed to understand and align 

prediction and base case feature importance 

incongruence.  

 

7. References 
 

1. Ancona, M., Ceolini, E., Gross, M. (2017) A 

unified view of gradient-based attribution 

methods for deep neural networks. ArXiv 2017. 

2. Bohanec, M., Bprstnar, M.K., Robnik-Sikonja, 

M. (2017) Explaining machine learning models in 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

P
ro

b
ab

ili
ty

Perturbation

Sensitivity, RF

Loan Grade D

Loan Grade A

LoanTitle_CC

Page 972



sales predictions. Expert Systems with 

Applications, 71, 416-428. 

3. Breiman, L., Friedman, C., Stone, C., and Olshen, 

R. (1984) Classification and Regression Trees, 

Taylor & Francis. 

4. Chen, T., and Guestrin, C. 2016. Xgboost: A 

scalable tree boosting system. In Proceedings of 

the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data 

Mining, KDD ’16, 785–794. New York, NY, 

USA: ACM. 

5. Donges, N.  The random forest algorithm.  

https://machinelearning-blog.com 

6. Friedman, J.H.  Greedy function approximation: 

A gradient boosting machine. The Annals of 

Statistics, 2001, Vol. 29, No. 5, 1189–1232 

7. Guidotti, R., Monreale, A., Ruggieri, S., 

Gianotti, F., Pedreshi. D. (2018) A survey of 

methods for explaining black box models.  ACM 

Computing Surveys, 51(5) 

8. Ho, T.K.. Random decision forests. Proceedings of 

the 3rd International Conference on Document 

Analysis and Recognition, Montreal, QC, 14–16 

August 1995. pp. 278–282 

9. Ibrahim, M., Louie, M., Modarres, C., Paisley, J.  

Global explanations of neural networks: Mapping 

the landscape of predictions. AAAI/ACM 

Conference on Artificial Intelligence, Ethics and 

Society, Honolulu, HI, Jan 27-28, 2019.  
arXiv:1902.02384v1  

10. Kridel, D. and Dolk, D. Automated self-service 

modeling: Predictive analytics as a service.  

Information Systems for e_Business Management 

(11:1). (2013), 119-140. 

11. Lipovetsky, S. and Conklin, M. Analysis of 

regression in game theory approach. In: Applied 

Stochastic Models in Business and Industry 17.4 

(2001), pp. 319–330. 

12. Lundberg and Lee.  A unified approach to 

interpreting model predictions.  31st Conference 

on Neural Information Processing Systems (NIPS 

2017), Long Beach, CA, USA. 

13. Mishra, M.  Hands-On introduction to Scikit-learn 

(sklearn).  Towards Data Science.  

https://towardsdatascience.com/hands-on-

introduction-to-scikit-learn-sklearn-f3df652ff8f2 

2018. 

14. Modarres, C., Ibrahim, M., Louie, M., Paisley, J.  

Towards explainable deep learning for credit 

lending: A case study.  The Thirty-second Annual 

Conference on Neural Information Processing 

Systems (NeurIPS), 2018. 
15. C. Molnar. Interpretable Machine Learning: A 

Guide for Making Black Box Models 

Explainable. March 2019. 

16. Reagen, B., Whatmough, P., Adolf, R., Rama, S., 

Lee, H., Lee, Hernández-Lobato, H., Wei, G-Y., 

Brooks, D. Minerva: Enabling low-power, highly-

accurate deep neural network accelerators.  ISCA 

2016. 

17. Ribeiro, M., Singh, S. and Guestrin, C. “why 

should I trust you?”: Explaining the predictions of 

any classifier. In Knowledge Discovery and Data 

Mining (KDD), 2016. 

18. Ribeiro, M., Singh, S. and Guestrin, C.. Model-

agnostic interpretability of machine learning. In 

Human Interpretability in Machine Learning 

workshop, ICML ’16, 2016. 

19. Robnik-Sikonja and Kononenko, I. Explaining 

classifications for individual instances.  IEEE 

Transactions on Knowledge and Data 

Engineering (20, 5) 589-600 (2008). 

20. Shrikumar, A.; Greenside, P.; and Kundaje, A. 

Learning important features through propagating 

activation differences. arXiv:1704.02685 2017. 

21. Strumbelj. E., Kononenko, I.  An efficient 

explanation of individual classifications using 

game theory. Journal of Machine Learning 

Research 11 (2010) 1-18.  

22. Sundararajan, M.; Taly, A.; and Yan, Q. 

Axiomatic attribution for deep networks.  

arXiv:1703.01365  2017. 

23. Tegmark, M.  Life 3.0: Being Human in the Age 

of Artificial Intelligence. Vintage Books, 2018. 

24. Train, K. Discrete Choice Methods with 

Simulation. Cambridge University Press 1st ed., 

2003 2nd edition, 2009. 

 

 

 

 

 

 

 

 

Page 973

https://machinelearning-blog.com/
https://arxiv.org/abs/1902.02384v1
https://towardsdatascience.com/hands-on-introduction-to-scikit-learn-sklearn-f3df652ff8f2
https://towardsdatascience.com/hands-on-introduction-to-scikit-learn-sklearn-f3df652ff8f2
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/1703.01365

