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Abstract  

Numerical discretization with a finite-difference scheme is known to introduce 

truncation errors in the form of frequency dispersion in depth-integrated models 

commonly used in tsunami research and hazard mapping. While prior studies on 

numerical dispersion have focused on the shallow-water equations, we include the depth-

integrated non-hydrostatic pressure and vertical velocity through a Keller box scheme 

and investigate the properties of the resulting system. Fourier analysis of the discretized 

governing equations gives rise to a dispersion relation in terms of the time step, grid size, 

and wave direction. The interworking of the dispersion relation is elucidated by its lead-

order approximation, one and two-dimensional numerical experiments, and a case study 

of the tsunami generated by the 2010 Mentawai Mw 7.8 earthquake.  

The dispersion relation, aided by its lead-order approximation from the Taylor series 

expansion, shows that coupling between the spatial discretization and non-hydrostatic 

terms results in significant reduction of numerical dispersion outside the shallow-water 

range. The time step, which counteracts numerical dispersion from spatial discretization, 

only has secondary effects within the applicable range of Courant numbers. Numerical 

dispersion also decreases for wave propagation oblique to the principal axes of the grid 

due to effective increase in spatial resolution. A numerical flume experiment of standing 

waves indicates minor contributions from the implicit solution scheme of the non-

hydrostatic terms. A second numerical experiment verifies the properties deduced from 

the analytical results and demonstrates the effectiveness of discretization in altering 

progressive waves over a two-dimensional grid. The computational results also 

demonstrate generation of spurious, short-period trailing waves from hydrostatic model 

with insufficient numerical dispersion. Since the governing equations for the non-
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hydrostatic system trend to underestimate dispersion in shoaling water, the numerical 

effects are complementary in producing a solution closer to Airy wave theory.  

A case study of the 2010 Mentawai Mw 7.8 earthquake and tsunami event, which has 

a compact source adjacent to a deep trench, demonstrates the role of dispersion in wave 

propagation and the implications for the commonly-used source inversion techniques. 

Non-dispersive models are often used with an initial static sea-surface pulse derived from 

seafloor deformation in computation of tsunami Green's functions. We compare this 

conventional approach with more advanced techniques, which use Green's functions 

computed by a dispersive model with an initial static sea-surface pulse and with the 

surface waves generated from kinematic seafloor deformation. The fine subfaults needed 

to resolve the compact rupture results in dispersive waves that require a non-hydrostatic 

model. The Green's functions from the hydrostatic model are overwhelmed by spurious, 

grid-dependent short-period oscillations, which are filtered prior to their application. 

These three sets of tsunami Green's functions are implemented in finite-fault inversions 

with and without seismic and geodetic data. Seafloor excitation and wave dispersion 

produce more spread-out waveforms in the Green's functions leading to larger slip with 

more compact distribution through the inversions. If the hydrostatic Green's functions are 

not filtered, the resulting slip spreads over a large area to eliminate the numerical artifacts 

from the lack of dispersion. The fit to the recorded tsunami and the deduced seismic 

moment, which reflects the displaced water volume, is relatively insensitive to the 

approach used for computing Green’s functions. 
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Chapter 1  
Introduction  

Numerical long-wave models have long been an essential tool for tsunami research 

and flood hazard mapping. Conventional non-dispersive models, based on finite-

difference solution of the shallow-water equations, have been widely used due to their 

simple numerical frameworks, low computing costs, and ease of implementation (e.g., 

Imamura et al. 1988; Kowalik and Bang, 1987; Liu et al. 1995; Titov and Synolakis, 

1998). The hydrostatic governing equations describe wave propagation through the 

shallow-water celerity independent of the wave period. Recent advances in sensor 

technology have enabled detection of intricate dispersive wave systems even in large 

catastrophic tsunamis. Hanson and Bowman (2005) and Kulikov (2006) deduced 

separation of wave components by period in hydrophone and altimetry records of the 

2004 Indian Ocean tsunami. Saito et al. (2010) and Yamazaki et al. (2011a) identified 

strong frequency dispersion in ocean-bottom pressure records of the 2010 Chile and 2011 

Tohoku tsunamis. The observations show lagging of short-period components as the 

tsunami propagates across the ocean. Near the coast, Acoustic Doppler Current Profiler 

(ADCP) records have shown these trailing tsunami waves are the primary energy source 

for persistent surges and strong currents in tropical reef environments (Bricker et al., 

2007; Yamazaki et al., 2012). Recognizing the importance, researchers have been 

exploring the use of numerical means in shallow-water models as well as high-order 

properties in Boussinesq-type or non-hydrostatic models to account for frequency 

dispersion during tsunami propagation.  

Discretization of hyperbolic differential equations introduces truncation errors that 

can manifest as dispersion and dissipation in the numerical solution. The Taylor series 

expansion, which allows detailed analysis of discretization errors, is a classical approach 
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to evaluate these effects (Abbott et al., 1981; Warming and Hyett, 1974). Imamura et al. 

(1988) analyzed the staggered finite-difference scheme for the shallow-water equations 

and showed the grid size and time step can be adjusted to match the lead-order term of 

the dispersion relation from the Boussinesq-type equations of Peregrine (1967). Shuto 

(1991) and Burwell et al. (2007) demonstrated the use of numerical in place of physical 

dispersion through adjustment of the gird size in relation to the water depth for modeling 

of one-dimensional tsunami propagation. Cho (1995) extended the method to two 

dimensions by including corrections in the discretized shallow-water equations to mimic 

the cross-derivative dispersion terms in the Boussinesq-type equations for wave 

propagation oblique to a principal axis. Instead of adjusting the grid size locally, Cho et 

al. (2007) and Ha and Cho (2015) introduced variable coefficients in the correction terms 

to accommodate variation of water depth. Yoon (2002) proposed a variant of the 

approach by employing a hidden grid in the discretized equations with resolution tuned to 

account for dispersion at the local water depth. Wang and Liu (2011) adopted this 

approach to manipulate numerical dispersion for weakly nonlinear and weakly dispersive 

waves propagating over slowly-varying water depth with a shallow-water model. 

More advanced, depth-integrated models can describe dispersion mathematically 

through the governing equations. One approach is to include high-order terms in the 

shallow-water equations through a Taylor series expansion of the dispersion relation from 

Airy wave theory (Peregrine, 1967). This gives rise to the Boussinesq-type equations of 

varying complexity commonly used in modeling of wind-generated waves (e.g., Gobbi et 

al., 2000; Madsen et al., 1991; Nwogu, 1993; Wei and Kirby, 1995;). Due to the high-

order terms, Boussinesq-type models are typically implemented with a single 

computational grid to study transoceanic tsunami propagation (e.g., Horrillo et al., 2006; 

Kirby et al., 2013; Saito et al., 2014; Zhou et al., 2012). An alternate approach to describe 
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dispersive waves is to directly include the non-hydrostatic pressure and vertical velocity 

through the Keller-box scheme without increasing the order of the governing equations 

(Stelling and Zijlema, 2003). While a one-layer model is sufficient for tsunami modeling 

(Yamazaki et al., 2009), additional layers, instead of higher-order derivatives, are used to 

improve linear and nonlinear properties for modeling of wind-generated waves (e.g., Bai 

and Cheung, 2013; Smit et al., 2013; Zijlema et al., 2011). The relatively simple 

numerical framework allows implementation of a two-way grid-nesting scheme for 

modeling of tsunamis from trans-oceanic propagation to coastal runup (Yamazaki et al., 

2011b). The vertical velocity also facilitates modeling of kinematic seafloor deformation 

to provide a more complete account of tsunami generation (e.g., Yamazaki et al., 2011a, 

2018).  

The governing equations of Boussinesq-type and non-hydrostatic models can account 

for dispersion to varying degree of accuracy in relation to the exact solution from Airy 

wave theory. While the dispersion relation of the Boussinesq-type equations converges 

asymptotically at the shallow-water limit, the low-order depth integration accompanying 

the Keller-box scheme leads to slight underestimation of dispersion in shoaling water for 

the non-hydrostatic approach (Bai et al., 2018). This is complicated by the discretization 

scheme, which modifies the governing equations and introduces truncation errors 

associated with the time step and grid size that interfere with the intrinsic dispersion 

property of the governing equations. Understanding of the numerical behaviors is crucial 

for selection of computational grids that can properly account for dispersion and make 

efficient use of computing resources. However, the truncation error analysis based on the 

Taylor series expansion becomes very cumbersome with the high-order derivatives in the 

Boussinesq-type equations. Vitousek and Fringer (2011) decoupled the intrinsic and 

numerical dispersion by assuming the water depth parameter is small and examined how 
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superposition of numerical dispersion from a shallow-water model to the intrinsic 

properties of the one-dimensional Boussinesq and KdV equations would modify internal 

wave propagation. As the intrinsic dispersion from the governing equations is highly 

accurate in shallow water, the discretization errors inevitably lead to underestimation of 

the celerity in the numerical solution.  

In depth-integrated non-hydrostatic models, the discretization errors can potentially 

alleviate the underestimation of dispersion by the governing equations. The one-layer 

formulation, which provides the basic building block for multilayer models, serves as a 

proxy for examination of numerical dispersion in the non-hydrostatic approach. In this 

study, the non-hydrostatic system of governing equations is discretized with a staggered 

finite difference scheme in the two-dimensional horizontal plane and the Keller-box 

approach in the vertical direction. The non-hydrostatic terms involving the pressure and 

vertical velocity present a challenge in the truncation error analysis even though the 

governing equations remain at first order. The truncation error in the non-hydrostatic 

pressure is dependent on other variables effectively introducing high-order terms through 

recursive operations. Numerical dispersion is not directly additive to the intrinsic 

property of the non-hydrostatic system as demonstrated in the comparative model study 

of tsunami wave generation by Li et al. (2016). The Fourier method provides a 

straightforward procedure to derive the dispersion relation without directly involving the 

high-order and cross derivative terms as in the Taylor expansion approach. 

Properly accounting for dispersion properties is not only essential for tsunami hazard 

mapping, but also for earthquake source investigation, in which tsunami Green's 

functions are computed and used in finite-fault inversion. The role of tsunami dispersion 

in source model inversion has received attention in recent years. Saito et al. (2010) and 

Hossen et al. (2015) demonstrated effects of dispersion on predicted tsunami source areas 
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using Green's functions generated by static initial pulses as finite sources on the sea 

surface, while Saito et al. (2011) estimated the initial sea-surface elevation for the 2011 

Tohoku tsunami through inversion of the near-field DART and GPS records. Their 

Green's functions were generated by Boussinesq-type models. Romano et al. (2012, 2014) 

performed joint inversion of a finite-fault model using tsunami and geodetic records of 

the 2011 Tohoku event and accounting for dispersion during propagation through the 

non-hydrostatic NEOWAVE model of Yamazaki et al. (2009, 2011b). The use of vertical 

velocity, which describes dispersion in NEOWAVE, also enables to model kinematic 

seafloor deformation for a more complete resolving of tsunami generation. Yue et al. 

(2015) utilized this capability to compute Green’s functions for joint inversion of the 

2010 Mentawai Mw 7.8 earthquake. The resulting finite-fault model shows large, 

concentrated slip near the trench that is not evident in other studies. In light of numerical 

discretization, the use of a non-hydrostatic model does not necessarily ensure proper 

account of dispersion. A numerical dispersion relation can provide guidance for 

generation of Green's functions for inversion analyses. 

This dissertation addresses the issue with numerical dispersion in non-hydrostatic 

modeling of long waves and investigates its implications for forward and inversion 

computations of tsunami waves. Chapter 2 describes the governing equations of the non-

hydrostatic model using the Keller-box scheme, their linearization, and the discretization 

with the staggered finite-difference scheme. The Fourier expansion is used to derive the 

dispersion relation from the discretized governing equations that in turn is expanded by 

Taylor series for a lead-order approximation. Chapter 3 examines the effects of the 

discretization and depth parameters in the dispersion properties and explores the coupling 

between intrinsic and numerical dispersion. A series of numerical experiments using 

NEOWAVE examine the contribution of the implicit solution scheme to numerical 
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dispersion, highlight the anisotropic propagation properties over a two-dimensional 

computation grid, and demonstrate the use of numerical dispersion to offset errors 

intrinsic to the governing equations for better approximation of the exact solution from 

Airy wave theory. Chapter 4 presents a case study of the 2010 Mentawai earthquake and 

tsunami and investigates the effects of dispersion in the commonly-used source inversion 

techniques. NEOWAVE is used to perform hydrostatic and non-hydrostatic computations 

of tsunami Green’s functions for the comparative study. Chapter 5 gives the conclusions 

of this research.  
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Chapter 2 
Mathematical Formulation 

The material in this chapter is part of the paper "Numerical dispersion in 

non-hydrostatic modeling of long-wave propagation" by Linyan Li and Kwok 

Fai Cheung that was submitted to Ocean Modelling in June 2018.   

This chapter describes the two-dimensional depth-integrated governing equations for 

non-hydrostatic flows, their numerical discretization based on the staggered finite-

difference scheme, and the derivation of numerical dispersion relation in terms of 

discretization and water depth parameters. Based on the linearized form of the governing 

equations with uniform water depth, the Fourier method is used to derive the dispersion 

relation through the solution to an eigen-value problem. The dispersion relation is then 

expanded by Taylor series to derive a lead-order approximation, which reveals the 

numerical and intrinsic dispersion properties and their interdependence more 

systematically. 

2.1  Governing Equations 

The free surface flow is defined by a Cartesian coordinate system (x, y, z) with the x 

and y axes in the horizontal plane and the positive z axis pointing upward in the vertical 

direction. Let g denote gravitational acceleration, h the water depth, and n the Manning 

roughness coefficient. Following the formulation from Yamazaki et al. (2009), the depth-

integrated governing equations defines conservation of momentum in the x, y, and z 

directions as well as continuity of flow in the horizontal plane through  
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  (1) 
2 2

2
1/3

ζ (ζ )U U U Q Q h g U U VU V g n
t x y x x D x D D

       
      

     

  (2) 
2 2

2
1/3

ζ (ζ )V V V Q Q h g V U VU V g n
t x y y y D y D D

       
      

     

   (3) 2W W W QU V
t x y D

  
  

  

   (4) ζ ( ) ( ) 0UD VD
t x y

  
  

  

where (U, V, W) is the depth-averaged velocity,  is the surface elevation, D =  + h is the 

flow depth, and Q denotes the depth-averaged non-hydrostatic pressure. The governing 

equations augment the shallow-water system with the non-hydrostatic pressure terms in 

the horizontal momentum equations (1) and (2) and the addition of the vertical 

momentum equation (3). The continuity equation (4) remains the same as in the shallow-

water equations to ensure conservation of mass.  

The Keller box scheme in Stelling and Zijlema (2003) defines the variables at the free 

surface and seabed. In deriving the horizontal momentum equations (1) and (2), the 

trapezoidal rule along with the dynamic free surface boundary condition of q = 0 are 

invoked to approximate the depth-averaged non-hydrostatic pressure as   

  (5) 
ζ

ζ
1 1 1 ( )

2 2b bh
Q q dz q q q

D 
   

where qb is the non-hydrostatic pressure at the bottom. The same rule integrates the 

vertical velocity w to give the depth-averaged W in the momentum equation (3) as 

  (6) 
ζ

ζ
1 1 ( )

2 bh
W w dz w w

D 
  

in which the vertical velocity at the free surface and bottom are given by the kinematic 

boundary conditions as 
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  (7) ζ ζ ζ+            ζw U V z
t x y

  
  

  

  (8) b
h hw U V z h
x y

 
    

 

For a linear variation of the vertical velocity over depth, the non-hydrostatic pressure 

should follow a quadratic distribution, but is also approximated as linear in the depth 

integration (5) following the Keller box scheme. This approximation leads to slight 

underestimation of dispersion in shoaling water with non-asymptotic convergence at the 

shallow-water limit even for a multi-layer model (Bai et al., 2018). 

Dispersion analysis is based on linear wave propagation over constant water depth in 

the absence of bottom friction. The momentum equations and the continuity equation 

become 

   (9) ζU Qg
t x x

  
  

  

   (10) ζV Qg
t y y

  
  

  

  (11) 2W Q
t h






   (12) ζ 0U Vh h
t x y

  
  

  

The governing equations include terms of up to first order, but implicitly contain a third-

order dispersion term as inferred from their equivalent Boussinesq form (Bai et al., 2018). 

There are four equations and five unknowns, U, V, W, , and Q, in the non-hydrostatic 

system. Conservation of mass requires 

  (13) 0U V w
x y z

  
  

  

in which 
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   (14) 2w W
z h






for a linear profile of w over the water column. This fifth equation links the three velocity 

components and closes the system of equations for a solution. 

The linearized governing equations (9) - (13) already include the discretization in the 

vertical direction through the depth integration (5) and (6) and the accompanying 

approximation of a linear profile in the Keller-box scheme. Figure 2.1 shows the 

staggered finite-difference grid for the discretization in the two-dimensional horizontal 

plane. The domain is divided into computational cells of dimensions x and y in the x 

and y directions. The horizontal velocity components U and V are defined at the cell 

interfaces (i±1/2, j) and (i, j±1/2), and the surface elevation , vertical velocity W, and 

non-hydrostatic pressure Q at the cell center (i, j). The governing equations (9) to (13) are 

discretized as                                

   (15) 
1 1 1

1/2, 1/2, 1, , 1, ,ζ ζ
0

m m m m m m
i i i j i j i j i j i jU U Q Q

g
t x x

  
     

  
  

   (16) 
1 1 1

, 1/2 , 1/2 , 1 , , 1 ,ζ ζ
0

m m m m m m
i j i j i j i j i j i jV V Q Q

g
t y y

  
     

  
  

   (17) 
1 1

, , ,2
0

m m m
i j i j i jW W Q

t h

 
 



   (18) 
1 1 1 1 1

, , 1/2, 1/2, , 1/2 , 1/2ζ ζ
0

m m m m m m
i j i j i j i j i j i jU U V V

h h
t x y

    
     

  
  

   (19) 
1 1 1 1 1

1/2, 1/2, , 1/2 , 1/2 ,2
0

m m m m m
i j i j i j i j i jU U V V W

x y h

    
    

  
 

where the superscript m denotes the time step and t is the time step size. The time-

integration scheme is first order, while the spatial derivatives are approximated by 

second-order central differences. 
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Figure 2.1  Schematic of staggered finite-difference scheme for the non-hydrostatic model and 
illustration of effective grid spacing for wave propagation at 45 from the x axis. 

A semi-implicit approach evaluates the hydrostatic and non-hydrostatic components 

of the solution in two steps. The horizontal momentum equations (15) and (16), with non-

hydrostatic pressure terms neglected, and the continuity equation (18) provide initial 

estimates for the horizontal velocity (U, V) and surface elevation . Substitution of U, V 

and W, expressed in terms of the non-hydrostatic pressure Q from the momentum 

equations (15) - (17), into the mass conservation (19) gives the Poisson equation 

   (20) 

1 1 1 1 1
1, 1, , 1 , 1 ,2 2 2 2 2 2 2

* 1 * 1 * 1 * 1
1/2, 1/2, , 1/2 , 1/2 ,

2 2 4

2

m m m m m
i j i j i j i j i j

m m m m m
i j i j i j i j i j

t t t t t t tQ Q Q Q Q
x x y y x y h

U U V V W
x y h

    
   

   
   

       
             

 
   

 
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where the asterisk (*) denotes initial estimates from the hydrostatic step. The tri-diagonal 

matrix equation is solved implicitly for the non-hydrostatic pressure Q. The horizontal 

velocity (U, V) is then updated from integration of the non-hydrostatic terms in the 

momentum equations (15) and (16) and the vertical velocity W from equation (17). The 

surface elevation  is updated form the continuity equation (18) to complete the non-

hydrostatic computation.  

2.2  Fourier and Taylor Expansions 

The discretization transforms the governing differential equations into a system of 

algebraic equations in which the grid size and time step function as free parameters 

modulating the numerical properties. In the Fourier expansion, each frequency 

component satisfies the governing equations and the resulting eigen-value matrix directly 

links the wave frequency and number in a dispersion relation with effects of the 

numerical discretization as phase errors. This analytical technique has been used to study 

numerical dispersion and stability in shallow-water models (e.g., Foreman, 1984; 

Leendertse, 1967; Sankaranarayanan and Spaulding, 2003). Its extension to the non-

hydrostatic system simply involves two additional variables with the rank of the eigen-

value matrix increased by two. The resulting dispersion relation expressed in 

trigonometric functions can in turn be expanded by Taylor series to illustrate 

systematically the order of the truncation errors as in the conventional approach. 

We consider a system of regular progressive waves at uniform water depth. The 

variables , U, V, W and Q are expressed as discrete Fourier modes over the staggered 

finite-difference grid in Figure 2.1 as 

   (21) i( )
,ζ ζ x yik x jk y m tm

i j oe
    
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   (22) i(( 1/2) )
1/2,

x yi k x jk y m tm
i j oU U e      
 

   (23) i( ( 1/2) )
, 1/2

x yik x j k y m tm
i j oV V e      

 

   (24) i( )
,

x yik x jk y m tm
i j oW W e     

   (25) i( )
,

x yik x jk y m tm
i j oQ Q e     

where ω is the wave frequency, kx and ky are the x and y components of the wave number 

vector  such that k2 = kx
2+ kx

2, and the subscript o indicates the amplitude of the 𝑘

variables. Substitution of the discrete Fourier modes into the discretized governing 

equations (15) - (19) gives  

  (26) 
         i ii /2 ζ 1 11

0
x xx

k x k xk x
o oo

e Q eU e
g

t x x


   

  
  

  (27) 
   

     i ii /2 ζ 1 11
0

y y
y

k y k yk y
o oo

e Q eV e
g

t y y


 

  
  

  

  (28)  1 2 0o oW Q
t h

 
 



  (29)      2isin / 22isin / 21
0o yo xo

V k yU k x
h h

t x y

          
  

  (30) 
   2isin / 22isin / 2 2 0o yo x o

V k yU k x W
x y h

        
 

where denotes the eigenvalue of the homogeneous system of equations. The i te   

system can be written in matrix form as 
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   

   

   

   

2isin / 2 isin / 21 0 0

2isin / 2 isin / 210 0

10 0 0

2isin / 22isin / 21 0 0

isin / 2isin / 2
0 0

x x

y y
o

o

o

o
yx

o

yx

k x k x
g

x t x
k y k y

g
y t y

U
Vt h
Wk yk x

h h Q
t x y

k yk x
x y h






 



 

  
    
  
  

     
  

  
  

       
  
   

0  (31) 




 

While the wave number (kx , ky) is real, the angular frequency ω can be complex with real 

and imaginary parts representing dispersion and dissipation of the discretization scheme 

(Leendertse, 1967).   

The matrix equation (31) represents propagation of a system of regular waves through 

the staggered finite-difference grid in Figure 2.1. A non-trivial solution requires the 

determinant of the matrix to be zero giving rise to 

  (32)      
22 2 2

2
3 2 2

1 cos( )1 1 cos( )
1 2 1 1 0

2 2
yx

h k yh h k x
a

t x y
 

 
                     

in which 

  (33) 
   

   
2 2 2 2

2 2 2 2

2 1 cos 2 1 cos

2 1 cos 1 cos
x y

x y

gh k x t x gh k y t y
a

h k x x h k y y

             
            

This can be satisfied by an eigenvalue of  = 1, which is equivalent to ω = 0 representing 

a steady flow. For wave propagation, the remaining eigenvalues take the form 

  (34)  1 i (2 )a a a    

which has a modulus of one indicating Im(ω) = 0 and the numerical scheme is non-

dissipative. The eigenvalue can alternatively be expressed as i te   
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  (35)    cos isint t     

Comparison with equation (34) gives  or     cos 1t a  

  (36)  
   

   
2 2 2 2

2 2 2 2 2 2

2 1 cos 2 1 cos
cos 1

2 1 cos 1 cos
x y

x y

gh t y k x gh t x k y
t

x y h y k x h x k y


               
              

which provides a dispersion relation for the discretized governing equations (26) to (30) 

in terms of the time step parameter t and the grid size parameters kxx and kyy. 

Setting x = y for square grid cells and introducing the Courant number 

, the dispersion relation can be expressed as /Cr gh t x  

  (37) 
   

   
2 2

2 2

2 ( ) 2 cos cos 11 arccos 1
( ) 2( ) ( ) 2 cos cos 1

Cr k x k x k x
c gh

Cr k x k x kh k x k x

 

 

                      

where c is the celerity, kh is the water depth parameter, and having a range of 2 2
xk k 

0 to 1 for wave directions between 0 to 90 from the x axis. When kh = 0, equation (37) 

reduces to  

  (38)     21 arccos 1 2 cos cos 1
( )

c gh Cr k x k x
Cr k x

         

which is the dispersion relation of the hydrostatic model in terms of the spatial and 

temporal discretization parameters.  

The dispersion relation (37) is the exact solution to the discretized governing 

equations (15) to (19), but does not fully reveal the interplay between the depth and 

discretization parameters. To illustrate the lead-order structure, we expand the cosine 

functions in equation (36) about kxx = 0, kyy = kyx = 0, and t = 0 by Taylor series 

to give 
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 (39)    
   

     

4 4 4
2 2 2

2 4
4 4

2 2 2 2 4 4 4
2 2

121 ,
2 24

2
2 24

x y
x y

x y x y

k k x
gh k k x

t t
x t

t k k x k k x
x h

 

  
   

           
           

  

Substitution of ω=ck into equation (39) gives 

  (40)  
 

   
 

2 2
2 2

4 222 4 4
2 2

2 2 2
2

11
12 6 ,

12 1 11 1
4 12 6

x y

x y

k k
k x xc kc k t gh x t

k k
kh k x x

k

   
      

 
     

 

where truncation errors of fourth order or higher are grouped under O(x4, t4). The 

relation can be rewritten with the c4 term as truncation errors as 

  (41) 
 

   
 

2 2
2 2

22 4 2
2 2

2 2 2
2

11
12 6 ,

1 11 1
4 12 6

x y

x y

k k
k x x

kc gh x t
k k

kh k x x
k

   
    

 
     

 

Substituting equation (41) into the c4 term in equation (40) gives 

   (42) 

 

   

 
   

   
 

2 2
2 2

22
2 2

2 2 2
2

22 2
2 22

2
2 4 4

22 2
2 2 2

2

11
12 6

1 11 1
4 12 6

11
12 61 ,

12 1 11 1
4 12 6

x y

x y

x y

x y

k k
k x x

kc gh
k k

kh k x x
k

k k
k x x k t

k
gh x t

k k
kh k x x

k

   


 
     

 

 
     

     
         
   

By neglecting fourth and higher-order terms in kx and t, we have the lead-order non-

hydrostatic dispersion relation  
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  (43) 
 

   
       

1/2
2 2

2 2 2 2 2

1
1 12

1 1 11 1 1
4 4 4 24

k x Cr
c gh

kh kh kh kh k x





 
                     

where varying between 1 and 0.5 for wave propagating along the 2 2 41 2 x yk k k  

principal axes and the diagonal at 45. Introducing , which is a 2 2 2x h gh t   

generalization from Imamura et al. (1988),  gives 

  (44) 

 
       

         

1/2
2

2 4
2 2

2 4 6
2 2

11
4 12 1 24 1

1 11
2 16 24 1 96 1

Cr
kh kh

Cr Cr
c gh

kh kh kh
Cr Cr

  

 

  
    

                 

where  is a parameter that combines grid size, time step, and water  2 2 2x gh t h    

depth. In the absence of discretization errors, the numerical dispersion term vanishes and 

both equations (43) and (44) reduce to 

  (45)  
1/2

211
4

c gh kh


    

which is the intrinsic dispersion relation of the governing equations (9) - (13) for the non-

hydrostatic system. A comparison between equations (44) and (45) illustrates that the 

discretization augments the order of the dispersion relation from a [0, 2] to a [4, 6] 

rational function expansion along with introduction of the tuning parameter  for 

optimization. 

The lead-order dispersion relation (43) is consistent with a Taylor series expansion of 

the truncation errors in the discretized governing equations (15) to (19) of the non-

hydrostatic system and is strictly valid for small values of the discretization for 
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illustration. When kh = 0, the non-hydrostatic terms in the governing equations vanish 

and the dispersion relation reduces to 

  (46)    
1/2

2 2211
12 12

c gh k x Cr k x       

A  = 1 results in the dispersion relation derived by Imamura et al. (1988) for wave 

propagation along a principal axis. Substitution of yields  2 2 2x h gh t   

  (47)  
1/2

21
12

c gh kh    

where kh is introduced into the hydrostatic dispersion relation to account for depth-

dependence of discretization errors. Imamura et al. (1988) showed a value of  = 4 gives 

rise to  

  (48)  
1/2

211
3

c gh kh    

which is the lead-order expansion of the dispersion relation from the Boussinesq-type 

equations of Peregrine (1967). The coefficient 1/3 corresponds to the dispersion term of 

the governing equations and yields good approximation in shallow water with asymptotic 

convergence to Airy wave theory at kh = 0. In comparison, the dispersion term in the 

Boussinesq form of the non-hydrostatic system has a coefficient of 1/4 (Bai and Cheung, 

2013), which leads to slight underestimation of the dispersion in shoaling water as 

depicted by equation (45). 
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Chapter 3 
Wave Dispersion 

The material in this chapter is part of the paper "Numerical dispersion in 

non-hydrostatic modeling of long-wave propagation" by Linyan Li and Kwok 

Fai Cheung that was submitted to Ocean Modelling in June 2018. 

The dispersion relation derived in Chapter 2 enable examination of the propagation 

characteristics in terms of the discretization and depth parameters for both hydrostatic 

and non-hydrostatic models. In this chapter, these effects are investigated through the 

celerity from the dispersion relation as a function of water depth, gird size, time step and 

wave direction with the aid of the lead-order approximation as well as one-dimensional 

and two-dimensional numerical experiments performed by NEOWAVE. The one-

dimensional numerical experiment involves standing waves of a given wavelength and 

provides the corresponding wave period for computation of the celerity. Comparison of 

the computed celerity with the dispersion relation shows the influence of computational 

error from the implicit scheme of the non-hydrostatic pressure term. The two-dimensional 

tests use a Gaussian hump as initial conditions with wavelength, water depth, and spatial 

grid size relevant to tsunami modeling and demonstrate the interplay between intrinsic 

and numerical dispersion. The numerical dispersion properties along oblique directions to 

the grid axis are also explored. These also include examination of the use of 

discretization errors to mimic or enhance dispersion in matching Airy wave theory for 

wave modeling in tsunami range.  
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3.1  Dispersion Relations 

Both dispersion relations (37) and (43) give the celerity in terms of the water depth 

parameter kh, discretization parameters kx and Cr, and the relative wave direction; the 

latter, lead-order form shows systematically the role of each parameter and its inter-

relationship with the others. The lead-order approximation clearly delineates the intrinsic 

and numerical dispersion in two separate terms. The celerity decreases with kh due to 

intrinsic dispersion from the governing equations, but the spatial discretization also 

influence the results through numerical dispersion. While the theoretical upper bound of 

kx is  equivalent to the Nyquist frequency, the practical maximum for wave modeling 

is around one, corresponding to six computational cells per wavelength, such that the 

denominator of the dispersion term in the lead-order approximation (43) is positive. The 

parameter kx, which is also in the numerator, always reduces the celerity through 

numerical dispersion. The complementary effects of kh and kx provides the basis for the 

use of spatial discretization errors to optimize dispersion properties in hydrostatic wave 

models. The two parameters, however, are coupled in modulating numerical dispersion in 

the non-hydrostatic model. The presence of kh in the denominator of the second term 

indicates reduction of numerical dispersion with water depth. The Courant number Cr 

must be less than one and preferable below 0.5 for a semi-implicit scheme. Since the 

denominator is always positive in practical application, the temporal discretization tends 

to increase the celerity while reducing numerical dispersion.  

The lead-order dispersion relation (43) is valid for small values of the discretization 

parameters. To aid interpretation, Figure 3.1a plots the celerity from the exact relation (37) 

over kx and Cr with the propagation direction along the x axis. The considered range of 

depth parameters 0  kh  0.6 is most relevant to tsunami modeling. The celerity 

decreases and dispersion increases with kh and kx, but vice versa with Cr. The Courant 
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number plays a secondary role in counteracting numerical dispersion because of its 

coupling with kx resulting in a combined fourth order term as shown in the lead-order 

approximation. Oblique wave propagation also reduces numerical dispersion. Figure 3.1b 

demonstrates the increased celerity with an oblique wave direction of 45 from the x axis. 

The lead-order dispersion relation (43) can provide some insights into the mechanism. 

The parameter  can be absorbed into the discretization parameter as k( Δx) to denote 𝛽

an effective grid spacing in terms of the wave direction relative to the x axis. Since   1, 

the effective decrease in grid size reduces numerical dispersion for oblique wave 

propagation. Turning the waves to 45 with  = 1/2 has the same effects on the celerity as 

a reduction of the grid size by a factor of  as illustrated geometrically in Figure 2.1. 1 2

The results also show increased influence of Cr at the smaller value of  = 1/2 as 

indicated in the lead-order dispersion relation (43). 
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Figure 3.1  Celerity normalized by shallow-water theory as a function of kx and Cr. (a) Wave 
propagation along the x axis. (b) Propagation at 45 from the x axis. 

The dispersion relation (37) also provides a tool to elucidate the interplay between 

numerical and intrinsic dispersion in matching Airy wave theory. We consider waves 

propagating along the x axis to illustrate tuning of the dispersion relation for specific 

applications. The concept of effective grid size can be applied to infer the dispersion 

property for oblique wave directions. Figure 3.2 plots the computed celerity normalized 

by the exact solution from Airy wave theory over kx and Cr. The intrinsic dispersion 

relation, which emerges at kx = 0, overestimates the celerity in both the hydrostatic and 

non-hydrostatic solution when kh > 0. Numerical dispersion can make up for the 

deficiency in matching the exact solution through a combination of spatial and temporal 

discretization errors. The hydrostatic model, however, requires a grid size of kx > 0.6 to 
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achieve the correct dispersion property outside the shallow-water range. A slightly larger 

grid size is needed to counter the effects of temporal discretization. Inclusion of the non-

hydrostatic terms in the governing equations alleviates this requirement and enables 

achievement of proper dispersion within the range of kx suitable for tsunami modeling. 

 
Figure 3.2  Celerity normalized by Airy wave theory as a function of kx and Cr.  (a) Hydrostatic 
model. (b) Non-hydrostatic model. 

 A tsunami consists of a wide range of harmonics associated with the complexity of 

the seafloor deformation from earthquake rupture. Since the harmonic components are 

defined in terms of the wavelength at the source, dispersion is key to reproduction of the 

wave period distribution. It is therefore important to match the dispersion relation from 

Airy wave theory over a wide range of water depth parameters. Figure 3.3a plots the 
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normalized celerity from the hydrostatic dispersion relation (38) as a function of kh 

introduced by substitution of . Since the time step size plays a 2 2 2x h gh t   

secondary role in numerical dispersion, we assign Cr = 0.01 to focus on the effects of 

spatial discretization. With t  0, the combined grid size and depth parameter  = 

(x/h)2 effectively relates the numerical component of the model celerity versus the 

intrinsic component from the governing equations. The results illustrate strong 

dependence of numerical dispersion on the water depth parameter. A value of  = 4, 

which reproduces the lead-order term of the dispersion relation from the Boussinesq-type 

equations of Peregrine (1967), provides a very good approximation of the celerity from 

Airy wave theory around shallow water. The resulting dispersion relation has a 0.53% 

error at kh = 0.6 for reference. However, the large grid size at two times the water depth 

leads to excessive numerical dispersion at large values of kh. Decreasing the value of  

leads to lower numerical dispersion and larger celerity approaching the shallow-water 

solution indicated as  = 0. The lack of dispersion results in substantial overestimation of 

the celerity with increasing kh. 

The discretization errors can similarly be tuned to augment the non-hydrostatic 

dispersion relation (37) for improved wave propagation characteristics as shown in 

Figure 3.3b. A large value of  = 4 results in excessive numerical dispersion leading to 

underestimation of the celerity even within the shallow-water range. Reducing  leads to 

increase of the celerity, but at a lower rate over a smaller range comparing to the 

hydrostatic model results in Figure 3.3a. The non-hydrostatic terms in the governing 

equations reduce the effects of spatial discretization, as already indicated in the lead-

order dispersion relation (43), thereby improving numerical modeling of wave 

propagation over varying depth or across nested computational grids. In comparison to 

Airy wave theory, the intrinsic dispersion relation (45) denoted by  = 0 slightly 
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underestimates dispersion for kh < 2.4. A value of  = 0.8 introduces the right amount of 

numerical dispersion to offset the underestimation in reproducing the celerity up to kh = 

0.6 and 1 with less than 0.13% and 0.24% error comparing to Airy wave theory. The 

resulting dispersion relation follows closely the Boussineq-type equations of Peregrine 

(1967) for tsunami modeling and has slightly better performance over most of the 

intermediate depth range. The non-hydrostatic model can similarly be tuned to a wider 

range of kh for computation of surf-zone processes involving wind-generated waves. The 

use of the Boussinesq-type equations, which can provide accurate description of 

dispersion in theory, inevitably results in unwarranted dispersion in the numerical 

solution. 
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Figure 3.3  Celerity normalized by Airy wave theory as a function of kh. (a) Hydrostatic model. (b) 
Non-hydrostatic model. Solid and dash lines indicate celerity from the dispersion relation (37) and 
the Boussinesq-type equations of Peregrine (1967). 
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3.2  Numerical Examples 

The non-hydrostatic dispersion relation (37) is independent of the semi-implicit 

solution involving the pressure Poisson equation (20). The effects of the solution scheme 

and its computational errors on dispersion are first examined through a one-dimensional 

numerical experiment using the non-hydrostatic NEOWAVE model, which is based on 

the staggered finite-difference and Keller-box schemes described in Chapter 2. 

Dispersion in a numerical model can be evaluated from standing waves of a given 

wavelength (Bai and Cheung, 2016). Figure 3.4 shows a schematic to illustrate the 

standing wave experiment. The initial static condition corresponds to a sinusoidal wave 

profile with a very small amplitude compared to the wavelength and water depth to 

minimize nonlinear effects. Zero elevation is imposed at the open boundaries to restrain 

the node locations and subsequently the length of the standing waves. A numerical gauge 

at the center of the flume records the surface elevation time series, which allows 

estimation of the period for computation of the celerity for the given wavelength.  

 
Figure 3.4  Schematic of numerical experiments for standing waves. 

Adjustment of the water depth, time step, and grid size allows comparison of the 

numerical model results with the non-hydrostatic dispersion relation (37) in terms of the 
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non-dimensional parameters kh, kx, and Cr. Figure 3.5a shows the celerity as a function 

of kx for kh up to 0.6 and a small Cr = 0.1. The numerical model and the dispersion 

relation (37) give almost identical results at kh = 0, which correspond to the hydrostatic 

conditions and provide a baseline for comparison. The discrepancies increase slightly 

with kx for kh > 0, when the semi-implicit scheme is involved in the numerical solution. 

The computational errors, however, are very small comparing to the discretization errors 

in governing dispersion properties in the numerical model. Also included in the 

comparison is the lead-order approximation (43), which is almost identical to the 

dispersion relation (37) for kx < 0.6 independent of kh, which is not used in the Taylor 

series expansion. As the accuracy is to second order, minor discrepancies develop at large 

values of kx that are outside the range for numerical modeling. Figure 3.5b shows the 

celerity as a function of Cr while minimizing the spatial discretization errors by setting 

kx = 0.1. Because of the small values of kx, the celerity is not very sensitive to Cr (See 

Figure 3.1a). The good agreement between the model and analytical results over the full 

range of Cr reconfirms that the time step plays a secondary role in numerical dispersion.  
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Figure 3.5  Celerity normalized by shallow-water theory as a function of discretization parameters. 
(a) Grid size parameter kx. (b) Courant number Cr. Solid lines, dash lines, and dots denote 
celerity from the dispersion relation (37), the lead-order approximation (43), and numerical 
experiments. 
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We utilize a second set of numerical experiments to illustrate manifestation of spatial 

discretization errors in wave propagation and anisotropy of wave dispersion over a two-

dimensional computational grid. The numerical experiments involve a square domain 

with initial conditions defined by a Gaussian hump at the center 

   (47) 
2 2/( /4)ζ( ) r br e

where r is radial distance and b is effectively the diameter at the still-water level. The 

hump, which contains a range of spatial harmonics, is analogous to the initial conditions 

commonly used for tsunami modeling. The waves propagate radially from the center with 

celerity and period determined from the dispersion relation. Although the physical 

problem is axisymmetric, the numerical solution depends on the wave direction relative 

to the principal axis of the computational grid. The effects of the Courant number is 

independent of the wave direction. We utilize a small Cr = 0.01 to focus on the spatial 

discretization, which dominates numerical dispersion. The domain has a uniform water 

depth of 4 km representing the average of the Pacific Ocean. The selected grid sizes of 

3.6, 5.7, and 8 km correspond to  = 0.8, 2, and 4 for small Courant numbers. The 3.6-km 

grid is close to 2 arcmin near the equator and is commonly used to model trans-Pacific 

tsunami propagation. The corresponding value of  = 0.8 also gives the best dispersion 

properties in the non-hydrostatic model comparing to Airy wave theory as shown in 

Figure 3.3b. The grid size of 5.7 km is approximately 3 arcmin, representing an 

intermediate value that has been used in tsunami modeling. The grid size of 8 km or 4.5 

arcmin, which might not fully resolve the seamounts and atolls in the Pacific, is included 

here to demonstrate the convergence of the hydrostatic dispersion relation at  = 4 to Airy 

wave theory in shallow water.  

The first series of tests utilize an effective diameter of b = 120 km for the Gaussian 

hump that the dominant harmonic is well within the shallow water range. Figure 3.6a 
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plots the time series and spectra at 1500 km from the center along the x axis. The non-

hydrostatic solution with  = 0.8, which closely follows the dispersion relation from Airy 

wave theory up to kh = 1, provides a baseline for comparison. The waveform shows a 

distinct crest and trough profile in the form of an N-wave followed by dispersive waves 

with decreasing amplitude and period associated with the higher harmonics in the initial 

conditions. The spectrum has a peak period of 12.2 min or kh = 0.17 and a shortest period 

of 3 min or kh = 0.77. The hydrostatic solution shows a typical crest and trough profile 

with a larger amplitude and peak period due to low numerical dispersion in the shallow-

water range. Since the numerical scheme is not dissipative, the energy should be 

conserved in the system. The energy of the surface signals is less probably due to the 

higher velocity and celerity in the less dispersive flow. The non-hydrostatic solution still 

provides a reasonable description for the main wave component at  = 2 albeit with a 

slight increase in the amplitude and period of the dispersive waves. The hydrostatic 

solution shows development of trailing waves with increased numerical dispersion. At  = 

4, the non-hydrostatic solution overestimates dispersion with notable transfer of energy 

from the leading to the trailing waves. The hydrostatic solution closely matches the 

dispersion relation of Airy wave theory up to kh = 0.6 and produces very similar results 

as the non-hydrostatic solution with  = 0.8 as shown in Figure 3.6b. The similar 

amplitude spectra and energy levels in the two cases, albeit with distinct grid resolutions, 

is due entirely to the close approximation of the celerity.  
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Figure 3.6  Time series and spectra at 1500 km along the x axis resulting from a Gaussian hump 
with an effective diameter of 120 km at the center. (a) Effects of the combined grid size and depth 
parameter . (b) Comparison of the hydrostatic and non-hydrostatic solutions with  = 4 and 0.8 
respectively. Black and red lines denote hydrostatic and non-hydrostatic solutions. 
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The second series of tests utilize an effective diameter of b = 60 km for the Gaussian 

hump that is representative of the detailed seafloor rupture in the 2011 Tohoku 

earthquake (Yamazaki et al., 2018). Figure 3.7a plots the time series and spectra at 1500 

km from the center along the x axis. For the non-hydrostatic solution with  = 0.8, the 

time series shows a wave train with decreasing amplitude and period typical of a 

dispersive system. The spectrum has a peak period of 5 min or kh = 0.44 and the shortest 

period of 2.5 min or kh = 0.96 within the accurate range of dispersion to set a baseline. 

The corresponding hydrostatic solution produces a distinct initial peak and trough profile 

followed by short-period waves down to 1.5 min. Since the initial conditions defines the 

spectral components in terms of the wavelength, the overestimated celerity, as shown in 

Figure 3.3a, leads to underestimation of the wave periods. Dispersion is instrumental in 

eliminating these non-physical short-period trailing waves commonly seen in hydrostatic 

model results. The non-hydrostatic solution still provides reasonable results for the main 

wave component at  = 2, but the slightly underestimated celerity results in 

overestimation of the period and amplitude for the shorter waves. With increased 

numerical dispersion, the hydrostatic solution shows longer trailing waves and improved 

description of wave attenuation. At  = 4, the non-hydrostatic solution overestimates the 

amplitude and period of the trailing waves due to the large grid size. The hydrostatic 

solution reproduces the dispersion in the shallow-water range and the longer-period 

initial waves from the non-hydrostatic solution with   = 0.8 as shown in Figure 3.7b. The 

excessive numerical dispersion in intermediate depth results in persistent, short-period 

trailing waves and overestimation of the spectral energy of the surface signals.  
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Figure 3.7  Time series and spectra at 1500 km along the x axis resulting from a Gaussian hump 
with an effective diameter of 60 km at the center. (a) Effects of the combined grid size and depth 
parameter . (b) Comparison of the hydrostatic and non-hydrostatic solutions with  = 4 and 0.8 
respectively. Black and red lines denote hydrostatic and non-hydrostatic solutions. 
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The results in Figures 3.6 and 3.7 also demonstrate the reduced influence of 

discretization when intrinsic dispersion is included in the model. This is evident in the 

subtle variation of the non-hydrostatic solution versus the transformation of the 

hydrostatic solution from non-dispersive to dispersive over the range of   up to 4. The 

test with the hump diameter b = 60 km and grid size x = 5.7 km ( = 2), which involves 

numerical dispersion in both the hydrostatic and non-hydrostatic models, is used to 

examine manifestation of discretization errors in oblique propagation directions and the 

concept of effective grid size. Figure 3.8 plots the time series and spectra at 1500 km 

from the center of the computational grid at 0, 22.5, and 45 relative to the x axis. 

Numerical dispersion attenuates with wave obliquity in both the hydrostatic and non-

hydrostatic solutions resulting in increased attenuation of the trailing waves. The 

parameter  decreases from 1 to 3/4 as the wave direction turns from the x axis to 22.5 

and reaches the minimum at 1/2 for propagation along the grid diagonal. The lead-order 

dispersion relation (43) can be rewritten with the discretization parameter  to 𝑘( 𝛽𝑥 )

denote the effective grid spacing. This is supported by the results along the x axis from 

another set of tests with x = 4.94 and 4.03 km, which correspond to the original grid 

size of 5.7 km multiplied by  = /2 and 1/  for waves propagating at 22.5 and 45. 𝛽 3 2

The minor discrepancies are due to interpolation of the surface elevation from adjacent 

grid points. The use of this effective grid size, which appears to be valid beyond the lead-

order approximation, provides an intuitive assessment of numerical dispersion in 

practical application. 
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Figure 3.8  Time series and spectra at 1500 km from a Gaussian hump with an effective diameter 
of 60 km at the center. Black and red lines indicate hydrostatic and non-hydrostatic solutions at 0, 
22.5, and 45 oblique angles for  = 2 (x = 5.7 km). Black and red dots denote hydrostatic and 
non-hydrostatic solutions obtained at the x axis using the effective grid spacing x. 𝛽
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Chapter 4 
Case Studies 

 This chapter is comprised of the materials from the paper "Validation of 

linearity assumptions for using tsunami waveforms in joint inversion of 

kinematic rupture models: Application to the 2010 Mentawai Mw 7.8 tsunami 

earthquake" by Han Yue, Thorne Lay, Linyan Li, Yoshiki Yamazaki, Kwok 

Fai Cheung, Luis Rivera, Emma M. Hill, Kerry Sieh, Widjo Kongko, and 

Abdul Muhari that was published in Journal of Geophysical Research: Solid 

earth in Volume 120, Issue 3, 2015, and the paper "Effects of dispersion in 

tsunami Green's functions and implications for joint inversion with seismic 

and geodetic data: a case study of the 2010 Mentawai Mw 7.8 earthquake" 

by Linyan Li, Kwok Fai Cheung, Han Yue, Thorne Lay and Yefei Bai that was 

published in Geophysical Research Letters in Volume 43, Issue 21, 2016 .   

The intrinsic and numerical dispersion properties have essential influences on wave 

propagation in non-hydrostatic models and produce waveforms distinct from the 

hydrostatic results as already demonstrated in the numerical examples in Chapter 3. In 

this Chapter, effects of dispersion is investigated through finite-fault inversion of the 

2010 Mentawai earthquake that involves seismic, geodetic and tsunami data. There are 

three general approaches to compute tsunami Green's functions for the inversion analysis: 

hydrostatic and non-hydrostatic modeling with a static initial sea surface pulse derived 

from seafloor deformation as well as the more accurate non-hydrostatic modeling with 

kinematic seafloor excitation from the earthquake rupture. The dispersion relation (37) 

provides insights into the computation and allows quantification of numerical artifacts in  

the design of the computational grids. NEOWAVE can perform hydrostatic and non-
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hydrostatic computations with static or kinematic descriptions of the tsunami source. The 

use of the same code and nested grid system allows systematic examination of the three 

types of Green's functions and their influences on the inversion results. 

4.1  The 2010 Mentawai Earthquake 

The 25 October 2010 Mw 7.8 thrust earthquake with epicenter at 3.49°S, 100.14°E 

ruptured the shallow portion of the Sunda megathrust seaward of the Pagai Islands (see 

Figure 4.1a for location maps), generating a destructive tsunami that caused more than 

500 casualties (Badan Meteorologi, Klimatologi dan Geofisika). Field surveys showed 

the measured runup is 3-9 m on Pagai and up to 16.9 m on the small island of Sibigau, 

and the inundation extended more than 300 m at three villages. There was little damage 

to buildings and infrastructures from the earthquake, because of the less intense ground 

shaking as indicated from the interviews of local residents (Hill et al., 2012; Satake et al., 

2013). The disproportionately large tsunami for the moderate moment magnitude 

indicates this earthquake was a tsunami earthquake (Kanamori, 1972).  

The coseismic rupture process of the 2010 Mentawai event has been investigated 

using various combinations of seismic, geodetic, and tsunami observations (Bilek et al., 

2011; Lay et al., 2011; Newman et al., 2011; Hill et al., 2012; Satake et al., 2013; Yue et 

al., 2014). Seismic wave investigations resolved an overall northwestward rupture 

propagation with a low rupture velocity of ~1.5 km/s and a long source duration 

exceeding 110 seconds (Bilek et al., 2011; Lay et al., 2011; Newman et al., 2011). 

Localized maximum slip exceeding 4 m near the trench was found by Lay et al. (2011), 

and this was shown to be consistent with deep-water tsunami observations at a distant 

DART station, but the spatial resolution was limited. Hill et al. (2012) analyzed regional 

GPS observations from the Sumatra GPS Array (SuGAr) network and, in reconciling 
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GPS with tsunami field observations, favored a narrow patch with ~12 m of slip 

extending 120 km along the shallow fault zone. Satake et al. (2013) inverted tsunami 

waves observed at 11 sites and performed forward modeling to compare with inundation 

surveys, finding two localized slip patches with 4-6 m of peak slip near the trench.  

The investigations of the rupture process of the 2010 Mentawai earthquake in above 

studies have established that it was a tsunami earthquake, with large slip on the shallow 

megathrust. However, there are large differences in inferred slip distributions. Yue et al. 

(2014) combined SuGAr hr-GPS and teleseismic observations in joint kinematic 

inversions and iteratively performed forward modeling to fit several tsunami observations, 

adjusting fault dimensions, rupture velocity, and subfault source time functions to 

achieve satisfactory fits to all the data. A rupture model with two significant rupture 

concentrations near the trench was found, with maximum slip much higher (> 20 m) than 

in other studies. Yue et al. (2015) directly included the tsunami observations in joint 

inversions to objectively utilize the full information in the tsunami waves. The preferred 

model indicates a shallow concentration of large slip near the trench with peak slip of 

~15 m. The validity of the model is confirmed through fully nonlinear forward modeling 

of tsunami waveforms for matching the tsunami recordings along with the other data.  

The concentrated slip along the trench from the 2010 Mentawai earthquake produced 

short-period dispersive waves that need to be resolved by tsunami models. The issue 

becomes more stringent in the inversion analysis due to the need for a detailed finite-fault 

model. The resulting tsunami Green's functions have to resolve the dispersive waves with 

even shorter periods generated by the fine subfaults, providing a test case to highlight the 

interplay between intrinsic and numerical dispersion in practical application.  
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4.2  Methodology and Data  

The joint inversion of the seismic source involves global seismic wave, regional 

geodetic, and tsunami records. Yue et al. (2015) provided a detailed description of the 

finite-fault model, the parameterization for the joint inversion, and the recorded 

geophysical datasets, which include 53 P-wave and 24 SH-wave ground displacements 

from stations of the Federation of Digital Seismic Networks (FDSNs) and three-

component ground motions from 12 high-rate SuGAr GPS stations on the Mentawai 

Islands maintained by the Earth Observatory of Singapore, Nanyang Technical 

University. The finite fault model, as illustrated in Figure 4.1b, has 105 subfaults of 15 

km by 15 km each, which are arranged in 7 rows along dip and 15 columns along strike. 

The fine model grid is selected to resolve the concentrated near-trench slip of the tsunami 

earthquake. The fault has a uniform dip angle of 7.5º based on the shallow megathrust 

reflection profile of Singh et al. (2011). The source time function of each subfault is 

parameterized by five triangles with durations of 4 s shifted by 2 s sequentially for a total 

possible duration of 12 s. The teleseismic Green's functions are generated with a 

reflectivity method that accounts for interaction in 1-D layered structures on both the 

source and receiver sides (Kikuchi et al., 1993). A local 1-D layered model based on the 

reflection imaging is used for the source side and a typical continental model is used for 

the receiver side. The near-field time-varying ground displacement Green's functions are 

computed using a frequency-wave number integration method (Hermann, 2013). The 

same band-pass filter is used for the Green functions and records of each type.  

The hydrographic dataset includes tsunami waveforms at two deep-water stations 

(GITEWS GPS 03 and DART 56001) and two tide gauges at Cocos Island and Padang 

(see Figure 4.1 for location map). Figure 4.2 plots the recorded waveforms and amplitude 

spectra. The tsunami recorded at DART 56001, 1600 km from the epicenter, had 
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relatively simple propagation effects and was recorded in deep water, so the waves are 

dominated by long-wavelength pulses followed by dispersed and scattered coda. The 

main pulse provides integral constraints on the slip distribution, but not the spatial details 

of the slip, as found in earlier studies (Lay et al., 2011; Hill et al., 2012; Satake et al., 

2013; Yue et al., 2014). The GPS buoy observations are unusual in being very close to 

the rupture area (Figure 4.1b), and while they are also in deep water, the signals contain 

short-period near-field waves that are quite sensitive to the slip distribution and its timing. 

The tsunami recorded by the Padang tide gauge station traveled through the shallow 

passages between the Mentawai islands (Figure 4.1b), where the waves were refracted 

and diffracted. The coda waves in the Padang data include multiple short reflected waves 

behind headlands, which may be influenced by nonlinearity of the shallow water of less 

than 8m depth in the bay (Figure 4.1c). The Cocos Island tide gauge recorded even more 

complex waves in a lagoon of ~12 km diameter and 2 to 5m deep atop an atoll. The coda 

lasts 4 to 6 times longer than the initial peak due to “ringing” of waves trapped by the 

island and an adjacent atoll (Figures 4.1d). These four tsunami records sample different 

propagation characteristics and have varying sensitivity to the slip space-time history, 

which allows examination of various linearization and dispersion issues. 

The NEOWAVE code is used  to compute tsunami Green's functions at the four 

water-level stations for two orthogonal unit slip vectors with 45° and 135° rake to cover 

displacements in any specific direction determined through the inversion. The two-way 

nested computational grids allow simultaneous computation of tsunami propagation in 

the open ocean and transformation at the coast. Dispersion is important for tsunami 

propagation and is dependent on the intrinsic and numerical properties of the model. The 

region south of Sunda Strait has an average depth of 5300 m, which requires a grid size 

of 2.6 and 5.9 arc-m (~4.7 and 10.6 km) to achieve accurate dispersion with  = 0.8 and 4 
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for the non-hydrostatic and hydrostatic computations with a small Courant number. Such 

grid sizes cannot resolve the many small islands and seamounts in the region that can 

scatter the tsunami waves influencing the computed Green's functions at the water-level 

stations. A grid size of 1 arc-m (~1800 m) equivalent to  = 0.11 is deemed necessary for 

the level-1 computation across the Eastern Indian Ocean. While the corresponding non-

hydrostatic model overestimates the celerity by 0.3% and 1.1% at kh = 0.3 and 0.6, the 

errors go up to 1.4% and 5.5% for the hydrostatic model (Figure 4.3). The celerity error, 

which accumulates over time, is typically deemed acceptable with the hydrostatic 

approach for kh < 0.3. This correspond to an error of 1.5% in the absence of dispersion 

errors. The depth parameters of kh = 0.3 and 0.6 correspond to wave periods of 8.2 and 

4.3 min for the 5300 m water depth. The hydrostatic model, however, will not be able to 

adequately resolve wave components shorter than around 8 min. The non-hydrostatic 

model should be able to describe the harmonic components of the recorded signals shown 

in Figure 4.2 and the computed Green's function serves as a reference to assess the 

limitations in the hydrostatic model. 

The level-1 grid, which describes tsunami propagation across the open ocean, is 

locally refined to higher resolution for more detailed processes. A level-2 grid of 12 arc-s 

(~360 m) is needed to resolve the seafloor deformation generated by the subfaults in the 

source region around the Mentawai Islands. Telescopic nested grids to level 3 is needed 

to resolve Cocos Island at 1.5 arc-s (~45 m) and to level 4 for Padang Harbor at 0.3 arc-s 

(~9 m). The digital elevation model comprises the 30 arc-s (~900m) General Bathymetric 

Chart of the Oceans from the British Oceanographic Center, the 2 arc-s (~60 m) Digital 

Bathymetric Model of Badan Nasional Penanggulangan Bencana, Indonesia, 1 arc-s (~30 

m) Shuttle Radar Topography Mission from German Aerospace Center, 0.15 arc-s (~5m) 

lidar data at Padang from Badan Informasi Geospasial, and a 9 arc-s (~270 m) gridded 
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data set in the Cocos Island region from Geoscience Australia. In addition, the coastal 

boundaries and nearshore bathymetry at Padang Harbor and Cocos Island are carefully 

redigitized based on orthoimages and nautical charts. Fixed-wall boundary conditions are 

imposed on the coastlines and local inundation effects are not modeled in the tsunami 

Green’s functions used in the inversions. The waves reaching Padang pass through the 

deep channels and should have little effect from overland flow at Pagai shores. In 

addition, inundation distances on Pagai are short relative to the wavelengths of the 

tsunami, so effects on the signals at the tide gauge will also be small. 

The half-space model of Okada (1992) provides the seafloor deformation for 1-m slip 

of each subfault and the method of Tanioka and Satake (1996) augments the vertical 

seafloor motion to account for horizontal displacement on bathymetric slopes. The total 

vertical displacement defines the static initial sea-surface elevation for computation of the 

first two sets of Green's functions using the hydrostatic and non-hydrostatic 

implementations of NEOWAVE. For the third set, the time history of the kinematic 

seafloor vertical displacement is approximated by a linear function over a 4-s duration to 

provide a boundary condition for non-hydrostatic modeling of tsunami generation and 

propagation. Although the hydrodynamic code and tsunami generation mechanism are 

nonlinear, the seafloor displacement is negligible compared to the water depth and the 

resulting tsunami amplitude is small even at the Cocos Island lagoon. The computed 

Green’s functions possess the overall linearity required by the inversion routine, but we 

explore the details for each observing site. 
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Figure 4.1  Location maps and computational grids. (a) Level-1 grid with outlines of level-2 grids 
around the rupture area and Cocos Island. Red star and white circles indicate the epicenter and 
water-level stations. (b) Level-2 grid with outlines of level-3 grid at Padang and the source model. 
(c) Level-3 grid with outline of level-4 grid at Padang Harbor. (d) Level-2 grid with outline of level-
3 grid around Cocos Island. 
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Figure 4.2  Recorded time series of tsunami wave and spectra at the four water-level stations. 
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Figure 4.3  Celerity normalized by Airy wave theory as a function of kh for hydrostatic and non-
hydrostatic models. Solid and dash lines indicate the celerity from the dispersion relation (37) and 
the intrinsic dispersion relations. 

4.3  Dispersion in Tsunami Green's Functions 

The 105 subfaults, two slip vectors, four stations, and the three modeling approaches 

result in 2520 tsunami Green's functions. NEOWAVE generates the Green’s functions 

from kinematic seafloor deformation in contrast to the common approach that utilizes the 

coseismic seafloor displacement as the initial conditions at the sea surface. The excitation 

from the seafloor attenuates over the water column and the sea surface has a smaller 

vertical displacement (Kaijura, 1963; Lay et al., 2013a, 2013b; Li et al., 2015; Bai et al., 

2017). Figure 4.4 compares the Green’s functions generated by kinematic seafloor 

deformation and static initial conditions with non-hydrostatic modeling for 1m slip and 
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45° rake at subfaults 8, 11, 13, and 15 along the first row of the model grid (Figure 4.1b). 

The rise time of 4 s associated with the seafloor deformation has negligible effects on the 

long-period tsunami waves to enable direct comparison of the two data sets. In Figure 

4.4a, the Green’s functions at the GPS buoy illustrate their evolution with travel distance. 

The GPS buoy is located at subfault 15. The smaller initial surface pulse from seafloor 

excitation is due entirely to the effect during the generation process. In contrast, the large 

short-period initial pulse from the static initial condition is more dispersive during 

propagation. By the time when the initial pulse from subfault 8 reaches the GPS buoy, it 

has the same amplitude as the one generated by seafloor excitation. The larger initial 

trough and coda are due to more energetic oscillations at the source resulting from free 

fall of the larger, initial sea surface wave. These source effects are evident at far-field 

locations such as Padang and Cocos Island as shown in Figures 4.4b and 4.4c. The 

Green’s functions generated by the two approaches are gradually converging and become 

very similar at the DART buoy 1600 km from the source (Figure 4.4d).  

Since effects of the seafloor excitation become more significant as the ratio of the 

water depth to fault dimension increases (Kaijura, 1963), we utilize the subfaults at 

different depth to examine its impact on the resulting Green’s functions. By including 

hydrostatic modeling, it provides comparisons among three sets of results to explore the 

dispersion effects during wave propagation as well. Figure 4.5 plots the maximum 

surface elevations for unit slip of subfaults 15, 45, and 90 with 45° rake, where their 

locations extend across the continental slope (Figure 4.1b). The small subfault size 

presents a challenge to both hydrostatic and non-hydrostatic modeling. The contrast 

between the three approaches is most pronounced for subfault 15 beneath the trench. The 

deep water of 5000 m and shallow fault depth of 2.2 km into the rock result in a large 

ratio of water depth to wavelength, the latter of which is associated with the dimensions 
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of the seafloor deformation. The absence of direct seafloor excitation and wave 

dispersion in the hydrostatic approach (H-S) leads to higher estimation of the surface 

elevation from the source to the far field. The non-hydrostatic approach with the static 

initial pulse (Nh-S) has the same surface elevation at the source, but produces more rapid 

amplitude decrease to the far field due to dispersion. Inclusion of kinematic seafloor 

deformation (Nh-K) accounts for depth-dependent excitation across the water column, 

resulting in smaller wave amplitude at both the source and in the far field. The tsunami 

excitation and dispersive wave processes play a lesser role for the deeper subfault 45, 

which has more spread-out seafloor deformation in shallower water. The three 

approaches produce very similar results for subfault 90 further down dip, where the water 

depth is only 500 m and the fault depth is 12.7 km. The small water-depth to wavelength 

ratio provides an explanation for the minor effects of dispersion in the resulting surface 

elevation. 
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Figure 4.4  Comparison of Green’s functions generated by kinematic seafloor deformation with a 
4 s rise time (black lines) and static sea surface as initial conditions (red lines). (a) GITEWS GPS. 
(b) Padang tide gauge. (c) Cocos Island tide gauge. (d) DART 56001. The subfault number refers 
to the grid in Figure 4.1b, and the Green’s functions correspond to 1m slip with 45° rake. The final 
kinematic seafloor deformation and the static sea surface deformation are identical.  
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Figure 4.5  Maximum sea-surface elevations generated by the H-S (hydrostatic with static initial 
sea-surface pulse), Nh-S (non-hydrostatic with static initial sea-surface pulse), and Nh-K (non-
hydrostatic with kinematic seafloor excitation) approaches for unit slip of subfaults across the 
continental slop.  
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Dispersion influences the waveforms in addition to the amplitude. Figure 4.6 

compares the three sets of Green's functions from subfaults 10, 13, 15, 45 and 90 at the 

four water-level stations. In Figure 4.6a, the Green's functions at the GPS buoy illustrate 

effects of dispersion in the near field. The buoy is located directly above subfault 15 at 

the trench, where the seafloor excitation produces a much smaller peak than the initial 

surface pulse determined from seafloor deformation. Both non-hydrostatic approaches 

produce oscillations at the source albeit with different phases. The shorter and steeper 

pulse from the static initial condition is more dispersive. Free fall of the larger, initial sea-

surface wave produces more energetic oscillations, but the amplitude attenuates more 

rapidly in time and space. The phase of the radiated waves approaches that generated by 

seafloor excitation away from the source as can be inferred from the Green's functions of 

subfaults 13 and 10 along the trench. The short-period trailing oscillations in the range of 

dispersive waves are caused by the pointed seafloor uplift from the half-space solution 

for the shallow subfaults. The Green's functions for subfaults 45 and 90, which are 

located landward beneath the continental slope, show decreasing dispersion effects due to 

the shallower water and longer pulse associated with the increasing fault depth. In 

comparison, the hydrostatic solution shows negligible surface oscillations after the initial 

upswing even for subfaults 10, 13, and 15 located along the trench.  

The Green's functions in the far field reflect mostly the propagation processes. 

Numerical dispersion is small in both the hydrostatic and non-hydrostatic solutions for 

the wave period range and grid resolution. At the Padang tide gauge located landward of 

the source as shown in Figure 4.6b, the two non-hydrostatic approaches produce the same 

phase from all five subfaults albeit with slightly smaller amplitude obtained with the 

kinematic seafloor excitation. The hydrostatic approach produces a similar Green's 

function for subfault 90, but shows increasing discrepancies relative to the non-
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hydrostatic predictions for subfaults further up-dip due to the lack of dispersion. The two 

sets of non-hydrostatic Green's functions show improved agreement of the amplitude 

away from the source as indicated in the comparisons at Cocos Island and DART 56001 

in Figures 4.6c and 4.6d. The waves reaching these two stations have gone through long-

distance propagation across the deep ocean. With the exception of subfault 90, the 

hydrostatic Green's functions show prominent short-period oscillations of 3 min or less 

due to overestimation of the celerity as observed in the numerical experiments with the 

Gaussian hump (Figures 3.7). These type of short-period oscillations is commonly seen in 

tsunami Green's functions computed from small subfaults using hydrostatic models and is 

routinely removed by filtering. 

The non-hydrostatic Green's function based on static initial conditions can serve as a 

reference to examine the properties and mechanisms of the short-period oscillations from 

the hydrostatic model. Figure 4.7 compares the hydrostatic and non-hydrostatic Green's 

functions at the DART buoy generated by unit slip of subfault 10 over a range of grid 

size from 30 arc-s to 2 arc-m ( = 0.03 to 0.46). The shallower fault depth and deeper 

water down the continental slope together with the fine rupture model result in short-

period tsunami signals not adequately resolved by the hydrostatic model. While the non-

hydrostatic Green's functions are very similar, the short-period signals in the hydrostatic 

Green's function are sensitive to the computational grid resolution, as illustrated in Figure 

3.3. Filtering removes the numerical oscillations below 3 min period to isolate the 

tsunami signals observed in the non-hydrostatic solutions as shown in Figure 4.8. The 

resulting time series indicates simultaneous arrival of long and short-period waves, while 

the non-hydrostatic solution show lagging of the short-period waves due to lower 

propagation speeds associated with dispersion.  
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The short-period signals in the hydrostatic Green's functions are part of the solution 

from the governing equations in response to overestimation of the celerity. This is 

normally not an issue for shallow-water waves with kh < 0.3. However, the Green's 

functions correspond to a much larger value of kh because of the small wavelength 

associated with the subfault. When the Green's functions from all the subfaults are 

combined, the tsunami signal increases in both amplitude and period with diminishing 

dispersion effects and short-period oscillations for the larger rupture area  as shown in 

Figure 4.9. 
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Figure 4.6  Green's functions at (a) GITEWS GPS, (b) Padang, (c) Cocos Island, and (d) DART 
56001 generated by the H-S (black), Nh-S (red), and Nh-K (blue) approaches. Kinematic seafloor 
excitation reduces the initial amplitude at the GITEWS GPS buoy in the near field, but has minor 
influences in the far-field. Due to limitations of a hydrostatic model in resolving short-period waves, 
high-frequency numerical oscillations accumulate during propagation. The H-S results at the far-
field Cocos Island and DART stations are filtered to remove signals with periods less than 3 min 
(with the original data shown in grey). 
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Figure 4.7  Convergence of Green's functions from subfault 10 at DART 56001. (a) Comparison 
between the H-S (black) and Nh-S (red) approaches. (b) Comparison between grid sizes of 0.5 
(black), 1 (red), and 2 (blue) arc-min. The non-hydrostatic Green's functions converge rapidly with 
the computational grid size. The hydrostatic Green's functions contain the tsunami signals along 
with short-period oscillations sensitive to the grid size.. 
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Figure 4.8  Convergence of Green's functions from subfault 10 at DART 56001 with filtering of the 
hydrostatic results to remove signals below 3 min period. (a) Comparison between the H-S (black) 
and Nh-S (red) approaches. (b) Comparison between grid sizes of 0.5 (black), 1 (red), and 2 
(blue) arc-min. The hydrostatic Green's functions show tsunami signals over a wide period range 
arriving simultaneously at the station due to the lack of dispersion. 
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Figure 4.9  Comparison between linearly combined Green's functions (red lines) from all 105 
subfaults and NEOWAVE output (black lines) at the four water-level stations (a) through (d) from 
the H-S, Nh-S, and Nh-K approaches. The minor discrepancy between the superposed Green's 
functions and the NEOWAVE output at Cocos Island is related to nonlinearity over the shallow 
lagoon. The numerical oscillations in the hydrostatic results are reduced through the 
superposition due to longer period waves from a larger rupture area.   

4.4  Superposition of Tsunami Green's Functions 

The principle of inversion analysis is based on superposition of precomputed Green's 

functions to reconstruct observed signals. Linearity is implicit in kinematic rupture 

process inversions. The present application involves staggering of the Green's functions 

in time to mimic the rupture propagation, the use of the two orthogonal components to 

resolve the local rake angle, and scaling of dispersion properties through superposition of  

slips on different subfaults. A series of tests involving the non-hydrostatic Green's 
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functions based on kinematic seafloor deformation provide assessment of these 

superposition processes.  

Figure 4.10a compares the linearly scaled Green’s function and the full NEOWAVE 

computation for 10  m slip at subfault 37 with 4 s rise time and 45° rake. Subfault 37 is in 

the middle of the rupture area representative of the overall characteristics. Both sets of 

results are nearly identical at the GPS and DART buoys due to linearity of tsunami waves 

in the deep ocean. The discrepancy in the short-period codas at the Padang and Cocos 

Island tide gauges likely arises from nonlinear effects in shallow water. Figure 4.10b 

shows results using the same slip and rake at subfault 37, but with a 40 s rise time. The 

Green’s function, which corresponds to 1m slip and 4 s rise time, is shifted and summed 

at 4 s intervals to mimic the 10 m slip over 40 s. The results are almost identical to those 

linearly scaled from the Green’s function as shown in Figure 4.10a. The comparison of 

the nonlinear results between the two cases confirms that the waveforms are relatively 

independent of the rise time up to 40 s. The minor phase shift introduced by the 40 s rise 

time has negligible effects on the computed tsunami with periods of over 10 min.  

The finite-faulting inversion routine resolves variable rake at each subfault by using a 

pair of Green’s functions computed for unit slip with distinct rakes; for the tests here we 

use 45° and 135°. Figure 4.10c shows that the linearly combined Green’s functions from 

the two orthogonal components at subfault 37 are nearly identical to the NEOWAVE 

results computed for 90° rake with the same resultant slip and rise time. The agreement at 

the Padang and Cocos Island tide gauges are much improved compared to the earlier tests 

because of negligible nonlinear effects associated with the much smaller wave amplitude. 

The final test involves uniform 1 m slip of the entire rupture grid for 45° rake and 4 s rise 

time. The results from the linear superposition and the full NEOWAVE computation in 

Figure 4.10d show very good agreement. The large fault dimensions compared to the 
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water depth result in minimal oscillations at the source after the initial pulse in 

accordance to long-wave theory. The linearly combined Green’s functions are able to 

reproduce the increased wave periods due to the large fault area and subsequent arrival or 

development of shorter-period waves at the far-field water level stations. Linearity holds 

up well for the two deep ocean tsunami records (GPS buoy and DART 56001) and the 

results are consistent with expectations for deep ocean records. For the Padang and Cocos 

tide gauge records, the nonlinear effect is apparent for the coda waves, consistent with 

their generation by reflection near the coasts, where nonlinear effects are expected to be 

significant. For the initial peaks of the records, which are used in the finite-fault inversion, 

linearity is valid.  
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Figure 4.10  Comparison of linearly combined Green’s functions for 1 m slip (red dashed lines) 
with full-scale NEOWAVE output (black lines) for (a) 10m slip at subfault 37 with 4 s rise time and 
45° rake, (b) 10 m slip at subfault 37 with 40 s rise time and 45° rake, (c) 1 m slip at subfault 37 
with 4 s rise time and 90° rake, and (d) 1 m slip at all subfaults with 4 s rise time and 45° rake. 
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4.5  Results and Discussion 

This study use the same datasets of the 2010 Mentawai MW 7.8 earthquake from Yue 

et al. (2015) to examine the sensitivity of finite fault inversion to the three types of 

tsunami Green's functions with varying degree of dispersion effects. The P and SH waves 

are sampled at 0.5 s intervals over a 120-s window starting 10 s prior to arrivals. Each 

trace of the Hr-GPS records has a 200-s window sampled at 1-s intervals starting at the 

origin time of the hypocenter. The recorded tsunami arrivals at the Padang and Cocos 

Island tide gauges are 2 and 4 min ahead of the model results and are shifted accordingly 

to offset the timing discrepancy, which we attribute to bathymetric inaccuracies. The 

recorded waveforms, which have varying amplitudes among the four stations, are 

adjusted by scaling parameters to achieve consistent weights in the inversion. When the 

filtered hydrostatic Green's functions at Cocos Island and DART 56001 are used in the 

inversion, the corresponding records are filtered in the same way to avoid projection of 

any artifacts into the solution. A rupture velocity of 2.0 km/s expanding from the 

hypocenter defines the rupture initial time at each subfault. The finite-fault inversion 

involves solving for space-time varying weights of the Green's functions to match the 

recorded datasets through a non-negative linear least squares approach.  

Figure 4.11 compares the observed and predicted waveforms at the four water-level 

stations from the tsunami-only and joint inversions using the non-hydrostatic Green's 

functions with static and kinematic seafloor deformation as well as the hydrostatic 

Green's functions with and without filtering. The inversion time windows include the 

initial double peaks at the GPS buoy, the first two waves at Padang and Cocos Island, and 

the dominant long-period pulse at the DART buoy. The waveforms in these time intervals 

provide information most relevant to the source. The overall fits within the time windows 

are quite good. The various types of Green's function produce similar results despite their 
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varying waveforms at the stations. As long as the model representation has sufficient 

degrees of freedom, the least squares approach can produce a good fit to the observations 

with the variations among the Green's functions compensated by the source model. The 

short-period oscillations in the hydrostatic Green's functions do not appear to interfere 

with the fitting of the tsunami signals, but do show up subsequently in the predicted 

waveforms. The discrepancy between the recorded and predicted waveforms also 

increases outside the inversion time windows. The two sets of non-hydrostatic Green's 

functions maintain very similar predictions, while the filtered hydrostatic Green's 

functions produce comparable amplitude with a notable phase shift. The joint inversion 

results show slightly larger deviations from the records due to the intrinsic need to 

reconcile multiple datasets that might not be fully compatible. 

The inversions provide the slip distributions shown in Figure 4.12. All slip models 

involve primary rupture propagation up dip and along strike in the northwest direction. 

The detailed slip distribution varies significantly with the type of Green's functions used 

in the inversion despite the similar fits to the tsunami observations. For the tsunami-only 

inversion in Figure 4.12a, the non-hydrostatic Green's functions resolve the large 

concentrated slip extending along the trench. The model with kinematic seafloor 

excitation has maximum slip of 15.9 m, while the static initial condition results in a lower 

value of 13.6 m as needed to account for the absence of wave attenuation at the source. 

Filtering is necessary for the hydrostatic Green's functions that have increasing numerical 

oscillations for subfaults near the trench. The alignment of the frequency components due 

to the lack of dispersion is compensated by a more spread-out slip distribution and a 

further reduction of the maximum slip to 10.0 m. Without filtering, the inversion 

suppresses the numerical oscillations to fit the recorded waveforms by spreading the slip 

more evenly down dip. This results in relatively small slip of less than 5.8 m near the 
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trench. The cumulative seismic moments for the four predictions are still close, in the 

range of 8.9 to 9.2×1020 Nm (MW 7.90-7.91).  

The results from the joint inversion in Figure 4.12b show similar effects of the 

tsunami Green's functions, but with more focused slip distributions along the trench (see 

Figures 4.13 and 4.14 for sample comparisons of geodetic and seismic datasets). The 

inversions with non-hydrostatic Green's functions produce maximum slip of 15.7 and 

13.3 m comparable to the tsunami-only inversions. In the absence of dispersion in the 

tsunami Green's functions, the seismic and geodetic datasets play a more significant role 

in defining the slip along the trench. The joint inversion gives maximum slip of 8.4 m 

when the filtered Green functions are used. When the near-trench slip is suppressed and 

spread down dip through the use of the unfiltered hydrostatic Green's functions, the 

geodetic and seismic datasets help maintain the maximum slip at 7.1 m. The cumulative 

moments of 7.5-8.3×1020 Nm (MW 7.85-7.88) are consistently lower than those of the 

tsunami-only inversions indicating reconciliation among the tsunami, geodetic, and 

seismic datasets through the inversion process. 
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Figure 4.11  Tsunami waveform comparison for (a) tsunami-only and (b) joint inversions. Green 
lines denote recorded data, red and blue lines indicate computed waveforms from the Nh-S and 
Nh-K approaches, and black and grey are the H-S Green's functions with and without filtering. 
The vertical bars identify time windows of tsunami records used in the inversions. 
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Figure 4.12  Slip distributions on the fault model grid inverted using tsunami Green's functions 
generated by the Nh-K, Nh-S, and H-S (filtered and unfiltered) approaches. (a) Tsunami-only 
inversion. (b) Joint inversion. Green's functions from non-hydrostatic modeling are necessary to 
resolve the large, concentrated near-trench slip consistent with the geodetic and seismic datasets. 
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Figure 4.13  Horizontal components of recorded (red) and modeled (black) hr-GPS ground 
displacement signals from the joint inversion with the tsunami Green's functions from the Nh-K 
approach. The stations are ordered by epicentral distance. 
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Figure 4.14  Recorded (red) and modeled (black) teleseismic waves from the joint inversion with 
the tsunami Green's functions from the Nh-K approach. The stations are ordered by azimuth. 
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Chapter 5 

Conclusions  

The Fourier method is effective and straightforward in deriving exact dispersion 

relations for numerical wave models from the eigenvalue of the discretized governing 

equations. The extension of the method from hydrostatic to non-hydrostatic models 

simply increases the rank of the eigenvalue matrix from three to five. The staggered 

finite-difference scheme remains non-dissipative with inclusion of the non-hydrostatic 

terms through the Keller-box scheme in the vertical direction. The eigenvalue gives rise 

to a combined relation for intrinsic and numerical dispersion with the latter manifested as 

a phase error associated with the spatial and temporal discretization. The dispersion 

relation is independent of the semi-implicit scheme for the solution of the non-hydrostatic 

terms. Introduction of Taylor expansions produces a lead-order approximation, which 

demonstrates the interrelationship among the depth and discretization parameters in 

modulating dispersion.  

The exact and lead-order dispersion relations provide insights into the interplay 

between intrinsic and numerical dispersion during the computation and an useful tool to 

select discretization parameters as demonstrated by the numerical experiments. The depth 

and spatial discretization parameters have complementary effects on dispersion providing 

a means to optimize numerical wave models through adjustment of the grid size. Their 

coupling, however, results in notable reduction of numerical dispersion outside the 

shallow-water range. The temporal discretization tends to reduce numerical dispersion, 

but is secondary within the range of Courant numbers used in wave modeling. Numerical 

dispersion, which results primarily from truncation errors associated with the spatial 

discretization, decreases for oblique wave propagation due to effective increase in 

resolution and reaches a minimum at 45 from a principal axis of the grid.  
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Discretization errors in shallow-water equations can mimic dispersion from 

Boussinesq-type or non-hydrostatic systems for tsunami modeling, but the required grid 

size might not be sufficient to resolve the many seamounts and islands across the Pacific. 

The Boussinesq-type equations, which already have accurate description of dispersion in 

the tsunami range, might be adversely affected by numerical dispersion. On the other 

hand, the Keller box scheme results in underestimation of dispersion by the governing 

equations of non-hydrostatic models. The spatial discretization errors can be tuned to 

offset the underestimation to better describe trans-Pacific propagation of tsunamis. A 

tsunami consists of a number of harmonics related to the complexity of the seafloor 

deformation at the source. The components with varying dispersion properties need to be 

captured by a computational grid spanning across the ocean. The use of a 2-arcmin grid is 

optimal in balancing intrinsic and numerical dispersion over a wide range of water depth 

parameters in the non-hydrostatic model. 

Dispersion effects are most evident in finite-fault inversion of tsunami signals due to 

the use of small subfaults to resolve seafloor deformation. The dispersion relation derived 

in this study allows assessment of the discretization errors in further influencing the 

numerical solution. This has been demonstrated by the slip distributions of the 2010 

Mentawai earthquake inverted using the three types of tsunami Green’s functions. The 

results differ significantly even though they have comparable total seismic moments and 

similar fits to the tsunami recordings. This makes it difficult to assess the validity of 

source models from the predicted waveforms and therefore emphasizes the need to 

properly account for tsunami generation and dispersion processes. The Green’s functions 

computed using a non-hydrostatic model with either kinematic seafloor excitation or 

static initial conditions improve resolution of concentrated near-trench slip. Depth-

dependent tsunami excitation influences the amplitude and phase of the Green’s functions 
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close to the source, providing better resolution of the slip when near-field observations 

are available.  

Assumption of the initial sea surface elevation based on coseismic seafloor 

deformation is implicit in the Green’s functions generated by the hydrostatic approach. 

The shallow fault depth near the trench results in short-period waves generated in 

relatively deep water. The hydrostatic model overestimates the initial wave amplitude 

from seafloor displacement, forces the harmonic components to remain aligned during 

propagation, and introduces short-period oscillations due to overestimation of the celerity. 

In matching the tsunami recordings, the inversion acquires an excessively smoothed slip 

distribution to suppress the short-period oscillations in the Green's function. Even with 

filtering, the hydrostatic Green’s functions still produce spread-out, lower amplitude slip 

to compensate for the lack of dispersion. Non-hydrostatic tsunami calculations are clearly 

warranted for reliable imaging of detailed slip distributions. 
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