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ABSTRACT 

 

Carbonization in constant-volume reactors has received little attention in current biomass 

pyrolysis research. In this conversion process, volatiles linger in close proximity to the 

carbonaceous solid material resulting in long vapor residence times and high partial 

pressures. The formation of additional secondary charcoal through heterogeneous reactions 

between the pyrolyzing charcoal and the tarry vapors is therefore greatly enhanced 

minimizing carbon losses in the form of gases and liquids. The result is the relatively quick 

formation of a charcoal product with a higher fixed-carbon yield and a lower content of 

volatiles compared to charcoals derived from conventional, hydrothermal carbonization or 

flash carbonization processes. 

 

This work presents the effect of processing conditions (pressure, temperature, heating rate, 

reaction time, biomass loading) and fuel properties (biomass type and particle size) on 

product yields and char properties in constant-volume carbonization processes. Raising the 

pre-test system pressure with an inert gas from 0 to 2.17 MPa did not significantly affected 

product yields or char proximate analysis. It seems that the volatiles partial pressures, rather 

than the total system pressure, accounts for the dominant effect on the high yields and 

fixed-carbon contents reported for constant-volume carbonization processes. Raising the 

reaction time from 30 to 190 minutes and the temperature in a 300-550°C range improved 

fixed-carbon contents and reduced volatiles while maintaining fixed-carbon yields near 

theoretical limiting values. In contrast with flash-carbonization or traditional carbonization 
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observations which showed a beneficial effect of the use of larger particles, constant-

volume carbonization manifested higher fixed-carbon contents and yields (or similar under 

certain conditions) when using smaller biomass particles, offering possibilities for smaller, 

lower-grade biomass to produce a charcoal high in fixed-carbon.  

 

A fascinating phenomenon has been reported from certain constant-volume carbonization 

experiments. Under specific heating rate, pressure and temperature conditions, the 

particulate biomass seems to exhibit a transient plastic phase that converts it into a single 

solid piece of char. The roles of pressure, temperature, heating rate, particle size and mass 

loading in the formation of this transient liquid phase are briefly summarized. 
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CHAPTER 1. INTRODUCTION 

 

This chapter provides an overview of the importance of renewable energy and biocarbon 

production on the world stage and the contributions HNEI has made to this area of research. 

 

1.1 Motivation 

 

On June 1, 2017, U.S. President Donald Trump announced that the United States would no 

longer participate in the Paris Agreement.1 The agreement, reached at the Paris climate 

conference (COP21) in December 2015, united 195 countries on “the first-ever universal, legally 

binding global climate deal” with the long-term goal of limiting the global temperature rise well 

below 2°C.2 

  

Understandably, international reactions to Trump’s announcement from the whole political 

spectrum came fast. Some were supportive, especially the ones coming from coal executives, 

who seem to largely benefit from Trump’s decision.3 But overwhelmingly, reactions were critical 

bringing up concerns about the impacts for the U.S. and global economies, for the climate and 

for political international cooperation.3,4 In response to President Trump’s announcement, several 

nations such as China and India, the European Union, and even mayors and governors of several 

U.S. cities reiterated their own commitment to the mitigation of climate change.3,5 Critics often 

claimed that, regardless of President Trump’s strategy, with governments facing difficult 

http://www.cnbc.com/2017/05/31/how-us-carbon-pollution-compares-with-the-rest-of-the-world.html
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decisions to tackle economic crises, increasing prices for fossil-derived energy and rising costs 

related to health impacts, the transition from fossil fuel energy towards renewables is 

unstoppable.3,5–7 

 

The potential of an international bioenergy market has already been assessed by a number of 

studies. However, one major obstacle for development of bioenergy production is a lack of 

information on market conditions both regionally and globally. In order to develop efficient 

policies and measures to encourage the uptake of renewable energy, knowledge of the market 

region and its main characteristics of supply, demand, trade and market prospects are essential. 

 

The 2009 IEA Bioenergy Task 40-Country report for Norway by Trømborg and Leistad gives an 

overview of the situation regarding bioenergy in Norway for the year 2007.8 With a national 

target of increasing bioenergy use to 50 pJ by 2020 (i.e. doubling the 2007 production), the 

Norwegian government launched a strategic plan in 2008 that outlined the necessary measures to 

reach this bioenergy target. Since less than half of the annual growth of round wood in Norway is 

harvested annually, the report recognized forest resources as the major potential source for 

increasing bioenergy production in Norway. However, the sustainable potential use of biomass 

for energy production is uncertain. Øyvind Skreiberg reported that high quality (and expensive) 

woody biomass is currently the main expected contributor for the Norwegian bioenergy future 

but emphasized that Norway possesses major unexploited low-grade energy resources of waste 

wood in the form of branches and treetops – known in their Norwegian acronym as GROT– as 

well as straw, sewage sludge and other agricultural residues that would most likely go unused as 
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a resource. “Upgrading such challenging fuels to biocarbon will dramatically change this 

picture”.9,10 

 

The Norwegian ferroalloy industry is one of the sectors that have taken interest in this project.  

At present, they use fossil coal and coke as reductants in the smelting process, producing about 3 

Tg of CO2 emissions a year.11 Substituting biocarbon for coal and coke will reduce these 

emissions considerably, and “Norway is funding a major study of wood carbonization for 

metallurgical and fuel applications based on a collaboration between the Hawaii Natural 

Energy Institute (HNEI), the Norwegian University of Science and Technology (NTNU), and 

SINTEF (Norway)”.12 As part of this research effort, Norwegian biomass is imported to the 

R3Lab at the HNEI in its raw form, where it is transformed from a low-value fuel into a more 

valuable, high-energy biocarbon. 

 

1.2 Pyrolysis processes. A brief overview 

 

During the mid-19th century, there was a major transition of energy sources that was propelled by 

the technological advances of the industrial revolution.13 Prior to it, mankind energy needs were 

met by muscle power combined with animal power, and by combustion of biomass resources, 

mainly wood and peat, for light and heat generation.14,15  Ever since the industrial revolution 

took off, the consumption of more powerful, reliable and apparently inexhaustible energy 

resources started to grow exponentially until present times. Its effects, not noticeable in the 

origins, became clear many years later. Fossil fuels are non-renewable, their primary reserves 
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will eventually be depleted and their consumption is widely associated with causing extensive 

damage to environmental health. Governments began to tap and invest in alternative, renewable 

and clean energy sources. Biomass and other green energy sources recaptured interest and made 

headlines as potential options.16 

 

Biomass is a carbon-neutral, plentiful and cheap fuel but has a low energy density. Its energy can 

be directly released in the form of heat via combustion or can be harnessed by converting the 

biomass into more energy dense biofuels. Torrefaction, liquefaction, pyrolysis or gasification 

technologies have focused on capturing the energy in biomass as solid, liquid or gaseous 

biofuels. 

 

The pyrolysis of biomass has been receiving a lot of attention in recent years.  Pyrolysis is the 

thermal break-down of carbon-based materials in the absence of an oxidizer. The composition 

and relative amounts of the final solid (biocarbon), liquid (water and oil/tar) and gas (CO2, CO, 

CH4, H2) pyrolytic products are determined by the composition of the original biomass and the 

pyrolysis method and conditions. Pyrolysis processes can be optimized for the production of 

liquids (oil/tar) which operate at high heating rates and short residence times known as fast 

pyrolysis. Conventional or slow pyrolysis is used to maximize solid biocarbon products by 

operating with slow heating rates and long residence times, often termed as carbonization 

processes. More recently other carbonization processes have been developed to improve the 

yield and/or quality of the solid products such as Flash CarbonizationTM, hydrothermal 

carbonization (HTC) and constant-volume carbonization (CVC), which is the focus of this PhD. 
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Table 1.1 displays a typical range of operating parameters for torrefaction, hydrothermal 

carbonization, gasification and pyrolysis processes. Bold numbers on the product yields indicate 

the desired product for a specific process. 

Table 1.1. Typical ranges of operating parameters for torrefaction, hydrothermal carbonization, 

gasification and pyrolysis (flash pyrolysis, fast pyrolysis, slow pyrolysis and constant-volume 

carbonization) processes. 

Process Temperature 
(°C) 

Solid 
residence 
time (s) 

Heating 
rate 

(°C/s) 

Particle 
size 

(mm) 

Vapor 
residence 
time (min) 

Product yield 
(wt.%) 

      Solid Liquid Gas 

Gasification17–19 >80019 
800-1000a,17,18 

<0.517–19 
>100017–

19 
<0.218,19 
Dust17 

<119 1019 519 8519 

Fast pyrolysis 
~50019 

600-100017,18 
0.5-1018,19 

0.5-517 

200-
100019 

10-
20017,18 

<118,19 <219 
1219 
15-
2520 

7519 
60-
7520 

1319 
10-
2020 

Slow 
pyrolysis17–19 

300-70017,18 
400-66019 

Minutes18 
to 

hours17,19 

0.1-117–

19 
5-5017–19 5-3019 3519 3019 3519 

Flash 
carbonization21–

24 

400-75021,23 
Minutes 

to 
hours17–19 

~121 <10021 
<20022 

NAb 
30-

5017–

19 

NAb NAb 

Constant-
volume 

carbonization25–

27 

300-550c,25–27 
Minutes 

to 
hours25–27 

<127 <225–27 
Minutes to 
hours25–27 

5525–

27 
30d,25–

27 
1525–

27 

Torrefaction28–

30 
200-30028–30 

Minutes 
to 

hours28–30 
<129,30 

<228 
<3029 
<4030 

<1e 

 
8028,29 1528,29 528,29 

Hydrothermal 
carbonization 

31–35 
150-30031–35 

Minutes33-
Hours 

31,32,34,35 
<5f 

<631 
<~0.333,35 

<334 

Minutes33-
Hours31,32,34,35 

50-
8031–

36 

5-
2031,32 

2-
531,32 

a Up to 2000°C with solar furnaces17 
bNot Available (NA) 
c Previous work in constant-volume carbonization in the Lab tested temperatures up to 400°C. This work will 

present results at temperatures up to 550°C 
d Negligible free tars are recovered from constant-volume carbonization. Liquid yield represent water content 

mainly present on the final moist charcoal 
eTorrefaction is usually performed under atmospheric conditions. In these processes, volatiles escape as they 

get released from the solid matrix. Some processes operate under pressure37 which will increase the vapor 
residence time 
fHeating rate calculated from history profile in 31 
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The final biocarbon product derived from carbonization processes has a wide range of 

applications including use as: fuel for cooking and barbecuing, fuel for heat and power 

generation; a reductant in the metallurgical industry; an adsorbent for removing pollutants from 

air or water streams; production of advanced carbon materials; supercapacitors; hydrogen 

storage; and a natural soil amendment to sequester carbon and enhance soil quality for bedding 

plants and commercial crops.38 

 

During the carbonization processes, the virgin biomass is heated in the absence of oxygen to a 

certain temperature, driving off a major part of its volatile matter leaving its carbon behind and, 

hence, increasing the relative carbon content, fixed-carbon content and calorific value. 

 

Traditional charcoal production has relied principally on lighting wood-stacks inside earth 

mounds or excavated pits. Part of the wood is combusted to generate the heat necessary for 

pyrolyzing the remainder. These methods are still widely used in many countries despite the 

inherent lack of control over the process conditions or the final charcoal properties (uneven 

quality and low conversion efficiencies with long reaction times of hours or days) and the 

negative impact on the environment.39 Traditional methods have reported efficiencies of around 

25 wt.%,40 expressed as the yield of charcoal, ychar = mchar/mbio, where mchar and mbio are the dry 

masses of charcoal and biomass feedstock respectively. These low charcoal yields have a direct 

impact on deforestation and substantial carbon emissions when collecting and processing the 

wood necessary for charcoal production.41 
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Over the past 200 years, the development of industrial production technology has offered a 

deeper understanding of the basic phenomena that govern pyrolytic processes and has permitted 

a greater control over them. Surprisingly, despite these advances, charcoal production methods 

have barely changed since ancient times and modern versions of traditional methods have 

improved efficiencies to just 25-37 wt.%.42 Finally, new carbonization methods (HTC, CVC or 

flash carbonization) have successfully reported higher yields of around 50 wt.%. 

 

Achieving an increased charcoal yield has little value unless charcoal quality parameters are 

specified and maintained.43 The properties of a “good-quality” charcoal are defined by its 

intended end use. Table 1.2 lists the average properties of charcoals for some common 

applications. Required values are given in bold. For example, metallurgical industries can 

demand charcoals with fixed-carbon contents above 70%44 or above 85%45. The fixed-carbon 

(fC) content of charcoal, along with its volatile matter (VM) content and ash content are 

estimated by proximate analysis. The fixed-carbon content is determined on a dry basis by 

subtracting the sum of ash and volatile mater percentages from 100%, that is to say, %fC = 100 − 

%VM − %ash. This property has been identified as the main one for metallurgical grade charcoal 

since it is the fixed-carbon that determines the charcoals effectiveness as a reductant.46 Hence, 

there are strict demands from the metallurgical industry regarding the charcoals fixed-carbon 

content.  

 

The domestic market is more flexible; a charcoal with lower fixed-carbon and more volatiles is 

preferred since charcoal with these properties is harder to break and easier to ignite.45 Charcoals 
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intended for soil conditioning, or biochar, require different criteria. A good biochar is 

characterized by a high content of elemental carbon, low volatile matter content, a low content of 

heavy metals, and a high surface area and porosity. In this way, the retention of nutrients and 

water, and the growth of beneficial microorganisms are promoted. The fixed-carbon content, 

although not needed to be specified in biochars, has been proved to be related to the char 

aromaticity and the stability of the biochar in soil.47–49 This area of research is still in its infancy 

and more research on biochar applied as a soil amendment is required to understand the ideal 

charcoal properties for soil amendment applications, to demonstrate its benefits and to prove 

economic viability and sustainability. 

 

With the aim of creating a more meaningful definition of efficiency for biocarbon production, 

Antal and Grønli39 used the charcoal yield and fixed-carbon content parameters to define a new 

parameter, the fixed-carbon yield (yfC). It is determined by multiplying the charcoal yield (ychar) 

by the relative purity of the carbon created from the dry ash-free feedstock as yfC = ychar · 

%fC/(100 − %ashfeed). 
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Table 1.2. Average properties of charcoals for some common applications. Bold numbers 

indicate required values for a specific application. 

Domestic   fCCa: 60-80% Balance 

VMb: 20-40%45 

Ash: 0.5-5%45 

MCc: 3-15% ,Up to 15% with high volatiles45 

HHVd: 28-33MJ/kg45 

Bulk density: 250-400 kg/m3.45 

Metallurgy fCCa: >70%44, >80%50, 85-90%45 

VMb: 10-30% Balance 

Ash: 0.5-5%45 

MCc: 3-5%45 

HHVd: 28-33MJ/kg45 

High fracture resistance for blast furnace charcoals46 

Charcoal for Activated 

carbon production 

fCCa: >82%46 

VMb: 10%46 

Ash: 4%46 

MCc: 4% 46 

pH=4-10 (Acidity test of a water extract of the charcoal)46 

Soil amendment Carbon content>50%51 

H/Corg molar ratio<0.751 

O/Corg molar ratio<0.451 

Respect thresholds on heavy metals (Pb, Cd , Cu ,Ni, Hg, Zn, Cr), polycyclic 

aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCB), dioxins and 

furans  listed on51. 

 

No limits were imposed on the following properties but their values must be 

listed: Volatile Organic Compounds (VOC), pH, bulk density, water content, ash 

content, specific surface area and the biochar nutrient contents with regard to 

nitrogen, phosphorus, potassium, magnesium and calcium.  

 

Usually, a biochar with an alkaline pH, a high surface area (>150m2/g), low in water, 

low in ash, and a high biochar nutrient content is preferred 
a Fixed-carbon content (fCC) 
b Volatile matter (VM) 
c Moisture Content (MC) 
d Higher Heating Value (HHV) 

 

The following chapter presents the accumulated knowledge regarding the effect of pressure, gas 

flow, heat treatment temperature (HTT), heating rate, particle size, mass loading, solid residence 

time and feedstock on biomass carbonization. The vast majority of studies in literature 

investigated the carbonization process in a variety of reactor set-ups wherein the pyrolytic vapor 

products are partially or totally swept away from the vicinity of the hot carbonaceous solid—

configurations referred to in the present work as “open” reactors.  
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Carbonization in constant-volume reactors has received little attention in literature despite the 

promising results that have been reported. CVC permits a better control of the carbonization 

process and the resultant charcoals are characterized by higher fixed-carbon yields in comparison 

to other carbonization processes such as conventional carbonization, hydrothermal carbonization 

or flash carbonization (see Figure 1.1). This work investigates the effect of process variables on 

product distributions and char properties from CVC. The ultimate goal is to gain understanding 

of the CVC process in order to be able to tailor the charcoals properties to those required by 

specific processes. 
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Figure 1.1. Comparison of product yields from different carbonization techniques. CVC: Data 

from constant volume carbonization experiments at an initial pretest pressure of 0.1 MPa. FC: 

Data from Flash Carbonization experiments calculated from 52. FAO: Data calculated from the 

Food and Agriculture Organization (FAO)40. FAO provided theoretical reference values, method 

and biomass species were not specified. Fuwape: Data of carbonization in a conventional furnace 

calculated from 53. HTC: Data of hydrothermal carbonization calculated from 33. 
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CHAPTER 2. OBJECTIVES 

 

Carbonization in sealed vessels has opened up a potential field for the rapid production of 

charcoal with remarkably high fixed-carbon yields when compared to conventional methods. 

Eight factors will be investigated - (i) closed vessel versus open vessel, (ii) initial reactor 

pressure, (iii) HTT, (iv) particle size, (v) heating rate, (vi) mass loading, (vii) immersion time 

and (viii) biomass type-- with the objective of understanding the effects of operating parameters 

on the yields of the final products, the proximate analysis, elemental composition, morphology 

and energy density of the final charcoals manufactured from CVC. 

 

The experimental campaign includes a total of 49 experiments to explore the effects of these 

parameters. Details are provided in Chapter 5. In Chapter 6, experimental yields, char proximate 

analysis and char morphology trends obtained from CVC were compared with results from other 

carbonization methods and from theoretical values predicted by thermodynamics. Finally, 

Chapter 7 developed two models for CVC based on literature modelling data from “open” 

carbonization configurations and evaluated them against experimental results. 
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CHAPTER 3. LITERATURE REVIEW 

 

The literature review serves as the basis for the research proposed in this document. It summarizes 

the effects of pressure, gas flow, HTT, heating rate, particle size, mass loading, solid residence 

time and biomass feedstock on carbonization. The review on the vast knowledge accumulated on 

carbonization in “open” reactors is expanded with limited information found on past CVC studies. 

Given the promising results and the large number of unknowns revealed during the preliminary 

CVC studies, experimental research on CVC has continued at HNEI. Chapter 6 “Results and 

Discussion”, as and when required, provides additional comparisons of experimental results 

obtained in the present study with relevant work from the literature.  

 

3.1. Effect of a Closed Vessel versus an Open Vessel 

 

The beneficial effect on carbonization when using a closed vessel versus an open vessel was first 

observed by Violette54 in the 1800’s. When Violette heated a wood sample in a sealed glass tube, 

he observed a substantial rise in pressure and temperature during the carbonization process and a 

remarkable increase of the final charcoal yield that went from 29.7 to 78.7%. The importance of 

pressure during carbonization is widely recognized. Most of the work in the literature regarding 

carbonization under pressure utilizes what we will refer to as “open” reactors, i.e. processes with 

openings or with gas flows that sweep reaction products from the reaction zone. Few researchers 

have followed Violette’s pioneering work on CVC by using completely sealed vessels.  
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Dr. Antal’s research group in Hawai’i focused on the study of pyrolysis under elevated pressure 

including some work using sealed vessels. Their findings regarding CVC started in the late 

1990’s with Mok et al.42 confirming the positive influence on the final charcoal yields when a 

sealed reactor was used (i.e. that lacked a flow of an inert gas). In addition, Várhegyi et al.55 

performed research using sealed crucibles with small pinholes (strictly speaking, not CVC). The 

results showed that the increase in char yield is accompanied by a higher production of H2O, CO, 

and CO2. Unfortunately, none of Mok or Várhegyi charcoals was subjected to proximate analysis 

therefore the effect on fixed-carbon yield was not determined. 

 

Proximate analysis on charcoals from a wide diversity of lignocellulosic substrates was 

conducted during later pyrolytic work with a thermogravimetric analyzer and a constant-pressure 

reactor (Note, none of this work was CVC).  The thermogravimetric analysis research reported 

higher fixed-carbon yields from closed crucibles with pinholes than from open crucibles.56 

Likewise, chars manufactured in a pressurized vessel at 1.0 MPa revealed higher fixed-carbon 

yields than chars from an open retort,57 remarkably the yields from the pressurized reactor 

approached the equilibrium fixed-carbon yield predicted by thermodynamic calculations. 

 

Proximate analysis of the final chars derived from the pyrolysis of cellulose in open (at constant 

atmospheric pressure) and closed (CVC) batch reactors were reported more recently.25,58 The 

reactor, referred to as the Wall Heated Tubing Bomb (WHTB), can be hermetically sealed and 

can withstand high pressures and temperatures.25,58 Completely closing the reactor during 

pyrolysis produced fixed-carbon yields close to the equilibrium limiting values whereas leaving 
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the WHTB reactor open to the atmosphere resulted in a considerable loss of carbon during 

pyrolysis leaving a charcoal whose fixed-carbon yield is far from the theoretical maximum 

predicted at equilibrium.25,58 The improvement on the properties of the char manufactured under 

elevated pressures is explained by the higher residence times and/or partial pressures of the tars 

within and surrounding the carbonaceous particles. These two parameters have been discerned to 

be key to the enhancement of secondary, heterogeneous charring reactions between the hot 

reacting charcoal and the tarry vapors.39,42,59–62 Due to the promising initial results on CVC, work 

with the WHTB has been continued using mainly oak, spruce and birch woods as feedstocks. A 

comparison of experimental results obtained from carbonization of oak in a sealed reactor versus 

an open reactor is provided in Section 6.1.  

 

3.2. Effect of Pressure and Gas Flow 

 

In a review paper describing the role of process conditions during pyrolysis, Antal and Grønli39 

recognized the noticeable improvement of charcoal yields by using high pressure and low gas 

flows during biomass pyrolysis. Higher pressures and lower sweep gas flow rates have been 

acknowledged to increase the residence times and partial pressure of volatiles in the reaction 

zone leading to increased amounts of secondary reactions39,59–62 that form more char at the 

expense of tar yield.59,60 For instance, Mok and Antal63 observed a doubling in the char yields 

when they combined elevated pressures and low carrier gas flow rates in a fixed bed reactor. 
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Likewise, Zaror and co-workers64 more than doubled the char recovered during cellulosic 

pyrolysis when a flowing gas stream was interrupted in a Gray-King retort. In contrast, studies 

on carbonization under pressure with high flows of carrier gas in fixed bed and hot-rod reactors 

conducted by Palmer,65 Frolich et al.66 and Kandiyoti and co-workers67—mentioned in Antal and 

Grønli’s paper39— did not observe a pressure influence on char yields. The studies suggest that if 

the gas flow rate employed is high enough so that tarry vapors spend an insignificant amount of 

time in contact with the rest of the pyrolysis products, secondary charring reactions are 

minimized or inhibited. The results obtained by Shafizadeh and co-workers68 regarding 

carbonization under vacuum can also be explained by the suppression of these secondary 

charring reactions. 

 

An external inert gas can be used to decouple the effects of the volatiles partial pressure from the 

total reactor pressure during constant-volume carbonization. Adding an inert gas to the reactor 

prior to sealing the system and conducting biomass carbonization increases the total system 

pressure while keeping the volatile vapor pressure unchanged. Mok et al.42 were the first to 

envision this idea when they added dry ice and cellulose inside closed crucibles prior to heating 

during pyrolysis experiments. They found that increasing the total system pressure with CO2 did 

not influence the yield of charcoal (fixed-carbon content was not measured) or the amount of 

heat released. Additionally, increasing the initial cellulose mass loading resulted in greater 

charcoal yields and faster, more exothermic reactions that originated at lower temperatures. 

Thus, Mok et al. identified the volatile partial pressure—instead of the total system pressure— as 

the prevailing parameter which affects the char yield and amount of heat released.  
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Proximate analysis on the final charcoals produced from recent CVC experiments on cellulose 

confirmed the lack of influence of an inert gas pressure on the product yields.58 Nonetheless, the 

fixed-carbon contents showed a slight improvement with higher inert pressures.58 For example, 

when the initial nitrogen pressure was increased from 0.1 to 4.79 MPa, the fixed-carbon content 

improved from 54 to 58%. Nevertheless, the increased carbon mass balance (from 92 to 101.5%) 

may indicate that these differences in fixed-carbon content are not significant, this finding was 

later revisited by conducting CVC of oak and birch under various pressures in the WHTB (see 

Section 6.2 for details).  

 

The lack of influence of inert gas pressure on fixed-carbon contents and product yields further 

supported the conclusion that the concentration of volatiles and/or their increased residence time, 

not the total system pressure, dictates the product yields and charcoal proximate analysis values. 

This finding is in agreement with thermochemical equilibrium calculations on the CVC 

processes which predicts a negligible effect of pressure on the final fixed-carbon yields and 

presents solid carbon as the major product, followed by gaseous byproducts of carbon dioxide, 

water, methane, and traces of carbon monoxide and hydrogen (see Section 6.2).  Using 

equilibrium calculations as a basis, the lack of influence from increasing pressure on theoretical 

product yields and the product distribution of the constant-pressure pyrolysis (not CVC) of 

cellulose at 400°C were reported by Antal et al.69 

 

In conclusion, partial pressure and/or residence time of the tarry vapors within and surrounding 

the solid appear to play a crucial role on the charcoal yields and the chemical properties of the 
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final charcoal during pyrolysis. The effect of elevating the system pressure through the addition 

of an external gas to the system is strongly dependent on the reactor set-up.  In “open” reactors 

where the tarry vapors are partially or totally evacuated from the solid matrix by a reactor 

opening or an external gas flow, the total system pressure and gas flow has a strong effect on the 

vapor pressure and residence time of volatiles. In this case, higher pressures and lower gas flows 

increase cross-linking reactions which ultimately enhances the formation of secondary char and 

reduces tar yields. In addition, if the gas flows employed are high enough that tarry vapors 

quickly escape the reaction zone (even when operating at elevated pressure), secondary reactions 

are minimized and consequently, pressure appears to have an insignificant effect on the yields. 

On the other hand, increasing the system pressure in a sealed batch reactor lacking an external 

gas flow by the pre-addition of an inert gas does not significantly affect the partial pressure and 

residence times of volatiles. Therefore, yields and fixed-carbon contents remain roughly 

constant. 

 

The processing conditions employed during pyrolysis also play a key role on the morphology of 

the final charcoal produced. Experimental observations have demonstrated the formation of a 

transient plastic phase (TPP) under particular conditions. Lédé et al. observed a lubricating effect 

when wood was exposed to compression forces against hot mobile disks or found charcoal 

structures with smooth surface areas when cellulose was subjected to fast pyrolysis.70,71 The 

formation of a liquid intermediate phase has also been verified by high speed photography during 

ablative pyrolysis at 700 °C.72,73 
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In “open” reactors, pressure, as well as temperature and heating rate (see Sections 3.3 and 3.4 for 

details) seem to affect the plastic behavior of biomass.74,75 In wire mesh reactors operating at 

high heating rates and HTTs of 800-1000°C, Cetin et al.74 reported that increasing pyrolytic 

pressures from 1 to 20 bar lead to chars characterized by smaller and smoother surface areas with 

larger pores. They explained the effect of pressure by the entrapment of volatiles in the solid, 

which promotes char melting and consequently closes micropores but opens larger pores through 

the release of bubbles. Their results also showed a decrease in char apparent gasification 

reactivity values with higher pressures. Possible explanations for this behavior were attributed to 

changes in the char chemical structure or intrinsic reactivity rather than to char surface areas.  

 

In an entrained flow reactor, Newalkar et al.75 observed the existence of an intermediate 

optimum pressure of around 10 bar that resulted in a more graphitic char with a more 

pronounced molten stage, a lower oxygen content and a reduced surface area characterized by 

larger cavities and less micropores. Making use of coal analogies, Newalkar et al.75 depicted 

lignocellulosic char structural changes in detail. Below the optimum pressure, as pressure was 

raised (from 5 to 10 bar in their case), volatiles try to escape the solid matrix causing a 

promotion of larger-sized pores due to big gas bubbles evolving inside the char. The result is an 

expansion and melting of the char that consequently rearranged itself into a more graphitic solid 

with a reduced number of micropores and lower surface area. In addition, the discharge of 

volatiles released oxygen from the char structure and further promoted graphitization by 

restricting the creation of stable oxygen-containing linkages in the solid. Above 10 bar, raising 

the outer pressure restricted the release of volatiles and blocked particle swelling. Being a larger 
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molecule than hydrogen, oxygen was preferentially retained in the char matrix leaving behind 

carbon-oxygen bonds and a less graphitic solid with a more open surface structure.  

 

Newalkar et al. emphasized that the effects of pressure and temperature on char morphology 

cannot be studied independently. Their scanning electron microscopy (SEM) images displayed 

more intense changes of char morphology with pressure when the temperature was raised in a 

600-800°C range. Temperatures from 800 to 1000°C produced a lesser pressure effect. A 

phenomenon called shrinkage provided an explanation to this behavior (see Section 3.3). Illerup 

and Rathmann76 also reported a negligible pressure effect on char gasification reactivity at high 

temperatures that ranged between 700 and 900°C during the CO2 gasification of biomass. 

 

In sealed reactors, the addition of a pretest inert gas pressure has been shown to have no effect on 

product yields and char proximate analysis (see above). Nevertheless, it did show a fascinating 

phenomenon on the char morphology. Figure 3.1 (duplicated from reference58) shows the 

appearances of two CVC charcoals. One was produced under an initial atmospheric pressure and 

a HTT of 300°C, while the other was produced under elevated pressure at a HTT of 300-400°C. 

The visual observations and SEM images appear to reveal a TPP that produce a single solid piece 

of char above a certain pretest pressure and HTT.58 
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Figure 3.1. On the left, cellulose biochar powder from constant-volume carbonization at initial 

N2 pressure of 0.1 MPa and heat treatment temperature of 300°C. On the right, cellulose biochar 

from constant-volume carbonization at an initial N2 pressure of 2.38 MPa and a heat treatment 

temperatures of 300-400°C. Figure taken from 58. 

 

The use of elevated pressures has also been reported to have a beneficial effect on expediting the 

whole carbonization process, which appears to be the result of an enhancement of the heat 

transfer of the gases contained in pyrolysis reactors.77 Antal et al.57 shortened the pyrolysis 

processing time by days by using pressurized reactors with a gas flow versus carbonization in 

Missouri kilns (conventional pyrolysis), and concluded that this advantageous feature may be 

regarded by the manufacturer as a more decisive variable than the improvements observed on 

charcoal yields.39,45  
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3.3. Effect of Heat Treatment Temperature 

 

While there is general consensus on the critical role of temperature on biomass pyrolysis, the 

biomass temperature is not a uniform value through time and space during the carbonization 

process. This makes direct comparisons between researchers difficult or impossible. The 

temporal and spatial temperature gradients within the biomass, especially intense during the 

heating period, are related to a number of factors such as grain size, heating rate, biomass type, 

grain orientation, bed packing density, and reactor geometry. For example, analogous external 

heating rates or temperature readings may occur in distinct temporal and spatial temperature 

gradients within the char particle. These internal temperature gradients can heavily affect the 

product yields and properties of the final charcoal produced. Despite disparities in product yields 

reported in literature, some features are usually common. Raising the temperature above 280°C 

typically leads to lower char yields,39,40,53,78 higher gas yields78–80 and a greater char 

devolatilization resulting in char products with a higher content of fixed-carbon and less 

volatiles.39,40,53 

 

The Food and Agriculture Organization (FAO) of the United Nations40 and Fuwape53 tabulated 

typical char yields and proximate analysis measurements for different biomass materials at 

various carbonization temperatures .  For example, at 300°C, the FAO40 reported a typical char 

yield of 42% - not counting the wood which was burned to provide heat to the process (the 

pyrolysis process is not specified but is assumed to be slow pyrolysis). The charcoal produced 

has approximately 68% fixed-carbon and 31% volatile matter. At 500°C, the char yield reduced 

to 33% and the charcoal devolatilized resulting in values of fixed-carbon and volatile matter of 
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85% and 13% respectively. In a conventional furnace, Fuwape53 reported the same trends of 

decreasing char yield, increasing fixed-carbon and decreasing volatile matter with increasing 

carbonization temperature. However, some values are considerably different from those reported 

by FAO. For example, the pyrolysis of five varieties of wood at 500°C resulted in char yields 

between 20 and 32% (versus a value of 33% reported by FAO), fixed-carbon contents ranging 

from 62 to 72% (versus a 85% fixed-carbon content reported by FAO) and volatile matters from 

23 to 31% (versus a 13% volatile matter content reported by FAO).  

 

Kosstrin80 presented a fast pyrolysis model over the temperature range of 425 to 925°C in a 

bubbling fluidized bed. Figure 3.2 (reproduced from Kosstrin) illustrates qualitative changes in 

char, oil (tar) and gas yields with temperature. The product distributions occur in such a way that 

the total mass of the three components (tar, char and gas) remains constant and equal to the 

original feedstock mass. The solid curves depict product yields from the pyrolytic bed and the 

dashed curves exemplify yields assuming complete elimination of both tar-cracking and charring 

secondary reactions (it is implied this means a zero residence time for the volatiles). Both cases 

show that increasing the temperature leads to lower char yields and higher gas yields. The tar 

yield curves show distinct behaviors with temperature. Increasing the temperature in the absence 

of secondary reactions results in an increased production of tar, whereas the tar yield exhibits a 

maximum peak when secondary reactions are included. Dissimilarities between the curves 

demonstrate the impact of secondary reactions. Accounting for secondary reactions - versus 

assuming an absence of them - results in the formation of more char and gas at the expense of tar 

yield. The extent of these secondary reactions appears to escalate with increasing temperature. 

The asymmetric bell-shaped curves of tar yields with temperature are usually displayed by 
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fluidized beds.59 Tar release increases with temperature until reaching a critical temperature. 

Above this, thermal cracking occur resulting in a decline of tar as temperature increases. 

 
Figure 3.2. Schematic representation of effect of secondary reactions on pyrolysis yields at 

different temperatures. Figure reproduced from Kosstrin.79 Solid line: yields with secondary 

reactions as in fluidized bed pyrolysis. Dashed line: yields without secondary reactions, 

indicating only primary decomposition or pyrolysis. 

 

Stiles and Kandiyoti60 and Morgan and co-workers81,82 experimentally confirmed the findings 

from Kosstrin concerning the effect of temperature and residence time on the tar yields. Stiles 

and Kandiyoti60 reported the tar yields recovered from a fluidized bed reactor with variable 
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freeboard height and a constant nitrogen flow. They observed diminishing amounts of tar derived 

from biomass and coal when the tar residence time was increased. The role of increasing 

temperature initially increased the tar yield until a maximum was reached; above this 

temperature vapor tar cracking reactions lead to diminished oil/tar yields. Raising the 

temperature from 600 to 700°C lessened the tar yield by ~30 wt%. Additionally, extending the 

residence time from 0.25 s to 3.5 s at 600°C reduced the tar yield by about ~30 wt% (daf 

cellulose). Morgan and co-workers81,82 pyrolyzed banagrass in a fluidized bed reactor over a  

temperature range from 400 to 600°C and over a range of residence times from 1 to 12 s. The 

char yield declined with increasing temperature and the tar yield exhibited a maximum at 

~450°C at a residence time of 1 s. An increase in temperature above ~450°C and residence time 

>1 s resulted in the production of more gas and light volatiles with the loss of oil/tar.  

 

The composition of tars recovered from fast-pyrolysis has been described in literature. The tar 

liquid product consists of a complex mixture of condensable hydrocarbons covering a wide range 

of molecular weights. A detailed description of tar properties can be found elsewhere.83,84 A 

considerable fraction of these compounds present high molecular weights and low stabilities.85 

Different theories have been reported as an attempt to explain the origin of the heavier species 

present in the tarry liquid condensed from pyrolytic processes.86 One theory explains the 

formation of high molecular weight species by weak chemical bonds between lighter volatiles. A 

second explanation is derived from the true volatile composition, which includes heavy aerosols, 

i.e. a gas mixed with liquid and solid whose product distribution is influenced by the reactor 

configuration. Peacocke87 observed that ablative reactors produced a lighter tar than fluidized 

bed reactors. “This is consistent with the formation of a liquid intermediate (issued from biomass 
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depolymerization) undergoing further cracking or vaporisation on the hot surface of ablative 

reactors, but being directly ejected into the gas/vapour phase on fluidized beds”.86 

 

Piscorz et al.88 demonstrated aerosol to be a direct intermediate of a significant fraction of the 

final pyrolytic products. There is a wide diversity of opinion regarding the aerosol formation.86 

Its origin can be explained by an incomplete condensation of volatiles in the gas product, by the 

capture of the liquid intermediate in the char solid structure or by being directly ejected into the 

gas-phase due to micro explosions of water vapor and the liquid intermediate.86 The tar 

composition is heavily influenced by the pyrolytic temperature as well. Raising the temperature 

to around 800°C appears to intensify tar-cracking reactions which results in a shift of tar 

composition to products with lower molecular weight.75,89 Further increasing the  temperature, 

i.e. 900°C, led to an agglomeration and combination of these cracked species which causes the 

formation of heavier tertiary products such as polycyclic aromatic hydrocarbons, often reported 

for gasification processes.60,89,90   

 

Similar to the experimental observations made in regard to “open” reactors, raising the 

temperature from 300 to 400°C during CVC reduced the charcoal yield and volatile matter 

content, while increasing the fixed-carbon content and gas yield mainly as CO2 evolution.27,58 

Typically, applying more severe carbonization conditions, e.g. increasing the temperature, 

improves the fixed-carbon content of the charcoal but sacrifices some fixed-carbon yield. For 

example, charcoal from Leucaenaleucocephala produced by Fuwape in a conventional furnace at 

250°C had a fixed-carbon content of 29% and a fixed-carbon yield of 28%. Increasing the 
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carbonization temperature to 400°C was able to greatly improve its fixed-carbon content to 56% 

but suffered the loss of around 9% (absolute) of its fixed-carbon yield. Raising the temperature to 

700°C further improved the fixed-carbon content up to 70% and produced a charcoal with a 

fixed-carbon yield comparable to that obtained at 400°C. 

 

Raising the CVC HTT produced a final solid product rich in fixed-carbon content and low in 

volatiles while maintaining the fixed-carbon yield near-theoretical values.27,58 All these are 

attractive properties for both char suppliers and customers. Nonetheless, operating the CVC 

batch processes at industrial scale may be costly due to the high-pressure conditions. One of the 

aims of the on-going research is to generate the data required to estimate production costs at 

larger scales to determine whether the process is viable at commercial scale. 

 

The HTT used to drive the carbonization process plays a key role on the morphology of the final 

char. In “open” reactors, the appearance of a TPP has been observed on chars manufactured at 

temperatures above 550-600°C74,75,89 under fast heating rates (~500°C/s74-~104°C/s 74,75,91). Fast 

heating results in an interaction of a volatile release effect and a simultaneous char softening 

effect.75,91 This interaction heavily influences the resultant char morphology.  

 

Jarvis et al.89 provided a detailed description of the morphology evolution of a char produced in a 

laminar entrained flow reactor at temperatures from 450 to 950°C and heating rates of 

≥1000°C/s. At 450°C, devolatilization causes chemical and physical changes in the char. the 

physical cell wall thickness of the char significantly reduces and the final char structure becomes 
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a skeleton of the parent material. At 550°C, the cell walls fragmented developing a microporous 

structure while the first signs of bubble formation appear. Char begins to soften while volatile 

release continues and the gases trapped in the char begin to generate gas-filled pockets. As the 

temperature increases and approaches a value of 850°C, the char softening intensifies and 

bubbles increase in size. These two factors cause the micropores to close while at the same time 

the char swells like a balloon and large cavities are opened on the char surface due to the 

bursting of bubbles.75,91 The chars produced present a cenospheric morphology. Within this 

temperature range, the formation of primary volatiles seems to end at 650°C, at this point gas 

evolution continues through secondary and tertiary tar-cracking. Above 650°C, char circularity 

plateaus and the char becomes progressively more brittle. Finally, at temperatures above 850°C, 

the cenosphere particles appear to rupture releasing the trapped gases and reduce in size. This 

phenomenon is referred to as shrinkage (see below).75  

 

Newalkar et al.75 reported a similar description of char morphology profile with temperature 

during the fast-pyrolysis of biomass in an entrained flow reactor in a temperature range between 

600 -1000 °C and pressures between 5 and 20 bar. They confirmed that increasing the 

temperature until 800°C developed char melting and swelling which typically resulted in a more 

graphitic char with surface areas characterized by less micropores and more meso- and 

macropores and with lower ratios of H/C and O/C. The only exception to this trend was observed 

by chars produced at 600 and 800°C at the highest pressure of 20 bar. In this case, the 800°C 

material presented a lower degree of graphitization and a higher O/C ratio. They explained this 

deviation in the behavior by a pressure influence. At the elevated pressure, the O molecule could 

be retained longer in the char structure compared to the small and light hydrogen molecule 
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giving rise to the formation of stable oxygen-containing bonds that limit graphitization and 

leaves the structure more open. Chars produced at temperatures above 800°C can manifest 

shrinkage.75 The elevated temperatures provoke the rupture of carbon-oxygen linkages which in 

turn, closes micropores, reduces the char surface area and leads to char collapse.92 A number of 

models have included this shrinkage effect during pyrolysis in order to improve predictions of 

conversion times and product yields.73 Some linearly correlate the particle size reduction with the 

biomass composition (one-dimensional models), and others take into account reaction evolution 

as well as calculate local collapse of the particle volume (two-dimensional models).73 

 

In CVC experiments, the appearance of a TPP has been observed at much lower temperatures 

and heating rates than in “open” reactors.27,58 For example, molten phases have been reported in 

a constant-volume reactor that contained birch at initial room conditions of pressure and 

temperature that was subsequently heated to 400°C under a heating rate of around 1°C/s,27 or 

when carbonizing cellulose where the initial N2 pressure was 2.40 MPa at room temperature 

before heating to 260°C or higher under a similar heating rate.58 When elevated pressures are 

used, it appears that the tars captured within the char evolve (react and/or interact) during the 

CVC process to enhance char plasticization and shift the char softening point to relatively low 

temperatures. Increasing the temperature and pressure appear to intensify the molten stage of 

char and can transform the charcoal from a grainy structure to a single coke-looking product that 

adopts the shape of the reactor vessel.27,58 
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3.4. Effect of Heating Rate 

 

In a review paper, Morgan and Kandiyoti59 compiled experimental measurements of char yields 

from cellulose pyrolysis in various “open” reactor designs and processing conditions. A trend of 

increasing char yield with decreasing heating rate was observed. When a wire-mesh reactor with 

a heating rate of ~1000°C /s  was used to pyrolyze cellulose at 600 and 900°C,93 or when using a 

fluidized-bed reactor with a heating rate above 200°C/s and a HTT of 500°C, 60 negligible 

amounts of char were produced; in both of these examples small particles were used (<152 µm). 

In the same way, Pindoria et al64 recovered almost no char when fine wood particles (<100 μm) 

were flash-heated to temperatures above 550–600°C. The char yield dramatically increased when 

using a McBain thermogravimetric balance to pyrolyze a thin (100 μm) cellulosic layer with a 

slower heating rate of 14°C/min and a HTT of 480°C or when using a Gray-King retort (fixed-

bed) with a 5°C/min heating rate to the same temperature for the same feedstock.  

 

Martin et al.94 observed a decrease in char yields with an increase in fixed-carbon contents as the 

heating rate increased from 0.98 to 9.44°C/min when pyrolyzing oak chips in an atmospheric 

pressure batch reactor heated to temperatures up to 490°C. Likewise, Angin95 reported the same 

pattern of lower char yields and higher fixed-carbon contents in biochars produced in a fixed-bed 

reactor with a flow of inert gas at heating rates of 10, 30 and 50°C/min (the reactor pressure was 

not specified). Chen et al.96 studied the pyrolysis of bamboo in a thermogravimetric analyzer and 

a fixed-bed reactor at a HTT of 700°C using heating rates between 5 and 30°C/min. A significant 

effect of the heating rate was observed on the kinetic parameters and product yields with 

preferential secondary decomposition of volatiles in the fixed-bed reactor leading to greater char 
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yields. Activation energy and gas yields increased with the heating rate while char and liquid 

yields decreased. The final charcoals presented similar fixed-carbon contents.  

 

Quantitatively, Chan and co-workers97 developed a polynomial model that correlated the product 

yields to particle size, moisture content, heating rate and grain orientation for the pyrolysis of 

pinewood in a reactor subjected to temperatures as high as 1000°C where volatiles were removed 

by a stream of helium while maintaining the reactor pressure at 1 atm absolute pressure. The 

heating rate was identified as the dominant variable on the resultant yields. Antal et al.98 

concluded that decreasing the heating rate seems to cause the char yield to reach an asymptotic 

maximum value. Conversely, a minimum char yield was not detected. Negligible char, if any, 

was observed when a high enough heating rate was used in combination with small particles of 

biomass (<100-152 µm).57,99 Notice that to achieve fast-pyrolysis, small particles are also a 

requirement since large particles pose an impediment to rapid internal heating. 

 

Shafizadeh100 provided an explanation regarding the effect of heating rate on the yield of char 

derived from cellulose. Below 300°C, the main pyrolytic reaction is the dehydration of cellulose 

into a more stable species (anhydrocellulose) which results in a higher yield of the final char. At 

temperatures above 300 °C, a more unstable levoglucosan is formed which tends to 

depolymerize into primary tar resulting in lower char yields. When rapid heating rates are used, 

the time period the biomass is exposed to lower temperatures is reduced which inhibits the 

formation of charcoal.  
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Reed and co-workers101 explained the influence of the heating rate on the product yields. They 

considered that the biomass initially decomposes into a solid that subsequently melts and, if the 

temperature is high enough, vaporizes. Un-vaporized tar molecules, present at lower 

temperatures, combine into larger molecules by forming more stable bonds that finally produce 

char. Higher heating rates promote the rapid vaporization of tar which reduces the amount of 

char formation. Lewellen et al.102 hypothesized that lower temperatures and larger particles 

increase the residence time of volatiles within the particle which favors the production of 

secondary char through reactions between primary volatiles and the pyrolyzing solid mass. 

Bradbury et al.103 measured the effect of temperature on the volatile and char yields. At 300°C, a 

volatile/char ratio of two was determined versus a ratio of fifty at 600°C. In conclusion, slow 

heating rates offer additional time at lower temperatures which enhance repolymerization 

reactions between tar molecules and with the solid matrix. Whereas rapid heating can cause 

biomass and cellulose to completely breakdown into volatiles. 

 

All these literature findings regarding the role of heating rate on biomass pyrolysis pertain to 

“open” reactor set-ups.  To our knowledge, the effect of heating rate in sealed reactors has not 

been reported. In CVC, volatiles that would be swept away when using “open” reactors remain 

in the reaction zone and interact with the pyrolyzing char, and consequently produce additional 

secondary char. As a result, the production of high solid yields in CVC processes may not be 

limited, as observed in “open” reactors, to a slow release of volatiles which is attained by slow 

heating but could be also extended to a faster volatile release related to higher heating rates. See 

Section 6.4 for details of the heating rate effect on experimental product yields and properties of 

char from the CVC of biomass.  
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The heating rate has also been found to greatly influence the evolution of the char structure in 

both “open” and sealed reactors. In “open” reactors, slow heating causes the particle to lose the 

majority of its volatile matter prior to softening (around 600°C).75 Consequently, the final char 

basically retains the skeleton structure of the virgin biomass. Fast-heating (~500°C/s74-

~104°C/s74,75,91) enables the interaction between volatile release and char softening,75 which 

results in changes to the char morphology. The chars seem to experience TPPs that lead to final 

smoother structures with rounder voids.74,75,91 Cetin et al.74 observed that lignocellulosic chars 

manufactured under faster heating rates seem to improve the char gasification reactivity. A 

possible explanation was the larger surface areas found on these chars.  

 

Likewise, Zanzi et al.104 observed that fast devolatilization of chars produced under fast pyrolysis 

in a free-fall reactor at temperatures up to 1100°C enhances the formation of more porous and 

more reactive chars than the ones produced in a thermobalance under slow pyrolysis conditions. 

In the same way, Biagini et al.91 also observed an increase in reactivity of chars produced in drop 

tube furnaces at temperatures of 400-800°C and fast heating rates (not specified) in comparison 

to chars produced in thermogravimetric balance under less severe conditions.  

 

In contrast, Biagini and Tognotti105 noticed a lower reactivity of chars pyrolyzed in platinum 

filaments under higher temperatures (1400°C) and longer residence times of 100 s than of chars 

manufactured from thermogravimetry under slower pyrolysis and milder conditions. They 

reported that both the high temperature and the extended time in the platinum reactor contributed 



34 

 

to form a collapse structure characterized by a higher plasticity, lower porosity and higher degree 

of graphitization.91 Cetin et al.74 also noted that slow pyrolysis may disperse catalytic metal 

oxide agents which would lessen the char reactivity.  

 

In line with findings reported on “open” configurations, closed reactors (CVC) also reported the 

appearance of molten structures when the carbonization heating rate was increased. These TPPs 

have been observed, nonetheless, at considerably lower heating rates and carbonization 

temperatures than the ones reported for carbonization in “open” reactors. A study of the effect of 

heating rate on the morphology of char produced in CVC is provided in Section 6.4. 

 

3.5. Effect of Particle Size 

 

There is a strong link between the particle size of biomass, the internal heating rate and the 

residence time of volatiles within the char particle. Larger particle sizes slow heat transfer across 

the char particle and retard release of volatiles from the pyrolyzing char matrix.39,106–109 Thus, an 

increase in particle size would have a similar effect to that of slower heating rates combined with 

an increase in pressure or a reduced gas flow. All these effects favor char-forming secondary 

reactions in “open” reactors. 

 

Di Blasi110 theoretically proved the strong linkage between particle size and internal heating rate. 

She developed a computer model that accounted for primary and secondary reactions, as well as 
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for heat and mass transfer phenomena in reactors equipped with gas flows. Under the same 

external heating rate of 15°C/s, the model predicted a decrease in the char yield with decreasing 

particle sizes at all pyrolysis temperatures. Larger particles experience a thermally thick regime, 

i.e. spatial temperature gradients were governed by both external and internal heat transfer 

processes, whereas particle sizes below a critical value only experienced a thermally thin regime, 

i.e. spatial temperature gradients were just governed by external heat transfer. Internal heat 

transfer and therefore, the temperature gradients across the particle became negligible. 

 

The relation between particle size and heating rate was experimentally proved by Pindoria et al.67 

When using wood particle sizes below 100 µm and a rapid heating rate, negligible char yield was 

recovered. When larger particle sizes were pyrolyzed under the same external heating rate, the 

char yield increased to 10-30 wt. % of the original wood feedstock (dry-ash-free basis). The char 

yield varied within this range depending on the residence time of volatiles across the reactor. In a 

batch reactor, Demirbas111 observed an increase in charcoal yield with an increase in particle size 

for agricultural residues ground and sieved into particle sizes ranging from <0.5 to >2.2 mm. The 

gas flow in the batch reactor was not specified.  

 

Beaumont and Schwob112 found that the pyrolysis of coarser particles in a reactor equipped with 

a sweep gas at temperatures of ~300-500°C resulted in larger char and gas yields and less tar. 

The gas composition also varied with the particle size whereas the tar composition was 

unaffected. When the process changed to a slower pyrolysis regime, the biomass particle size did 

not alter the experimental observations. Therefore, they attributed the experimental results to the 
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change in the particle internal heating rate. Várhegyi et al.113 studied the effect of particle size on 

the devolatilization of biomass charcoals by thermogravimetry. They reported a decline in 

volatiles yield when larger grains were pyrolyzed at temperatures under ∼520°C, and 

hypothesized that volatiles suffered secondary reactions during diffusion from the interior of the 

carbon matrix resulting in higher yields of char. At temperatures greater than 550°C, the particles 

exhibited remarkably similar derivative thermogravimetric (DTG) curves, revealing that 

secondary formation of char was suppressed at high temperatures.  

 

In another thermogravimetric study, Bennadji et al.114 pyrolyzed three varieties of wood using 

particle sizes from 250 µm to 3.81 cm. An increase in the particle size from 250 µm to 2.54 cm 

at HTTs of ~425°C resulted in significant increases in char yields (from ∼17 wt. % to ∼23 wt. % 

of the dry feedstock). Further increase of the particle diameter did not show a significant effect 

on the char yield. Kandiyoti et al.108 provided an explanation for this asymptotic behavior of char 

yield with particle size. As particle size increase, the extent of secondary reactions between the 

hot char solid and the volatiles that diffuse across this char intensifies. As a consequence, char 

yield increase and volatile yields exhibit an initial pronounced drop.108 The plateau in volatile 

and char yields that follows was explained by the lack of subsequent secondary reactions when 

particle sizes exceed a critical value. The remaining tar molecules are likely to be lighter (lower 

molecular weight) and be more stable, therefore, they are less prone to reactions with the char 

matrix.108 
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The theories presented in the literature regarding the effect of particle size on product yields are 

based on the use of “open” reactor vessels. In these cases, volatiles are removed from the 

reaction zone and the pyrolyzing carbon matrix, resulting in different vapor residence times 

depending on the pyrolysis conditions and reactor. The final char yield from pyrolysis in the 

“open” reactor is related to particle size, where smaller particles produce less char.  

 

In contrast, when a sealed reactor is used, the released pyrolytic vapors stay in close proximity to 

the solid char enhancing secondary char-forming reactions and limiting carbon partitioning to the 

gas and oil/tar phases. The pyrolysis of cellulose powder (50-180 µm) in the WHTB gave hope 

to the possibility of producing a charcoal high in fixed-carbon content and yield from small 

particles.58 

 

Consequently, the effect of particle size on wood carbonization was studied in greater detail. 

Section 6.5 presents the results of this study. The results show that decreasing the particle size in 

CVC does not have any detrimental effect. If anything, it has a positive effect on the process 

which demonstrates that the WHTB is a good option for charcoal manufacturing from small 

particles. This study is of special relevance as small particles of biomass (i.e. sawdust, grasses, 

agricultural residues) that were previously impractical for use in charcoal production could be 

used to produce charcoals with high fixed-carbon contents and fixed-carbon yields. Particle size 

reductions in the case of large biomass sizes, nevertheless, may be compromised by increased 

investment costs and energy requirements.115 
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3.6. Effect of Mass Loading 

 

The effect of mass loading (dry sample mass per unit reactor volume) on yields and properties of 

products from biomass pyrolysis is a topic that few authors have focused on. In “open” reactor 

set-ups, its study is complicated since it cannot be easily isolated from the influence of other 

variables. For example, in a constant-pressure reactor, the impact of mass loading on product 

yields and properties is interrelated with the reactor gas flow. Higher mass loadings in constant-

pressure reactors would release a greater amount of volatiles and therefore, higher outlet gas 

flows would be needed to keep the reactor pressure constant. As a result, both variables will play 

a role in the final results complicating the pyrolytic studies. The use of sealed reactors removes 

the effect of gas flow rate and facilitates the decoupling of the mass loading effect from other 

variables. 

 

In sealed crucibles, Mok et al.42 studied the effect of mass loading on the differential scanning 

calorimetric curves and char yields of biomass pyrolysis. They reported that higher mass 

loadings raised the concentration of volatiles in the reactor which led to increased exothermic 

heats of reaction, expedited reaction rates, reduced reaction onset temperatures and improved 

charcoal yields. Mok et al. were able to decouple mass loading effects from absolute mass effects 

and system pressure effects (since mass loading is directly related to increases on both volatile 

partial pressure and total system pressure). A couple of experiments were performed in reactors 

with distinct volumes but equal mass loadings, as well as an additional experiment with a pre-

added inert gas. The results revealed that improved char yields and heats of reaction were the 

result of a mass loading effect—which increases the volatile partial pressure—rather than an 
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absolute mass effect or a total system pressure effect. Várhegyi et al.116 developed a 

mathematical model that explained Mok et al.’s experimental results. The model described the 

pyrolytic process by initial hydrolysis reactions that are followed by decomposition reaction. 

Intermediate products formed in the later reactions and kept captive in the sealed vessel further 

react to eventually produce char, water and gases.   

 

In studies using thermogravimetric analyzers, Wang et al.56,117 confirmed the attainment of 

higher yields of charcoal and fixed-carbon when larger sample masses of wood were pyrolyzed 

in open and closed crucibles with pinholes. It was concluded that the increased yields were due 

to greater extents of secondary charring reactions. 

 

Based on the work from previous authors, Bai and Xue118 also provided insight regarding the 

mass loading role during biomass pyrolysis. Their focus, nonetheless, was put on the production 

of bio-oil (not charcoal), particularly on the production of levoglucosan. Levoglucosan is the 

main product from primary reactions of cellulose pyrolysis. It has a low enough boiling point 

(339°C) to be able to leave the hot reaction zone and later be condensed as liquid tar. 

Theoretically, a 100% levoglucosan yield could be recovered from cellulose pyrolysis as long as 

depolymerization was the sole pyrolytic reaction.119 In practice, depending on the reactor 

configuration, yields between a few per cent and a 70% have been reported from cellulose 

pyrolysis.118 
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Secondary reactions that involve primary levoglucosan explain the reduction in the final bio-oil 

yield. Levoglucosan destruction can results from two competing reaction pathways of 

polymerization and evaporation.120–122 The experimental findings suggest that the evaporated 

fraction can be condensed into bio-oil, whereas the polymerized fraction gets entrapped in the 

pyrolyzing zone and eventually undergoes secondary reactions that produce light volatiles and 

char. Increasing the mass loading of levoglucosan during pyrolysis in sealed reactors revealed a 

shifting of the product distribution in favor of char and light volatiles formation.121,122 When 0.1 

mg of levoglucosan was pyrolyzed in a sealed reactor at 400°C for a time period somewhere 

between1 and 20 minutes , Hosoya et al.122 primarily found CO and CO2 and no char. Increasing 

the levoglucosan loading up to ~10 mg resulted in the production of char and low molecular 

weight condensates.  

 

3.7. Effect of Solid Residence Time 

 

In a pyrolytic process, the residence time can refer to that of either solid or gaseous products, and 

usually indicates the period of time the char or gas stays in the reaction zone. In “open” reactors, 

the residence time generally refers to the gaseous one which is often calculated as the ratio of 

reactor volume to carrier gas flow, whereas solid residence time, when specified, is usually 

measured as the reaction time. In sealed reactors; solid, liquid and gaseous products stay in the 

reaction zone during the whole pyrolysis process and their residence times coincide with the 

reaction time.  
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Volatile residence times inside and in the vicinity of the char particle, although different, are 

closely related to gaseous residence times. They cannot be experimentally measured but they can 

be indirectly modified by varying gas reactor flows, reactor pressures, and/or particle sizes. 

 

As widely pointed out in literature, prolonging the volatile residence times enhance secondary 

char-forming reactions at the expense of tar yield.39,59–62 If combined with slow heating , the 

residence time at lower temperatures of both solid and volatiles is expanded which further favors 

repolymerization reactions into char.100–103 In order to ensure high bio-oil yields, flash or fast 

pyrolysis processes operate at short gaseous residence times and high heating rates. In contrast, 

conventional pyrolysis operates at long residence times combined with slow heating rates with 

the aim of maximizing char yields. 

 

Ningbo et al.123 studied the effect of HTT and solid residence time in a screw reactor that 

continuously fed biomass at a 1.47 kg/h rate and purged the system with a continuous N2 stream. 

At a pyrolysis temperature of 600°C, the solid residence time was varied between 3 to 7 minutes. 

The results showed a decrease of the char yield with increasing residence time. Gas yield 

presented a minimum when the system was operated with a 4 minute residence time and liquid 

yield was maximum at 6 minute residence time. As the solid residence time increased within the 

3-7 minute range, char fixed-carbon content increased and volatile matter declined. A clear trend 

of fixed-carbon yield was not observed. Based on their results, the process was divided into three 

stages. In the first one (3-4 minutes), secondary reactions are absent and the product yields are 

the result of primary reactions. In the second one (4-6 minutes), secondary cracking start to be 
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significant leading to an increase on both bio-oil and gas yields. After 6 minutes, in the third and 

last stage, primary reactions are complete while secondary cracking dominates. The result is a 

decline of the bio-oil yield and an increase in gas yield.  

 

In a fixed-bed reactor that pyrolyzed empty fruit bunch at ~450°C at a ramp rate of 50°C/min 

under a 2 bar N2 gas flow, Mohamed et al.124 showed a very minor decline of char yields 

(considered insignificant by the authors) with increasing holding time in a 6-12 minute range, 

and minor fluctuations in the gas and liquid yields. Mayor and Williams125 investigated the effect 

of varying the residence time between 10 and 120 s on product yields and char calorific values 

from fast pyrolysis of Loblolly pine biomass at a HTT of 400°C. The experiments were 

performed in a microreactor exposed to heating rates above 100°C/s. Lengthening the residence 

time resulted in higher bio-oil and gas yields, and lower char yields but with improved lower 

heating values. A study of the kinetics revealed the incompatibility of applying kinetic 

parameters and models obtained from conventional thermogravimetric analysis (TGA) processes 

and concluded that fast and slow pyrolysis present distinct kinetics.  

 

The pyrolysis of a variety of biomass feedstocks in a muffle furnace under limited oxygen 

concentrations was performed by Wang et al.126 in two steps at a rate of 5°C/min to final 

temperatures of 500 or 700°C. The results generally showed (although there were some 

exceptions to this trend) a reduction on the char yields and an increase on BET surface areas as 

the holding time at temperature was prolonged  from 4 to 8 to 16 hours. Retention time did not 

show much of an effect on the char pH and its content of elemental carbon.  
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Ling et al.127 studied the effect of residence time (30, 60 and 90 minutes) and temperature 

(between 300 and 600°C) on the pyrolysis of two types of biomass: oil palm trunks and empty 

fruit bunches. During the process, volatiles were continuously removed from the reaction zone to 

a condenser. The focus of this study was on bio-oil product. The results showed an improvement 

to the bio-oil yield and calorific value as the residence time was prolonged. Char yields declined 

with residence time for the empty fruit bunch biomass while the pyrolysis of the oil palm trunk 

did not present clear char yield trends.  

 

Lin et al.128 performed slow pyrolysis of tobacco stems in an “open” fixed-bed reactor under 

various conditions of temperature (between 350 and 600°C), residence times (between one and 

five hours) and heating rates (between 5 and 25°C/min). Bio-oil yields lowered with retention 

time while gas yield usually increased and char yields presented some fluctuations. In most 

cases, the fixed-carbon contents improved and the volatile contents decreased as the HTT, 

retention time and heating rate increased. Notice the long time scales of these processes in 

comparison to fast pyrolysis processes. 

 

In slow pyrolysis processes at a 0.1 MPa constant-pressure and a continuous nitrogen flow,  

Antal et al.57 reported an increase on the fixed-carbon yields of various biomass feedstocks when 

the heating time and solid soaking time at temperature were simultaneously prolonged. For 

example, pine wood pyrolysis characterized by a HTT of 450 °C, a 90 min-heating period plus a 

10 min-soaking, resulted in a 20.2% fixed-carbon yield and a 69.6% fixed-carbon content. When 
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the heating and soaking were extended to 4 hours and 60 minutes respectively, the fixed-carbon 

yield and content increased to 24.0% and 74.6% respectively. Further prolonging the soaking 

time to 4 hours (but maintaining the heating time fixed at 4 hours) appeared to improve the 

fixed-carbon content to 78.6% and maybe slightly increased the fixed-carbon yield to 25.0%.  

 

Ronsse et al.129 slowly pyrolyzed various biomass feedstocks in a fixed-bed reactor at a heating 

rate of 17°C/min to temperatures ranging between 300 and 750°C under a continuous nitrogen 

flow of 800 ml/min. Lengthening the solid residence time after heating from 10 to 60 minutes or 

raising the HTT appeared to maintain the fixed-carbon yields constant but increased fixed-carbon 

contents and char HHVs while reducing volatile matters. Prolonging the time also lead to a 

decline in the BET char surface area. A possible explanation offered was the filling of char pores 

with time due to ash fusion.  

 

In conclusion, it appears that longer solid residence times especially benefit slow pyrolysis 

systems where secondary reactions are enhanced. The resultant chars appear to present lower 

yields but improved values of fixed-carbon contents, without sacrificing the valuable fixed-

carbon yields. 

 

Newalkar et al.75 described the char morphology history profile in both high and low heating 

rates set-ups (see Section 3.4). In slow heating set-ups, decomposition reactions occur well 

before the char starts melting. The char structure becomes increasingly lighter as it releases 

volatiles but retains the skeleton structure of the original biomass feedstock. Under quick 
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heating, the char suffers radical morphological transformations. Decomposition reactions of the 

solid occur at the same time as the char begins to melt. Chars formed in a pressurized entrained 

flow reactor subject to heating rates as high as 103−104°C/s presented an amorphous structure at 

a 15 s solid residence time. As the residence time was lengthened, volatiles tried to escape the 

solid matrix while the char melted. The result was an improved realignment of the char structure 

and an expansion of the solid due to gases being trapped within. By 28 s, the char has become 

significantly more graphitic and swollen. Further prolonging the time expands the char 

micropores to generate a mesoporous surface, probably due to the release of internal gases. As 

the time extends, Newalkar et al.75 also observed the formation of heavier products (polynuclear 

aromatic hydrocarbons) through combination reactions between gas compounds. 

 

3.8. Effect of Feedstock 

 

This section is divided into two subsections. The first one compiles the literature findings 

regarding the effect of the major structural components of biomass feedstocks (cellulose, 

hemicellulose and lignin) on pyrolysis processes. While the second one analyzes the influence of 

the mineral matter on pyrolysis. 
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3.8.1. Effect of cellulose, hemicellulose and lignin ratios 

 

Plant biomass is composed mainly of three basic structural organic polymers: cellulose, 

hemicellulose and lignin. The degree of association and the ratio between these components 

depend on the biomass type. For example, woody biomass species, having grown at a slow pace, 

consist of tightly bound fibers. Whereas herbaceous biomass, typically perennial , is composed 

of loosely-bound fibers, a sign that indicates a lower lignin content.130 Hardwoods are described 

as biomass species characterized by higher cellulose contents in comparison to wheat straw and 

leaves, which contain greater hemicellulose amounts.131  

 

Within a single plant, the relative composition of the constituents also fluctuate in its lifetime 

with the stage of maturation, soil type, nutrient balance and other factors.130,131 Usually, the chief 

component of biomass is cellulose, constituting around 40–50 wt.% of the material, the other two 

major components, hemicellulose and lignin, account for around 20-40 wt.% and 10-40 wt.% of 

the material respectively.130,132 Along with these components, biomass also contains trace 

amounts of inorganics (ash) and extractives. All of these biomass constituents contribute in a 

greater or lesser degree to the physical and chemical properties, and the pyrolysis characteristics 

of the lignocellulosic biomass. 

 

In a slow pyrolytic (<100 °C/min)133 process, five distinct stages can be discerned based on the 

decomposition degree of each of the basic structural components:133,134 (i) <100 °C: moisture 

evolution predominates, (ii) 100-250°C: extractives decomposition begins (many authors do not 
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mention this zone); (iii) 250-350°C: hemicellulose decomposition predominates; (iv) 350-500°C: 

cellulose and lignin decomposition predominates; and (v) >500°C: lignin decomposition 

predominates. These temperature ranges—taken from 134—serve as reference values but the 

reported temperatures can present some variations between authors. The general consensus, 

nonetheless, is that moisture evaporation represents the first stage of biomass thermal 

degradation followed by the decomposition of first hemicellulose and subsequently cellulose. 

And that lignin, characterized by its higher resistance in comparison to cellulose and 

hemicellulose, decomposes within a larger temperature range.133–136 For example: Ounas et al.135 

reported lignin decomposition beginning simultaneously with hemicellulose at 160°C and 

finalizing at 625°C, considerably after the end of cellulose decomposition at 372°C. 

 

The thermal decomposition of each individual component also results in distinct product yields 

and composition. Stefanidis et al.132 observed that cellulose pyrolysis resulted in a high yield of a 

tar abundant in levoglucosan plus additional anhydrosugars and a little solid residue. Xylan 

(representative of hemicellulose) pyrolysis produced large gas and moderate tar yields rich in 

water, phenols and ketones. Extensive secondary tar-cracking reactions during xylan pyrolysis 

were speculated to possibly take place at the elevated pyrolytic temperatures employed (500°C), 

considerably higher than the temperature at which xylan thermal decomposition occurs. Besides, 

the large amount of ash present in the commercial xylan employed also offered an explanation of 

the enhancement of gas formation by the sacrifice of tar. Finally, lignin produced little gas, a 

moderate amount of tar abundant in phenolic groups and the largest amount of char. 
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In order to predict product distributions and other features of biomass pyrolysis, several attempts 

have been made to correlate the biomass pyrolysis behavior with that of its basic structural 

components.134 For example, several authors detected no signs of interactions among the 

individual components during biomass pyrolysis in a thermogravimetric analyser133,134,137–142 or a 

packed-bed pyrolyser.134 A biomass pyrolytic global rate was satisfactorily explained by the 

summation of the rates of the three main biomass constituents, i.e. cellulose, hemicellulose and 

lignin, and the product distributions by direct cumulative correlations of each component. 

 

Raveendran et al.134,Yang et al.133 and several authors also observed that the ash has a 

considerable effect on the pyrolysis behavior and final product distribution and recommended to 

include it in the models to improve prediction accuracies (see Section 3.8.2). Stefanidis et al.132 

conducted thermogravimetric analysis and fast pyrolysis experiments of each of the main 

biomass components (cellulose, xylan as a hemicellulose representative, and lignin) as well as 

synthetic biomass produced by combining the components in various proportions. They 

concluded that in the thermogravimetric analyzer, the final solid residual weight could be 

accurately predicted by adding the contribution of each of the biomass components. Nonetheless, 

experimental and calculated DTG curves exhibited some inaccuracies when biomass components 

were combined. They associated this phenomena to limitations of heat and mass transfer. The 

fast pyrolysis experiments were specially affected by these limitations. When heat and mass 

transfer were restricted, the final product distribution appeared to shift in favor of greater 

charcoal and gas yields at the expense of tar yield. 
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In line with Stefanidis et al.132 findings, Raveendran et al.134 pointed out that the good agreement 

found in the literature models pertained to specific heating rates, each one associated to a 

particular biomass. When different heating rates were imposed, discrepancies appeared. These 

inaccuracies were attributed to the heating rate effect on charring reactions. Based on their own 

experimental studies, they reported that secondary reactions were the reason for the changes in 

the distribution of final products, and not the interactions between the biomass constituents. 

 

Stefanidis et al.132 also reported that the tar extracted from the pyrolysis of synthetic biomass 

presented a different composition than the one obtained from the individual components. 

Characteristic chemical tar compounds produced by the isolated biomass components—

described above—could be discerned but in different quantities. Stefanidis et al.132 experimental 

observations combined with a literature study led them to conclude than the levoglucosan 

produced by cellulose via transglycosylation could further react via catalysis to form mostly 

aromatic hydrocarbons, phenols, furans and polycyclic aromatic hydrocarbons (PAHs). Products 

derived from xylan, which are characterized by a broader array mainly including phenols and 

ketones along with some acids, could catalytically react to finally produce aromatic 

hydrocarbons, phenols and PAHs. Finally, phenolic groups produced from lignin could not be 

catalytically transformed into other chemical compounds due to their aromaticity. 

 

Contrasting the findings of the authors mentioned previously, some studies have concluded that 

cellulose, lignin and hemicellulose components do not act independently during pyrolysis and 

therefore, interactions should not be ignored. Worasuwannarak et al.143 reported considerable 
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cross-linking interactions between cellulose and lignin during biomass pyrolysis in a 

thermogravimetric analyzer. The result of these interactions was the formation of water and ester 

groups that resulted in higher char production and lower tar. 

 

During thermogravimetric studies at a temperature of 800°C, Wang et al.144 reported interactions 

of both lignin and hemicellulose with cellulose but not obvious interactions between them. The 

pyrolysis of wood at the same temperature of 800°C performed by Hosoya et al.145,146 revealed 

influences on the final product yields and pyrolytic behavior from both the inorganic matter and 

interactions between wood polymer components. It appeared that wood is likely to form less 

levoglucosan and more C2-C3 carbonyls and levomannosan than the amounts predicted from the 

isolated constituents. In consonance with these observations, at temperatures between 350 and 

500°C, Wang et al.147 reported influences between cellulose and lignin that resulted in higher 

production of 2-furfural and acetic acid, and interactions between cellulose and hemicellulose 

associated with the formation of phenol and 2,6-dimethoxy. 

 

Regardless of the absence or presence of polymeric interactions, some relations can be found 

between the biomass composition and charcoal yields or properties. For instance, higher contents 

of lignin in biomass typically lead to greater yields of charcoal.148,149 Due to its higher initial 

carbon content and the greater tendency to remain in the solid form rather than breaking down to 

form volatiles, Mackay and Roberts148 found that lignin, by itself, was able to produce three 

times more charcoal than cellulose when pyrolyzed at a heating rate of 15°C/min to 500°C under 

an argon stream. 
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Shafizadeh and DeGroot150 acknowledged that after pyrolysis, the biomass energy gets 

distributed between the different pyrolytic products to distinct degrees dependent on the biomass 

nature and the pyrolysis conditions. Evaluation of the biomass material through quantitative 

thermal analysis determined the evolution of mass loss and distribution of heat between the 

resultant products and showed that a higher lignin content in the biomass leads to a greater 

fraction of energy captured in the char. Cellulose pyrolysis at 500°C resulted in a mass loss of 

92% and in final volatiles that retained 86% of the biomass energy, while lignin pyrolysis lead to 

a char residue containing 70% of the biomass energy. Volatilization of the fuel was also found to 

be enhanced by a higher content of carbohydrate and extractives, as well as by higher 

temperatures. 

 

In terms of proximate analysis, lignin presents a considerably higher amount of fixed-carbon in 

comparison to cellulose or xylan151 and biomasses with high lignin contents are associated with a 

higher production of char and a lower release of volatiles. Haykiri-Acma and Yaman152 

concluded that biomass species with higher contents of lignin and ash exhibited enhanced char 

formation compared to biomass species with higher content of volatile matter, which released 

more volatiles. Biagini and Tognotti153 also observed that biomass species with increased 

contents of volatile matter exhibited more intense melting, swelling and plastic deformations 

during fast pyrolysis. The yield of charcoal and its physical properties were also found  to be 

related to the density of the original biomass.154 In iron industries, charcoals from dense 

hardwoods have traditionally been more desirable given their greater crushing strength.154 
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In terms of elemental analysis, Sonobe and Worasuwannarak155 observed that biomass species 

with similar elemental compositions showed different devolatilization behaviors and consequently  

arrived at the conclusion that biomass cannot be assumed homogeneous but cellulose-hemicellulose-

lignin-ash ratios, as well as chemical functional groups and bonds should be considered.  

 

3.8.2. Effect of mineral matter or ash 

 

The ash-forming matter in both coals and biomass is classified by Tumuluru et al.156 into four 

categories: easily leachable salts, minerals that form part of the biomass structure, inorganic 

compounds such as sand, salt or clay, and inorganics associated with the organic material. 

Raveendran et al.157 identified that typically, the main inorganic elements in biomass are sodium, 

potassium, calcium, magnesium, iron, phosphorus, aluminum and silicon; whereas cobalt, 

chromium, copper, manganese, nickel, sulfur and zinc are also present but in lower 

concentrations. 

 

A number of studies with demineralized, mineral-treated and/or untreated biomass have 

investigated the effect of inorganic salts or ash during biomass pyrolysis and have demonstrated 

that generally, the mineral matter suppresses tar formation and promotes char and gas 

production.149,157–161 
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In fast-pyrolysis experiments of demineralized wood at elevated temperatures of ~1000°C, Nik-

Azar et al.160 observed an increase in tar yields and a decline in char and gas yields. The 

temperature at which tar-cracking reactions became significant was also reduced. A possible 

justification to this temperature behavior was the swelling of cellulose due to the acid wash 

pretreatment which caused a reduction on pore sizes and in consequence, restrictions to tar 

diffusion inside the biomass particles. Shafizadeh et al.162 also reported an increase of tar yields 

and levoglucosan content when pure cellulose and wood-derived materials were first prewashed 

with dilute acid and then pyrolyzed under vacuum at 400°C.  

 

Raveendran et al.157 confirmed the increase in volatile yields derived from demineralized 

biomass and reported quicker devolatilization rates and a higher onset temperature of 

devolatilization. Exceptions to this behavior were biomass samples high in potassium and/or zinc 

along with high lignin contents. These observations agree with the lignin impact on pyrolytic 

processes. Shafizadeh and Chin163 reported similar effects from the addition of acidic additives to 

the pyrolysis of isolated cellulose and xylan (i.e. hemicellulose model compound). In these cases, 

dehydration and charring reactions appear to be enhanced to produce water, char and reduce tars. 

Furthermore, Tang and Eickner158 reported a similar influence of inorganic salts on both 

cellulose or wood pyrolysis, but a less severe impact for lignin pyrolysis. 

 

Conversely, when biomass is mineral-treated and subsequently pyrolyzed, char yields usually 

become higher and the tar presents a lower yield as well as a reduced molecular weight. The 

nature of the mineral matter in biomass affects both the distribution and properties of the final 

products. Fang and McGinnis164 investigated the pyrolysis of holocellulose from loblolly pine 
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bark at temperatures ranging from 100 to 600°C in a continuous flow reactor after adding acidic 

ZnCl2 and basic NaOH catalysts. In contrast to pyrolysis of a raw sample, char yields increased 

and the decomposition shifted to lower temperatures when using both catalysts. The 

concentration of volatiles products considerably varied with the catalytic medium employed. The 

addition of ZnCl2 in a catalyst-to-holocellulose ratio of 5% increased the 2-furaldehyde and 

methanol products. Increasing the ratio in a 5-30% range further reduced the decomposition 

temperature and increased methanol yield. Furaldehyde concentration did not significantly 

increase. NaOH addition especially enhanced the production of CO2 and light hydrocarbons 

(methane and ethane).  

 

In agreement with these observations, Beaumont and Schwob112 reported different product yields 

and composition of tar from quick pyrolysis experiments at 350°C using raw wood, and wood 

impregnated with a basic (5% NaOH) and an acidic (5% FeC13) catalyst. Results from both 

mineral treatments confirmed the suppression of tar yields and the enhancement of char yield in 

comparison to the untreated biomass, but gas yield behavior changed between catalysts. 

Compared to the gas yield obtained from the raw biomass, the application of a basic catalyst 

enhanced the gas yield while the acidic catalyst modestly reduced it. The oil composition also 

changed. Acidic FeC13 raised the furaldehyde content and lowered the hydroxypropanone and 

furfurylic alcohol. In contrast, the tar derived from the wood pre-treated with basic NaOH 

contained a higher content of hydroxypropanone and less furaldehyde. They concluded that 

reaction mechanisms changed with the catalyst employed, acid catalysts favor dehydration and 

furaldehyde production and basic ones promote gas and char-forming reactions. 
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Pan and Richards165 reported that potassium , but not calcium, act as catalytic agents in the 

production of carbon dioxide and carbon monoxide, acetic and formic acids and methanol during 

the pyrolysis of wood at an isothermal HTT of 250°C or at progressive heating from 100 to 

550°C. They speculated that, as opposed to calcium, potassium is an effective catalyst for the 

production of formic acid (and maybe methanol) due to its higher alkalinity. Nik-Azar et al.160 

treated raw wood by mineral impregnation before quick-pyrolyzing it and confirmed the catalytic 

effect of potassium, sodium, and calcium cations (particularly strong for sodium and potassium) 

on tar-cracking reactions in favor of the production of char and gas. 

 

Gray et al.166 reported that inserting calcium in woody biomass by ion exchange reduced tar 

yield, increase the production of water and of hydroxypropanone, acetic acid and furfuraldehyde 

chemicals. The effects observed from the addition of calcium were reported to be similar to those 

exerted by ash constituents inherent to the wood material.  

 

During pyrolysis under vacuum of mineral-treated cottonwood, Richards and Zheng167 observed 

that K, Li and Ca promoted char formation and reduced the yield of tar characterized by a low 

content of levoglucosan. Other ions were tested and transition metals (in particular) produced a 

tar with increased levoglucosan contents. Nassar et al.168 observed that inorganic salts acted as 

effective fire-retardants by suppressing the formation of flammable tars, volatiles and gases, and 

enhancing the formation of char. Catalytic dehydration reactions of cellulose by minerals is a 

typical mechanism suggested to explain the reduction of depolymerization reactions into 

flammable tars, such as levoglucosan, in favor of more water and char.149,158,159,168 Akhtar and 
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Saidina Amin149 also explained that secondary reactions as well as the internal diffusion of tars 

in the pores of the mineral matter justify the shift in product distribution when applying mineral 

treatments to the biomass. 

 

Changing the catalyst-to-biomass ratio can also affect the yields and properties of the pyrolysis 

products. Pütün169 performed pyrolysis in a tubular fixed-bed reactor at 550°C under various 

amounts of MgO catalyst in a range from 5 to 20 wt.% of raw material and observed increasing 

gas and char yields and reducing tar yields were stronger as the catalyst: biomass ratios became 

higher. Catalytic treatment—versus no treatment—also confirmed the reduction of the oxygen 

content and the molecular weight of the tar.  

 

Zhou et al.170 conducted pyrolysis experiments of biomass in a fixed-bed pyrolyzer at 550°C, 

employing the same catalyst-to-biomass ratios but using ZnO catalyst instead of MgO.  They 

observed analogous trends but a less intense effect from raising the catalyst amount on gas and 

tar yields. Char yields did not appreciably vary with the catalyst amount added. Catalytic tar, as 

opposed to non-catalytic tar, also contained lighter compounds and presented a lower viscosity. 

Based on Pütün’s169 and on their own results, Zhou et al.170 concluded that ZnO could be a mild 

catalyst. 

 

Encinar et al.159 tested several catalysts on biomass pyrolysis and confirmed the effect of the 

addition of a catalyst on promoting char and gas production and reducing tar production. In 
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addition, the use of alkaline metals increased the fixed-carbon content. The gas composition also 

varied with the catalyst type. Iron and especially zinc promoted the formation of hydrogen. It 

appeared that ZnCl2-enhanced depolymerization reactions were accompanied with charring and 

tar-cracking reactions that finally led to hydrogen release. When the ZnCl2 concentration 

increased, the effects on product yields were intensified. Demineralizing the biomass by 

prewashing it with acid lowered char yield but the char presented higher fixed-carbon content 

and lower ash content. 

 

Catalytic agents have also been added to biomass pyrolysis to improve the quality of the tar 

produced.171 Tar presents four problematic properties as a fuel: high viscosity due to the presence 

of large molecules, corrosivity due to the presence of organic acids, instability due to the 

presence of reactive compounds and low energy content (with a heating value of ~19 MJ/ kg) 

due to the small amount of elemental hydrogen and large amount of elemental oxygen.172 A 

number of technologies have been developed in order to lower the acidity and increase stability 

and calorific value of tar.171,172  

 

Zeolites catalysts have been shown to produce a tar with a lower yield but with better quality by 

effectively minimizing oxygenated compounds.171,173,174 Studies with ZSM-5, a common zeolite, 

confirmed the decline of oxygenated aromatic compounds in tar, as well as the increase in 

aromatic hydrocarbon content.173–175 Huang et al.176 modified a HZSM-5 zeolite catalyst by 

impregnation with 6% wt. lanthanum .and observed that increasing the catalyst-to-biomass ratio 
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from 0 to 3 increased gas and olefin yields, especially when the ratio varied from 0 to 1. 

Increasing the ratio above 3 did not have a significant effect on the olefin yield.  

 

3.9. Kinetic schemes and heat of reaction of biomass pyrolysis 

 

During pyrolysis, the biomass undergoes a complex network of chemical reactions coupled with 

heat and mass transfer phenomena. The overall mechanism, extremely complex in actual 

pyrolysis processes with the formation of over a hundred intermediate products, is yet to be fully 

understood. Nonetheless, a number of authors have discerned patterns and provided useful 

insights that have resulted in the development of a wide diversity of simplified mathematical 

models whose reaction rates are based on apparent kinetics. 

 

Literature reaction schemes range from one-step models to more intricate multi-reaction models 

with sets of parallel reactions. For example, biomass chemistry can be represented with a set of 

parallel reactions that account for the breakdown of the major structural components: cellulose, 

hemicellulose and lignin.133,134 Other kinetic schemes consider the virgin biomass as a whole, 

without dividing it into sub-constituents, and represent the thermal decomposition as a set of 

primary reactions that lead to the production of primary gas, tar and char.103,163,177 Some of these 

kinetic schemes also account for secondary interactions among the products evolved from 

primary degradation.163,178–183 Di Blasi184 classified the kinetic schemes into three categories:  

a) one-step global models, when a single reaction is used to describe the pyrolytic process.  
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b) one-step, multi-reaction models, when the pyrolysis process is represented by several 

primary reactions, and  

c) two-stage, semi-global models, when primary and secondary reactions are considered. 

The main drawback of scheme (a) is that it assumes a constant ratio between the different 

products and consequently, it cannot be applied to calculate product distributions. 

Table 3.1, taken from Haseli’s Ph.D. thesis,185 summarizes kinetic schemes offered in literature 

and references authors that proposed or applied them. The first four schemes represent primary 

steps and do not considered vapor-solid secondary reactions. The last two schemes, the models 

by Shafizadeh and Chin and by Koufopanos et al., account for secondary interactions from two 

different points of view. Shafizadeh and Chin163 suggested that secondary reactions led to the 

formation of additional char and light hydrocarbons at the expense of tar. Whereas Koufopanos 

et al.178 proposed that the virgin biomass undergoes primary reactions to decompose into 

volatiles and gases (reaction 1) and char (reaction 2). These primary pyrolysis products 

participate in secondary reactions to produce volatiles, gases and char of different compositions 

(reaction 3). 

 

Pyrolysis mathematical models developed in literature typically predicted product yields by 

coupling the chemical reactions to heat and mass transfer phenomena. In a recent review, 

Babu186 (although not clearly specifying the context of the reaction environment) qualitatively 

described all these interactions as follows: (i) heat transfer from a heat source to the biomass fuel 

resulting in hotter internal biomass temperatures; (ii) beginning of pyrolytic reactions as a result 

of the higher temperatures and the release of volatiles from the fuel and the production of solid 
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char; (iii) outflow of hot volatiles, leading to heat transfer from the volatiles to the cooler 

unreacted fuel; (iv) tar condensation in the cooler regions of the fuel; and (v) autocatalytic 

secondary pyrolysis reactions from the primary products.  

Table 3.1. Summary of kinetic schemes of biomass pyrolysis proposed in the literature. Data 

taken from Haseli’s Ph.D. thesis.185 

Model Kinetic Scheme Reference 

One-step global 

model  
Biomass  →Volatiles + Char  187 

Three independent 

reactions model  

Cellulose  →Volatiles + Char  
133,134 Hemicellulose  →Volatiles + Char  

Lignin  →Volatiles + Char  

Broido-Shafizadeh 

model  

Cellulose  →Intermediate →Tar  
177  

→Intermediate → Light gases + Char 

Model of 

Koufopanos et al.  

Biomass  →Intermediate →Volatiles + Gases  
103  

→ Intermediate → Char 

Model of Shafizadeh 

and Chin  

Biomass  →Light gases  
163 Biomass  →Tar  

Biomass  →Char  

Model of Shafizadeh 

and Chin  

with secondary 

reactions  

Biomass  →Light gases  

163,178–181 
 →Tar →Light gases  

 →Tar → Char 

 →Char  

Model of 

Koufopanos et al.  

with secondary 

reactions  

Biomass  →(Volatiles + Gases)1  

178,182,183 
 →Char1  

(Volatiles + 

Gases)1+ Char1  
→(Volatiles + Gases)2 + Char2  

Model of Grønli and 

Melaaen  

with secondary 

reactions  

Biomass  →Gases  

188 
 →Tar →Gases  

 →Char  

 

A wide range of wood pyrolytic enthalpies for the pyrolytic process have also been reported in 

the literature varying from endothermic to exothermic as a function of processing conditions. In 

1892, Chorley and Ramsay189 observed that wood distillation became exothermic at a 

temperature close to 280°C. Around a decade later, Klason and co-workers190–192 described wood 

pyrolysis as an exothermic process at a starting temperature of about 250°C and an end point of 
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about 350°C. Beyond this temperature, the charcoal was observed to further decompose mainly 

into gas, with no production of acetic acid or wood alcohol (methanol).  

 

When charring reactions were inhibited, Milosavljevic et al.193 reported cellulose pyrolysis to be 

an endothermic process with a reaction heat of ∼538 J/g of volatiles evolved. This endothermic 

heat was speculated to include reactions’ pyrolytic enthalpies associated with the release of 

volatiles in addition to the latent heat of vaporization of pyrolytic products such as tars. In 

contrast, when char formation was promoted, the process became exothermic with a heat of 

reaction of roughly 2kJ/g of char formed. In conclusion, pyrolysis could be driven to the 

exothermic direction by promoting char-forming reactions (no specification was made between 

primary and secondary char) versus tar-forming reactions. In an “open” reactor, low heating 

rates, along with mass transfer restrictions, served to shift pyrolysis towards exothermicity. 

 

In line with these findings, Arseneau194 observed a very mild, almost indiscernible, endotherm at 

~180°C followed by an also almost indiscernible exotherm at ~220°C, and later by a more rapid 

and clear endotherm starting at ~280°C during the pyrolysis of thin (0.46 mm) cellulose samples 

by thermogravimetry under a nitrogen flow. The second endotherm was attributed to two 

phenomena: the depolymerization of residual cellulose and the volatilization of levoglucosan. 

Restricting the release of levoglucosan by stacking cellulose thin layers to form a cellulose 

sample 0.9 mm thick, or by placing 25 mg of dried alumina over a thin cellulose sample, 

produced a drastically clearer exotherm. This behavior was attributed to the breakdown of the 

primary polymerized product, presumably levoglucosan.  
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During the pyrolysis of beech and spruce woods in a differential scanning calorimeter, Rath et 

al.195 recognized a linear correlation between the heat of reaction and the char yield, which was 

in turn highly dependent on the conditions of the pyrolytic process. In agreement with 

Milosavljevic et al.193, they speculated that the overall heat of reaction may be a balance between 

exothermic char-forming processes that compete with endothermic tar-forming processes. Mok 

and Antal63 arrived at the same conclusion when pyrolyzing cellulose in a tubular flow reactor 

under pressure embedded in a differential scanning calorimeter. An endothermic process 

transformed into an exothermic one when tar release was hindered and char formation was 

promoted by the use of higher pressures and lower gas flows. The endotherm was associated with 

levoglucosan vaporization while the exotherm was attributed to levoglucosan in-situ 

carbonization. Antal and Grønli39 recognized that the exothermic nature of secondary reactions 

could simultaneously provide part of the heat necessary for the carbonization process, improve 

char yields and reduce the formation of unwanted tars. 

 

A number of authors163,178–181 developed mathematical models that applied the kinetic scheme of 

Shafizadeh and Chin with secondary reactions in Table 3.1. The models attributed an 

endothermic heat of reaction to the primary formation of tar, but differentiated the formation of 

primary and secondary char to be endo- and exothermic processes, respectively. DiBlasi184 

pointed out that at low temperatures and brief volatile residence times, only primary 

(endothermic) reactions occur, while secondary (exothermic) reactions take place at high 

temperatures and extended residence times.  
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With respect to the major chemical components of biomass: cellulose, hemicellulose and lignin, 

pyrolysis of hemicellulose and lignin is generally depicted as an exothermic process. In contrast, 

cellulose pyrolysis is reported either as an endothermic or exothermic process depending on the 

experimental conditions.193,194,196–198 Kilzer and Broido199 recognized the existence of at least 

three distinct processes during cellulose pyrolysis. Two competing endothermic processes 

associated respectively with the formation of “dehydrocellulose” and levoglucosan (major 

constituent of the tar), and a third exothermic process attributed to the generation of volatile 

carbon-containing compounds and hydrogen from "dehydrocellulose” reactions, as well as inter-

molecular condensations to produce char. In contrast to these findings, Arseneau194 and Mok and 

Antal63 (mentioned above) revealed that the decomposition of levoglucosan, and not the 

“dehydrocellulose”, was responsible of the exothermicity of cellulose pyrolysis. 

 

Tang and Eickner158 reported an endothermic net heat of reaction from cellulose pyrolysis and 

indicated similar heat contributions from dehydration and depolymerization reactions since net 

heat remained almost unchanged under various catalyst concentrations that will influence the 

competition between these reactions. Chemical treatment and the presence of lignin showed a 

reduction of the overall heat, which was consistent with an exothermic heat source contribution 

coming from secondary charring reactions.  
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CHAPTER 4. MATERIALS AND METHODS 

 

The following sections describe the experimental apparatus, the materials and the procedures 

used in the carbonization experiments performed to meet the objectives set forth in Chapter 2 

after due consideration of the prior work summarized in the literature review of Chapter 3. The 

first section of this chapter describes the evolution of the experimental test bed that includes the 

development of the wall heated tubing bomb (WHTB) reactor and instrumentation used for 

monitoring reaction conditions and product characterization. And the second section of this 

chapter describes the steps used to conduct a typical test, the post-test disassembly of the reactor, 

sample collection and product analyses. 

 

4.1. Apparatus Evolution 

 

The carbonization reactor—referred to as the Wall Heated Tubing Bomb (WHTB) —evolved 

from the original model presented in references,25,26 to an intermediate single reactor model, to 

an intermediate dual reactor and finally, to the current dual reactor system which is displayed in 

Figure 4.1. 
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Figure 4.1. Schematic of the Wall Heated Tubing Bomb (WHTB) reactor. 

 

The original model described in references25,26 was equipped with a single reactor body that 

could hold a maximum of 12 g of sawdust. This capacity limited the amount of char 

manufactured and recovered, and therefore the number of analyses that could be applied to the 

char. Chars manufactured in the original WHTB were only subjected to proximate analysis and 
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occasionally to SEM.25,26  A greater charcoal mass was desired to allow additional analyses to be 

performed and thus obtain a better understanding of the carbonization process, the char 

properties and potential applications.  

 

The intermediate and current versions of the WHTB reactor share the same operating principles, 

enabling constant-volume pyrolysis in a hermetically-sealed batch reactor able to withstand high 

temperatures and pressures (up to 16.24 MPa at 537°C). Improvements from the original reactor 

include a higher loading capacity, enhanced safety, and the ability of acquiring highly 

reproducible data. The intermediate single reactor model increased the capacity to 14 g of 

sawdust through internal modifications of the original reactor. This system was equipped with a 

single reactor body with analogous characteristics to the current WHTB described in this section.  

 

The intermediate dual reactor model doubled the active volume by adding a second reactor body 

as described in reference 27. Finally, the current reactor system replaced the internal 

thermocouples from single point to multipoint thermocouples in order to acquire additional data. 

The burst diaphragm was replaced from the previous model (Oseco STD) rated at 16.20 MPa at 

22°C27 to a lighter and smaller model (LaMot) with a superior pressure rating of  21.3 MPa at 

22°C. The new burst diaphragm made it possible to operate the reactor at higher temperature 

and/or pressure (See Appendix A.4 and A.5 for Allowances for Pressure and Burst Diaphragm 

Rupture Pressure definitions). The burst diaphragm ruptures if its rated pressure is exceeded, 

protecting the WHTB reactor from experiencing pressures that would result in catastrophic 
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failure. The outlet of the burst diaphragm vents through a tube into a bucket filled with water that 

serves as a buffer / shock absorber to dissipate the released energy. 

 

Analysis of the char produced in the dual WHTB reactor designs include proximate and ultimate 

analysis, higher heating value by bomb calorimetry and SEM imaging. Although beyond the 

scope of the present work, collaborators anticipate conducting additional analysis including X-

ray fluorescence (XRF) spectroscopy, nuclear magnetic resonance spectroscopy (NMR),Fourier 

transform infrared spectroscopy (FTIR), BET surface area measurements, thermogravimetric 

analysis under CO2 and N2 (TGA-CO2, TGA-N2), X-ray diffraction (XRD) and transmission 

electron microscopy (TEM). 

 

Each reactor body (see the colored sections in Figure 4.1) is constructed from a section of 316 

stainless steel tubing that is 17.15 cm long with a 2.54 cm outer diameter and a wall thickness of 

2.11 mm.  The reactor has an allowable working pressure of 21.37 MPa at room temperature and 

16.24 MPa at 537°C. After it is constructed and prior to use, each new reactor is hydrostatically 

pressure tested at 21.87 MPa. After the reactor is loaded and assembled, a leak test is also 

performed, prior to each experiment. Swagelok fittings and reducing unions connect the top of 

each reactor body to a 6.35 mm stainless steel tube referred to as the “stem” of the reactor (rated 

at 35.26 MPa at room temperature). At the bottom of each reactor body, the unions provide an 

insertion point for a type K multipoint thermocouple (TC1-TC6 in Figure 4.1, see Appendix C 

for characteristics of the multipoint thermocouple) whose sensing tips are located on the cylinder 

axis at 5, 10, 15 cm from the bottom of each reactor body. This new way of inserting and 
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centering the thermocouple (TC) has improved the reliability and reproducibility of the axis 

temperature measurements. The original model measured the axis temperature with a TC 

inserted from the top which required the use of a TC holder (a stainless steel tube inserted 

through the center of the reactor) that caused problems with the reproducibility of the 

temperature measurements.25,26 

 

Additional type K thermocouples are positioned internally at the midway point of the reactor 

stems (TC9 and TC10 in Figure 4.1) and hose clamp thermocouples are placed on the outer 

reactor walls (TC7 and TC8 in Figure 4.1, see Appendix C for specifications). A union cross 

connects both stems with 6.35 mm stainless steel tubing side arms. The arms hold an extra outer 

hose clamp thermocouple (TC11 in Figure 4.1, see Appendix C for specifications), and are 

connected to the valves, burst diaphragm and other system components as shown in Figure 4.1.  

The pressure transducer (Omega, model PX 602-5KGV) has a range from 0.1 to 34.58 MPa with 

a 1.0% accuracy (full scale) which is used in conjunction with a digital readout (Omega, model 

DP25-S).  

 

Prior to an experiment, the reactor body is filled with a weighed amount of biomass (spruce, 

birch, oak or cellulose) and a piece of stainless steel mesh is placed on top to retain solids in the 

reactor. During an experiment, the WHTB colored sections in Figure 4.1 are directly heated by a 

fluidized alundum sand bath (Techne, model SBL-2D, see Figure 4.2) with a maximum specified 

temperature rating of 600°C. The heating elements of the sand bath are checked on a routine 
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basis with a clamp-on amp meter to ensure that they are operating properly (3.43 A per element 

at 208 V).  

 

A diaphragm pump (Speedaire model No. 26x362) is used to deliver clean dry air to fluidize the 

sand bath. A rotameter is installed between the pump and the sand bath to regulate airflow 

(maximum specified air flow of 57 L/min). A digital temperature controller (Omega model 

CN77R344) maintains the sand bath temperature throughout the experiment. The installation of 

the pump, rotameter and temperature controller has greatly improved the stability, uniformity 

and reproducibility of the fluidization conditions and temperature. The whole apparatus (reactor 

and sand bath) is enclosed in a protective structure built with welded steel tubing and Lexan 

panels (polycarbonate) (see Figure 4.2). The protective structure is located below a ceiling 

mounted canopy hood to evacuate heat and fugitive emissions. 

 

Figure 4.2. Sand bath equipment and protective structure 
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A worm gear winch located on the side of the protective structure is operated with a hand drill to 

lower the reactor into the sand bath at the start of an experiment or to raise the reactor to 

terminate an experiment. A blower mounted above the primary protective structure directs 

cooling air through ducting to the upper arms and pressure sensor during the experiment. This 

system is also used to cool the reactor after an experiment is complete. Thermocouple wires exit 

the protective structure from the top. A total of fourteen type K TCs are connected to the WHTB 

to record the temperatures during an experiment; eleven are shown in Figure 4.1 and three are 

placed inside the sand bath at different locations to monitor uniformity of the hot fluidized sand 

bed surrounding the reactor. Data from the TCs and the pressure transducer are collected with a 

National Instruments SCXI 1303 data acquisition module connected to a computer using 

LabVIEW software for real time monitoring of the experiment and for data collection. A 

secondary Lexan shield supported by a wooden structure on wheels (see Figure 4.3) is used to 

further separate experimenters and the data acquisition computer from the WHTB reactor.  

 

Figure 4.3. Secondary Lexan protective shield 
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4.2. Materials and Experimental Procedure 

 

Spruce, birch, oak, cellulose and rice husk were subjected to proximate analysis according to 

ASTM E872-82(2013)200 and ASTM E830-87(1996),201 ultimate analysis by ASTM E777-17,202 

E775-15203 and E778-15,204 and to energy density evaluation by bomb calorimetry. These 

analysis were performed in HNEI laboratories. For these parent materials, three samples were 

subjected to proximate analysis, two samples to ultimate analysis and one single sample for 

bomb calorimetry. Uncertainties of the proximate and higher heating value analyses were 

determined using six replicated samples of a lab-standard charcoal which gave the following 

values: volatile matter = 21.1%±0.3%, ash= 2.3%±0.1%, fixed carbon = 76.6%±0.2%, and 

higher heating value = 28.1%±0.2%.  All uncertainties are based on absolute percentages. 

 

Prior to each test, a sample of biomass was subjected to moisture content evaluation following 

ASTM E871-82205 with the following practical modifications: the sawdust stock was too small to 

supply a 50 g sample for moisture analysis at each WHTB test condition; therefore a 5 to 7 g 

sample was used instead. Results of the moisture content, proximate, ultimate, and higher 

heating value analyses are presented in Table 4.1. Values of the contents of structural 

components taken from elsewhere206 are also provided. 
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Table 4.1. Moisture content, elemental and proximate analysis, higher heating value, and 

cellulose, hemicellulose and lignin composition of Norwegian spruce, birch, cellulose, oak and 

rice husk feedstock. 

  Spruce Birch Cellulose Oakg Rice Huskg 

Moisture content 
[wt.%, wet basis] 

 7.8 7.9 5.9 7.5 7.6 

Ultimate Analysisa 
[wt.%, dry basis] 

C 46.93±0.05 47.4 ±0.3 41.9 ±0.1 45.4 ±0.1 35.1 ±0.3 

H 6.26±0.02 6.32±0.03 6.3±0.1 6.1±0.1 5.20±0.02 

Od 46.3 45.43 51.7 47.1 37.4 

N 0.20±0.02 0.20±0.02 0.08±0.04 0.215±0.002 0.366±0.001 

S 0.011±0.001 0.0158±0.001. 0.00 0.017±0.001 0.049±0.001 

Ashe 0.36±0.17 0.67±0.02 0.00 1.18±0.05 21.9±0.2 

Proximate 
analysisb [wt.%, dry 
basis] 

fCCf 14.8±0.1 13.1±0.2 6.0±0.2 14.0±0.7 13.7±1.2 

VMg 84.9±0.1 86.2±0.2 94.0±0.2 84.8±0.8 64.4±1.3 

Ash 0.36±0.17 0.67±0.02 0.0±0.0 1.18±0.05 21.9±0.2 

Higher heating 
value [MJ/kg] 

 18.00 18.50 16.15 17.67 14.17 

Contents of 
structural 
components[wt.%, 
dry-ash free basis]c 

Cellulose 43.6, 47 50.2, 49.1 100 58.4 43.8 

Hemicellulose 27.4, 25.3 32.8, 31.6 0.0 31.4 31.6 

Lignin 29.0, 27.7 17.0, 19.3 0.0 10.2 24.6 

Extractives 1.8, 2.5 3.0 0.0 NAh 6.6 

a Average of two samples, uncertainty indicates range of values. Elemental analysis of cellulose  closely 
resembles C 44.4%, H 6.2% and O 49.4% given by its formula (C6H10O5)n 
b Average of three analyses, uncertainty indicates standard deviation. 
c Composition of structural components taken from 206 
d Oxygen by difference.  
e Ash content determined by proximate analysis.  
f Fixed-carbon content (fCC). 
g Volatile matter content (VM). 
hNot Available (NA) 

 

The summary below will briefly describe the steps followed when running a WHTB experiment, 

this procedure refers to a total of ten Standard Operating Procedures (SOPs) that are presented, in 
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conjunction with Job Safety Analysis (JSAs), in Appendix D-M. Each SOP presents step-by-step 

instructions of a routine experimental process, as well as a description of the process hazards and 

the systems used to prevent and control these hazards. These SOPs are: 

 

1. Milling Biomass Material into Finely Divided Particles with a Fritsch Universal Cutting Mill 

Pulverisette 19 (Appendix D) 

2. Assembly, Loading and Leak Testing of the Wall Heated Tubing Bomb (WHTB) (Appendix E) 

3. Analysis of Feed Moisture Content (MC) (Appendix F) 

4. Gas Chromatograph (GC) Operation (Appendix G) 

5. Water Displacement Vessel (WDV) Operation (Appendix H) 

6. Volume Evaluation of the Wall Heated Tubing Bomb (Appendix I) 

7. Performing an Experiment, Unloading and Disassembly of the Wall Heated Tubing Bomb 

(Appendix J) 

8. Analysis of the Charcoal Moisture Content (Appendix K) 

9. Proximate Analysis (Appendix L) 

10. Replacing and Operating Gas Cylinders (Appendix M) 
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The SOPs used for a typical experiment are summarized in Table 4.2 to provide chronological 

order helpful in reviewing the SOPs. The SOPs for milling fuel (SOP #1 in the list above) and 

changing gas cylinders (SOP #10) are used as required. 

Table 4.2. Schedule of SOP use during performance of WHTB experiments (number in 

parentheses reflects number of SOP in list above). 

Day 1 Day 2 Day 3 

Assemble, load, and leak test 
WHTB (2) 

Start GC (4) Clean reactor (7) 

Start feed MC analysis (3) 
Continue feed MC analysis 
(3) 

Continue last week’s 
proximate analysis and begin 
this week’s proximate 
analyses (9)  

Prepare GC (4) and WDV (5) 
Continue last week 
proximate analyses (9) 

Begin charcoal MC analysis 
(8) 

Fix leaks (2) 
Perform Volume evaluation 
on WHTB (6) 

 

Continue last week’s 
proximate analyses (9) 

Perform experiment, unload, 
and disassemble WHTB (7) 

 

 

During the reactor assembly process, the feedstock and each reactor piece were weighed and 

recorded. 12-17 g of oak, ~27 g of cellulose (~20 g in the original reactor)58, or 14-26 g of dry 

spruce or birch were spooned into each reactor body, the reactor bodies were gently tapped 

during the loading to help fill voids and to loosely compact the biomass (SOP #2). The 

assembled reactor was pressurized and leak tested with nitrogen. Due to leak issues, WHTB 

reactors were usually replaced after every 3 experiments. A small sample of biomass was 

subjected to moisture content evaluation (SOP #3). 
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Prior to running the experiment, the sand bath was heated until the desired HTT was reached and 

stabilized (typically to 300, 400, 500 or 550°C). A reactor volume evaluation was performed 

with nitrogen to determine the gas volume in the WHTB containing the biomass sample (SOP 

#6), this step also served to flush air from the system. The reactor was pressurized with nitrogen 

to the desired level specified for the test, and the pressure and temperature sensors were 

connected to the data acquisition system.  

 

The process employed to heat up the reactor depended on the run. In a typical experiment with 

birch or spruce biomass fuels, the reactor was immersed into the hot sand bath after it had 

stabilized at the target temperature of 300, 400, 500 or 550°C. In experiments that studied the 

effect of slower heating rates, the reactor was immersed in a sand bath heated to 100°C and then 

subsequently ramped to the desired HTT.  In the case of preliminary experiments with cellulose26 

and oak biomass fuels that were performed at a HTT of 300 °C (or below), the reactor was 

heated in the same way as described for birch or spruce above, whereas experiments at HTTs 

over 300 °C (350, 370 or 400°C), the WHTB was immersed into a 300 °C sand bath that was 

subsequently ramped to the target temperature. Over the course of a test, data were recorded in 

LabVIEW every second. 

 

After reaching the planned experimental endpoint, the WHTB was removed from the hot sand 

bath and cooled down to room temperature with an air stream from the overhead blower. A 

typical “long” experiment with birch or spruce was terminated 190 minutes after the WHTB was 

submersed into the hot sand bath, while a typical “short” experiment finishes 10 minutes after the 
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end of the exotherm, i.e. the exotherm was considered to end once the pressure rise had 

considerably slowed down. The total experimental time of the short runs was around 30 minutes.  

Long “slow heating rate” experiments were halted when the reactor remained at the target 

temperature for a time period similar to the holding time experienced by the typical long 

experiments (i.e. 190 min of total immersion time minus heating time) whereas short “slow 

heating rate” experiments were terminated as soon as the sand bath reached the target 

temperature. Preliminary tests on oak and cellulose at HTTs of 300°C were terminated 10 

minutes after the exotherm (short experiments) and finally, preliminary tests at HTTs over 300°C 

were ended when the sand bath reached the target temperature.  

 

Once the reactor was removed and cooled to room temperature, the gas phase contained in the 

WHTB was depressurized into a water displacement vessel (WDV) and then analyzed by gas 

chromatograph (SOPs#4 and #5). The amount of water displaced from the WDV was weighed to 

calculate the final active gas volume using the ideal gas law (for additional details, see 25). After 

the gases were transferred to the WDV, the reactor was disassembled and the solid product 

(charcoal) and stainless steel screen were carefully removed (SOP #7). The stainless steel was 

subjected to a moisture content analysis according to ASTM D1576-13207 at 105°C in a 

convection oven.  

 

The charcoal moisture content was immediately analyzed using ASTM E1756-08208 in a vacuum 

oven, instead of the convection oven specified by the standard method- to prevent charcoal 

combustion (SOP#8). In order to avoid possible errors due to non-representative subsamples of 
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the charcoal product, a total moisture content analysis was performed on the entirety of the 

charcoal product recovered from the reactor. This moisture content analysis result has direct 

influence on the measurements of charcoal yield, mass balance and fixed-carbon yield.  

 

Subsequently, a subsample of the charcoal was ground ≤20 mesh (≤ 0.841 mm) using mortar and 

pestle, loaded into nickel-chromium crucibles and subjected to proximate analysis according to 

ASTM E872-82(2013)200 and ASTM E830-87(1996)201 (SOP #9).A mill was not used to grind 

samples because of the limited amount of charcoal sample produced from each experiment. 

Charcoal produced in preliminary experiments with oak or cellulose were subject to proximate 

analysis by standard ASTM D1762-84.209 A reproducibility study was performed to assess the 

uncertainty in the results from proximate analysis of certified coal standards and charcoals under 

various methods and configurations (see Appendix N). It was concluded that standards ASTM 

E872-82(2013)200 and ASTM E830-87(1996)201 provided a more accurate measure of the 

proximate analysis values of the coal reference materials used to test the methods. Note: if SEM 

analysis was to be performed, a small amount of un-crushed sample was separated from the bulk 

sample before grinding. Selected charcoal samples were sent to SINTEF Energy Research for 

SEM (ZEISS SUPRA-55) analysis. 
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CHAPTER 5. STUDY OF REPRODUCIBILITY, EXPERIMENTAL 

PROFILE AND EXPERIMENTAL DESIGN 

 

Experimental profile, conditions and results are reported in this chapter. The first section of the 

chapter describes the temperature and pressure history observed in typical WHTB experiments. 

The second section provides a detailed description of a reproducibility study from WHTB data. 

Experimental errors and data accuracy are determined. The final section of the chapter tabulates 

a list of experimental conditions and results, and presents a parity plot that depicts theoretical 

fixed-carbon yields versus experimental values.  

 

5.1. Experimental Profile 

 

Figure 5.1 shows a typical WHTB experimental profile from the dual intermediate reactor (i.e. 

with the single point internal reactor thermocouple) and Figure 5.2 shows a profile of an 

experiment with the current reactor (i.e. with the multipoint internal reactor thermocouple). As 

soon as the reactor enters the sand bath, the outer wall temperatures immediately start to rise 

followed by the axis temperature. This is expected as the heat flow is from the sand bath to the 

reactor wall, and then radially inward, through the porous fuel bed, toward the longitudinal axis 

of the reactor. This initial lag between wall and axis temperature illustrates the temperature 

gradient across the reactor. Similar to typical heating rates employed in slow pyrolysis (0.1-

1°C/s) 17–19 or flash-carbonization (~1°C/s)21, the biomass in the CVC reactor experiences rates 
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of about 0.5-1°C/s.  In comparison, flash-pyrolysis rectors employ notably faster rates ranging 

between 10-1000°C/s.17–19   
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Figure 5.1. Temperature and pressure profile of a constant-volume carbonization experiment with birch as the feedstock, a heat 

treatment temperature of 300°C and an initial nitrogen pressure of 0.1 MPa. (a) Profile of reactor body 1 and (b) Profile of reactor 

body 2. Axis temperature. Sand bath temperature.Stem temperature.Wall temperature. -- Pressure. 
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Figure 5.2. Temperature and pressure profile of a constant-volume carbonization experiment with birch as the feedstock, a heat 

treatment temperature of 550°C and an initial nitrogen pressure of 0.1 MPa. (a) Profile of reactor body 1 and (b) Profile of reactor 

body 2. Axis temperature sensor 1. Axis temperature sensor 2.Axis temperature sensor 3.  Sand bath temperature.Stem 

temperature.Wall temperature. -- Pressure. 
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As demonstrated in the experiment at a HTT of 300°C in Figure 5.1, after~5 minutes the reactor 

wall temperature approaches the sand bath temperature, the reactor pressure reaches ∼0.55 MPa 

and the axis temperatures is∼165°C. At this point, the rise in pressure and axis temperature 

accelerates, indicating the dominance of exothermic pyrolytic reactions that causes the axis 

temperatures to exceed the sand bath and wall temperatures. Figure 5.1 shows exothermic peaks 

of 363 and 389°C measured in the two reactors. These observations are in line with the 

description elsewhere of carbonization phenomena,40 where above 280°C, wood carbonization 

became exothermic. Without an external source of heat, this exotherm is not expected to exceed 

~400°C. In the experiment at a HTT of 550°C in Figure 5.2, the exotherm effect is masked by 

the fast heating rates imposed by the sand bath. 

 

In the WHTB, the exothermic temperature peak has been demonstrated to greatly vary with mass 

loading (Mass biomass /Volume reactor), the feedstock particle size, the HTT and the biomass type. 

Higher mass loadings, greater HTTs and smaller particles result in greater exothermic peaks and 

higher final pressures. Increasing the pretest reactor pressure with inert gas appeared to produce 

no significant changes in the exothermic peaks, char yields or fixed-carbon contents (see 

Sections 3.6 and 6.6). In line with Mok et al. observations,42 it is the partial pressure of volatiles, 

not the system pressure, that appears to have the dominant effect on the results. 

 

The overall heat of reaction has been widely recognized as the net result of exothermic reactions 

that favor the formation of char and endothermic reactions that enhance volatile 

release.39,178,184,193,195 Promoting charring reactions shifts the balance in favor of exothermicity. 
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In a reactor equipped with a gas stream, long vapor residence times, low heating rates and larger 

particles favor char-forming over tar-forming reactions (see Literature Review for details and 

references). The current work on CVC has shown an enhancement in char formation-and 

therefore greater exothermic peaks-when higher mass loadings, greater HTTs and/or smaller 

particles were employed.  

 

Figures 5.1 and 5.2 suggest that steady state was not attained during the 190 minute experiment 

as indicated by the continuous rise in pressure observed over the course of the experiment. Most 

of the experiments presented herein showed a similar temperature and pressure profile. 

Exceptionally, an experiment that carbonized small spruce particle sizes seemed to reach 

stability within 120 minutes indicating that small particles may speed up the carbonization 

process. In line with these observations, carbonization of small grains of oak sawdust and 

cellulose performed in the original WHTB reactor appeared to reach stability more quickly (by 

10 minutes after the end of the exotherm).  

 

A temperature disparity between the two reactors is evident in Figures 5.1 and 5.2, especially 

between the stem and wall temperatures. Also, distinctly different char moisture contents were 

obtained from the two reactors. These differences are generally observed but with some 

variability between experiments. A preferential condensation path for liquid pyrolytic products 

(due to one of the reactors being slightly lower than the other) could explain these observations.  

Nevertheless, these differences in temperature profiles and char moisture contents have a 
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negligible effect on the char yields (dry basis), char proximate analysis and visual properties of 

the final char.  

 

5.2. Study of Reproducibility 

 

To study the data reproducibility, five experiments with spruce as the feedstock were performed 

under the same experimental conditions: a HTT of 300°C, an initial reactor nitrogen pressure of 

0.1 MPa, a mass loading of around 100g/L and an immersion time of 190 minutes. The WHTB 

reactor employed for this part of the study was the intermediate, single-reactor model (see 

Section 4.1). Figure 5.3 illustrates the product yields from the five replicated experiments 

performed in the single WHTB.  

 
Figure 5.3. Reproducibility study on the yields of char, condensates and gas products from the 

constant-volume carbonization of spruce at a heat treatment temperature of 300°C and an initial 

nitrogen pressure of 0.1 MPa. Negligible free tars were recovered in the experiments. Liquid 

yield mainly represents water content of the final moist charcoal. 

 



85 

 

To compare results between the intermediate single reactor and the dual WHTB configurations, 

two additional experiments were carried out under the same conditions with the intermediate 

dual-reactor model. Figure 5.4 compares the average values of the product yields from the five 

repeated experiments shown in Figure 5.3 with the yields obtained from the two runs with the 

intermediate, dual reactor. Error bars are calculated as the standard deviation of the replicates. 

 
Figure 5.4. Comparison between product yields from spruce constant-volume carbonization 

experiments in the single and dual Wall Heated Tubing Bombs at a heat treatment temperature of 

300°C and an initial nitrogen pressure of 0.1 MPa. 

 

As shown by Figures 5.3 and 5.4, solid and gas yields derived from the single WHTB have good 

repeatability and were comparable to the yields from the dual reactor. On the other hand, the 

recovered liquid yields noticeably varied between experiments. This is somewhat expected due 

to the difficulty in quantifying the amount of liquid produced as it is dispersed throughout the 

WHTB reactor system. Some of the condensate is located in the reactor tubing or WDV, some is 

adsorbed on the stainless steel mesh and on the surface of the char, and some is lost due to 

evaporation during the removal of char and disassembly of the reactor.  
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Liquid yields are calculated from the weight loss from drying the moist charcoal and the stainless 

steel mesh. The carbon mass balances are a more reliable measure of product recovery 

(compared to the liquid yield). The amount of carbon present in the feedstock prior to the 

experiment was compared to that present in the solid charcoal and in the gas species CO2, CO 

and CH4. The carbon in both feedstock and charcoal was determined by elemental analysis and 

the gas composition was quantified by gas chromatography.  Carbon mass balances revealed that 

97.2±0.2% of the carbon weight was recovered in the reproducibility study, indicating that the 

reported charcoal and gas yields are highly reliable and that carbon in the free-tar accounted for 

<3% of the total. Nonetheless, tars may condense and adsorb to the surface of the solid charcoal 

in the cooling period, and would be expected to contribute to higher volatile matter content in the 

proximate analysis and higher C and H contents in the elemental analysis of the final charcoal 

product. 

 

If focus is placed on the solid product yields and liquid and gas yields are removed from Figures 

5.3 and 5.4, the new figures (Figures 5.5 and 5.6) depict the results of proximate analysis on 

charcoal. The charcoal product from each reactor body of the dual WHTB was recovered and 

analyzed separately. As shown in Figure 5.6, charcoals from the dual reactor have similar 

proximate analysis values as the charcoal produced from the single WHTB reactor. 
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Figure 5.5. Reproducibility study on the proximate analysis of charcoals derived from the 

constant-volume carbonization of spruce at a heat treatment temperature of 300°C and an initial 

nitrogen pressure of 0.1 MPa. 

 

 
Figure 5.6. Comparison between proximate analyses of charcoals derived from the constant-

volume carbonization of spruce in the single and dual Wall Heated Tubing Bombs at a heat 

treatment temperature of 300°C and an initial nitrogen pressure of 0.1 MPa. 

 



88 

 

5.3. List of Experiments and Parity Plot 

 

Eight factors -(i) closed vessel versus open vessel, (ii) initial reactor pressure, (iii) HTT, (iv) 

particle size, (v) heating rate, (vi) mass loading, (vii) immersion time and (viii) biomass type-

were investigated with the objective of understanding the effects of operating parameters on the 

gaseous, liquid and solid product yields, gas composition, and physical and chemical properties 

(proximate analysis, elemental analysis and energy density) of the final charcoal manufactured 

from CVC of wood.  

 

Table 5.1 lists the conditions and results of 49 experiments. A factorial experimental design was 

initially developed, however limitations imposed by operating conditions and safety defined the 

experimental program shown in the table. Fifteen preliminary experiments studied the effects of 

factors i to iii (closed vessel versus open vessel, initial reactor pressure, and HTT) with oak 

biomass as the feedstock in the original reactor. The rest of the experiments that followed this 

preliminary experimental round used Norwegian birch or spruce wood as the feedstocks (three 

isolated experiments used oak, cellulose and rice husk) to confirm the observed effects of factors 

ii and iii (initial reactor pressure and HTT) and to study the roles played by factors iv to viii 

(particle size, heating rate, mass loading, immersion time and biomass type).  
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments. Superscripts 

meanings shown in footnotes at the bottom of the table. 

Experiment Number  1 2 3 4 5 6 

Date (yymmdd) 151201 151125 150121 141210 150218 150129 

Conditions       
Reactor Type Original Original Original Original Original Original 
Feedstock Oak Oak Oak Oak Oak Oak 

Heat Treatment Temperature[°C] 300 300 300 300 300-400 300-400 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 1.48 2.69 2.69 2.69 

Immersion Time [min] a 34 134 24 38 44 55 
Mass Loading [g biomass/Lreactor] ~100 ~100 ~120 ~160 ~155 ~120 

Particle size[mm] 
0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

<105 Coarse 

Reactants       
Moist Mass [g] 12.77 13.63 11.44 16.92 15.63 12.02 
 Moisture Content [%, wb]b 7.68 7.65 7.62 7.49 6.79 7.32 

Pyrolysis Reaction       

Axis Peak Temperature [°C] 304 233 294 311 346 379 

Wall Peak Temperature [°C] 304 311 292 293 356 388 

Peak Pressure [MPa]  0.1 NAk  5.18 7.62  9.86 9.38 

Solid Products       

Char Moist Mass [g] 8.42 10.15 8.38 11.40 11.37 8.41 

Char Moisture Content [%, wb]b, e 3.34 28.53 30.84 15.50 28.39 29.75 

Volatile Matter Content [%, db]c 63.1 40.9 49.3 50.8 27.4 27.5 

Ash Content [%, db]c 1.9  3.6  1.0  0.9  10.8  1.4  

Fixed Carbon Content [%, db]c 34.4  55.5  49.7  48.3  61.9  71.1  

Fixed Carbon Yield [%, db]c 23.99  32.52  28.40  30.88  37.54  39.16  

Higher Heating Value [MJ/kg] NAk  NAk  NAk  NAk  NAk  NAk  

Gas Products       

Final Gas in VBomb[mol]d NAk  0.054  0.104  0.170  0.194  0.181  

Nitrogen [mol %] NAk  12.04 69.84 69.48 66.72 71.64 

Oxygen [mol %] NAk  1.55 0.06 0.00 0.00 0.00 

Hydrogen [mg/g (Dry Feed)] NAk  NAk  0.093 0.061 0.19 0.18 

Methane [mg/g (Dry Feed)] NAk  NAk  0.031 0.024 0.00 0.00 

Carbon Monoxide [mg/g (Dry Feed)] NAk  NAk  190 180 210 270 

Carbon Dioxide [mg/g (Dry Feed)] NAk  NAk  100 120 160 160 

Mass Balance       

Gas Products [%, db]c NAk  NAk  12.37  14.06  18.29  18.98  

Char Yield [%, db]c 69.80 58.59 56.90 63.61 57.30 54.81 

Liquid [%, db]c NAk 15.86  26.02  16.67  18.47  19.06  

Solid not recovered [%, db]c, f       

Total [%, db]c NAk  NAk  95.28  94.35  94.06  92.86  

Carbon Balance Total [%, db]c NAk  NAk  NAk  NAk  NAk  NAk  
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  7 8 9 10 11 12 

Date (yymmdd) 150115 150909 160114 160120 160126 160209 

Conditions       
Reactor Type Original Original Original Original Original Original 
Feedstock Oak Oak Oak Oak Oak Oak 

Heat Treatment Temperature[°C] 300 300-370 300-400 300-350 300-400 300-370 

Pretest Nitrogen Pressure [MPa] 4.79 4.79 3.55 4.79 4.79 2.69 

Immersion Time [min] a 21 181 84 37 63 120 
Mass Loading [g biomass/Lreactor] ~120 ~145 ~145 ~145 ~155 ~155 

Particle size[mm] 
0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

Reactants       
Moist Mass [g] 12.22 13.26 13.48 13.47 14.38 14.49 
 Moisture Content [%, wb]b 7.73 7.70 7.58 7.58 7.60 7.51 

Pyrolysis Reaction       

Axis Peak Temperature [°C] 309 352 364 347 356 351 

Wall Peak Temperature [°C] 294 364 387 352 384 359 

Peak Pressure [MPa]  10.60  13.06  11.80 13.19 14.36 9.62 

Solid Products       

Char Moist Mass [g] 9.61 8.98 9.68  9.72  11.68  9.69  

Char Moisture Content [%, wb]b, e 29.26 32.66 33.57  25.87  41.96  28.93  

Volatile Matter Content [%, db] c 49.3 28.2 24.3  33.3  25.9  25.3  

Ash Content [%, db]c 1.3  2.9  3.4  2.9  2.6  2.9  

Fixed Carbon Content [%, db]c 49.3  68.8  72.4  63.8  71.5  71.8  

Fixed Carbon Yield [%, db]c 30.79  35.81  34.96  38.35  36.46  38.76  

Higher Heating Value [MJ/kg] NAk  NAk  NAk  NAk  NAk  NAk  

Gas Products       

Final Gas in VBomb[mol]d 0.142  0.279  0.211  0.260  0.226  0.173  

Nitrogen [mol %] 85.91 80.02 82.98 81.01 77.90 67.83 

Oxygen [mol %] 1.38 1.11 0.90 0.26 0.00 0.00 

Hydrogen [mg/g (Dry Feed)] 0.071 0.23 0.32 0.142 0.181 0.200 

Methane [mg/g (Dry Feed)] 0.053 0.78 0.57 0.00 0.00 0.00 

Carbon Monoxide [mg/g (Dry Feed)] 170 180 22 19 20 19 

Carbon Dioxide [mg/g (Dry Feed)] 110 170 94 150 170 150 

Mass Balance       

Gas Products [%, db]c 12.62  18.58  11.66 17.12 18.66 17.08 

Char Yield [%, db]c 62.09 52.03 48.31 60.10 51.02 53.96 

Liquid [%, db]c 24.34  30.73  32.82 23.43 28.66 16.79 

Solid not recovered [%, db]c, f       

Total [%, db]c 99.05  101.34  92.80 100.65 98.34 87.83 

Carbon Balance Total [%, db]c NAk  NAk  NAk  NAk  NAk  NAk  
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  13 14 15 16-20h 21 

Date (yymmdd) 160217 160224 160301 
161207-
170126 

170131 

Conditions      

Reactor Type Original Original Original 
Single-

intermediate 
Single-

intermediate 
Feedstock Oak Oak Oak Spruce Oak 

Heat Treatment Temperature[°C] 300-400 300-400 300-400 300 300 

Pretest Nitrogen Pressure [MPa] 2.69 2.69 0.1 0.1 0.1 

Immersion Time [min] a 46 37 180 190 190 
Mass Loading [g biomass/Lreactor] ~130 ~145 ~145 ~100 ~125 

Particle size[mm] 
0.149-
0.425 

0.149-
0.425 

0.149-
0.425 

<2 0.149-0.425 

Reactants      
Moist Mass [g] 12.05 13.35 12.56 13.38 16.32 
 Moisture Content [%, wb]b 7.51 7.51 7.56 8.15 7.89 

Pyrolysis Reaction      

Axis Peak Temperature [°C] 320 326 391 317 380 

Wall Peak Temperature [°C] 372 396 397 296 297 

Peak Pressure [MPa]  8.75 8.69 3.00 2.63 3.54 

Solid Products      

Char Moist Mass [g] 9.11  9.76  6.66  10.84 12.95 

Char Moisture Content [%, wb]b, e 34.26  34.46  15.32  35.01 40.1 

Volatile Matter Content [%, db]c 30.5  26.9  27.6  45.7 38.6 

Ash Content [%, db]c 2.8  3.1  2.8  2.0 3.6 

Fixed Carbon Content [%, db]c 66.6  70.1  69.6  52.2 57.4 

Fixed Carbon Yield [%, db]c 38.62  38.06  34.11  29.9 29.6 

Higher Heating Value [MJ/kg] NAk  NAk  NAk  28.92 28.23 

Gas Products      

Final Gas in VBomb[mol]d 0.161  0.154  0.063  0.054 0.073 

Nitrogen [mol %] 72.93 67.88 9.13 17.70 NAk  

Oxygen [mol %] 0.00 0.12 0.37 1.60 NAk  

Hydrogen [mg/g (Dry Feed)] 0.103 0.134 0.203 0.149 NAk  

Methane [mg/g (Dry Feed)] 0.191 0.00 0.093 0.00 NAk  

Carbon Monoxide [mg/g (Dry Feed)] 20 20 33 25.88 NAk  

Carbon Dioxide [mg/g (Dry Feed)] 150 140 140 114.11 NAk  

Mass Balance      

Gas Products [%, db]c 16.56 15.94 17.18 14.01 NAk  

Char Yield [%, db]c 57.95 54.31 49.01 57.32 51.59 

Liquid [%, db]c 22.76 24.67 3.82 26.32 28.25 

Solid not recovered [%, db]c, f      

Total [%, db]c 97.27 94.91 70.01 97.66 NAk  

Carbon Balance Total [%, db]c NAk  NAk  NAk  97.14 NAk  



92 

 

Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  22 23-24h 25 26 

Date (yymmdd) 170207 170215, 170309 170313 170316 

Conditions  
With dead 

volumeg 
  

Reactor Type 
Single-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Feedstock Cellulose Spruce Spruce Spruce 

Heat Treatment Temperature[°C] 300 300 300 400 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 0.1 0.1 

Immersion Time [min] a 190 190 190 190 
Mass Loading [g biomass/Lreactor] ~205 ~100 ~130 ~130 
Particle size[mm] 0.050-0.180 <2 <2 <2 

Reactants  R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 27.37 13.34 14.01 14.64 13.83 13.99 14.45 
 Moisture Content [%, wb]b 6.49 7.90 7.55 7.93 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 552 310 317 317 336 427 499 

Wall Peak Temperature [°C] 310 295 304 285 302 390 405 

Peak Pressure [MPa]  7.09 2.72 4.65 7.74 

Solid Products     

Char Moist Mass [g] 13.58 8.87 11.91 10.44 11.21 8.30 7.46 

Char Moisture Content [%, wb]b, e 25.5 15.94 38.07 22.63 34.83 30.15 22.79 

Volatile Matter Content [%, db]c 28.0 46.2 46.6 46.2 46.9 26.2 23.6 

Ash Content [%, db]c 0.2 2.1 1.4 1.8 1.7 1.7 1.5 

Fixed Carbon Content [%, db]c 71.8 51.7 52.0 52.0 51.4 72.1 75.0 

Fixed Carbon Yield [%, db]c 28.4 30.5 30.6 30.4 30.0 31.84 33.08 

Higher Heating Value [MJ/kg] 31.13 28.52 28.77 28.79 30.83 31.92 35.03 

Gas Products      

Final Gas in VBomb[mol]d 0.143 0.117 0.119 0.195 

Nitrogen [mol %] NAk  18.22 16.87 12.19 

Oxygen [mol %] NAk  1.04 0.86 0.74 

Hydrogen [mg/g (Dry Feed)] NAk  0.234 0.188 0.612 

Methane [mg/g (Dry Feed)] NAk  0.01 0.00 0.00 

Carbon Monoxide [mg/g (Dry 
Feed)] 

NAk  
26.41 23.83 43.27 

Carbon Dioxide [mg/g (Dry Feed)] NAk  118.21 127.23 185.68 

Mass Balance      

Gas Products [%, db]c NAk  14.49 15.13 22.96 

Char Yield [%, db]c 39.53 58.88 58.44 44.14 

Liquid [%, db]c 23.24 17.15 16.77 8.50 

Solid not recovered [%, db]c, f     3.42 

Total [%, db]c NAk  90.52 90.34 79.01 

Carbon Balance Total [%, db]c NAk  99.13 100.30 92.30 
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  27 28 29 30 

Date (yymmdd) 170321 170323 170509 170511 

Conditions 
Finish 10 min 

 after exotherm 
Finish 10 min 

 after exotherm 
 

Finish 10 min 
 after exotherm 

Reactor Type 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Feedstock Spruce Spruce Spruce Spruce 

Heat Treatment Temperature[°C] 300 400 300 300 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 0.1 0.1 

Immersion Time [min] a 28 18 190 24 
Mass Loading [g biomass/Lreactor] ~130 ~130 ~130 ~165 
Particle size[mm] <2 <2 <0.2 <0.2 

Reactants R1i R2j R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 13.96 13.62 14.60 14.27 13.87 14.48 19.48 17.84 
 Moisture Content [%, wb]b 7.68 7.77 7.52 7.11 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 318 325 408 437 390 419 398 391 

Wall Peak Temperature [°C] 290 299 394 395 302 301 294 299 

Peak Pressure [MPa]  3.95 7.12 5.62 5.68 

Solid Products     

Char Moist Mass [g] 9.37 11.38 8.96 9.91 9.22 11.81 19.08 11.18 

Char Moisture Content [%, wb]b, e 17.15 35.33 27.30 35.11 22.38 38.03 45.19 3.65 

Volatile Matter Content [%, db]c 53.3 54.6 32.3 33.1 39.6 47.1 

Ash Content [%, db]c 0.9 1.0 1.5 1.3 1.8 1.4 

Fixed Carbon Content [%, db]c 45.8 44.4 66.3 65.6 58.6 51.4 

Fixed Carbon Yield [%, db]c 27.20 26.39 32.23 31.89 32.27 31.50 

Higher Heating Value [MJ/kg] 31.06 27.81 30.75 30.82 28.82 28.71 

Gas Products     

Final Gas in VBomb[mol]d 0.099 0.173 0.132 0.152 

Nitrogen [mol %] 15.93 6.61 9.09 8.19 

Oxygen [mol %] 1.11 0.00 0.08 0.00 

Hydrogen [mg/g (Dry Feed)] 0.100 0.249 0.177 0.207 

Methane [mg/g (Dry Feed)] 0.00 0.00 0.00 0.00 

Carbon Monoxide [mg/g (Dry Feed)] 23.12 47.29 31.69 28.88 

Carbon Dioxide [mg/g (Dry Feed)] 100.81 171.93 147.03 138.64 

Mass Balance     

Gas Products [%, db]c 12.40 21.95 17.89 16.77 

Char Yield [%, db]c 59.39 48.62 55.21 61.24 

Liquid [%, db]c 15.58 15.04 17.89 19.33 

Solid not recovered [%, db]c, f 4.76 2.00 3.49 1.63 

Total [%, db]c 92.14 87.60 94.48 98.96 

Carbon Balance Total [%, db]c 97.40 96.03 99.54 104.03 
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  31 32 33 34 

Date (yymmdd) 170516 170518 170523 170802 

Conditions 
Finish 10 min 

 after exotherm 
   

Reactor Type 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Feedstock Spruce Birch Birch Birch 

Heat Treatment Temperature[°C] 300 300 400 300 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 0.1 0.1 

Immersion Time [min] a 24 190 190 190 
Mass Loading [g biomass/Lreactor] ~130 ~130 ~130 ~130 
Particle size[mm] <0.2 <2 <2 <0.2 

Reactants R1i R2j R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 14.22 14.01 14.34 14.01 14.62 14.22 14.30 14.38 
 Moisture Content [%, wb]b 7.02 7.88 7.98 7.27 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 408 404 389 363 509 478 299 300 

Wall Peak Temperature [°C] 301 299 296 298 392 393 310 299 

Peak Pressure [MPa]  4.60 5.42 7.42 5.01 

Solid Products     

Char Moist Mass [g] 8.65 10.58 9.11 9.89 8.74 7.39 9.30 10.43 

Char Moisture Content [%, wb]b, e 19.07 27.88 25.23 29.57 35.02 24.40 22.83 31.41 

Volatile Matter Content [%, db] c 50.7 40.7 25.0 39.1 

Ash Content [%, db]c 1.3 1.8 1.9 3.7 

Fixed Carbon Content [%, db]c 48.0 57.4 73.2 57.2 

Fixed Carbon Yield [%, db]c 26.76 30.30 31.07 30.84 

Higher Heating Value [MJ/kg] 28.65 30.12 33.02 29.68 

Gas Products     

Final Gas in VBomb[mol]d 0.116 0.129 0.196 0.135 

Nitrogen [mol %] 9.67 9.17 6.15 8.94 

Oxygen [mol %] 0.03 0.00 0.13 0.00 

Hydrogen [mg/g (Dry Feed)] 0.138 0.297 0.655 0.363 

Methane [mg/g (Dry Feed)] 0.068 0.00 0.00 0.00 

Carbon Monoxide [mg/g (Dry Feed)] 28.40 25.60 37.84 28.21 

Carbon Dioxide [mg/g (Dry Feed)] 129.42 154.33 202.20 161.92 

Mass Balance     

Gas Products [%, db]c 15.80 18.02 24.07 19.05 

Char Yield [%, db]c 55.74 52.75 42.45 53.88 

Liquid [%, db]c 11.72 11.95 10.21 14.38 

Solid not recovered [%, db]c, f 3.87 0.37 2.32 4.50 

Total [%, db]c 87.14 82.72 79.06 91.82 

Carbon Balance Total [%, db]c 96.76 93.95 89.62 94.69 
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  35 36 37 38 

Date (yymmdd) 170809 170811 170815 170817 

Conditions   
Finish 10 min 

 after exotherm 
 

Reactor Type 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Dual-

intermediate 
Feedstock Birch Birch Birch Birch 

Heat Treatment Temperature[°C] 300 300 300 500 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 0.1 0.1 

Immersion Time [min] a 190 190 30 190 
Mass Loading [g biomass/Lreactor] ~165 ~240 ~240 ~130 

Particle size[mm] <0.2 <0.2 <0.2 <2 

Reactants R1i R2j R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 18.74 18.59 25.87 25.86 26.14 26.62 14.12 14.48 
 Moisture Content [%, wb]b 7.31 7.15 7.28 7.83 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 345 415 493 399 399 460 496 505 

Wall Peak Temperature [°C] 302 303 314.2 302.3 282 305 486 509 

Peak Pressure [MPa]  7.25 9.57 7.96 14.50 

Solid Products     

Char Moist Mass [g] 11.04 12.78 20.22 18.63 22.45 19.43 7.58 7.44 

Char Moisture Content [%, wb]b, e 22.93 30.37 40.38 34.58 36.26 34.15 26.64 34.48 

Volatile Matter Content [%, db] c 37.1 37.1 48.4 11.1 

Ash Content [%, db]c 2.3 1.8 1.8 2.4 

Fixed Carbon Content [%, db]c 60.6 61.1 49.8 86.5 

Fixed Carbon Yield [%, db]c 31.50 30.82 27.58 34.23 

Higher Heating Value [MJ/kg] 31.00 31.24 29.52 34.52 

Gas Products     

Final Gas in VBomb[mol]d 0.185 0.249 0.199 0.329 

Nitrogen [mol %] 7.80 7.58 9.17 5.20 

Oxygen [mol %] 0.58 0.69 0.00 0.13 

Hydrogen [mg/g (Dry Feed)] 0.287 0.273 0.181 1.386 

Methane [mg/g (Dry Feed)] 0.00 0.00 0.00 0.01 

Carbon Monoxide [mg/g (Dry Feed)] 32.38 27.68 20.36 35.76 

Carbon Dioxide [mg/g (Dry Feed)] 157.15 201.22 133.78 318.33 

Mass Balance     

Gas Products [%, db]c 18.98 22.92 15.43 35.55 

Char Yield [%, db]c 50.31 50.47 55.41 39.59 

Liquid [%, db]c 10.70 23.20 23.27 9.35 

Solid not recovered [%, db]c, f 1.00 3.28 1.68 1.63 

Total [%, db]c 80.98 99.88 95.79 86.12 

Carbon Balance Total [%, db]c 92.96 96.33 95.00 97.10 
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  39 40 41 42 

Date (yymmdd) 170822 170830 171108 171227 

Conditions  
Finish 10 min 

 after exotherm 
Finish 10 min 

 after exotherm 
 

Reactor Type 
Dual-

intermediate 
Dual-

intermediate 
Dual-current Dual-current 

Feedstock Birch Rice husk  Birch Spruce 

Heat Treatment Temperature[°C] 300 300 300 300 

Pretest Nitrogen Pressure [MPa] 2.17 0.1 0.1 0.1 

Immersion Time [min] a 190 28 30 300 
Mass Loading [g biomass/Lreactor] ~130 ~50 ~130 ~130 

Particle size[mm] <2 As received <0.2 < 2 

Reactants R1i R2j R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 14.44 14.81 7.92 7.60 14.09 14.38 13.26 13.87 
 Moisture Content [%, wb]b 7.83 10.67 7.37 8.00 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 340 320 319 313 313 290 330 334 

Wall Peak Temperature [°C] 291 296 297 299 285 299 308 307 

Peak Pressure [MPa]  11.05 3.19 5.18 6.38 

Solid Products     

Char Moist Mass [g] 11.64 12.02 7.44 6.49 11.82 11.99 10.18 12.28 

Char Moisture Content [%, wb]b, e 39.38 39.82 34.42 26.12 34.60 38.50 32.42 40.51 

Volatile Matter Content [%, db]c 40.3 33.4 53.4 42.6 

Ash Content [%, db]c 2.1 34.6 2.3 2.0 

Fixed Carbon Content [%, db]c 57.6 32.0 44.3 55.4 

Fixed Carbon Yield [%, db]c 30.51 22.33 25.38 31.47 

Higher Heating Value [MJ/kg] 31.29 18.83 27.94 29.83 

Gas Products     

Final Gas in VBomb[mol]d 0.335 0.106 0.096 NAk 

Nitrogen [mol %] 62.64 27.42 10.67 NAk 

Oxygen [mol %] 1.17 2.12 0.23 NAk 

Hydrogen [mg/g (Dry Feed)] 0.241 0.0372 0.129 NAk 

Methane [mg/g (Dry Feed)] 0.00 0.00 0.000 NAk 

Carbon Monoxide [mg/g (Dry Feed)] 14.37 22.21 17.35 NAk 

Carbon Dioxide [mg/g (Dry Feed)] 179.74 81.84 114.66 NAk 

Mass Balance     

Gas Products [%, db]c 19.44 10.41 13.21 NAk 

Char Yield [%, db]c 53.01 69.78 57.27 56.84 

Liquid [%, db]c 26.31 19.11 25.36 24.56 

Solid not recovered [%, db]c, f 1.46 1.30 2.81 0.24 

Total [%, db]c 100.21 100.60 98.65 NAk 

Carbon Balance Total [%, db]c 97.21 100.88 92.08 NAk 
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  43 44 45 46 

Date (yymmdd) 180102 180104 180106 180108 

Conditions 
Low Heating 

Rate 
No holding time 

Low heating 
rate,  

180 min holding 
time 

 

Low heating 
rate, 

120 min holding 
time 

Reactor Type Dual-current Dual-current Dual-current Dual-current 

Feedstock Birch  Birch  Birch  Birch  

Heat Treatment Temperature[°C] 300 300 400 500 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 2.17 0.1 

Immersion Time [min] a 53 232 190 350 

Mass Loading [g biomass/Lreactor] ~130 ~130 ~130 ~130 

Particle size[mm] < 2 < 2 < 2 < 2 

Reactants R1i R2j R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 14.13 14.36 14.57 14.29 14.20 14.25 13.96 14.07 
 Moisture Content [%, wb] b 8.07 7.95 7.98 8.07 

Pyrolysis Reaction     

Axis Peak Temperature [°C] 306 301 310 322 405 405 505 505 

Wall Peak Temperature [°C] 294 292 306 309 401 405 506 506 

Peak Pressure [MPa]  3.84 5.84 17.48 15.10 

Solid Products     

Char Moist Mass [g] 12.28 13.94 12.11 12.12 10.29 10.18 7.54 9.03 

Char Moisture Content [%, wb] b, e 32.07 37.31 40.77 42.23 46.28 45.62 34.42 45.69 

Volatile Matter Content [%, db]c 61.9 42.4 22.8 12.2 

Ash Content [%, db]c 1.5 1.8 2.1 2.1 

Fixed Carbon Content [%, db]c 36.6 55.8 75.2 85.8 

Fixed Carbon Yield [%, db]c 23.90 29.80 31.77 32.78 

Higher Heating Value [MJ/kg] 24.93 29.86 33.30 34.47 

Gas Products     

Final Gas in VBomb[mol]d NAk  NAk  NAk  NAk  

Nitrogen [mol %] NAk  NAk  NAk  NAk  

Oxygen [mol %] NAk  NAk  NAk  NAk  

Hydrogen [mg/g (Dry Feed)] NAk  NAk  NAk  NAk  

Methane [mg/g (Dry Feed)] NAk  NAk  NAk  NAk  

Carbon Monoxide [mg/g (Dry Feed)] NAk  NAk  NAk  NAk  

Carbon Dioxide [mg/g (Dry Feed)] NAk  NAk  NAk  NAk  

Mass Balance     

Gas Products [%, db]c NAk  NAk  NAk  NAk  

Char Yield [%, db]c 65.21 53.36 42.26 38.22 

Liquid [%, db]c 26.33 29.98 27.39 17.54 

Solid not recovered [%, db]c, f 2.14 1.92 5.04 3.22 

Total [%, db]c NAk  NAk  NAk  NAk  

Carbon Balance Total [%, db]c NAk  NAk  NAk  NAk  
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Table 5.1. Conditions and results for Wall Heated Tubing Bomb experiments (Continued). 

Experiment Number  47 48 49 

Date (yymmdd) 180111 180123 180126 

Conditions 

Low heating 
rate, 

0 min holding 
time 

With dead 

volume g 
 

Reactor Type Dual-current Dual-current Dual-current 

Feedstock Birch  Birch  Birch  

Heat Treatment Temperature[°C] 500 550 550 

Pretest Nitrogen Pressure [MPa] 0.1 0.1 0.1 

Immersion Time [min] a 200 190 190 
Mass Loading [g biomass/Lreactor] ~130 ~100 ~130 
Particle size[mm] < 2 < 2 < 2 

Reactants R1i R2j R1i R2j R1i R2j 
Moist Mass [g] 13.98 14.15 14.37 14.26 14.03 14.07 
 Moisture Content [%, wb]b 8.02 7.83 7.99 

Pyrolysis Reaction    

Axis Peak Temperature [°C] 493 494 555 549 556 553 

Wall Peak Temperature [°C] 489 490 546 550 546 NAk 

Peak Pressure [MPa]  10.95 7.49 17.87 

Solid Products    

Char Moist Mass [g] 9.20 10.22 5.06 6.10 6.42 6.84 

Char Moisture Content [%, wb]b, e 40.90 49.00 12.53 28.94 32.68 34.12 

Volatile Matter Content [%, db] c 17.8 9.2 8.7 

Ash Content [%, db]c 1.8 2.1 2.0 

Fixed Carbon Content [%, db]c 80.4 88.7 89.3 

Fixed Carbon Yield [%, db]c 33.10 29.45 30.51 

Higher Heating Value [MJ/kg] 33.74 34.31 33.64 

Gas Products    

Final Gas in VBomb[mol]d NAk  NAk  NAk  

Nitrogen [mol %] NAk  NAk  NAk  

Oxygen [mol %] NAk  NAk  NAk  

Hydrogen [mg/g (Dry Feed)] NAk  NAk  NAk  

Methane [mg/g (Dry Feed)] NAk  NAk  NAk  

Carbon Monoxide [mg/g (Dry Feed)] NAk  NAk  NAk  

Carbon Dioxide [mg/g (Dry Feed)] NAk  NAk  NAk  

Mass Balance    

Gas Products [%, db]c NAk  NAk  NAk  

Char Yield [%, db]c 41.16 33.20 34.15 

Liquid [%, db]c 25.43 1.84 10.33 

Solid not recovered [%, db]c, f 1.82 5.76 11.72 

Total [%, db] c NAk  NAk  NAk  

Carbon Balance Total [%, db] c NAk  NAk  NAk  
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a Long experiments ended 190 minutes after the WHTB was submersed into the 

hot sand bath. Short experiments ended 10 minutes after the end of the exotherm, 

i.e. the exotherm was considered to end once the pressure rise considerably 

slowed. 
b Reported on a wet basis (wb). 
c Reported on a dry basis (db). 
d Final gas moles were calculated using the ideal gas law at conditions after 

cooldown. Final gas volume was measured with the WDV. 
e Weight loss of char product from drying in a vacuum oven at 105°C. 
f Amount of solid adherred on the walls was calculated as the difference between 

initial and final masses of the empty reactors. 
g Reactor with extended dead volume was employed. 
h Only the results of one of the replica experiments are displayed here. 
i Data for reactor body 1 (R1) of the dual reactor. 
j Data for reactor body 2 (R2) of the dual reactor. 
k Not Available (NA). 

 

The mass balances indicate that product recovery is highly dependent on the experimental 

conditions used. In some cases up to 21% of the initial biomass on a dry basis was unaccounted 

for when gas composition data were available. The carbon balance typically shows that more 

than 95% of the carbon is accounted for in the solid and gaseous products. As mentioned earlier, 

this indicates that liquid is the main unrecovered product and that measurements of charcoal and 

gas yields are consistent. Fixed-carbon yields in Table 5.1 were calculated on a dry basis as yfC = 

ychar ·%fC/100. As emphasized in the cellulosic work,26 CVC was able to produce a charcoal 

with a near-theoretical fixed-carbon yield. 

 

The limiting values predicted by thermodynamic and chemical equilibrium were calculated with 

Stanjan and FactSage. Both simulations agreed on predicted equilibrium yields. In Stanjan, solid 

carbon, liquid H2O and gaseous species CO, CO2, CH4, H2, H2O, NO, NO2 were user specified as 

possible equilibrium products. In FactSage, possible products components are selected from a 

large thermodynamic database based on the elements present in the reactants. "Solution" 
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databases can also be selected based on the inorganic elements present in the reactants but were 

not included. A routine that minimizes the Gibb’s free energy of the multi-phase mixture 

calculates the species equilibrium yields. Figures in later sections in Chapter 6 study the effects 

of pressure, temperature, mass loading and feedstock in the theoretical product yields predicted 

by FactSage. The thermochemical calculations identify carbon as the preferred pyrolytic product 

followed by water, CO2, CH4 and traces of other gases. Qualitatively agreeing with theoretical 

predictions, the CVC experiments show solid charcoal—which consists of an ill-defined 

compound primarily made of carbon, varying quantities of hydrogen and oxygen, along with ash 

and other impurities—as well as water and CO2 as the main pyrolytic products. Next is carbon 

monoxide which is present in considerable amounts but noticeably lower than the three main 

products, followed by methane and other gases that are present in trace quantities. 

 

The theoretical carbon yields represent maximum limiting values for the experimental fixed-

carbon yields,39 whereas gaseous and liquid yields cannot serve as representative quantitative 

indicators for experimental values in view of the fact that the char product is not pure carbon,58 

and therefore theoretical and experimental elemental balances would differ considerably. 

 

In order to meaningfully evaluate the efficiency of the carbonization processes, a precise way to 

measure experimental fixed-carbon yields is essential. Since experimental fixed-carbon yield 

depends on both the fixed-carbon content (measured by proximate analysis) and charcoal yield, 

the accuracy of the measured experimental fixed-carbon contents ultimately reflects on the fixed-

carbon yields. The fixed-carbon content accuracy is estimated from ultimate analysis of samples 
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made of just fixed-carbon. In order to obtain such samples, a proximate analysis of a cellulose 

sample was deliberately interrupted after extracting the volatile matter. Since cellulose contains 

negligible ash, fixed-carbon would be the only product left behind and therefore, its purity would 

indicate the accuracy of the reported values. The original proximate analysis technique revealed 

a “fixed-carbon” of just 94.54 wt.% carbon with the balance comprising O, H, and ash in 

decreasing amounts (these values were obtained from the resultant charcoal produced in a 

WHTB experiment with the original reactor and cellulose as the feedstock).58 The updated 

proximate analysis technique, employed for spruce and birch experiments, showed a “fixed-

carbon” of 95.27 wt. % carbon. 

 

The use of oak, spruce and birch confirmed the attainment of the theoretical limiting value as 

illustrated by the parity plot in Figure 5.7. Figure 5.8 shows a close-up of the top right corner of 

Figure 5.7. It shows that in a constant-volume reactor, pressure does not influence fixed-carbon 

yields while smaller particles, longer immersion times (at the lower temperature of 300°C) and 

higher temperatures improve fixed-carbon yields to approach limiting values. The high values 

obtained with smaller wood particles in this work contrast the fixed-carbon yield of 10% 

predicted from the pyrolysis of cellulose powder in a TGA under a N2 flow.26 
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Figure 5.7. Parity plot displaying the experimental fixed carbon yield from Wall Heated Tubing 

Bomb pyrolysis experiments vs the theoretical values. Shape of the symbols indicate biomass 

type: Oak, SpruceBirch. Colours represent heat treatment temperature: 300°C and reactor 

open to the atmosphere, 300°C, 370°C, 400°C, 500°C, and 550°C. Size represents 

immersion times: smaller symbols represent short experiments (25-60 min) and larger symbols 

represent long experiments (70-300 min). Symbol fillings represent special experimental 

conditions: ◧  small biomass particles, ◒ use of volume compensation, ◓ under initial nitrogen 

pressure,  low heating rate, star symbol on top of a symbol indicates high loading. 
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Figure 5.8. Close-up of the top right corner of Figure 5.7. Shape of the symbols indicate biomass 

type: Oak, SpruceBirch. Colours represent heat treatment temperature: 300°C and reactor 

open to the atmosphere, 300°C, 370°C, 400°C, 500°C, and 550°C. Size represents 

immersion times: smaller symbols represent short experiments (25-60 min) and larger symbols 

represent long experiments (70-300 min). Symbol fillings represent special experimental 

conditions: ◧  small biomass particles, ◒ use of volume compensation, ◓ under initial nitrogen 

pressure,  low heating rate, star symbol on top of a symbol indicates high loading. 
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CHAPTER 6. RESULTS AND DISCUSSION 

 

This chapter presents the most recent experimental CVC results, evaluates the results with 

literature findings and compares experimental fixed-carbon yields with theoretical values 

predicted by thermodynamics.   

 

6.1. Effect of a Closed Vessel versus an Open Vessel 

 

Figures 6.1 and 6.2 illustrate the effect of sealing the WHTB reactor on the product yields and 

proximate analysis from pyrolysis of oak sawdust (0.149-0.425 mm) at a HTT of 300°C. The 

sealed WHTB did not show an improvement in charcoal yield compared to the open reactor 

experiment, but actually suffered a reduction from 69.8% to 58.6%, however the fixed-carbon 

content and fixed-carbon yield dramatically increased. In agreement with literature observations 

regarding carbonization under pressure (see Section 3.2), both the dramatic increase in partial 

pressure and residence time of volatiles experienced in the sealed reactor resulted in the  higher 

extent of secondary char formation and the reduction of carbon losses in the form of gases and 

liquids. 
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Figure 6.1. Effect of sealing the Wall Heated Tubing Bomb reactor on the product yields from 

the pyrolysis of oak sawdust (0.149-0.425 mm) at a heat treatment temperature of 300°C. Liquid 

yield on the open reactor experiment and gas yields on both experiments were not measured.  

 

 
Figure 6.2. Effect of sealing the Wall Heated Tubing Bomb reactor on the proximate analysis of 

charcoal from the pyrolysis of oak sawdust (0.149-0.425 mm) at a heat treatment temperature of 

300°C. 
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6.2. Effect of Pressure 

 

Figures 6.3 and 6.4 illustrate the effect of changing the initial N2 pressure of the WHTB on the 

product yields and the char proximate analysis of oak pyrolysis at a HTT of 300°C in the original 

reactor. The experimental oak fixed-carbon content and fixed-carbon yield showed an initial 

decrease when the pretest nitrogen pressure was increased from 0.1 to 1.48 MPa (from 55.5 to 

49.7%) and a subsequent plateau with higher pressures. The initial decline of the char fixed-

carbon content and yield, however, seem to be the result of a considerably reduction of the 

immersion time (from 134 to 34 minutes) rather than to a pressure effect (see Effect of 

Immersion Time).  

 

The results from experiments using similar immersion times (21-38 minutes) with oak that were 

conducted at elevated pretest pressures (from 1.48 to 4.69 MPa) at a HTT of 300°C help to 

explain the plateau in fC content and yield observed in earlier tests. 
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Figure 6.3. Effect of initial nitrogen pretest pressure on the product yields from the constant-

volume carbonization of oak sawdust (0.149-0.425 mm) under immersion times of 21-134 

minutes at a heat treatment temperature of 300°C. 

 

 
Figure 6.4. Effect of initial nitrogen pretest pressure on the proximate analysis of charcoal from 

the constant-volume carbonization of oak sawdust (0.149-0.425 mm) under immersion times of 

21-134 minutes at a heat treatment temperature of 300°C. 
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Careful control of the immersion time, and refinements made to the WHTB equipment (see 

Apparatus Evolution) and to the proximate analysis technique (see Appendix N) permitted the 

acquisition of more accurate results in later experiments that used birch and spruce feedstocks. 

Figures 6.5 and 6.6 display the results of product yields and char proximate analysis from birch 

CVC in the current dual WHTB reactor at pretest pressures of 0.1 and 2.17 MPa and heat 

treatment temperatures of 300 and 400°C and confirmed the lack of influence of the inert gas 

pressure on product yields and proximate analysis. The role of temperature will be discussed in 

Section 6.3. 

 

 
Figure 6.5. Effect of initial nitrogen pretest pressure on the product yields from the constant-

volume carbonization of birch sawdust (<2 mm) under an immersion time of 190 minutes at heat 

treatment temperatures of 300 and 400°C. 
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Figure 6.6. Effect of initial nitrogen pretest pressure on the proximate analysis of charcoals from 

the constant-volume carbonization of birch sawdust (<2 mm) under an immersion time of 190 

minutes at heat treatment temperatures of 300 and 400°C. 

 

In agreement with experimental observations, FactSage CVC predictions reflect a negligible 

pressure effect on theoretical fixed-carbon yields (see Figure 6.7). It appears that it is not the 

total system pressure, but—as observed in literature—it is the concentration of volatiles and/or 

their residence time that govern the fixed-carbon contents and yields from biomass carbonization 

processes.   
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Figure 6.7. Effect of nitrogen pressure on the theoretical product distribution of the constant-

volume carbonization of birch predicted by FactSage. 

 

CVC experiments with oak and birch also confirmed the morphological findings observed for 

chars derived from cellulose. Visual observations (see Figure 6.8) and SEM images of charcoals 

(see Figures 6.9-6.12) produced at different CVC conditions showed that higher inert pressures 

—as well as higher temperatures, faster heating rates and possibly smaller particles (see later 

sections)—produced charcoals that experienced higher stages of melting that later solidified into 

single pieces that adopted the shape of the reactor container. Note the large differences in the 

surface morphology of a single molten grain of a birch charcoal produced at a temperature of 

400°C and at an elevated pretest pressure of 2.17 MPa displayed in Figure 6.12. It appears that 

the enhanced contact of volatiles experienced by the CVC chars due to the elevated pressures 

(internal and external if an inert gas is pre-added to the reactor) throughout the entire process 

favors the softening of charcoal at much lower temperatures and heating rates than for “open” 

reactor configurations (see Section 3.3 for details). Volatiles seem to act as plasticizing agents 
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and adding an inert gas to the constant-volume reactor restricts the release of volatiles from the 

charcoal structure into the gas phase creating conditions for TPP formation. 

 
Figure 6.8. On the left, oak biochar powder from constant-volume carbonization at an initial N2 

pressure of 0.1 MPa and a heat treatment temperature of 300°C. On the right, oak biochar from 

constant-volume carbonization at an initial N2 pressure of 2.69 MPa and a heat treatment 

temperatures of 300-370°C. 
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Figure 6.9. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 300°C and an initial nitrogen pressure of 0.1 

MPa, (b) and (c) higher magnification views of selected areas in (a). 

 

 
Figure 6.10. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 300°C and an initial nitrogen pressure of 2.17 

MPa, (b) higher magnification view of selected area in (a). 
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Figure 6.11. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 400°C and an initial nitrogen pressure of 0.1 

MPa, (b) and (c) higher magnification views of selected areas in (a). 

 

 
Figure 6.12. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 400°C and an initial nitrogen pressure of 2.17 

MPa, (b) - (e) higher magnification views of selected areas in (a). 
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6.3. Effect of Heat Treatment Temperature 

 

Figures 6.13-6.16 display product yields and char proximate analyses from oak, spruce and birch 

CVC at HTTs in a 300-550°C range under an initial nitrogen pressure of 0.1 MPa. Higher 

temperatures in CVC improved fixed-carbon contents without a concomitant loss in valuable 

fixed-carbon yields. Raising the temperature lead to a pyrolytic product richer in gas and lower 

in char, and a solid char with a higher fixed-carbon and less volatile content. As shown in Table 

5.1, exothermic temperature peaks and pressures also increased within the temperature range, 

and char higher heating values (HHV) increased asymptotically. 

 

 
Figure 6.13. Effect of heat treatment temperature on the yields of char, condensate and gas from 

the constant-volume carbonization of oak at an initial N2 pressure of 4.79 MPa and at various 

immersion times.  
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Figure 6.14. Effect of heat treatment temperature on the proximate analysis of charcoal from the 

constant-volume carbonization of oak at an initial N2 pressure of 4.79 MPa and at various 

immersion times.  

 
Figure 6.15. Effect of heat treatment temperature on the yields of char, condensate and gas from 

the constant-volume carbonization of birch and spruce at an initial N2 pressure of 0.1 MPa and 

190 min immersion time.  
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Figure 6.16. Effect of heat treatment temperature on the proximate analysis of charcoals from the 

constant-volume carbonization of birch and spruce at an initial N2 pressure of 0.1 MPa and 190 

min immersion time. 

 

Figure 6.17 shows theoretical fixed-carbon yields of birch with temperature predicted by 

FactSage. Both theoretical and experimental trends agree on presenting a minor temperature 

effect on fixed-carbon yields but show different trends. As observed from the CVC of cellulose26 

and the feedstocks presented herein, increasing the temperature from 300 to 400°C slightly 

improved the experimental fixed-carbon yields. Birch tests under a wider temperature range 

showed fixed-carbon trends with temperature. From 300 to 400 to 500°C, the birch experimental 

fixed-carbon yield went from 30.3 to 31.1 to 34.2%. Further increasing the temperature from 500 

to 550°C slightly reduced the fixed- carbon yield matching yields obtained at 300°C. Theoretical 
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trends contrast with the experimental behavior as fixed-carbon yields seem to slightly but 

continuously decrease with temperature.  Both the gas composition predicted by FactSage and 

the gas composition measured experimentally showed CO2 as the main gaseous component. 

Qualitatively, both trends also agreed, showing an increase in CO2 yields with temperature. A 

considerable amount of CH4 and no CO was predicted by equilibrium while experimentally, 

negligible CH4 was recovered and a considerable fraction of CO was measured. As explained 

earlier, gaseous and liquid yields are not representative quantitative indicators for experimental 

values in view of the fact that the char product is not pure carbon.58 

 

 
Figure 6.17. Effect of temperature on the theoretical product distribution from the constant-

volume carbonization of birch predicted by FactSage. 

 

Incomplete reactions during experiments, as indicated by the continuous rise in pressure during 

all experiments, may provide an explanation for the differences observed in CVC fixed-carbon 

yield trends. Also, it appears that, even though equilibrium calculations provide meaningful 
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limiting values for the fixed-carbon yields,39 complete agreement should not be expected given 

the observed differences between experimental and theoretical pyrolysis reaction products. 

 

In agreement with morphological observations from cellulose work,26 a more intense TPP was 

observed as the carbonization temperature was raised. Scanning electron microscopy was used to 

examine birch charcoal samples. The 300°C-birch charcoal (Figure 6.9) presented a granular 

appearance that largely retained the structure of the raw wood particles. The char surface was 

porous, smooth and presented some cracks and openings. The smooth surface shown in Figure 

6.9c is probably related to some molten carbon or condensation of tar/pitch on the char surface. 

In comparison, the 400, 500 and 550°C-birch charcoals revealed both discrete charcoal grains 

and large size charcoal block aggregates as shown in Figures 6.11, 6.18 and 6.19. Similar to the 

grains from the 300°C charcoal, some oblong grains partially retained the structure of the raw 

wood particle, with clear and wide melted zones visible on the surface (see Figures 6.11b and 

6.19d). There are also particles with a more spherical shape and round openings on the surface 

which is partially attributed to release of volatiles from particles as the solid material is softening 

and melting. Release of volatiles causes swelling of particles and formation of small holes on 

particle surface. The lack of cell structure and the compact form of these particles indicate a 

more intense melting and occurrence of plastic transformations as they were carbonized at higher 

temperatures. 
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Figure 6.18. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 500°C and an initial nitrogen pressure of 0.1 

MPa, (b) -(d) higher magnification views of selected areas in (a), (e) higher magnification view 

of selected area in (d). 

 

 
Figure 6.19. (a) Scanning electron microscopy image of birch charcoal from constant-volume 

carbonization at a heat treatment temperature of 550°C and an initial nitrogen pressure of 0.1 

MPa, (b)-(d) higher magnification views of selected areas in (a). 
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Heating rate, particle size and possibly mass loading also play key roles on the char appearance 

and microstructure. Higher heating rates and possibly smaller particle sizes favored the 

formation of a TPP (see following sections). Figure 6.20 shows the contrasting appearances of 

charcoals from different parent materials and different experimental conditions. The TPP 

observed from the WHTB experiments is intriguing and requires further study to understand the 

conditions that govern its formation and how it affects the physical and chemical properties of 

the product char.  

 

 
Figure 6.20.(a) Birch charcoal produced under constant-volume carbonization at a heat treatment 

temperature of 550°C, an initial nitrogen pressure of 0.1 MPa, particle size <2 mm, standard 

loading of 130 g/L and an immersion time of 190 minutes. (b) Birch charcoal produced under 

constant-volume carbonization at a heat treatment temperature of 300°C, an initial nitrogen 

pressure of 0.1 MPa, particle size <0.2 mm, higher loading of 240 g/Land an immersion time of 

190 minutes. (c) Oak charcoal produced under constant-volume carbonization at a heat treatment 

temperature of 300-400°C, an initial nitrogen pressure of 2.69 MPa, a coarse particle size, 

loading of ~120 g/ L and an immersion time of 55 minutes. (d) Cellulose charcoal produced 

under constant-volume carbonization at a heat treatment temperature of 300-400°C, an initial 

nitrogen pressure of 2.4 MPa, particle size 50-180 µm, loading of ~200 g/ L and an immersion 

time of 85 minutes. 
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6.4. Effect of Heating Rate 

 

The WHTB system is not the ideal equipment for studies concerning heating rate effects. The 

heating method employed, the sand bath, does not allow the experimenter to have a fine control 

over the heating rate. Thus, precise quantitative studies would require the use of different reactor 

set-ups. Nonetheless, qualitative studies that test the influence of the heating rate on yields or 

char properties can nonetheless be performed. Two distinct heating rates, “fast” and “slow”, were 

obtained in the CVC of birch biomass of particle sizes <2 mm by respectively immersing the 

reactor in a sand bath already at the carbonization temperature and by immersing the reactor in a 

~110°C sand bath that was subsequently ramped to a target temperature. 

 

To decouple the heating rate influence from the immersion time effect, two different soaking 

times were tested using the “slow” heating rate conditions. In short experiments, the reactor was 

removed as soon as it reached the target temperature (i.e., null soaking time) while in long 

experiments, the reactor was removed after the soaking time at carbonization temperature 

matched the soaking time of the equivalent “fast” heating rate experiment. 

 

Figures 6.21 and 6.22 show that changing the heating rate to reach carbonization temperature 

does not influence product yields and char proximate analysis as long as the WHTB reactor long 

soaking time at carbonization temperature (120 minutes at 500°C and 180 minutes at 300°C) is 

maintained. Reducing the soaking time to 0 minutes lowered fixed-carbon contents and increased 

the char volatile matter content. The effect was particularly intense in experiments at 300°C but 



122 

 

became minor in “slow” 500°C experiments. This is somehow expected since, due to sand bath 

heating limitations at high temperatures, “slow” experiments at 500°C required prolonged 

heating times especially at temperatures close to the carbonization temperature giving time to the 

charcoal to further devolatilize during the heating period. For example, “slow” 300°C required 

50 min of heating (vs. 10 min required in “fast” experiments) whereas “slow” 500°C required 

230 min of heating (vs. 70 min required in “fast” experiments). Following this heating period, 

reactors in long experiments were soaked for time periods of 180 and 120 minutes at respective 

carbonization temperatures of 300 and 500°C. 

 

 
Figure 6.21. Effect of heating rate on the product yields from the constant-volume carbonization 

of birch (<2 mm) at an initial N2 pressure of 0.1 MPa.  
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Figure 6.22. Effect of heating rate on the proximate analysis of charcoals from the constant-

volume carbonization of birch (<2 mm) at an initial N2 pressure of 0.1 MPa.  

 

The heating rate also affected the char morphology. At 300°C, no visual signs of TPP were 

found at both heating rates employed (~0.09 and 0.5°C/s, see Figure 6.23 and 6.9 respectively). 

Nevertheless, at a HTT of 500°C/s, evidence of some TPP appeared as the heating rate was 

raised from 0.03°C/s (see Figure 6.24) to 0.09°C/s (see Figure 6.18). As pointed out by Newalkar 

et al.,75 who studied heating rate effects in “open” reactors, raising the heating rate permits 

interaction between the evolving volatile matter and the solid phase as it approaches its softening 

point resulting in plastic transformations in the pyrolyzing char.  
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Figure 6.23. (a) and (c) Scanning electron microscopy images of birch charcoal from constant-

volume carbonization at an initial nitrogen pressure of 0.1 MPa, a heat treatment temperature of 

300°C and at a “slow” heating rate (b) and (d) higher magnification views of selected areas in (a) 

and (c) . 

 

 
Figure 6.24. (a) Scanning electron microscopy images of birch charcoal from constant-volume 

carbonization at an initial nitrogen pressure of 0.1 MPa, a heat treatment temperature of 500°C 

and at a “slow” heating rate. (b) and (c) higher magnification views of selected areas in (a). (d) 

and (e) higher magnification views of selected areas in (c) . 
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Present TPPs have been observed at considerably lower heating rates and carbonization 

temperatures than those reported for carbonization in “open” reactors. For example, CVC 

enabled the production of molten chars under heating rates as low as ~0.5°C/s at moderate 

temperatures of 400°C,26,27 as opposed to heating rates of ~500-104°C/s and temperatures of at 

least 600°C employed in “open” configurations74,75,91. It appears that the large amount of 

volatiles retained within the char particles in CVC processes intensify plasticization, shifting the 

occurrence of the TPP to lower temperatures and lower heating rates. Higher initial nitrogen 

pressures, and possibly smaller particle sizes, can also shift the TPP appearance to even lower 

temperatures. For example, when the initial pressure in the CVC of cellulose powder was 

increased from 0.1 to 2.40 MPa, Van Wesenbeeck et al.26 observed TPP signs at temperatures as 

low as 260°C. 

 

6.5. Effect of Particle Size 

 

CVC has proved that the use of smaller particles does not have a detrimental effect on char 

yields and properties. This is different from observations from “open” reactors. In CVC, released 

volatiles remain in contact with the reacting solid which results in an enhancement of secondary 

charring reactions that would not occur (or to a lesser extent) in reactors where volatiles are 

removed. The use of larger particles in open reactors provide longer contact times between the 

char and evolving volatiles and extended opportunity for secondary reactions. 
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Figures 6.25 and 6.26 illustrate the effect of particle size in product yields and char proximate 

analysis. Spruce experiments showed that smaller particle sizes (<0.2 mm vs. <2 mm) led to a 

greater devolatilization of the biomass and resulted in higher pressures, more pronounced 

exotherms, greater fixed-carbon contents, and greater fixed-carbon yields (increases on fixed-

carbon yields become apparent when the carbonization time was extended)210. HHV were similar 

(~30 MJ/kg) across this same range of experimental conditions (see Table 5.1). It is possible that 

the particle size difference was not large enough to produce a significant difference and that the 

asymptotic behavior of HHV could not reflect any particle size effect. 

 

The overall rate of reaction also appeared to accelerate with decreasing particle size. When using 

<0.2 mm spruce particles at a HTT of 300°C and a processing time on 190 min, the pyrolysis 

process seemed to have reached steady state within 120 minutes as indicated by the stabilized 

temperature and pressure. When larger particles (<2 mm) were used under the same conditions 

(mass loading, temperature and processing time) a continuous rise in pressure was observed 

throughout the course of the experiment which indicates steady state was not achieved during the 

190 minute experimental time.  

 

Birch experiments presented similar values of product yields and proximate analysis at the two 

distinct particle sizes of <0.2 mm and <2 mm. The smaller birch particles—as opposed to 

spruce—appeared to manifest faster reaction rates since pressure and temperatures stabilized 

within the first hour. Thus, it is possible that the differences observed on the proximate analysis 

and yields of spruce at the two particle sizes are the result of reactions not reaching completion at 
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the larger size (<2 mm) but having terminated or being near completion for the smaller size 

particles (<0.2 mm). Experiments with the larger spruce grains and immersion times of 30, 190 

and 300 min confirmed the continuous improvement of char properties as the time was 

prolonged. With birch, reactions appeared to be faster so they may be near completion at 

immersion times of 190 minutes for both the smaller and larger particle sizes resulting in similar 

birch product yields and proximate analysis. In line with these findings, cellulose powder (50-

180 µm) carbonized in the original WHTB required 30-60 minutes to reach steady state. 

Thereafter, final product yields and proximate analysis remained similar. Differences in reaction 

rates between spruce and birch could be due to different chemical or physical properties of the 

feedstocks. For example, larger packing densities (as in the case of birch) appear to lead to 

improved heat transfer coefficients211. In the future, it would be interesting to investigate reaction 

rates in CVC with feedstocks that have been externally compacted prior to carbonization. 

 
Figure 6.25. Effect of particle size on the yields of char, condensates and gas from the constant-

volume carbonization of spruce and birch at 300oC and at an initial N2 pressure of 0.1 MPa. 
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Figure 6.26. Effect of particle size on the proximate analysis of charcoals from the constant-

volume carbonization of spruce and birch at 300oC and at an initial N2 pressure of 0.1 MPa. 

 

Particle size is likely to have an impact on the char morphology. The size of the biomass particle 

is closely linked to the intraparticle heating rate and intraparticle volatile retention and both are 

key factors in the evolution of char morphology. The particle size effect is, nonetheless, not 

intuitive.  On the one hand, smaller particles experience higher heating rates which favor TPP 

formation. On the other hand, smaller particles lead to shorter intraparticle volatile retention 

which hinders the TPP formation.  The only available SEM images (Figures 6.9 and 6.28) from 

the CVC tests are not that clarifying. The images portray structures of chars produced under 

CVC at a HTT of 300°C and a pretest pressure of 0.1 MPa. At that pressure and mass loading, 

TPP evolution in CVC was observed to form at higher temperatures. The visual observations of 

chars from these two tests (Figure 6.27) and additional observations of chars manufactured from 
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different feedstocks, each with a different particle size, displayed in Figure 6.20 may indicate 

that smaller particles appear to have a higher tendency to form TPP.   

 

 
Figure 6.27. Charcoals from constant-volume carbonization of spruce at an initial N2 pressure of 

0.1 MPa, immersion time of 190 min and a heat treatment temperature of 300°C at particle sizes 

of <2 mm (on the left) and <0.2 mm (on the right). 

 

 
Figure 6.28. (a) Scanning electron microscopy image of birch (<0.2 mm) charcoal from constant-

volume carbonization at a heat treatment temperature of 300°C and an initial nitrogen pressure of 

0.1 MPa, (b) higher magnification view of selected area in (a). 
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6.6. Effect of Mass Loading 

 

Oak and cellulose experiments were performed in the original and single-intermediate reactors at 

an initial nitrogen pretest pressure of 0.1 MPa and a HTT of 300°C. The main parameters that 

changed from the original to the single-intermediate reactor were the mass loading—that went 

from ~100 to ~125 g/L for oak, and from ~155 to ~205g/L for cellulose—, and in the case of 

cellulose, the immersion time was prolonged from ~30 to 190 minutes. Going from the original 

to the single-intermediate WHTB resulted in higher temperature peaks (380 vs. 310°C for oak, 

and 552°C vs. 365°C for cellulose, notice that temperature differences are partly also related to 

the change in the temperature measuring technique) and higher pressure peaks (5.7 vs. 4.6 MPa 

for oak, and ~7.5 MPa vs. 2.3 MPa for cellulose).  

 

Mass loading effects in the WHTB were further explored using spruce and birch wood as 

feedstocks and the dual WHTB reactor. Birch, compared to spruce, enabled the testing of higher 

mass loadings due to its greater packing density. Increasing the mass loading showed greater 

pressure peaks and very similar char HHVs. The similarity in HHVs could be the result of 

reaching a HHV asymptotic value as the theoretical fixed-carbon yield is approached. 

 

Spruce also showed similar measured temperature peaks (around 400°C). It seems that the 

increment in spruce mass loadings was not sufficient to present clear temperature differences, in 

other words the mass loadings tested did not reveal a significant influence on the pyrolytic 

exotherms and/or differences were masked by the large thermal mass of the sand bath. 



131 

 

Temperature peaks for birch were not representative of biomass temperature at the lower mass 

loadings since, given birch higher packing density, the thermocouple sensor was not in contact 

with the biomass.  

 

Figures 6.29 and 6.30 show proximate analysis and product yield trends with mass loadings. Oak 

and cellulose results of the experiments at the two different mass loadings may be misleading as 

the proximate analysis measurements followed different methods, as explained earlier in Section 

4.2. Nonetheless, in the case of cellulose, the similar fixed-carbon yields but the remarkable 

increase in the fixed-carbon content with the mass loading (∼72% vs. 54%) cannot be solely 

explained by differences between the proximate analysis measuring techniques or differences in 

immersion times. This indicates a considerably higher extent of secondary charring reactions 

when a higher mass loading was tested.  

 

The most recent cellulose experiment proved that attaining a charcoal product high in fixed-

carbon and low in volatiles is possible using elevated mass loading at a moderate temperature of 

300°C as long as the carbonization reactor is capable of withstanding the high pressures evolved 

during the pyrolysis reaction. Short experiments with birch and spruce showed a minor increase 

on the fixed-carbon yields with increased mass loading and a minor increase, if any, on the fixed-

carbon contents. The spruce data exhibit a small increase in the fixed-carbon content which is 

just smaller than the experimental error. For long experiments with birch (long experiments with 

spruce were not performed), no significant changes to the fixed-carbon yields and contents at the 

loadings tested were observed. It appears that lengthening the immersion time reduces the 
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differences in char proximate analysis and product yields, and that there is a limit to the mass 

loading effect. 

 
Figure 6.29. Effect of mass loading on the yields of char, condensates and gas from the constant-

volume carbonization of birch, spruce, cellulose and oak at 300oC and at an initial N2 pressure of 

0.1 MPa. 
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Figure 6.30. Effect of mass loading on the proximate analysis of charcoals from the constant-

volume carbonization of birch, spruce, cellulose and oak at 300oC and at an initial N2 pressure of 

0.1 MPa. 

 

To test the mass loading effect, another approach was taken. The mass loading in the WHTB was 

varied by changing the WHTB dead volume while maintaining the feedstock absolute mass. 

Adding a tubing extension to the unheated portion of the reactor system created an incremental 

WHTB dead volume of 46 mL. The rest of experimental parameters were kept constant, 

considerably decreasing the peak pressures (from 4.7 to 2.7 MPa at 300°C, and from 17.9 to 7.5 

MPa at 550°C) while maintaining char HHVs, fixed-carbon contents and product yields (see 

Figures 6.31 and 6.32). In contrast to the limited studies in literature that showed a trend of 

increasing charcoal yields and fixed-carbon contents with the mass loading in sealed vessels, the 

WHTB experiments indicate that there is a limit to the mass loading effect. Larger mass loadings 

were tested in the WHTB experiments, in comparison to the loadings reported in literature (for 
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example, Mok et al. varied cellulose mass loadings in a 10-160g/L range while experiments with 

the most recent WHTB worked  in a 130-240 g/L range).  

 

It may be possible that as the loading is increased in a sealed vessel, and therefore, the partial 

pressure of volatiles and the extent of volatile-char interactions, char yields and proximate values 

initially improve until a limiting value is approached. Above it, the reactor pressure keeps 

increasing due to the higher amount of volatiles released but does not improve yields or fixed-

carbon. A deeper study is needed to reach definite conclusions that explain the differences 

observed between literature and experimental trends. The possibility of reducing pressures 

without affecting char proximate values and yields is particularly interesting since it offers the 

possibility to produce char of equal qualities in reactors characterized by lower pressure ratings 

and consequently, requiring lower investment and manufacturing costs. 
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Figure 6.31. Effect of adding a dead volume on the yields of char, condensates and gas from the 

constant-volume carbonization of birch and spruce at an initial N2 pressure of 0.1 MPa. 

 
Figure 6.32. Effect of adding a dead volume on the proximate analysis of charcoals from the 

constant-volume carbonization of birch and spruce at an initial N2 pressure of 0.1 MPa. 
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Figure 6.33 shows thermodynamic product yield predictions with birch mass loadings calculated 

by FactSage. Theoretically, an initial plateau on the product yields with the mass loading is 

predicted until a limiting value is reached. Above it, liquid water is formed, the fixed-carbon 

yield increases while water vapor, CO2 and CH4 yields decline. Oak and cellulose theoretical 

predictions show similar behaviors. Experimentally, trends differed radically. Experimental mass 

loadings above the critical theoretical value did not result in any improvements of fixed-carbon 

yields but a plateau on the yields was observed. Note that the experimental and theoretical results 

under similar experimentally defined conditions are not completely equivalent. For example, 

FactSage assumes a constant-volume reactor at a uniform temperature.  Experimentally, the 

constant-volume WHTB has two distinct temperature zones (the hot reaction zone and the cool, 

near-room-temperature, dead volume) and solid and gaseous volumes keep changing during 

carbonization. In addition, lots of complex reaction products and intermediates, such as tarry 

vapors, are not included in theoretical predictions.  

 
Figure 6.33. Effect of mass loading on the theoretical product distribution from the constant-

volume carbonization of birch at 300°C predicted by FactSage 
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Based on the available SEM images of charcoals derived from birch CVC (0.1 MPa pretest 

pressure, 300°C HTT and mass loadings of 130, 165 and 240 g/L, see Figures 6.9, 6.28, 6.34 and 

6.35), robust conclusions cannot be made regarding the role of mass loading on the char 

morphology. For example, some TPP formation was observed on chars derived from CVC of 

small birch particles (<0.2 mm) at a  mass loading of 165 g/L (Figure 6.34) whereas no signs of 

TPP were discerned on chars from CVC of larger birch particles (<2 mm) at a lower mass 

loading of 130 g/L (see Figure 6.9). Since tests at the higher mass loadings were only performed 

with smaller birch particles (<0.2 mm), the roles of particle size or mass loading on TPP 

evolution cannot be isolated.  

 

Intuitively, one could explain both a favorable and a detrimental effect of a decrease in the 

biomass particle size on the TPP formation (see section 6.5 for details). Similarly, an increase in 

the mass loading could also have antagonistic impacts on the TPP development. On the one 

hand, higher mass loadings raise the volatile pressure which most likely benefit the TPP 

formation. Conversely, higher mass loadings lead to lower heating rates which may jeopardize 

the TPP development. Thus, the influence of both the mass loading and particle size factors on 

the evolution of the char morphological structure need further elucidation. 

Note that both the mass loading and particle size effects were studied in CVC tests at HTTs of 

300°C. This temperature is too modest to observe clear TPP evolution (see section 6.3). Higher 

temperatures could shed light into the impacts of both factors on the char morphology. 
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Figure 6.34. (a) Scanning electron microscopy image of charcoal from constant-volume 

carbonization of birch grains of particle size <0.2 mm at a mass loading of 165 g/L, at a heat 

treatment temperature of 300°C and an initial nitrogen pressure of 0.1 MPa, (b), (c) and (d)  

higher magnification views of selected areas in (a), (b) and (c) respectively. 

 

 
Figure 6.35. (a) Scanning electron microscopy image of charcoal from constant-volume 

carbonization of birch grains of particle size <0.2 mm at a mass loading of 240 g/L, at a heat 

treatment temperature of 300°C and an initial nitrogen pressure of 0.1 MPa, (b), (c), (d) and (e) 

higher magnification views of selected areas in (a), (b), (c) and (d) respectively.  
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6.7. Effect of Solid Residence Time or Immersion Time 

  

Figures 6.36 and 6.37 show the effects of immersion times on spruce and birch experiments at an 

initial N2 pressure of 0.1 MPa. Prolonging the processing times from 30 to 190 minutes led to 

higher gas yields and pressures and charcoals with a greater degree of devolatilization. Char 

heating values were similar. At a carbonization temperature of 300°C, fixed-carbon yields 

improved by more than 10%, relative. At 400°C, however, the longer reaction time did not 

improve the fixed-carbon yields. 

 

Lengthening the immersion time from 190 to 300 minutes for spruce at 300°C appeared to 

improve fixed-carbon yield and fixed-carbon content. Keep in mind that spruce feedstock 

seemed to react more slowly than birch, so it is possible that long experiments with birch 

presented lower or negligible increases on the fixed-carbon content and yields. Notice that the 

cold WHTB dead volume wherein tarry vapors can condense could interfere with the reaction 

rates. 
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Figure 6.36. Effect of immersion time on the yields of char, condensates and gas from the 

constant-volume carbonization of spruce and birch at an initial N2 pressure of 0.1 MPa. 
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Figure 6.37. Effect of immersion time on the proximate analysis of char from the constant-

volume carbonization of spruce and birch at an initial N2 pressure of 0.1 MPa. 

 

An intriguing aspect of these spruce experiments is their slow rates compared to cellulose 

experiments in the original WHTB model. For cellulose, immersion time appears to have a lesser 

effect on the fixed-carbon content, and pressure and temperature stabilized within tens of 

minutes. Contrary to those observations, spruce and birch carbonization in the current WHTB 

required hours for the pressure to stabilize which is assumed to indicate that charring reactions 

are near completion. Pressure and temperature did not stabilize in the majority of the tests. 

Surprisingly, the long experiment performed with the smallest spruce grains (<0.2 mm) achieved 
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pressure and temperature stability after about two hours, which indicates the carbonization 

process is accelerated by the use of smaller particles and may account for the quicker rates 

observed on cellulose pyrolysis. Particle size, temperature, biomass type, external pressure and 

mass loading all seem to have an effect on the reaction rates of carbonization. In CVC, rates can 

be accelerated by the use of smaller particles and higher temperatures. In conventional 

carbonization processes in “open” reactors, the use of elevated pressures has proved beneficial 

on reducing times,57 while in CVC, the effect of raising the pretest pressure by an external gas, as 

well as the mass loading, may not be as beneficial due to the self-generated internal pressures 

experienced by the constant-volume reactor.  

 

Figure 6.38 shows SEM images of a charcoal produced in a short (30 min approx.) carbonization 

experiment of birch grains of particle size <0.2 mm at 240 g/L mass loading, 0.1 MPa pretest 

pressure, 300°C HTT and 190 min immersion time. The appearance of some melting can already 

be appreciated confirming the significance of the early stages of the carbonization process on the 

morphological evolution of charcoal. This finding was already supported when studying the 

heating rate effect on the char morphology. The heating path of the biomass proved to be crucial 

on the evolution of the char structure with fast heating leading to char molten phases and slow 

heating suppressing the char melting stage.  
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Figure 6.38. (a) Scanning electron microscopy images of charcoal from constant-volume 

carbonization of birch grains of particle size <0.2 mm at a mass loading of 240 g/L, at a heat 

treatment temperature of 300°C, an initial nitrogen pressure of 0.1 MPa and a short immersion 

time of around 30 min, (b), (c) and (d) higher magnification views of selected areas in (a), (b), 

(c) respectively.  

 

6.8. Effect of Feedstock 

 

The study of the feedstock has not been the main focus of this research. The majority of the 

WHTB experiments were performed with either birch or spruce feedstocks. Figures 6.39 and 

6.40 show the effect of biomass type (spruce or birch) on pyrolysis product yields and char 

proximate analysis. Table 4.1 showed similar elemental and proximate analysis for both of the 

raw biomass species. Regarding the cellulose, hemicellulose and lignin contents, spruce appears 

to have a higher lignin content and less cellulose and hemicellulose than birch. 
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In view of these structural components, one would be inclined to think that spruce would result 

in higher char yields. This is the case for the experiments performed at a HTT of 300°C and 

particle size of <2 mm. Nonetheless, the higher char yield of spruce was due to a higher content 

of volatiles but not to improved fixed-carbon yields. As the experimental conditions favor the 

achievement of equilibrium, that is, by reducing particle size from <2 mm to <0.2 mm or by 

increasing the temperature from 300 to 400°C, product yields and char analysis became similar 

for both feedstocks. 

 
Figure 6.39. Effect of feedstock on the yields of char, condensates and gas from constant-volume 

carbonization at an initial N2 pressure of 0.1 MPa, immersion time of 190 minutes and mass 

loading of 130 g/L. 
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Figure 6.40. Effect of feedstock on the proximate analysis of char from constant-volume 

carbonization at an initial N2 pressure of 0.1 MPa, immersion time of 190 minutes and mass 

loading of 130 g/L. 

 

Exceptionally, three isolated experiments tested the pyrolysis of oak, cellulose and rice husk 

biomasses under a pre-test pressure of 0.1 MPa a HTT of 300°C. Figures 6.41 and 6.42 show the 

results of three experiments in addition to two of the experiments with spruce and birch at the 

same pressure and HTT. Other experimental parameters such as particle size, mass loading or 

immersion time were not kept constant between experiments and therefore a direct quantitative 

comparison between experimental results is not possible.  
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Figure 6.41. Effect of feedstock on the yields of char, condensates and gas from constant-volume 

carbonization at an initial N2 pressure of 0.1 MPa and a heat treatment temperature of 300°C. 

 

 
Figure 6.42. Effect of feedstock on the proximate analysis of charcoals from constant-volume 

carbonization at an initial N2 pressure of 0.1 MPa and a heat treatment temperature of 300°C. 
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The experimental parameters employed for the oak test were fairly similar to those employed for 

birch and spruce runs. In addition, elemental and proximate analysis of the original biomasses 

were also comparable (see Table 4.1). Regarding the structural components, oak shows a lower 

lignin content and higher cellulose. As a result, one may think that oak would produce lower char 

yield. Nonetheless, product yields and char proximate analysis from the three tests are relatively 

similar. 

 

In the case of the pyrolysis of cellulose, lower yields of charcoal than from spruce, birch or oak 

were obtained, which was expected due to the absence of lignin in the cellulosic feedstock. The 

charcoal showed a slightly lower fixed-carbon yield but manifested a surprisingly low content of 

volatiles at the modest temperature of 300°C employed. Therefore, the low yield of charcoal was 

mainly due to an enhanced release of volatiles and therefore to a considerable improvement of 

charcoal quality in terms of proximate analysis. Differences in mass loading and particle size 

parameters for the cellulose experiment in comparison to the other feedstock experiments do not 

appear to explain the differences observed from the experimental results (see Sections 6.5 and 

6.6.). 

 

Antal and Grønli39 reported charcoal yield estimations from cellulose pyrolysis. The following 

stoichiometric equation was derived from Stanjan theoretical products that followed the 

attainment of thermochemical equilibrium at 400°C and 1 MPa and predicted a yield of carbon 

from cellulose of 27.7 wt. %. Stanjan specified only carbon with non-condensable gases as 

pyrolysis products and did not include volatiles in the calculations. 
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𝐶6𝐻10𝑂5 → 3.74𝐶 + 2.65𝐻2𝑂 + 1.17𝐶𝑂2 + 1.08𝐶𝐻4 (6. 1) 

The stoichiometric equation was contrasted with the approximate expression derived by Klason 

et al.190 (also replicated by Antal and Grønli)39 from experimental observations of cellulose 

pyrolysis at 400°C which lead to a charcoal (first product in the equation) yield of 34.0 wt. % 

and a tar (last product in the equation) yield of 15.6 wt % and a fixed-carbon yield of 27.8 wt %. 

𝐶6𝐻10𝑂5 → 3.75𝐶𝐻0.6𝑂0.13 + 2.88𝐻2𝑂 + 0.5𝐶𝑂2 + 0.25𝐶𝑂 + 𝐶1.5𝐻1.25𝑂0.38 (6.2) 

Note that H is unbalanced across the reaction but is an accurate reflection of the cited article.  

Klason and co-workers191 also reported an approximate equation for the carbonization of “wood” 

at 400°C that revealed a charcoal (first product in the equation) yield of 34.7 wt. % and a tar (last 

product in the equation) yield of 25.4 wt. % and a fixed-carbon yield of 28.5 wt. %. 

2𝐶42𝐻60𝑂28 → 3𝐶16𝐻10𝑂2 + 28𝐻2𝑂 + 5𝐶𝑂2 + 3𝐶𝑂 + 𝐶28𝐻34𝑂9 (6.3) 

While Klason and co-workers190,191 approximate equations for both cellulose and wood pyrolysis 

showed similar charcoal and fixed-carbon yields. Tar yields differed considerably. Cellulose 

pyrolysis results in approximately a 10 wt. % lower yield than wood pyrolysis (15.6 wt. % versus 

25.4 wt. %). In a sealed reactor like the WHTB, tars are not released but instead remain in the 

reaction zone resulting in a negligible amount of free-tar. The release of less volatiles from pure 

cellulose could explain the lower volatile matter of its char as was observed in comparing it to 

char from wood under identical experimental conditions. 

 

Finally, the experiment with rice husk resulted in low fixed-carbon yields and large amounts of 

volatiles and ash in the final charcoal. The results can be explained by the large amount of ash in 
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the original biomass (see Table 4.1) in combination with a shorter experimental time (28 min 

versus 190 min).  

 

Figure 6.43 shows theoretical fixed-carbon yields of the different feedstocks predicted by 

FactSage. Note that the FactSage algorithm can serve as reference values for the equilibrium 

yields. The calculations considers the biomass elemental analysis and processing conditions such 

as temperature and pressure. But other factors such as the biomass structural components 

(cellulose, hemicelluloses and lignin) or ash constituents which that have been proved to be of 

significance during the evolution of the pyrolysis processes are ignored. 

 

 

Figure 6.43. Parity plot displaying the experimental fixed carbon yields from CVC vs the 

theoretical values predicted by FactSage for cellulose, rice husk, oak, birch and spruce at a heat 

treatment temperature of 300°C and a pretest pressure of 0.1 MPa.  
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Finally, FactSage results are relatively sensitive to the elemental composition of the biomass 

introduced as input data. Figure 6.44 shows a 2% difference in the fixed-carbon yield estimated 

by FactSage for birch pyrolysis with the elemental composition given by two different 

laboratories: The R3 Laboratory in Hawaii (see Table 4.1) and SINTEF Energy Research in 

Norway (Analysis published in 52). This indicates that small variations in elemental analysis 

which could be due to experimental human errors or small variations in the elemental 

composition within the same sample could result in moderate differences in the predicted-fixed 

carbon yield limiting values.  

 

In experiments in which equilibrium is almost attained, these differences along with other factors 

such as the fact that the experimental fixed-carbon yield consists of 95.27% elemental carbon 

(and not 100% carbon as it is assumed to, see Section 5.3), could result in calculations of 

experimental fixed-carbon values slightly over the limiting fixed-carbon yield values. In 

conclusion, FactSage and experimental values are not 100% accurate but provides a reasonably 

good estimate of the closeness to equilibrium. It can be concluded that the WHTB successfully 

“attained” the fixed-carbon yields predicted by thermodynamical equilibrium. 
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Figure 6.44. Effect of small changes in the birch elemental analysis (provided by two 

laboratories) on the theoretical product fixed-carbon yield from the constant-volume 

carbonization of birch at 300°C predicted by FactSage.    
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CHAPTER 7. MODELING EFFORT 

 

This chapter identifies models relevant to the WHTB and the experimental data that will allow 

the models to be evaluated for applicability. As pointed out by Di Blasi,184 a number of issues 

make quantitative predictions and their comparison with experimental data rather complicated. 

For example, large uncertainties exist in the physical and chemical properties of the pyrolyzing 

char and in the kinetic models and rates used in mathematical simulations. Additionally, 

properties can greatly differ between biomass species and heavily impact product evolution 

during pyrolysis. For example, the biomass solid density, specific heat, thermal conductivity, 

porosity, permeability, inorganic matter composition or ratios of cellulose, hemicellulose, and 

lignin all have an influence on the pyrolytic process and in the resultant product distribution. 

 

Table 3.1 presented a number of kinetic schemes from the literature, some of which accounted 

solely for primary reactions whereas others also considered secondary interactions. In this 

section, a two models have been developed in MATLAB to simulate CVC of biomass in the 

WHTB. Since experimental evidence suggest that secondary reactions are important during 

CVC, the models evaluate the kinetic schemes that include them and simultaneously solve 

kinetic expressions together with the conservation equations for mass and energy to finally 

display product yields. To our knowledge, this is the first time CVC is being simulated. All 

simulations found in literature pertain to “open” reactor systems. Therefore, this first attempts in 

CVC modelling have been kept relatively simple and make use of literature kinetic data derived 

from “open” pyrolysis processes. One needs to remember, nonetheless, that kinetic rates and 
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pyrolysis properties are likely to considerably change between “open” and sealed (CVC) vessels. 

Finally, the model is evaluated against experimental CVC data. 

 

The first model presented here (CVC model 1) applies the reaction scheme of Shafizadeh and 

Chin with secondary reactions163 and the second model (CVC model 2) applies the scheme of 

Koufopanos et al. with secondary reactions212 (see Table 3.1). A third scheme with secondary 

reactions elaborated by Grønli and Melaaen188 is also displayed in Table 3.1. This scheme just 

accounts for secondary gas formation from primary tar but excludes secondary char-forming 

reactions. Therefore, it is not relevant to CVC and has been discarded. 

 

7.1. CVC model 1 (employing kinetic scheme of Shafizadeh and Chin with 

secondary reactions) 

 

The chemical process of biomass pyrolysis proposed by Shafizadeh and Chin163 is described 

through a primary and a secondary stage as given in Figure 7.1. The kinetic scheme involves 

three parallel competitive reactions that consider primary production of gas, tar, and char, and a 

consecutive reaction that accounts for the secondary cracking of tar into gas and char. 
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Figure 7.1. Kinetic scheme of Shafizadeh and Chin163 with secondary reactions 

 

Mathematical models developed  by Di Blasi179, Hagge and Bryden180 and Lu et al.181 utilize this 

reaction scheme coupled with heat and mass transfer phenomena. The models simulate biomass 

pyrolysis of a single particle as a function of time in an “open” reactor where the volatile 

products are swept out by an inert gas. The following assumptions are shared by the three 

models: 

 Biomass particles are modeled as one-dimensional. 

 Heat transfer is transported by conduction, convection, and radiation.  

 Mass transfer is driven by pressure and concentration gradients. 

 A constant atmospheric pressure is maintained at the particle surface. 

 Gases behave as ideal gases. 

 Conservation of momentum by Darcy’s law is included to calculate pressure and gas 

velocity profiles along the solid particle.  

 Kinetic expressions are assumed to follow an Arrhenius type expression of the form  
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𝑘𝑖 = 𝐴𝑖exp (−𝐸𝑖/𝑅𝑜𝑇) (7.1) 

 Primary reactions are represented as endothermic processes and secondary reactions as 

exothermic processes.  

 

Very few attempts have been made in the literature to estimate activation energies Ei and 

preexponential factors Ai of the kinetic data (k1-k5), and heats of reactions (Δh1– Δh5). Table 7.1 

displays the references employed in each mathematical model for such data.  

 

In the models, the kinetic constants k1-k5and heat of reactions Δh1– Δh5 should correspond to the 

same biomass sample. Nonetheless, given the limited amount of literature available concerning 

kinetic data, the three models mentioned here needed to make use of kinetic constants and heats 

of reactions derived from diverse types of woods samples. Flaws may be consequently 

introduced in their estimations. Di Blasi184 discusses the effect of secondary reactions through 

the introduction of variations on the kinetic parameters of both primary and secondary reactions. 
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Table 7.1. References used in the literature models for kinetic and enthalpy data for kinetic 

scheme of Shafizadeh and Chin.163 

Model 𝑘1, 𝑘2, 𝑘3 𝑘4 𝑘5 𝛥ℎ1, 𝛥ℎ2, 𝛥ℎ3 𝛥ℎ4, 𝛥ℎ5 

Di Blasi179. a Thurner and 
Mann213 
Chan et al.182 
Font et al.214 

Liden et 
al.215 

Di 
Blasi216.b 

Chan et 
al.182.c 

Koufopanos et 
al.178.d 

Hagge and 
Bryden180 

Thurner and 
Mann213 

Liden et 
al.215 

Di 
Blasi216.b 

Di Blasi216.c,e Liden et al.215. d 

Lu et al.181 Font et al.214.f 

Wagenaar et 
al.217 

Liden et 
al.215 

Di 
Blasi216.b 

Chan et 
al.182.c 

Koufopanos et 
al.178.d 

a. Di Blasi performs three simulations. Each one with a different k1-k3 data set taken from 
182,213,214. Di Blasi transforms the units of the preexponential factors A1-A3 given by 

Thurner and Mann 213 from min-1 to s—1. The conversion factor introduced in the 

calculations is erroneous. Di Blasi multiplies by 60 (or 6 in the case of A1) instead of 

dividing. The preexponential factor A4 of Di Blasi reportedly taken from Liden et al.215 

does not agree with the values displayed by Liden et al.215 
b. Di Blasi216 estimated k5 using an erroneous k1 value due to the erroneous conversion 

factor explained in the previous footnote. 
c. The models employ reverse signs for the heat of reactions, endothermic processes were 

given a negative enthalpy and exothermic processes were given a positive enthalpy. 
d. All models display the same heat of reactions values for reactions 4 and 5, (Δh4 and 

Δh5) even though supposedly, the values are specified to be taken from different 

references: Di Blasi179and Lu et al.181 from Koufopanos et al.178.b, and Hagge and 

Bryden from Liden et al.215 Nonetheless, even though the original articles178,181 were 

requested, I was unable to find the specified values in them. 
e. Hagge and Bryden specifies Di Blasi216 as the reference for Δh1 - Δh3 values but the 

original article used by Di Blasi216 is Chan et al.182. Chan et al.182 just give a single 

value for the overall endothermic heat of reaction and this value is shared for the 

enthalpies of the three primary reactions in all models. The value is derived from a 

different kinetic scheme than the one in Figure 7.1 which is employed by all models 

and may introduce inconsistencies in the models. 
f. Lu et al.181 used Font et al.214 dataset when modeling the pyrolysis of hardwood 

particles. The dataset was found to be comparable to that of Nunn et al.218, who 

reported kinetic data for hardwood in the high-temperature range (300–1100°C). 

 

Di Blasi179 calculated space and history profiles of the main variables and predicted final product 

yields from the pyrolysis of a large (τ = 0.025 m) anisotropic wooden grain exposed to a specific 
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external radiative heat flux. She studied the effects of (1) shrinkage level, (2) intensity of the 

external radiation and (3) orientation of the wood particle with respect to the one-dimensional 

heat flux. Considerable quantitative discrepancies between predicted and experimental data were 

found. Nonetheless both sets of data showed good qualitative agreement. 

 

The model from Hagge and Bryden180 analyzed the effect of shrinkage on the pyrolysis process 

and described the conditions of pyrolysis or combustion under which shrinkage must be 

contemplated. The conclusions of this study showed a negligible shrinkage influence on the 

processing times and final product yields when considering a thermally thin (Bi <0.2) and 

thermally thick (0.2≤Bi≤10) regimes. Whereas in the thermal wave regime Bi>10, char 

shrinkage effect increases with both temperature and particle size. Bi refers to the Biot number 

defined as Bi = hradLc/k where hrad is the heat transfer coefficient, Lc is the characteristic length 

and k is the thermal conductivity. 

 

Finally, the model by Lu et al.181 simulated the rapid pyrolysis of wooden particles of various 

shapes and sizes without considering shrinkage and compared the predictions with experimental 

data. 

 

The mathematical models provided by the authors mentioned above served as the basis for the 

development of CVC model 1, which solves the kinetic expressions derived from Shafizadeh and 

Chin with secondary reactions simultaneously to heat and mass conservation equations. The 

model represents the one-dimensional, time-dependent pyrolysis of biomass in a reactor that 

retains tar and gas products in the pyrolyzing zone. Due to the differences encountered between 
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CVC and “open” pyrolysis processes, mass and energy balances and boundary conditions were 

rewritten for the CVC as follows: 

 Mass balance for wood (w), char (c), tar (T) and non-condensable gas (G)  

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 
=  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 
+ 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑦 𝑖𝑛𝑓𝑙𝑜𝑤
−  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑏𝑦 𝑜𝑢𝑡𝑙𝑜𝑤  

(7.2) 

 

In a sealed reactor, input and output terms are null and the rate of accumulation of a mass 

component corresponds to the rate of production by the chemical reactions as represented by the 

following equations: 

𝜕(𝜌𝑤𝑉)

𝜕𝑡
= −(𝑘1 + 𝑘2 + 𝑘3)𝜌𝑤𝑉 

(7.3) 

 

𝜕(𝜌𝑐𝑉)

𝜕𝑡
= 𝑘3𝜌𝑤𝑉 + 𝑘5𝜌𝑇𝑉 

(7.4) 

 

𝜕(𝜌𝑇𝑉)

𝜕𝑡
= 𝑘2𝜌𝑤𝑉 − (𝑘4 + 𝑘5)𝜌𝑇𝑉 

(7.5) 

 

𝜕(𝜌𝐺𝑉)

𝜕𝑡
= 𝑘1𝜌𝑤𝑉 + 𝑘4𝜌𝑇𝑉 

(7.6) 

 

Where 𝜌𝑤 =
𝑀𝑤

𝑉
, 𝜌𝑐 =

𝑀𝑐

𝑉
 , 𝜌𝑇 =

𝑀𝑇

𝑉
 , 𝜌𝐺 =

𝑀𝐺

𝑉
 are the wood, charcoal, tar and gas apparent 

densities. t is time. 𝑀𝑤 , 𝑀𝑐  , 𝑀𝑇 , 𝑀𝐺  are the masses of wood, charcoal, tar and gas 

𝑘1, 𝑘2 , 𝑘3 , 𝑘4, 𝑘5 are the kinetic constants for reactions 1-5. V is the reactor volume.  
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Mass balances are simplified to: 

𝜕𝑀𝑤

𝜕𝑡
= −(𝑘1 + 𝑘2 + 𝑘3)𝑀𝑤 (7.7) 

𝜕𝑀𝑐

𝜕𝑡
= 𝑘3𝑀𝑤 + 𝑘5𝑀𝑇 (7.8) 

𝜕𝑀𝑇

𝜕𝑡
= 𝑘2𝑀𝑤 − (𝑘4 + 𝑘5)𝑀𝑇  (7.9) 

𝜕𝑀𝐺

𝜕𝑡
= 𝑘1𝑀𝑤 + 𝑘4𝑀𝑇 (7.10) 

 

Note that the models of Di Blasi,179 Hagge and Bryden,180 and Lu et al.181 and in consequence the 

new CVC models developed, use units of mass and not moles as typically employed in kinetic 

rates. 

 

A close look at the kinetic scheme in Figure 7.1 and at the mass balance Equations 7.7-7.10 

revealed that at steady state, the final product is estimated to be composed of just char and gas 

with no tar or biomass left behind. The kinetic scheme simulates biomass decomposition into 

primary gas, tar and char. The primary tar becomes a reactant that decomposes into secondary 

char and gas. Since there are no reverse reactions and tar and biomass are not end products, 

eventually both biomass and tar are supposed to disappear. A quick numerical calculation using 

mass balance Equations 7.7-7.10 above shows that at steady state—when mass derivatives of the 

components are null as in,   
𝜕(𝑀𝑤)

𝜕𝑡
=

𝜕(𝑀𝑐)

𝜕𝑡
=

𝜕(𝑀𝑇)

𝜕𝑡
=

𝜕(𝑀𝐺)

𝜕𝑡
= 0—both 𝑀𝑤 and 𝑀𝑇 become zero. 
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Model predictions regarding tar formation reflects the negligible free tar recovered in CVC 

processes. In “open” reactors nonetheless, experiments of slow pyrolysis with ample time to 

reach equilibrium result in the production of some tar whose yield heavily depends on the 

experimental conditions such as temperature and pressure. For example, at 300°C and 

atmospheric pressure, some of the tar compounds have been found to be in volatile and remain as 

liquid/tar.84,90 It is well known that it is not possible to completely volatilize tar after it has been 

condensed (i.e. it has to be heated to temperatures that crack the molecules by breaking bonds to 

fully volatilize condensed oils/tars).  

 Energy balance 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚
=  𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑠𝑦𝑠𝑡𝑒𝑚
− 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚
+  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑦 𝑖𝑛𝑓𝑙𝑜𝑤
− 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑦 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

(7.11) 

 

Or in terms of defined variables 

𝑑𝐸

𝑑𝑡
= �̇� − 𝑊𝑠

̇ + �̇�𝑚𝑎𝑠𝑠,𝑖𝑛 − �̇�𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 
(7.12) 

 

In a sealed reactor, the flow streams are null and Equation 7.12 reduces to  

𝑑𝐸

𝑑𝑡
= �̇� − �̇� 

(7.13) 

 

The total energy may be considered as the result of the summation of many contributions. 

Common energy components include the internal, kinetic and potential energies. In sealed 
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reactors, the kinetic and potential energy terms are typically neglected and the internal energy 

𝑈represents the dominant energy contribution. Equation 7.13 can be expressed as 

𝑑𝑈

𝑑𝑡
= �̇� − �̇� 

(7.14) 

 

Appealing to the extensive property of internal energy and using enthalpy 𝐻 terms, the internal 

energy can therefore be expressed as 

𝑈 = ∑ 𝑀𝑖𝑢𝑖

𝑖

= ∑ 𝑀𝑖(ℎ𝑖 − 𝑃𝑣𝑖)

𝑖

 

 

(7.15) 

 

Where P is the system pressure, 𝑢𝑖 the specific internal energy of component 𝑖 , ℎ𝑖 its specific 

enthalpy, 𝑣𝑖its specific volume and 𝑀𝑖 its mass. 

Equation 7.15 can be developed into 

 

𝑈 = ∑ 𝑀𝑖𝑈𝑖

𝑖

= ∑ 𝑀𝑖(ℎ𝑖 − 𝑃𝑣𝑖)

𝑖

= ∑ 𝑀𝑖ℎ𝑖 − 𝑃 ∑ 𝑀𝑖𝑣𝑖

𝑖𝑖

= ∑ 𝑀𝑖ℎ𝑖 − 𝑃𝑉

𝑖

 (7.16) 

 

Introducing Equation 7.16 into 7.14 results in: 

𝜕(∑ 𝑀𝑖ℎ𝑖 − 𝑃𝑉𝑖 )

𝜕𝑡
= �̇� − �̇� 

(7.17) 

 

The left side of the equation can be extended to  

𝜕(∑ 𝑀𝑖ℎ𝑖 − 𝑃𝑉𝑖 )

𝜕𝑡
=

𝜕(∑ 𝑀𝑖ℎ𝑖𝑖 )

𝜕𝑡
−

𝜕(𝑃𝑉)

𝜕𝑡

= ∑ 𝑀𝑖

𝑖

𝜕ℎ𝑖

𝜕𝑡
+ ∑ ℎ𝑖

𝑖

𝜕𝑀𝑖

𝜕𝑡
− 𝑃

𝜕𝑉

𝜕𝑡
− 𝑉

𝜕𝑃

𝜕𝑡
 

(7.18) 
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Where 

∑ 𝑀𝑖

𝑖

𝜕ℎ𝑖

𝜕𝑡
= ∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

𝜕𝑇

𝜕𝑡
 (7.19) 

And  

∑ ℎ𝑖

𝑖

𝜕𝑀𝑖

𝜕𝑡
= 𝑉 ∑ ∆ℎ𝑘

𝑘

𝑟𝑘 

 

(7.20) 

See reference 219 for derivation of Equation 7.20. 

And in a constant-volume reactor as the WHTB 

𝑃
𝜕𝑉

𝜕𝑡
= 0 

(7.21) 

 

Incorporating Equations 7.19-7.21 in 7.18, the equation becomes 

∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

𝜕𝑇

𝜕𝑡
+ 𝑉 ∑ ∆ℎ𝑘

𝑘

𝑟𝑘 − 𝑉
𝜕𝑃

𝜕𝑡
= �̇� − �̇� (7.22) 

 

Where 𝑐𝑝,𝑖 is the specific heat capacity of component 𝑖, ∆ℎ𝑘 the heat of reaction 𝑘 and 𝑟𝑘 the rate 

of reaction 𝑘 calculated as 

𝑟1 = 𝑘1

𝑀𝑤

𝑉
 (7.23) 

𝑟2 = 𝑘2

𝑀𝑤

𝑉
 (7.24) 

𝑟3 = 𝑘3

𝑀𝑤

𝑉
 (7.25) 

𝑟4 = 𝑘4

𝑀𝑇

𝑉
 (7.26) 
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𝑟5 = 𝑘5

𝑀𝑇

𝑉
 (7.27) 

 

In previous models in “open” reactors, the heat �̇� term accounted for conduction, radiation and 

convection. In CVC models 1 and 2, �̇� is assumed to be governed by just conduction through the 

stainless steel wall of the reactor as in Equation 7.28. The convective heat term was neglected 

since pyrolysis products are not being flushed during CVC. 

�̇� =
𝑘

𝑡𝑤
𝐴(𝑇𝑠 − 𝑇) (7.28) 

 

𝑘 is the thermal conductivity and 𝑡𝑤 is the thickness of the stainless steel wall. 𝑇𝑠 is the 

temperature of the outer wall whose value is assumed constant and equal to the sand bath 

temperature during the whole pyrolysis process. 𝑇 is the temperature inside the reactor which is 

assumed to be uniform in all the reaction zones. This assumption does not reflect the 

experimental temperature profile. In the actual experiment, the inner temperature of the biomass 

heats up more slowly. The development of a detailed model that includes spatial temperature 

profile would require the use of finite elements and the estimation of data–such as the biomass 

void volume and volatile or char thermal conductivities and their evolution with time and 

space—that are currently largely uncertain. The model was therefore elaborated on the basis of a 

uniform temperature. 

 

The work 𝑊 ̇ term on the right side of Equation 7.22 can be divided into three components: The 

work performed by the flowing streams; the shaft work performed by stirrers, compressors, etc. 
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and the work performed by moving system boundaries. All these contributions are null in the 

WHTB since this system is characterized by being hermetically sealed (i.e., with no flow 

streams), by being equipped with no stirrers or any other movable equipment and by having a 

constant-volume with fixed system boundaries. Thus, �̇� = 0 

 

If the heat term is introduced in Equation 7.22, the energy balance equation becomes  

∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

𝜕𝑇

𝜕𝑡
+ 𝑉 ∑ ∆ℎ𝑘

𝑘

𝑟𝑘 − 𝑉
𝜕𝑃

𝜕𝑡
=

𝑘

𝑡𝑤
𝐴(𝑇𝑠 − 𝑇) (7.29) 

 

And reorganizing 

∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

𝜕𝑇

𝜕𝑡
− 𝑉

𝜕𝑃

𝜕𝑡
=

𝑘

𝑡𝑤
𝐴(𝑇𝑠 − 𝑇) + 𝑉 ∑(−∆ℎ𝑘)

𝑘

𝑟𝑘 (7.30) 

 

The pressure is assumed to follow the ideal gas law  

𝑃 =
𝑛𝑔𝑅𝑜𝑇

𝑉𝑔
 (7.31) 

 

In Di Blasi179, the moles of total volatiles 𝑛𝑔 are calculated as  

𝑛𝑔 =
𝑀𝑔

𝑊𝑔
 (7.32) 

 

Where 𝑀𝑔 and 𝑊𝑔 refers to the mass and molecular weights of the total volatiles. And the mass 

of total volatiles is given by the summation of the masses of tar 𝑀𝑇 and non-condensable gases 

𝑀𝐺 . 
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𝑀𝑔 = 𝑀𝐺 + 𝑀𝑇 (7.33) 

 

The total moles of volatiles in the model is then calculated as  

𝑛𝑔 =
𝑀𝐺 + 𝑀𝑇

𝑊𝑔
 (7.34) 

 

In the Di Blasi179 model, 𝑀𝐺  and 𝑀𝑇 are assumed to vary with time and the molecular weight of 

total volatiles 𝑊𝑔 is assumed constant during the process. The 𝑊𝑔 value is not published in Di 

Blasi179 article. 

 

In CVC models 1 and 2, the total moles of species in the gas phase, 𝑛𝑔, is calculated as the sum 

of moles of tar, 𝑛𝑇, and non-condensable gases, 𝑛𝐺, and both vary with time. The nomenclature 

𝑔, 𝐺 and 𝑇 refer to total volatiles, non-condensable gases and tar, respectively, was taken from 

Di Blasi179. 

 

𝑛𝑔 = 𝑛𝐺 + 𝑛𝑇 (7.35) 

 

Rewriting in terms of masses, 𝑀𝑖, and molecular weights, 𝑊𝑖, of the components yields  

𝑛𝑔 =
𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
 (7.36) 

 

Instead of using a constant molecular weight for total volatiles, the CVC model 1 uses a mean 

molecular weight for non-condensable gas 𝑊𝐺  and another for tar 𝑊𝑇.  
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The reactor volume V is the sum of the volume occupied by volatiles, 𝑉𝑔, (tar plus non-

condensable gases) and the solid 𝑉𝑠. 

𝑉 = 𝑉𝑔 + 𝑉𝑠 (7.37) 

 

The solid volume 𝑉𝑠 is assumed—as in the model developed by Di Blasi179—to decrease with 

time in a way that corresponds to the loss of solid mass as in: 

𝑉𝑠

𝑉𝑠𝑜
≅

𝑀𝑠

𝑀𝑠𝑜
=

(𝑀𝑤 + 𝑀𝑐)

𝑀𝑤𝑜
 (7.38) 

 

Where 𝑉𝑠𝑜 and 𝑀𝑠𝑜 are the initial solid volume and mass, respectively. 𝑉𝑠 and 𝑀𝑠 are the solid 

volume and mass which depends on time. And 𝑀𝑠 = 𝑀𝑤 + 𝑀𝑐 with 𝑀𝑤 and 𝑀𝑐 being the wood 

and char masses, respectively. Initially, the reactor only contains wood, so the solid mass at t=0 

will be 𝑀𝑠𝑜 = 𝑀𝑤𝑜. Note that Equation 7.38 implicitly holds the assumption that the biomass 

and char densities are similar. 

 

The volume occupied by gas is then  

𝑉𝑔 = 𝑉 − 𝑉𝑠 = 𝑉 − 𝑉𝑠𝑜

(𝑀𝑤 + 𝑀𝑐)

𝑀𝑤𝑜
 (7.39) 

 

Then, introducing the expressions for the gas moles 𝑛𝑔 and gas volume 𝑉𝑔 from Equations 7.38 

and 7.39 in the Ideal Gas Law of Equation 7.31, the pressure of the reactor is calculated as 
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𝑃 =
𝑛𝑔𝑅𝑜𝑇

𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜

=
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑇

𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜

 (7.40) 

 

And the pressure derivative with time as 

𝜕𝑃

𝜕𝑡
=

𝜕

𝜕𝑡
(

(
𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑇

𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜

) (7.41) 

 

 

𝜕𝑃

𝜕𝑡
=

𝜕((
𝑀𝐺
𝑊𝐺

+
𝑀𝑇
𝑊𝑇

)𝑅𝑜𝑇)

𝜕𝑡
(𝑉 − 𝑉𝑤𝑜

(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
) − (

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑇

𝜕(𝑉−𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

𝜕𝑡

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

2  
(7.42) 

 

𝜕𝑃

𝜕𝑡

=
𝑅𝑜𝑇 (

1

𝑊𝐺

𝜕𝑀𝐺

𝜕𝑡
+

1

𝑊𝑇

𝜕𝑀𝑇

𝜕𝑡
) (𝑉 − 𝑉𝑤𝑜

(𝑀
𝑤

+𝑀𝑐)

𝑀𝑤𝑜

) + (
𝑀𝐺

𝑊𝐺

+
𝑀𝑇

𝑊𝑇

) 𝑅𝑜

𝜕𝑇

𝜕𝑡
(𝑉 − 𝑉𝑤𝑜

(𝑀
𝑤

+𝑀𝑐)

𝑀𝑤𝑜

) + (
𝑀𝐺

𝑊𝐺

+
𝑀𝑇

𝑊𝑇

) 𝑅𝑜𝑇
𝑉𝑤𝑜

𝑀𝑤𝑜

(
𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜

(𝑀
𝑤

+𝑀𝑐)

𝑀𝑤𝑜

)
2  

(7.43
) 

 

𝜕𝑃

𝜕𝑡
=

𝑅𝑜𝑇 (
1

𝑊𝐺

𝜕𝑀𝐺

𝜕𝑡
+

1

𝑊𝑇

𝜕𝑀𝑇

𝜕𝑡
) + (

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜

𝜕𝑇

𝜕𝑡

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

+
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑇

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

2  

(7.44) 

 

In the CVC model, the pressure is continuously increasing. This behavior contrasts with the 

pressure profile observed in “open” reactors. “Open” reactors models depict the continuous 
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purge of volatiles under the assumption of a constant atmospheric pressure at the particle surface. 

In a sealed reactor, pressure and its derivative needs to be calculated.  

 

Including the 
𝜕𝑃

𝜕𝑡
 expression in Equation 7.44 in the energy balance of Equation 7.30 

∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

𝜕𝑇

𝜕𝑡
− 𝑉 (

𝑅𝑜𝑇 (
1

𝑊𝐺

𝜕𝑀𝐺

𝜕𝑡
+

1

𝑊𝑇

𝜕𝑀𝑇

𝜕𝑡
) + (

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜

𝜕𝑇

𝜕𝑡

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

+
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑇

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

2 )

=
𝑘

𝑡𝑤
𝐴(𝑇𝑠 − 𝑇) + 𝑉 ∑(−∆ℎ𝑘)

𝑘

𝑟𝑘 

 

(7.45) 

Reorganizing  

𝜕𝑇

𝜕𝑡
(∑ 𝑀𝑖𝑐𝑝,𝑖

𝑖

−
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
) 𝑅𝑜𝑉

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

)

=
𝑘

𝑡𝑤
𝐴(𝑇𝑠 − 𝑇) + 𝑉 ∑(−∆ℎ𝑘)

𝑘

𝑟𝑘

+ 𝑉𝑅𝑜𝑇 [
(

1

𝑊𝐺

𝜕𝑀𝐺

𝜕𝑡
+

1

𝑊𝑇

𝜕𝑀𝑇

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

+
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
)

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

2 ] 

 

(7.46) 

The final expression for the temperature derivative with time is then 
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𝜕𝑇

𝜕𝑡
=

𝑘

𝑡𝑤

𝐴(𝑇𝑠 − 𝑇) + 𝑉 ∑ (−∆ℎ
𝑘
)𝑘 𝑟𝑘 + 𝑉𝑅𝑜𝑇 [

(
1

𝑊𝐺

𝜕𝑀𝐺

𝜕𝑡
+

1

𝑊𝑇

𝜕𝑀𝑇

𝜕𝑡
)

(𝑉−𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

+
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
)

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐

𝜕𝑡
)

(𝑉−𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)

2 ]

(∑ 𝑀𝑖𝑐𝑝,𝑖𝑖 −
(

𝑀𝐺

𝑊𝐺
+

𝑀𝑇

𝑊𝑇
)𝑅𝑜𝑉

(𝑉−𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜
)
)

 
(7.47) 

 

CVC model 1 is represented by the system of differential equations composed by the mass and 

energy balance (Equations 7.7-7.10 and 7.47). The MATLAB code in Appendix O uses the 

ode45 function, also known as Runge-Kutta method, to solve this set of equations. The code 

assumes an initial quiescent environment at ambient conditions and uses the kinetic data and 

property values given in Table 7.2. As in previous models that illustrate “open” reactor 

performance, a variety of references that use different biomass types needed to be employed with 

the implication of the introduction of uncertainties. 
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Table 7.2. Kinetic data and property values applied to constant-volume carbonization (CVC) 

model 1. Superscripts meanings shown in footnotes at the bottom of the table. 

Kinetic data 𝑘1, 𝑘2, 𝑘3Thurner and 
Mann213 

𝑘𝑖 = 𝐴𝑖exp (−𝐸𝑖/𝑅𝑜𝑇) 

 

𝐴1 1.43 x 104 s-1  

𝐴2 4.13 x 106 s-1  

𝐴3 7.38 x 105 s-1  

𝐸1 88.6 kJ/mol  

𝐸2 112.7 kJ/mol  

𝐸3 106.5 kJ/mol  

Kinetic data 𝑘4 Liden et al.215  

𝐴4 4.28 x 106 s-1  

𝐸4 107.5 kJ/mol  

Kinetic data 𝑘5 Di Blasi216  

𝐴5 1 x 105 s-1  

𝐸5 107.5 kJ/mol  

Heats of reaction data 

𝛥ℎ1, 𝛥ℎ2, 𝛥ℎ3Chan et al.182 

 

𝛥ℎ1, 𝛥ℎ2, 𝛥ℎ3 0.418 kJ/g  

Heats of reaction data 𝛥ℎ4, 𝛥ℎ5 Di 

Blasi179 

 

𝛥ℎ4, 𝛥ℎ5 -0.042 kJ/g  

Property values  

𝑅𝑜 8.314 x 10-

3 

kJ/mol 

K 

Ideal gas constant 

𝑊𝐺
a 44 g/mol Molecular weight non-condensable gas 

𝑊𝑇
b 200 g/mol Molecular weight tar 

𝑘𝑆𝑆 0.019 kW/m 

K 

Thermal conductivity of stainless steel at 225°C220 
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Table 7.2. Kinetic data and property values applied to constant-volume carbonization (CVC) 

model 1 (Continued). 

𝑡𝑤 0.0021 m Wall thickness reactor 

Rad 0.0127 m Outer radius of reactor (1 inch diameter) 

L 0.1524 m Reactor length (6 inch)  

𝑐𝑝,𝑤 1.5 x 10-3 kJ/g K Specific heat capacity of wood taken from 221 

𝑐𝑝,𝑐 1.5 x 10-3 kJ/g K Specific heat capacity of char taken from 221 

𝑐𝑝,𝑇 1.1 x 10-3 kJ/g K Specific heat capacity of tar taken from179.c 

𝑐𝑝,𝐺  1.1 x 10-3 kJ/g K Specific heat capacity of non-condensable gases taken 

from179.c 

𝑉 7.72 x 10-5 m3 Reactor volume (calculated as 𝜋 ∙ 𝑅𝑎𝑑2 ∙ 𝐿).d 

𝑉𝑤𝑜
e,f 0.2V m3 Initial volume occupied by the solid 

𝑇𝑠  573 K Sand bath temperature  

𝑇𝑜 298 K Initial reactor temperature 

𝑃𝑜 100 kPa Initial reactor pressure 

Mwo 10 g Initial biomass mass.e 

a. The molecular weight of the non-condensable gas is estimated to be that of CO2 since 
experimental analysis proved that CO2 is the chief gas component. 

b. Additional CVC model 1 simulations that tested the effect of the tar molecular weight 
in a 40-400g/mol range were performed. Results are presented below. 

c. Di Blasi179 employed an average cp value (taken from Kansas) for total volatiles (tar 
plus non-condensable gases). This value was used in the WHTB model as the heat 
capacity value for both tar and non-condensable gases. 

d. Additional CVC model 1 simulations that tested the effect of the reactor volume from 
𝑉 = 𝜋 ∙ 𝑅𝑎𝑑2 ∙ 𝐿 to 𝑉 = 2𝜋 ∙ 𝑅𝑎𝑑2 ∙ 𝐿 and the effect of the initial volume occupied 
by the solid (Vwo) from 0.2V to 0.4V were performed. Results are presented below.  

e. Vwo equal 0.2 V is based in WHTB experiments. 

f. Additional CVC model 1 simulations that tested the effect of the reactor volume from 
𝑉 = 𝜋 ∙ 𝑅𝑎𝑑2 ∙ 𝐿 to 𝑉 = 2𝜋 ∙ 𝑅𝑎𝑑2 ∙ 𝐿 and the effect of the initial volume occupied 
by the solid (Vwo) from 0.2V to 0.4V were performed. Results are presented below. 

g. Additional CVC model 1 simulations that tested the effect of the biomass initial mass 
in a 10-100g range were performed. Results are presented below. 
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Figures 7.2 and 7.3 illustrate product yields, temperature and pressure history profiles predicted 

by the CVC model 1. Temperature increases almost instantaneously to reach the sand bath 

temperature, the yield of virgin wood reduces asymptotically with time until it gets consumed 

whereas the concentrations of char and non-condensable gases, and the system pressure, increase 

to reach asymptotic steady state values. The tar yield peaks at a maximum value and 

subsequently recedes to its final depleted value.  

 

The predictions from CVC model 1 contrast with experimental values. WHTB experiments of 

spruce or birch under a mass loading of 129 g of biomass per liter of reactor, a 300°C HTT and 

at atmospheric initial pressure resulted in final experimental pressures of around 5 MPa 

(measured before the WHTB cool down), a temperature history profile similar to the one shown 

in Figure 5.1, char yields of 50-60%, non-condensable gas yields of 15-20% and liquid yield as 

the balance (see Table 5.1). In comparison, CVC model 1 predictions regarding the pyrolysis of 

biomass at similar initial conditions and HTT shows that near-equilibrium conditions are quickly 

reached. The results show a pressure of 10 MPa approximately (see Figure 7.3), char and gas 

yields of ~31% and ~69% respectively, no water and negligible tar (see Figure 7.2). As 

previously explained, tar is not an end product in the kinetic schemes of the WHTB model and 

therefore is predicted to disappear when steady state is achieved. Water is not present in these 

kinetic schemes and therefore is not accounted for in the MATLAB model. 
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Figure 7.2. History profile of wood, char and volatile yields predicted by CVC model 1 assuming 

constant-volume carbonization of biomass at a heat treatment temperature of 300°C and an initial 

pretest pressure of 0.1 MPa. 

 
Figure 7.3. History profile of temperature and pressure predicted by CVC model 1 assuming a 

constant-volume carbonization of biomass at a heat treatment temperature of 300°C and an initial 

pretest pressure of 0.1 MPa 

 

The large differences between the model predictions and the experimental values can be 

explained by several factors. For instance, current models do not take into account the biomass 

composition such as the elemental analysis or cellulose, hemicellulose and lignin ratios, which 

have been proved to affect pyrolysis processes. These values could have been integrated in the 
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kinetic data and property values but one needs to remember that the MATLAB model was 

developed in the basis of data derived from “open” reactor systems that evacuate volatiles from 

the reaction zone which may considerably differ from CVC data. Also, given the limited 

published data, the use of values from several authors that employed different biomass sources 

and pyrolysis processes would be expected to contribute to differences between model and 

experimental results. 

 

The predicted temperature profile reflects the simplifications inherent in the model. CVC model 

assumptions include a uniform temperature inside the reactor and consider heat transfer to be 

governed by conduction through the reactor stainless steel wall, with convection and radiation 

terms neglected. In the actual WHTB experiments, the internal reactor temperature is not 

uniform and large spatial heating gradients exist within the bed of solid particles. Temperature 

spatial profiles have not been considered in the model. Given the number of unknown model 

parameters, extending the model complexity to gain additional insights was not expected to be 

productive. For example, little is known regarding thermal conductivities of the reacting 

medium, or of the pyrolysis gas, or regarding properties of the internal gas convection currents 

within the WHTB. 

In the CVC model 1, the heat transfer (Equation 7.28) is assumed to have an unrealistically high 

heat coefficient equal to 
𝑘

𝑡𝑤
𝐴 =0.11 kW/K which results in a near step function of temperature 

with time. To test the effect of slowing down the heat transfer, this coefficient was replaced with 

a parameterized coefficient. When its value was reduced from 0.11 to 10-3 kW/K, initial effects 

on the profiles of temperature, pressure and product yields were observed. Profiles that assumed 
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parameterized coefficients of 10-3, 10-4 and 10-5 kW/ are reported in Appendix P. As the heat 

transfer slows down, the CVC model 1 predicts the achievement of steady state after longer 

carbonization times but predicts comparable final pressures, temperatures and product yields.  

 

Regarding pressure calculations, differences are also expected with experimental values. In the 

MATLAB model, the whole reactor is assumed to be at a uniform temperature of 300°C while 

experimentally, a large reaction region (the dead volume) is close to room temperature which 

reduces the overall system pressure during an experiment. During the WHTB experiments, the 

non-condensable gas (whose pressure and composition are measured at the end of each 

experiment), tar (which has been found by SEM condensed on the char surface plus a negligible 

fraction in WHTB walls and tubing) and water (which seems to be a main pyrolytic liquid 

product found at the end of the experiments mainly as char moisture content) contribute to the 

total pressure in the system.  

 

In the MATLAB code, the system pressure is calculated as the sum of non-condensable gas and 

tar partial pressures. Water, even though it is a major experimental pyrolytic product, is not 

included in the literature kinetic scheme of Figure 7.1 and its vapor pressure is not taken into 

consideration in pressure calculations. Consequently, at near-equilibrium conditions, the non-

condensable gas pressure becomes basically the sole contribution to the total pressure predicted 

by MATLAB and the calculated pressure becomes basically proportional to the initial amount of 

biomass. 

 



176 

 

o Effect of Temperature 

 

Figure 7.4 displays theoretical char and gas yield values calculated with CVC model 1 in a 300-

500°C temperature range. Even though the predicted char yield value of around 31% is not close 

to the actual experimental char yields of around 55%, 43% and 40% at 300, 400 and 500°C 

respectively, the 31% char yield value  and the plateau profile surprisingly agrees with 

experimental fixed-carbon yields. 

 
Figure 7.4. Effect of heat treatment temperature on the yields of char and gas predicted by CVC 

model 1. 

 

 

o Effect of biomass loading, biomass volume and reactor volume 

 

The effects of mass loading on product yields and on pressure and temperature profiles were 

simulated by modifying the biomass initial mass in a 10-100 g range while keeping the rest of 

parameter values as the ones in Table 7.2. The effect of biomass volume was tested by changing 
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the initial solid volume from 0.2V to 0.4V (with V being the reactor volume of 0.0772 L) while 

keeping the rest of the parameters constant. Finally, the effect of reactor volume was studied 

with values ranging from 0.0772 to 0.1544 L. A negligible effect on product yields (in wt. 

percentage) was observed in all cases. As expected, pressure profiles were similar as the one in 

Figure 7.3 but the near-equilibrium pressure varied almost directly proportional to the increase in 

the initial biomass loaded, inversely proportional to the increase in reactor volume, and increased 

with the initial solid volume. The pressure went from 10.4 to 11.1 MPa as the biomass initial 

volume increased from 0.2V to 0.4V (with V=0.0772 L), i.e. as the gas volume decreased from 

0.8 to 0.6V. 

 

o Effect of volatile molecular weight 

 

Due to the difficulties of characterizing experimental tar products, little is known about the 

production of tar, such as its molecular mass range, its structure or whether it is really in the gas 

phase when pyrolyzing- there is some evidence to suggest that some of the tar is entrained as 

liquid or ejected violently as liquid during decomposition. 

 

At present, different techniques are employed for sampling and analyzing the tar derived from 

pyrolysis gases, such as gravimetry, gas chromatography and high-performance liquid 

chromatography.222 The two chromatographic methods generally identify tar compounds of sizes 

up to coronene (i.e. around 7 rings, molecular weight of 300 g/mol)223,224 whereas the heavier 

fraction of tar (compounds larger than 3 rings)223 is typically analyzed gravimetrically.223,224 
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Characterization methods for analyzing these heavy tars , nonetheless, are currently not well-

developed,224 and usually result in underestimations of actual tar molecular weights.  

 

The different types of analysis provide complimentary information of tar properties and can be 

performed individually but certain information overlaps.225 For example, Oesch et al.224  

observed that the ~65% of tar compounds obtained by gravimetry could be recognized by a 

general gas chromatographic method. If the GC analysis was modified to a higher-temperature 

method, the amount of the gravimetric tar compounds identified increased to ~85%. The upper 

limit of tar molecular weight identified under the high-temperature chromatography was 302 

g/mol. For heavier tars, the GC resolution became insufficient plus heavy model compounds 

could not be acquired in the commercial market. 

 

During the pyrolysis of wood in a fluidized bed reactor, Thunman et al.226 reported no final tar 

condensation inside the reaction zone or filters but observed minor quantities of soot and tar on 

the outlet tube wall. The elemental composition and heating value of lumped hydrocarbons (no 

tar) analyzed by GC was estimated as C6H6.2-8O0.1-1 and 37 MJ/kg respectively. From the 

elemental estimations, a molecular weight range for the lumped hydrocarbons of 79.8-96 g/mol 

can be calculated.  

 

Richard and Thunman227 compared tar analysis from different researchers and estimated a final 

tar elemental composition of C4.5H6.5O2.4—i.e. molecular weight of  98.9 g/mol. They concluded 

that tar composition is dictated by several factors such as temperature, heating rate or volatile 
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residence time and stated that the “The best assumption that can be made is to consider the tar 

composition to be the same as that of wood for low temperature of devolatilisation, and the same 

as that of lumped hydrocarbons for high temperature of devolatilisation.” The elemental 

composition of the feedstocks employed in the present work tabulated in Table 4.1 reflects a 

spruce composition of (CH0.1334O0.9866N0.004261S0.0002344)n with an unknown value of n and a 

similar composition for birch. This composition gives a molecular weight of n times 28g/mol. 

Based on the above information, a tar molecular weight in a 40-400 g/mol range was tested in the 

CVC model 1. The results show no effect of molecular weight in product yields and in the final 

predicted near-equilibrium pressure. These results were expected since CVC model 1 predicted 

no tar yield present when steady state is achieved. 

 

7.2. CVC model 2 (employing kinetic scheme of Koufopanos et al. with 

secondary reactions) 

 

Figure 7.5 presents Koufopanos et al.178 kinetic scheme for biomass pyrolysis with secondary 

reactions. The scheme involves two parallel reactions (Reactions 1 and 2) for primary production 

of volatiles (tar plus non-condensable gases) and char, and a third reaction (Reaction 3) in which 

the primary products further react to form secondary char and volatiles. To keep consistency 

throughout this report, the nomenclature used herein has been slightly changed from the one 

employed by Koufopanos et al.178 The term volatiles was employed by Koufopanos et al.178 to 

refer just to the tar fraction whereas this report refers to the sum of tar plus non-condensable 

gases. 
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Figure 7.5. Kinetic scheme of Koufopanos et al.178 with secondary reactions. 

 

Koufopanos et al.178, Babu and Chaurasia183 and Sadhukhan et al.228 applied this kinetic scheme 

coupled with mass and energy balances in mathematical models that simulated the pyrolysis of 

single cylindrical biomass particles in “open” reactors. Their results were validated against 

experimental data. The following assumptions were taken by the models: 

 Biomass particles are modeled as one-dimensional 

 Heat transfer is transported by conduction, convection, and radiation (just diffusion and 

convection for Babu and Chaurasia)183 

 Babu and Chaurasia183 accounted for the shrinkage effect while Koufopanos et al.178 and 

Sadhukhan et al.228 neglected it. 

 Kinetic expressions are assumed to follow Arrhenius type expressions of the forms 

o For Koufopanos et al.178 and Babu and Chaurasia183 

𝑘𝑖 = 𝐴𝑖 exp (
𝐷𝑖

𝑇
+

𝐿𝑖

𝑇2
) for 𝑖 = 1,2 

(7.48) 

  



181 

 

𝑘𝑖 = 𝐴𝑖 exp (−
𝐸𝑖

𝑅𝑜𝑇
) for 𝑖 = 3 

(7.49) 

  

o For Sadhukhan et al.228 

𝑘𝑖 = 𝐴𝑖 exp (−
𝐸𝑖

𝑅𝑜𝑇
) for 𝑖 = 1,2,3 (7.50) 

Table 7.3 displays the references employed in each mathematical model for kinetic data  𝐴𝑖,  𝐷𝑖, 

 𝐿𝑖 and 𝐸𝑖, as well as for the process enthalpies.  𝐴𝑖 and 𝐸𝑖 are the preexponential factor and 

activation energy of the Arrhenius equation while  𝐷𝑖  and 𝐿𝑖 are kinetic parameters of the 

modified Arrhenius Equation 7.48 introduced by Koufopanos et al.178 to fit data predicted by the 

model to experimental data. 

 

Table 7.3. References used in the literature models for kinetic and enthalpy data for kinetic 

scheme of Koufopanos et al.178 with secondary reactions. 

Model 𝑘1, 𝑘2, 𝑘3 𝛥ℎ 

Koufopanos et al.178 Koufopanos et al.178. Koufopanos et al.178. 

Babu and Chaurasia183 Koufopanos et al.178 Koufopanos et al.178. 

Sadhukhan et al.228 Sadhukhan et al.228 Sadhukhan et al. 228 

 

Koufopanos et al.178 and Sadhukhan et al.228 determined kinetic parameters and heats of reaction 

for the pyrolysis of biomass by fitting model predictions to experimental results, 

Koufopanos et al.178 estimated two heats of reaction for the pyrolysis process: a modest 

endothermic heat which dominates at low conversions (below 5 % of biomass weight loss) and is 

associated to reactions of bond breakage or release of chemically bonded moisture, and an 

exothermic heat which dominates at high conversions and is likely to relate to reactions 
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involving oxygen. Simulations over a broad range of pyrolysis parameters and processing 

conditions showed an increase on the impact of heat transfer and secondary reactions as the HTT 

and the particle size increased. 

 

Sadhukhan et al.228 also estimated their own kinetic data and overall heat of reaction by matching 

their mathematical model with experimental data, and subsequently predicted the effects of 

temperature and particle size on pyrolysis time and product distribution. They estimated a 

decline in char yields and an increase in total volatiles as the HTT was raised but no significant 

effect on final product yields with biomass particle size. 

 

Babu and Chaurasia183 used kinetic and heat of reaction data derived by Koufopanos et al.178 and 

applied it to a new model that included the particle shrinkage effect. They concluded that 

shrinkage barely influences pyrolysis time or product yields in a thermally thin regime but 

becomes important in a thermally thick regime. 

 

The CVC model 2 was developed using the Koufopanos et al.178 model as the basis. 

Mathematical equations for this CVC process were rewritten as follows: 

 Mass balance for wood (w), char (c1 and c2), and volatiles (G1 and G2)  

 

Equations 7.51-7.55 describe the rates of accumulation of each mass component in the sealed 

reactor  

𝜕(𝜌𝑤𝑉)

𝜕𝑡
= −(𝑘1 + 𝑘2)𝜌𝑤𝑉 

(7.51) 
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𝜕(𝜌𝑐1
𝑉)

𝜕𝑡
= 𝑘2𝜌𝑤𝑉 − 𝑘3𝜌𝐶1

𝑉 
(7.52) 

 

𝜕(𝜌𝐺1
𝑉)

𝜕𝑡
= 𝑘1𝜌𝑤𝑉 − 𝑘3𝜌𝐶1

𝑉 
(7.53) 

  

𝜕(𝜌𝐶2
𝑉)

𝜕𝑡
= 𝛿𝑘3𝜌𝐶1

𝑉 
(7.54) 

  

𝜕(𝜌𝐺2
𝑉)

𝜕𝑡
= (1 − (𝛿 − 1))𝑘3𝜌𝐶1

𝑉 

 

(7.55) 

Where 𝜌𝑤 =
𝑀𝑤

𝑉
,  𝜌𝑐1

=
𝑀𝑐1

𝑉
 , 𝜌𝑐2

=
𝑀𝑐2

𝑉
, 𝜌𝐺1

=
𝑀𝐺1

𝑉
 ,  𝜌𝐺2

=
𝑀𝐺2

𝑉
 are the wood, primary 

charcoal, secondary charcoal, primary gas and secondary gas apparent densities; 𝐺1and 

𝐺2 represent the total volatiles (tar plus non-condensable gas) from primary and secondary 

reactions; t is time; 𝑀𝑤 , 𝑀𝑐1
 , 𝑀𝑐2

 , 𝑀𝐺1
and 𝑀𝐺2

are the masses of wood, primary charcoal, 

secondary charcoal, primary volatiles and secondary volatiles; 𝑘1, 𝑘2and 𝑘3 are the kinetic 

constants; V is the reactor volume; and δ –term introduced by Koufopanos et al.178 – is the 

coefficient of deposition, which represents the amount of total volatiles deposited on the char 

sites because of secondary interactions (reaction 3) and is related to the volatile residence time. 

The coefficient varies in a 1-2 range depending on the extent of deposition. 

Mass balance equations 7.51-7.55 for CVC model 2 are simplified to: 

𝜕𝑀𝑤

𝜕𝑡
= −(𝑘1 + 𝑘2)𝑀𝑤 (7.56) 

𝜕𝑀𝐺1

𝜕𝑡
= 𝑘1𝑀𝑤 − 𝑘3𝑀𝐶1

 (7.57) 

𝜕𝑀𝐶1

𝜕𝑡
= 𝑘2𝑀𝑤 − 𝑘3𝑀𝐶1

 (7.58) 
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𝜕𝑀𝐶2

𝜕𝑡
= 𝛿𝑘3𝑀𝐶1

 (7.59) 

𝜕𝑀𝐺2

𝜕𝑡
= (2 − 𝛿)𝑘3𝑀𝐶1

 (7.60) 

Equations 7.56, 7.58 and 7.59 for charcoal and biomass accumulation rates replicate the ones 

displayed by Koufopanos et al.178 CVC model 2 also includes accumulation rates of primary and 

secondary gas (Equations 7.57 and 7.60). Koufopanos et al.178 did not focus on volatile yields 

and their accumulation rates were not specified or calculated. Notice that Equation 7.59 for the 

production of secondary char excludes the volatiles concentration in the kinetic expression. The 

volatiles effect on the secondary reactions is included in the coefficient of deposition δ. 

 

The kinetic scheme makes a distinction between the primary and secondary formation of 

charcoal (𝐶1 and 𝐶2 ) and volatiles (𝐺1 and 𝐺2). The volatiles combine tar plus non-condensable 

gas. Notice that all reactions are assumed to have order 1. Koufopanos et al.178 and Sadhukhan et 

al.228 followed this assumption for simplicity. In a previous publication229, Koufopanos justified 

the utilization of the same order for reactions 1 and 2. 

 Energy balance 

 

To calculate the energy balance, the same line of thinking as in the previous model (CVC model 

1) was followed but with certain adaptations that incorporated the new char and volatile terms. 

The expressions for pressure, its first derivative with time and the temperature derivative with 

time became: 
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𝑃 =
𝑛𝑔𝑅𝑇

𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐)

𝑀𝑤𝑜

=
(

𝑀𝑔

𝑊𝑔
) 𝑅𝑇

𝑉 − 𝑉𝑤𝑜
(𝑀𝑤+𝑀𝑐1+𝑀𝑐2)

𝑀𝑤𝑜

 
(7.61) 

𝜕𝑃

𝜕𝑡
=

𝑅𝑇 (
1

𝑊𝑔

𝜕𝑀𝑔

𝜕𝑡
) + (

𝑀𝑔

𝑊𝑔
) 𝑅

𝜕𝑇

𝜕𝑡

(𝑉 − 𝑉𝑤𝑜
𝑀𝑤+𝑀𝑐1+𝑀𝑐2

𝑀𝑤𝑜
)

+
(

𝑀𝑔

𝑊𝑔
) 𝑅𝑇

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐1

𝜕𝑡
+

𝜕𝑀𝑐2

𝜕𝑡
)

(𝑉 − 𝑉𝑤𝑜
𝑀𝑤+𝑀𝑐1+𝑀𝑐2

𝑀𝑤𝑜
)

2  
(7.62) 

𝜕𝑇

𝜕𝑡
=

𝑘

𝑡𝑤

𝐴(𝑇𝑠 − 𝑇) + 𝑉 ∑ (−∆ℎ
𝑘
)𝑘 𝑟𝑘 + 𝑉𝑅𝑇 [

(
1

𝑊𝑔

𝜕𝑀𝑔

𝜕𝑡
)

(𝑉−𝑉𝑤𝑜

𝑀𝑤+𝑀𝑐1+𝑀𝑐2
𝑀𝑤𝑜

)
+

(
𝑀𝑔

𝑊𝑔
)

𝑉𝑤𝑜

𝑀𝑤𝑜
(

𝜕𝑀𝑤

𝜕𝑡
+

𝜕𝑀𝑐1
𝜕𝑡

+
𝜕𝑀𝑐2

𝜕𝑡
)

(𝑉−𝑉𝑤𝑜

𝑀𝑤+𝑀𝑐1+𝑀𝑐2
𝑀𝑤𝑜

)
2 ]

(∑ 𝑀𝑖𝑐𝑝,𝑖𝑖 −
(

𝑀𝑔

𝑊𝑔
)𝑅𝑉

(𝑉−𝑉𝑤𝑜

𝑀𝑤+𝑀𝑐1+𝑀𝑐2
𝑀𝑤𝑜

)
)

 
(7.63) 

 

With  

𝑟1 = 𝑘1

𝑀𝑤

𝑉
 (7.64) 

𝑟2 = 𝑘2

𝑀𝑤

𝑉
 (7.65) 

𝑟3 = 𝑘3

𝑀𝐶1

𝑉
 (7. 66) 

𝑀𝑔 = 𝑀𝐺1
+ 𝑀𝐺2

 (7.67) 

 

Regarding differences between literature models, Sadhukhan et al.228 model also uses analogous 

kinetic expressions as the ones of Koufopanos et al.178 for biomass and secondary char mass 

balances (Equations 7.56 and 7.59) but the equation for the primary char mass balance is 

different. Their equation expressed as  
𝜕(𝜌𝑐1𝑉)

𝜕𝑡
= 𝑘2𝜌𝑤

𝑛𝑉 only accounts for primary char 
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formation through reaction 2 and neglects its consumption through secondary reaction 3. Babu 

and Chaurasia183 model uses considerably different kinetic expressions from those of Sadhukhan 

et al.228 and Koufopanos et al.178 but employs kinetic and heat of reaction data extracted from the 

latter one which implies that direct application of their data may introduce some inconsistencies 

in the model. 

Energy balances in literature models that employ Koufopanos et al.178 kinetic scheme only 

consider a single heat of reaction for the whole process and use specific heat capacities of char 

and wood while ignoring the volatile contribution. In contrast, literature models that employed 

Shafizadeh and Chin kinetic scheme (studied in the previous section) and both CVC models 1 

and 2 apply a heat value to each reaction and use specific heat capacities of char, wood and 

volatiles. 

 

The MATLAB code representing CVC model 2 is given in Appendix Q. The code assumes an 

initial quiescent environment at ambient conditions and takes kinetic data, property values from 

Table 7.4. 
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Table 7.4. Kinetic data and property values applied to constant-volume carbonization (CVC) 

model 2. Superscripts meanings shown in footnotes at the bottom of the table. 

Kinetic data 𝑘1, 𝑘2, 𝑘3Koufopanos et al.178 
ki=Ai exp(Di/T+ Li/T2) for i=1,2 

ki=Ai exp(-Ei/R0T) for i=3 

 

𝐴1 9.973 x 10-5 s-1  

𝐷1 17254.4  K  

𝐿1 −9061227 K2  

𝐴2 1.068 x 10-3 s-1  

𝐷2 10224.4 K  

𝐿2 −6123081 K2  

𝐴3 5.7 x 105 s-1  

𝐸3 81 kJ/mol  

Heats of reaction data 𝛥ℎ1, 𝛥ℎ2Chan et al.182  

𝛥ℎ1
a 0.418 kJ/g  

𝛥ℎ2
a 0.418 kJ/g  

Heat of reaction data 𝛥ℎ3Di Blasi216  

𝛥ℎ3
a -0.042 kJ/g  

Property values  

𝑅𝑜 8.314 x 10-3 kJ/mol K Ideal gas constant 

𝑊𝑔
b 200 g/mol Molecular weight of total volatiles 

𝑘𝑆𝑆 0.019 kW/m K Thermal conductivity of stainless steel 

at 225°C220 

𝑡𝑤 0.0021 m Wall thickness reactor 

Rad 0.0127 m Outer radio reactor (1 inch diameter) 

L 0.1524 m Reactor length (6 inch)  

𝑐𝑝,𝑤
a 1.5 x 10-3 kJ/g K Specific heat capacity of wood taken 

from 221 

𝑐𝑝,𝑐1and𝑐𝑝,𝑐2
 a 1.5 x 10-3 kJ/g K Specific heat capacity of char taken 

from 221 
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Table 7.4. Kinetic data and property values applied to constant-volume carbonization (CVC) 

model 2 (Continued). 

𝑐𝑝,𝐺1and𝑐𝑝,𝐺2
 a 1.1 x 10-3 kJ/g K Specific heat capacity of tar taken from 

179. 

𝑉 7.72 x 10-5 m3 Reactor volume (calculated as 𝜋 ∙

𝑅𝑎𝑑2 ∙ 𝐿). 

𝑉𝑤𝑜 0.2V m3 Initial volume occupied by the solid 

𝑇𝑠  573 K Sand bath temperature 

𝑇𝑜 298 K Initial reactor temperature 

𝑃𝑜 100 kPa Initial reactor pressure 

Mwo 10 g Initial biomass mass 

a. Additional CVC model 2 simulations that applied heats of reactions and specific heat 
capacity values from Koufopanos et al.178 Results are presented below.  

b. Additional CVC model 2 simulations that tested the effect of the volatile molecular 
weight in a 44-400g/mol range. Results are presented below. 

 

Figures 7.6 and 7.7 illustrate predictions from the CVC model 2 regarding evolution of product 

yields, temperature and pressure with time under the assumptions of a HTT of 300°C and a mass 

loading of ~130 g/L. Analogous to Figures 7.2 and 7.3 derived from CVC model 1, the 

temperature rise to the sand bath temperature appears to be immediate, while pressure and yields 

of char and volatiles increase with time to asymptotic values of 2.2 MPa (versus experimental 

pressure of 5 MPa), ~40% (versus experimental char yields of 50-60%) and ~60% (versus 

experimental gas yields of 40-60%) (See Figures 7.6 and 7.7). Figure 7.8 splits char and volatile 

yields information from Figure 7.6 into yields of primary and secondary products.  The graph 

indicates that the kinetics of primary char conversion to secondary char occurs rapidly with little 

accumulation of primary char. 
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Figure 7.6. History profile of wood, char and volatile yields predicted by CVC model 2 assuming 

constant-volume carbonization of biomass at a heat treatment temperature of 300°C and an initial 

pretest pressure of 0.1 MPa. 

 

 
Figure7 7. History profile of temperature and pressure predicted by CVC model 2 assuming a 

constant-volume carbonization of biomass at a heat treatment temperature of 300°C and an initial 

pretest pressure of 0.1 MPa. 

. 
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Figure 7.8. History profile of wood, char and volatile yields predicted by CVC model 2 assuming 

constant-volume carbonization at a heat treatment temperature of 300°C and an initial pretest 

pressure of 0.1 MPa. The primary and secondary fractions of char and volatile yields are shown. 

 

Discrepancies between experimental and theoretical data in this model can also be justified by 

the same reasons described in CVC model 1. Furthermore, the large differences observed for the 

calculated pressures are explained by the high sensitivity of pressure with the volatile molecular 

weight. Varying the weight from 200 g/mol (a reasonable weight for tar and probably an 

overestimation of the weight of total volatiles) to 44 g/mol (weight for CO2 and probably an 

underestimation of the weight of total volatiles) raise the predicted pressure in the model from 

around 2 to almost 10 MPa. A 10 MPa value is similar to the pressure predicted in CVC model 1 

which estimated a final volatile product only composed of non-condensable gases with a 

molecular weight similar to that of CO2. 

 

Similarly to the temperature profile from CVC model 1, the heat transfer coefficient employed in 

CVC model 2 (equal to 
𝑘

𝑡𝑤
𝐴 =0.11 kW/K) only accounted for heat conduction through the thin 
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reactor stainless steel. The coefficient was therefore unrealistically high and led to a prediction of 

an immediate temperature rise. Similar to the steps followed in CVC model 1, slower 

parameterized heat transfer coefficients were tested in order to determine the heat transfer 

impacts on product distribution predicted by CVC model 2. Appendix R displays temperature, 

pressure and product yield history profiles at fictitious heat transfer coefficients of 10-3, 10-4 and 

10-5 kW/K. At a parameterized heat transfer coefficient of 10-3 kW/K, similar profiles as the ones 

obtained at a coefficient of 0.11 kW/K were obtained (Figures 7.6 and 7.7).  As the 

parameterized heat transfer coefficient was reduced to 10-4 and 10-5 kW/K and the heat transfer 

slowed down, the CVC model 2 predicted the achievement of steady state after longer 

carbonization times, the production of higher charcoal yields (60 wt.% and 80 wt.% at respective 

heat transfer coefficients of 10-4 and 10-5 kW/K) and lower volatile yields, and in consequence, 

the attainment of lower final pressures (1.6 and 1 MPa at respective parameterized heat transfer 

coefficients of 10-4 and 10-5 kW/K). 

 

o Effect of Temperature 

 

Experimentally, the pyrolysis of biomass under a mass loading of ~130g/L and HTTs of 300, 

400 and 500°C resulted in char yields of around 55, 43 and 40% respectively. Quantitatively, 

most of the predicted char yields (see Figure 7.9) show considerable discrepancies with 

experimental values whereas qualitatively, there is agreement regarding product yield behavior 

with temperature. Char yield is shown to decline and volatiles to increase as the temperature is 

raised. 
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The yields in the model were originally calculated using the same deposition factor as the one 

used by Koufopanos et al.178 (δ=1.45). This factor corresponds to a pyrolysis process in an 

“open” reactor, therefore a process characterized by a lower extent of secondary reactions and, in 

consequence, by a smaller deposition factor in comparison to CVC processes. Figure 7.9 shows 

that an increase in the deposition factor from 1.45 to 2 implies a 15% increase on the predicted 

char yield. At 300°C, the predicted yield at a deposition factor of 2 agrees with the experimental 

value but higher temperature calculations lead to underestimations of the experimental values. 

 

 
Figure 7.9. Effect of heat treatment temperature on the yields of char and volatiles predicted by 

the CVC model 2 using deposition factors of 1.45 and 2. 

 

o Effect of biomass loading and biomass volume 

 

The effect of biomass loading was investigated by varying the initial biomass amount in a 10-

100 g range while keeping the reactor volume and the solid volume constant at 0.0772L 

(calculated as V = π ∙ Rad2 ∙ L) and at 0.01544 L (0.2V) respectively . On the other hand, the 
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effect of solid volume was simulated by increasing the initial solid volume from 0.2V to 0.4V 

(i.e. decreasing the initial gas volume from 0.8V to 0.6V) while keeping the biomass constant at 

10 g.  

 

In all cases, a negligible effect on product yields (in wt. percentage) was observed. As expected, 

the near-equilibrium pressure showed an almost direct proportional relation to the initial biomass 

loaded and increased with higher initial solid volumes, i.e. lower gas volumes. Increasing the 

solid volume from 0.2V to 0.4V (the rest of parameters are defined in Table 7.4) raised the 

pressure from 2.2 to 2.6 MPa. 

 

o Effect of volatile molecular weight 

 

As in the literature mathematical models, the volatile molecular weight is assumed constant 

throughout the pyrolysis process even though in reality, it is continuously changing as the 

process evolves. Changing the volatile molecular weight parameter within a 44-400 g/mol range 

while maintaining the rest of parameter values as specified in Table 7.4 presented no impact on 

the predicted product yield distribution (see yields in Figure 7.8) and as expected, higher volatile 

molecular weights reduced the pressure calculated at near-equilibrium conditions. Pressure 

declined from 9.6 to 1.2 MPa when the volatile weight was raised from 44 to 400 g/mol. 

 

 

 



194 

 

o Effect of property values: specific heat capacities and enthalpies 

 

In the original simulations of CVC model 2, specific heat capacities and reaction enthalpies 

replicated the values from the CVC model 1. The idea was to maintain consistent property values 

in both CVC models in order to test differences from just the two kinetic schemes. Additional 

CVC model 2 simulations applied specific heat capacity values and heats of reactions provided 

by Koufopanos et al.178 

  

First, wood and char specific heat capacities (𝑐𝑝,𝑤 and 𝑐𝑝,𝑐) were changed from the values given 

in Table 7.4 to the following values given by Koufopanos et al.178 which are dependent on the 

process temperature. 

 

𝑐𝑝,𝑤 =
1112.0 + 4.85(𝑇 −  273) 

106
 (5. 68) 

𝑐𝑝,𝑐1 = 𝑐𝑝,𝑐2 =
1003.2 + 2.09(𝑇 −  273) 

106
 (5. 69) 

 

Volatile specific heat capacities were not provided by Koufopanos et al.178 and therefore their 

values, as well as the rest of the parameters, were maintained as in Table 7.4. 

 

A second set of changes were made.  Reaction enthalpies were modified from the ones in Table 

7.4 (analogous to the ones in CVC model 1) to radically different enthalpies estimated by 
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Koufopanos et al.178 while keeping the rest of the values as defined in Table 7.4. The new 

simulations used the endothermic value given by Koufopanos et al.178 for primary reactions (Δh1 

= Δh2 =0.020 kJ/g) and the exothermic one for secondary interactions (Δh3=-0.255 kJ/g);even 

though strictly speaking Koufopanos et al.178 did not determine heats for single reaction 

processes but distinguished two overall heats of reaction. One low endothermic dominant at low 

biomass conversion processes and one exothermic at higher conversions.  

 

Simulations with both the new property specific heat capacities and enthalpy values resulted in 

barely any changes to the product distribution and the near-equilibrium pressure predicted. 

Changing the specific heat capacities results in char yield, volatile yield and pressure estimations 

of 40.47%, 59.53% and 2.6 MPa respectively, whereas the new enthalpies tested lead to char 

yield, volatile yield and pressure of 40.49 % and 59.52% and 2.5 MPa respectively. All values 

are similar to the ones displayed in Figures 7.6 and 7.7. 

 

7.3. Conclusions from the CVC models 

 

Two simple models (CVC model 1 and CVC model 2) that estimated product yields, temperature 

and pressure profiles from CVC were developed. The CVC models made use of kinetic data and 

property values from literature models that were derived from “open” reactor systems. Typically, 

kinetic constants or heats of reaction derived in the literature were obtained by fitting the results 

from mathematical models to experimental results from specific processes. Good agreement is 

then observed between predictions and their experimental results but the agreement fails when 
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different systems or process conditions are employed. For example, Di Blasi 179 showed great 

differences between predictions obtained from three different kinetic data sets. In the same 

manner, kinetic data and properties of the pyrolyzing medium are likely to change considerably 

between “open” and sealed (CVC) vessels. In most cases, both CVC models presented herein 

displayed considerable differences between predictions and experimental results.  

 

The development of the CVC models and the detailed study of literature models pertaining to 

pyrolysis in “open” reactors revealed reasons that the applicability of the models is largely 

limited. For example, there are many unknown kinetic data and property values, the pyrolysis 

processes is inherently complex, and the models data that have been developed have been 

derived from a diversity of biomass samples or processes. Consequently, simplifying 

assumptions are introduced in to the models; e.g. property values—such as cp or molecular 

weighs of char, tar and gas—that are continuously changing throughout the pyrolysis process, 

are usually assumed constant. In addition, properties that have been proved to be of significant 

importance to the pyrolysis process—such as the lignin, cellulose, hemicellulose and ash 

contents—are typically ignored. For simplicity, spatial profiles and char shrinkage phenomena 

were also ignored in the CVC models but could be included in future versions of the models 

when additional experimental data become available. 

 

In conclusion, a number of challenges remain to be resolved before a broad pyrolysis model is 

realized that accurately and robustly predicts outcomes for different carbonization systems, 

process conditions, and biomass types.  
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CHAPTER 8. CONCLUSIONS  

 

In conclusion, the results presented herein demonstrate that by using the CVC process and 

selecting appropriate processing conditions, charcoals can be produced with properties tailored 

for their end use. For example, low value charcoals can be produced at moderate temperature 

(300°C) and short reaction time (<60 min) in greater yield (50-60%) than any other known 

process; these charcoals are suited to combustion applications. At the other end of the spectrum, 

high value biocarbons / biocokes with low volatiles and high fixed carbon content (>85%) can be 

produced by using higher temperature (500-550°C) and longer reaction times (~3 hours). This 

opens up the opportunity for the production of metallurgical grade chars in a single step process 

which is of great interest to industry.  

 

In addition, the morphological characteristics of charcoals can also be tuned. Higher HTT, 

pretest pressures, heating rates and possibly smaller particle sizes resulted in a change from a 

particulate charcoal that retained the structure of the virgin feedstock to a solidified single piece 

of coke-like material that had undergone a TPP transition and formed to the shape of the reactor 

vessel. 

The following list highlights the research main findings: 

 

1. A new reactor design for biomass carbonization was presented. The reactor— referred to 

as the Wall Heated Tubing Bomb (WHTB)— has an internal volume of ~0.22 L, which 

permits loadings of ~30 g and ~50 g of spruce and birch sawdust (particle size <2mm) 
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respectively, and enabled constant-volume pyrolysis to be performed at elevated 

temperatures and pressures in a safe and controlled manner. 

2. Solid and gas yields, and proximate analysis results exhibited good repeatability of ±2%, 

absolute. Liquid yields showed greater variation. This was expected due to the difficulty 

of recovering liquids condensed in the tubing system of the WHTB and/or WDV. 

3. In comparison to carbonization processes in “open” reactors such as conventional or flash 

carbonization, the retention of volatiles under pressure in CVC led to improved mass and 

energy balances and to greater solid yields mainly due to enhanced secondary reactions. 

The resultant products are charcoals with higher fixed-carbon yields, non-condensable 

gases mainly composed of CO2 and negligible free tars which minimizes disposal issues 

and environmental impacts.  

4. In comparison to hydrothermal carbonization, the higher temperatures employed in CVC 

processes (which would result in radically higher pressures if used in HTC processes) 

enables a more profound charcoal devolatilization and in consequence, charcoals with 

higher fixed-carbon and energy contents are produced.  

5. Constant-volume carbonization of spruce and birch produced a charcoal with a fixed-

carbon yield that approached the limiting value predicted by thermodynamics for the 

process conditions. 

6. In comparison to CVC, slightly opening the reactor to permit a constant atmospheric-

pressure resulted in the formation of a notable fraction of free tar (versus negligible free 

tar formed in a sealed reactor) and a char with more volatile and less fixed-carbon 

contents and a lower fixed-carbon yield. The results indicate a lower extent of secondary 

charring reactions when an open reactor is used. 



199 

 

7. Trends reported in literature regarding the effect of temperature on carbonization in 

“open” reactors showed that the improvement of char properties (higher fixed-carbon and 

lower volatile contents) associated with higher heat treatment temperatures was generally 

accompanied by a significant loss of the fixed-carbon yield. In comparison, raising the 

HTT in a 300 -550°C range during CVC under an initial nitrogen pressure of 0.1 MPa 

improved char properties while preserving the valuable fixed-carbon yield near-

theoretical limiting values. At a temperature of 500°C, charcoal derived from birch was a 

highly devolatilized solid product rich in fixed-carbon content (>85 wt. %), fixed-carbon 

yield (34 wt. %) and with an improved higher heating value (~34MJ/kg). 

8. A beneficial effect of pressure on the final char properties and yields has been reported 

for “open” reactor systems. In CVC, the pretest pressure (from 0.1 to 2.17 MPa) did not 

show an influence on product yields or char proximate analysis. Nonetheless, it had an 

effect on the char morphology, enhancing plastic transformations. The findings 

confirmed that it is the volatile pressure and/or their residence time—rather than the total 

system pressure which typically has a notable influence on these properties in “open” 

reactors— that are the dominant factors influencing the final pyrolytic yields and 

proximate analysis values. As the CVC pretest pressure had no discernable effect on the 

final char yield or fixed-carbon or volatile contents, the use of an external gas to 

pressurize the system could be eliminated, thereby simplifying the process and reducing 

costs. 

9. Heating rate plays a significant role in carbonization processes in “open” reactors. As the 

rate is reduced, the product composition shifts towards less tar and more char until an 

apparent asymptotic value is reached.  Experiments in “open” reactors cover a broad 
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range of heating rates. Fast pyrolysis or gasification favour the production of volatiles by 

employing high rates (as high as  ~1000°C/s or greater) and by minimizing restrictions to 

heat and mass transfer phenomena, i.e. by using small particles and short vapour 

residence times. While slow pyrolysis or carbonization processes employ low heating 

rates (0.1-1°C/s) and attempt to limit mass transfer phenomena while promoting 

secondary char formation. In the same way, CVC heating rates are compromised by the 

use of deep-packed beds of particles which impose mass and heat transfer barriers. 

Altering the heating rate (from ~0.09 to 0.5°C/s at HTT of 300°C; or from ~0.03 to 0.09 

°C/s at HTT of 500°C) used to reach the carbonization temperature did not affect product 

yield or char proximate analysis as long as the WHTB reactor soaking time at 

carbonization temperature was maintained for a specific period of time (120 minutes at 

HTT of 500°C, or180 minutes at HTT of 300°C). In summary, the use of higher heating 

rates in “open” reactor configurations appears to limit secondary charring reactions but 

the heating rate does not appear to affect product yields and char proximate analysis for 

CVC. 

10. Regarding the particle size effect, larger particles benefit secondary char-forming 

reactions in “open” reactors. In sealed vessels, smaller particle sizes seem to favor these 

secondary reactions. The quicker release of volatiles into the gas phase due to the use of 

smaller grain sizes (<0.2 mm) combined with the volatile retention in the constant-

volume reactor accelerates the carbonization process, induces higher pressures and more 

pronounced exotherms, and prevents the carbon losses that are observed from “open” 

reactors. The resultant CVC chars derived from smaller grain sizes maintain or improve 

fixed-carbon contents without sacrificing fixed-carbon yields. 
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11. Increasing the feedstock loading per liter of reactor volume raises the volatiles partial 

pressure in CVC. Previous work at HNEI that used small sealed crucibles showed an 

increase in char yields with higher mass loadings. Nonetheless, the most recent pyrolysis 

tests of spruce and birch in the WHTB appear to indicate that there is a limit to the mass 

loading effect in sealed vessels. Short experiments with birch and spruce showed a minor 

increase on the fixed-carbon yields with the mass loading and a minor increase, if any, on 

the fixed-carbon contents. Long experiments with birch (long experiments with spruce 

were not performed) presented no significant changes to the fixed-carbon yields or 

contents at the loadings tested.  

12. Prolonging immersion times in the current WHTB from 30 to 190 minutes led to higher 

gas yields and charcoals with less volatile matter and similar or improved fixed-carbon 

yields. 

13. An increase in temperature, heating rate and pretest pressure; and possibly a decrease in 

biomass particle size transformed the final biochar product from particulate into a 

solidified single piece resembling coke, which implies it has undergone a transient plastic 

phase (TPP) transition. The modification of the char structure can become an opportunity 

for briquetting charcoals derived from small biomass grains previously impractical for 

carbonization or for improving char porosities for applications such as adsorption or soil 

amending. The TPP formation is a new observed phenomena for slow pyrolysis 

processes. In previous studies, its formation was reported only from fast pyrolysis under 

heating rates 2-3 orders of magnitude higher than those used in the current study and 

temperatures of at least 600°C versus ~400°C in CVC (note that this temperature in CVC 
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is not the sole factor in TPP formation but depends on other experimental conditions as 

well). 

14. The high intraparticle volatile concentration and intraparticle volatile time in CVC 

contributed to the shift of char plasticization to modest temperatures and heating rates in 

comparison to the conditions necessary to produce the same effect in “open” reactors.  

15. Two simple mathematical models that predicted product yields, pressure and temperature 

in CVC were developed on the basis of kinetic schemes and property values derived from 

“open” configurations. Considerable quantitative differences observed between 

experimental and predicted results are explained by the fact that kinetics between closed 

and “open” reactors are likely to be different and by several inconsistencies found in the 

literature models. For example, given the limited available literature data and the large 

unknowns in property values of char, tar and gas materials during the pyrolysis process, 

literature mathematical models often make use of property values and kinetic and heat of 

reaction data from different authors that employed distinct feedstocks. Furthermore, 

kinetic data sets greatly vary between authors, properties that continuously change during 

the carbonization process such as the molecular weight and heat capacities of gases, tar 

and char are typically considered constant, or properties known to have a strong influence 

on the pyrolysis process—such as the lignin, cellulose hemicellulose and mineral matter 

contents—are usually not included in the pyrolytic models. 
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CHAPTER 9. FUTURE WORK 

 

Stepping back and looking at the PhD rough and bumpy journey, the results have been pleasantly 

surprising. The PhD origins go back to Dr. Antal and his vision of a new carbonization process: 

the CVC. The R3Lab team launched it and the final results presented herein showed a 

surprisingly promising potential. In the future, work could focus on its scale-up. Now, the main 

issue faced by a possible industrial CVC reactor is the need of costly high pressure equipment. 

The reported pressures considerably exceeded those measured in other high-pressure 

carbonization vessels such as the flash carbonization reactor. Fortunately, there is hope and large 

room for improvement. Adding a dead volume in the WHTB proved to be able to produce chars 

with comparable qualities (i.e. char proximate analysis, yields and calorific values) and 

drastically reduce the pressure needs of the reactor vessel allowing the reduction of capital costs. 

The idea that lays behind this WHTB reactor design with a hot reaction zone and an incremented 

cold dead region on top is the following: Non-condensable and lighter gas products will have a 

tendency to occupy the upper parts of the cold dead volume. Increasing the dead volume would 

reduce the reactor pressure mainly due to the non-condensable gas influence. The heavy tarry 

vapors will more likely condense in the long vertical tubing as they try to ascend to the top of the 

cold dead volume. The condensed tars will keep recirculating into the reaction zone offering 

additional opportunities of secondary char formation.  

 

Future research work could determine the maximum additional dead volume, and consequently 

the minimum possible reactor pressure, that could be employed while maintaining char yields 
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and proximate analysis. Improved ways of tar recirculation could also be explored. Tar 

recirculation could be enhanced by lengthening the vertical dead volume tubing and/or by 

cooling the dead volume down. Both of these factors would also reduce reactor pressure needs. 

 

Future work should also focus on ways of efficiently heating the biomass either externally or 

internally, and on analyzing possible hot local spots and heterogeneity within the pyrolyzing char 

during carbonization at the larger scale. 
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APPENDIX A. PRESSURE TERMS 

 

A.1. Design Pressure 

 

“. . .the piping system must either be designed to safely contain the maximum possible pressure, 

considering such factors as failure of control devices and dynamic events such as surge[what the 

author refers to as the design pressure], or be provided with overpressure protection, such as 

safety relief valve.”230 

“. . . If the event being considered complies with the Code requirements of 302.2.4, the allowable 

stress and/or component pressure rating may be exceeded for a short time, as discussed below in 

section 3.3. Although this is often considered to be an allowable variation above the design 

condition, the variation limitations are related to the maximum allowable working pressure of 

the piping, not the design conditions, which could be lower than the maximum allowable 

pressure at temperature.”230 

 
 

Defining a design pressure value for the WHTB is not trivial. One could think that the highest 

pressure ever observed from all WHTB CVC experiments could serve as a value for the design 

pressure. Alternatively, the design pressure could take into consideration all of the worst case 

experimental scenarios. Since the peak pressure during an experiment is influenced by the CVC 

experimental conditions—such as the pretest nitrogen pressure, the mass loading and the HTT—

the worst case scenarios must consider: 
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 the highest possible mass loading: ~240 g/L with birch – or higher if cellulose powder or 

another biomass types with higher packing density were used;  

 the highest possible pretest nitrogen pressure: ~16.5 MPa (achieved if the pressure in a 

full nitrogen cylinder was released into the WHTB reactor and achieved equilibrium);  

 the highest possible HTT: ~550°C (note that even though 600°C is specified as the 

maximum sand bath temperature by the manufacturer, 550°C was the maximum achieved 

in practice at full power). 

 

In the first case, i.e. when only the peak experimental pressure is considered, the design pressure 

would be 17.9 MPa. This corresponds to the peak pressure observed during the carbonization of 

birch at a HTT of 550°C, a pretest nitrogen pressure of 0.1 MPa and a standard mass loading of 

around 130 g/L. Note that an experiment that carbonized birch at a HTT of 400°C, a pretest 

nitrogen pressure of 2.17 MPa and a standard mass loading of around 130 g/L also resulted in a 

large pressure rise with a recorded peak pressure of 17.5 MPa. 

 

In the second case, i.e. when all possible worst case scenarios are taken into account, the design 

pressure would be over 40 MPa. The inert gas contribution at 550 °C would be around 23 MPa 

(16.5 𝑀𝑃𝑎 
(550+273)𝐾

(298+273)𝐾
, not considering volume changes), and the product gas contribution 

would be over 17.9MPa (pressure observed under a standard mass loading with atmospheric 

initial pressure; a higher loading would result in higher pressures).  

 

In constant-volume carbonization experiments, it is critical that the experimenter is aware of the 

risk of overpressurization and ensure that the system is safe. Since constructing and utilizing a 
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practical system that can withstand this worst-case and highly unlikely pressure of ~40MPa 

would be costly, the WHTB system was designed to include overpressure protection, i.e. burst 

diaphragm. 

 

A.2. Allowable Working Pressure or Maximum Allowable Working Pressure 

(MAWP) 

 

The concept of maximum allowable working pressure (or allowable working pressure)—even 

though not used in the ASME B31.3 code230—is useful since piping systems are assemblies of 

standardized parts with allowable working pressures specified by the manufacturer. The WHTB 

reactor is built from Swagelok components. Table A.1 taken from Swagelok and  published on 

the web231 shows allowable working pressures for fractional stainless steel seamless piping at 

37°C as a function of the outside diameter and wall thickness. This tubing is the weakest part of 

the WHTB reactor, i.e. the reactor body, and therefore defines the allowable working pressure for 

the whole WHTB system. The other parts of the WHTB reactor are stronger, being made of 

tubing of smaller diameter and not being exposed to the most severe conditions in terms of 

temperature and pressure.  

To determine allowable working pressures at elevated temperatures, the allowable working 

pressure from Table A.1 needs to be multiplied by the temperature factors shown in Table A.2. 

For example, the WHTB reactor body made from type 316 stainless steel, 1in. OD x 0.083 in. 

wall has an  allowable working pressure of 3100 psig at -20 to 100°F (-28 to 37°C) (Table A.2). 

At 1000°F (537°C), the allowable working pressure is reduced to 2356 psig (3100psig x 0.76), 
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calculated as the multiplication of 3100 psig and the elevated temperature factor at 1000°F of 

0.76 (Table A.3). Figure A.1 illustrates the allowable working pressures of the WHTB at 

temperatures ranging from room temperature to 537°C. Notice that the WHTB can experience 

temperatures of 550°C, which lays above the maximum temperature tabulated by Swagelok. At 

temperatures from 537 to 566°C, the derating temperature factor is 0.755. Therefore a WHTB 

allowable working pressure of 2,341 psig has been estimated (see Appendix A.2.2 How does 

Swagelok calculate the Derating Temperature Factors? for details). 

 

Allowable variations above the maximum allowable working pressure are also permitted in the 

system for short periods of times as long as several conditions are satisfied, one of which is that 

this maximum allowable working pressure is not exceeded by more than some percentage.230 See 

Appendix A.4. Allowances for Pressure for a detailed description of permissible pressure 

variations. 

 

 

Figure A.1. Allowable working pressure with temperature for a 1” outer diameter Swagelok tube 

with a wall thickness of 0.21 cm (0.083”)  
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Table A.1. Fractional Stainless Steel Seamless tubing. Allowable working pressures are calculated from an S value of 20 000 psi 

(137.8 MPa) for ASTM A269 tubing at -20 to 100°F (-28 to 37°C), as listed in ASME B31.3, except as noted. For welded and drawn 

tubing, a derating factor must be applied for weld integrity:  

• for double-welded tubing, multiply working pressure by 0.85. 

• for single-welded tubing, multiply working pressure by 0.80.  

 
Tube 
OD 
in.  

Tube wall thickness, in. Swagelok 
Fitting 
Series  

0.010  0.012  0.014  0.016  0.020  0.028  0.035  0.049 0.065  0.083  0.095  0.109  0.120  0.134 0.156 0.188 

   Working Pressure, psig Note: For gas service, select a tube wall thickness outside of the shaded 
area. See Gas Service  

   
1/16  5600  6800  8100  9400  12000             100  

1/8       8500  10900           200  

3/16       5400  7000  10200          300  

1/4       4000  5100  7500  10200         400  

5/16        4000  5800  8000         500  

3/8        3300  4800  6500  7500        600  

1/2        2600  3700  5100  6700        810  

5/8         2900  4000  5200  6000       1010  

3/4         2400  3300  4200  4900  5800      1210  

7/8         2000  2800  3600  4200  4800      1410  

1          2400  3100  3600  4200  4700     1610  

1 1/4           2400  2800  3300  3600  4100  4900   2000  

1 1/2            2300  2700  3000  3400  4000  4900  2400  

2             2000  2200  2500  2900  3600  3200  

 
Table A.2. Derating temperature factors.  

Temperature    Tubing Materials    

◦F ˚C Aluminum Copper 
Carbon 
Steel 

304, 
304/304L 

316, 
316/316L 

317, 
317/317L 

321 347 

200 93 1.00 0.80 0.95 1.00 1.00 1.00 1.00 1.00 

400 204 0.40 0.50 0.87 0.93 0.96 0.96 0.96 0.96 

600 315    0.82 0.85 0.85 0.85 0.85 

800 426    0.76 0.79 0.79 0.79 0.79 

1000 537    0.69 0.76 0.76 0.76 0.76 
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A.2.1. How does Swagelok calculate the Allowable Working Pressure? 

 

As stated in one of the multiple emails exchanged with Swagelok, to calculate the allowable 

working pressure “We use the 75,000 tensile and a 20,000 stress factor at room temperature as a 

base [taken from ASME B31.3 Table A-1 (see Appendix B)]. We then apply the factor from the 

chart of factors for the given size [Table A.3 (duplicated from232)], and then the allowable 

working pressure is calculated”. In conclusion, the tabulated factors in Table A.3, dependent on 

the tube dimensions, relate allowable working pressure with allowable stress. 

 
The equations that derive in the factors displayed in Table A.3 was requested from Swagelok but 

no response was received. In the past, several authors have formulated equations that relate 

pressure and stress. For example, Duffill, Lame and Barlow developed Equations A.1, A.2 and 

A.3 respectively, which relate both parameters by respective factors of 2
𝐾−1

𝐾+1
, 

2𝑡(𝐷−𝑡)

𝐷2−2𝐷𝑡+2𝑡2 and 
2𝑡

𝐷
.  

Tables A.4, A.5 and A.6 show the chart of factors obtained from the use of Duffill, Lame and 

Barlow for the same tubing dimensions specified by Swagelok. A comparison between the 

various charts of factors shows that Swagelok’s is the most conservative, followed closely by the 

chart of factors calculated from Barlow’s equation, then Lame’s and finally Duffill’s. 

 
• Duffill equation:  

𝑃 = 2𝑆
𝐾 − 1

𝐾 + 1
 

(A.1) 

 
Where P is pressure, S is the tensile strength, D the outer diameter, d the inner diameter and K is 

the ratio between outer and inner diameters, K = D/d.  

 
 

• Lame equation:  
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𝑃 =
2𝑆𝑡(𝐷 − 𝑡)

𝐷2 − 2𝐷𝑡 + 2𝑡2
 

(A.2) 

 
Or equivalently 

𝑃 =
𝑆(𝐷2 − 𝑑2)

(𝐷2 + 𝑑2)
 

(A.3) 

 

where S is the tensile strength, D the outer diameter, t the wall thickness and d the inner diameter.  

 
• Barlow equation:  

𝑃 =
2𝑆𝑡

𝐷
 

(A.4) 

 
where S is the tensile strength, D the outer diameter, and t the wall thickness. Barlow equation is 

a very common equation but less precise.  
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Table A.3. Swagelok Chart of factors for use in calculating allowable working pressures of tubing. Allowable working 

pressure=Factor x Allowable stress value in psi. Based on ANSI B31.3-1993. 

Tube 
OD 
(in.) 

Tube Wall Thickness(in.) 
Swagelok 

Tube Fitting 
Series 

 0.010 0.012 0.014 0.016 0.020 0.028 0.035 0.049 0.065 0.083 0.095 0.109 0.120 0.134 0.148 0.156 0.180 0.188  

1/16 0.280 0.343 0.409 0.474 0.604              100 

1/8      0.426 0.545            200 

3/16      0.274 0.352 0.513           300 

1/4      0.201 0.257 0.375 0.513          400 

5/16       0.202 0.293 0.403          500 

3/8       0.167 0.240 0.329          600 

1/2       0.123 0.176 0.239 0.314         810 

5/8       0.104 0.148 0.200 0.261 0.304        1010 

3/4        0.122 0.165 0.241 0.249 0.290       1210 

7/8        0.104 0.140 0.182 0.210 0.244       1410 

1        0.090 0.122 0.158 0.182 0.211 0.235      1610 

1 1/4         0.096 0.124 0.144 0.166 0.184 0.208 0.231 0.245 0.287  2000 

1 1/2          0.103 0.118 0.137 0.151 0.170 0.189 0.200 0.234 0.246 2400 

2           0.088 0.101 0.112 0.126 0.139 0.147 0.172 0.180 3200 

Note: All pressure ratings are based on minimum wall thicknesses of ASTM A269. Various tubing specifications within the code have varying wall thickness 
tolerances. All charts and tables are for reference only and are based on information contained in the 1993 edition of the code. No implication is made that 
these figures can be used for design work. Applicable codes and practices in industry should be considered. Swagelok Company is not responsible for the 
accuracy of information presented in these tables. ANSI Codes are the successor to and replacement of ASA Piping Codes.  

 
 
Table A.4.Chart of factors calculated with Duffill equation (see Equation A.1). 

Tube 
OD 
(in.)  

Tube Wall Thickness(in.) 

0.010  0.012  0.014  0.016  0.020  0.028  0.035  0.049  0.065  0.083  0.095  0.109  0.120  0.134  0.148  0.156  0.180  0.188  

1/16  0.320  0.384  0.448  0.512  0.640               

1/8       0.448  0.560             

3/16       0.299  0.373  0.523            

1/4       0.224  0.280  0.392  0.520           

5/16        0.224  0.314  0.416           

3/8        0.187  0.261  0.347           

1/2        0.140  0.196  0.260  0.332          

5/8        0.112  0.157  0.208  0.266  0.304         

3/4         0.131  0.173  0.221  0.253  0.291        

7/8         0.112  0.149  0.190  0.217  0.249        

1         0.098  0.130  0.166  0.190  0.218  0.240       

1 1/4          0.104  0.133  0.152  0.174  0.192  0.214  0.237  0.250  0.288   

1 1/2           0.111  0.127  0.145  0.160  0.179  0.197  0.208  0.240  0.251  

2            0.095  0.109  0.120  0.134  0.148  0.156  0.180  0.188  
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Table A.5. Chart of factors calculated with Lame equation (see Equation A.2) 

Tube 
OD 
(in.)  

Tube Wall Thickness(in.) 

0.010  0.012  0.014  0.016  0.020  0.028  0.035  0.049  0.065  0.083  0.095  0.109  0.120  0.134  0.148  0.156  0.180  0.188  

1/16  0.381  0.475  0.577  0.688  0.941               

1/8       0.577  0.778             

3/16       0.351  0.459  0.708            

1/4       0.252  0.326  0.488  0.703           

5/16        0.252  0.372  0.525           

3/8        0.206  0.301  0.419           

1/2        0.151  0.217  0.299  0.398          

5/8        0.119  0.170  0.232  0.306  0.358         

3/4         0.140  0.190  0.249  0.290  0.340        

7/8         0.119  0.160  0.210  0.244  0.285        

1         0.103  0.139  0.181  0.210  0.245  0.273       

1 1/4          0.110  0.142  0.165  0.191  0.212  0.240  0.269  0.285  0.336   

1 1/2           0.117  0.135  0.157  0.174  0.196  0.219  0.232  0.273  0.287  

2            0.100  0.115  0.128  0.144  0.160  0.169  0.198  0.208  

 

 
 
Table A.6. Chart of factors calculated with Barlow equation (see Equation A.4)  

Tube 
OD 
(in.)  

Tube Wall Thickness(in.) 

0.010  0.012  0.014  0.016  0.020  0.028  0.035  0.049  0.065  0.083  0.095  0.109  0.120  0.134  0.148  0.156  0.180  0.188  

1/16  0.368  0.450  0.533  0.615  0.771               

1/8       0.533  0.676             

3/16       0.341  0.436  0.629            

1/4       0.248  0.317  0.460  0.625           

5/16        0.248  0.359  0.491           

3/8        0.204  0.294  0.402           

1/2        0.150  0.215  0.292  0.383          

5/8        0.118  0.169  0.229  0.299  0.347         

3/4         0.139  0.188  0.245  0.284  0.331        

7/8         0.118  0.159  0.207  0.240  0.279        

1         0.103  0.138  0.180  0.208  0.241  0.268       

1 1/4          0.109  0.142  0.163  0.189  0.210  0.237  0.264  0.280  0.327   

1 1/2           0.117  0.135  0.156  0.173  0.194  0.216  0.229  0.268  0.281  

2            0.099  0.115  0.127  0.143  0.159  0.168  0.196  0.205  
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A.2.2. How does Swagelok calculate the Derating Temperature Factors? 

 

To calculate Swagelok allowable stress data, allowable working pressure data or ultimate tensile 

stress (UTS) data at elevated temperatures, one needs to multiply the data at room temperature 

by Swagelok’s derating temperature factors given in Table A.3and published on the web.231 The 

derating temperature factors are calculated with Equation A.5. This equation was obtained from 

a personal email with Mark C. Bossart—Swagelok’s Technical Service Representative and uses 

allowable stress data from ASME B31.3 Table A-1 (see Appendix B). 

𝐷𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑆𝑡𝑟𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑆𝑡𝑟𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑀𝑖𝑛. 𝑇𝑒𝑚𝑝.  
 (A.5) 

 

 (𝑒𝑥𝑎𝑚𝑝𝑙𝑒: 800𝐹 , 𝐷𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟 =  
15.9 

20
=  .795 % 𝑑𝑒𝑟𝑎𝑡𝑒) 

For example, at 1000°F (537°C), the WHTB derating temperature factor will be 0.76 

(15.3ksi/20ksi). At 1050°F (566°C), the WHTB derating temperature factor will be 0.755 

(15.1ksi/20ksi). 

 

A.3. Catastrophic Failure Pressure and Safety Factor 

 

The catastrophic failure pressure (also referred as the burst pressure) is defined as the pressure at 

which the vessel will rupture. A large safety factor, defined as the ratio between the catastrophic 

failure pressure and the allowable working pressure (see equation A.6), is usually implemented 

in order to avoid serious accidents and ensure safe working conditions. 
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𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 (A.6) 

 

Swagelok components have a safety factor of 3.75 at all working temperatures. A segment from 

emails exchanged with Byron Gregory, Swagelok’s Senior Account Manager, are presented 

below (in italics) to show how Swagelok calculates the safety factor.  

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

=
𝑈𝑇𝑆 𝑎𝑡 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝 (𝑇𝑎𝑏𝑙𝑒𝐴 − 1) (75000 𝑝𝑠𝑖)

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝 (𝑇𝑎𝑏𝑙𝑒𝐴 − 1) (20000 𝑝𝑠𝑖)
= 3.75  

(A.7) 

 
 

Burst pressure = Safety factor x Allowable Working Pressure of a given size of tubing less any 

derate. Example: For a 1/2” Outer Diameter and 0.049” thick SS tube, the Allowable Working 

Pressure is 3700 PSI at 100°F and the Burst Pressure is 3.75 X 3700 = 13,875 PSI. At 800°F: 

Burst Pressure=3.75 X 2941 =11,030 PSI. 

 
Table A.7 tabulates WHTB catastrophic failure pressures from room temperature to 537°C.  The 

values are calculated as the product of Swagelok safety factor (3.75) and the allowable working 

pressures of the most vulnerable WHTB component, i.e. the reactor body, at temperature. 

Table A.7. WHTB catastrophic failure pressure in ksi calculated with data from Swagelok. The 

unit kilopound per square inch (ksi) is a scaled unit derived from psi, equivalent to a thousand 

psi.  

T°F T°C 
Swagelok 

(ksi) 

Room T-200  Room T-93  11.63  

400  204  11.16  

600  315  9.88  

800  426  9.18  

1000  537  8.84  
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A.4. Allowances for Pressure 

 

“. . . Increases in pressure and temperature above the design conditions are permitted for short 

term events, as long as several conditions are satisfied, one of which is that this maximum 

allowable working pressure is not exceeded by more than some percentage. . . The following 

conditions are requirements for use of the variations:” 230 

 
• “The piping system shall not have pressure-containing components of cast iron or other 

nonductile material.” [Condition satisfied for the WHTB system]. 

• “The nominal pressure stress (hoop stress for straight pipe or, for rated components, the 

pressure divided by the allowable pressure plus two-thirds the yield strength) must be less than 

the yield strength of the material.” [As shown in equation A.8] 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 =  
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
+

2

3
 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

< 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

(A.8) 

 

These conditions are satisfied for the WHTB system. The nominal pressure is calculated using 

the maximum permissible pressure in the WHTB, which is defined by the burst diaphragm set 

pressure of 3075 psig (see Section 4.1), and the allowable working pressure and yield strength at 

the most aggressive experimental conditions reached in the WHTB, i.e. at 550°C. Allowable 

working pressure and yield strength at elevated temperatures are calculated by multiplying the 

values at room temperatures (displayed in Table A.2 and in ASME B31.3 Table A-1, (See 

Appendix B) respectively) by the derating temperature factor at 566°C (550°C is not tabulated 

by Swagelok, therefore the derating temperature factor was calculated manually). Thus, 
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allowable working pressure and yield strength at 550°C are 2341 psig (0.755 x 3100 psig) and 

22.7 ksi (0.755x 30 ksi) and the nominal pressure stress is 16.5 ksi (Nominal Pressure Stress 

=3075/ 2341 +2/3x22.7 ksi = 16.4 ksi) which is lower than the yield strength of 22.7 ksi. Thus, 

ASME condition (Nominal pressure <Yield Strength) is satisfied. 

 
• “The longitudinal stresses must be within the normally permitted limits.” [ASME 

condition is satisfied.] 

When a capped thin-walled tube or cylinder is subjected to internal pressure, a hoop and 

longitudinal stress are produced in the wall.  The longitudinal stress is a normal stress parallel to 

the axis of the cylinder and can be expressed as:  

𝜎𝑧 =
𝑃𝑑

4𝑡
 

(A.9) 

 

where P, d and t are the pressure, tube diameter and tube wall thickness, respectively.  

The radial stress, σr, is stress in a direction coplanar with but perpendicular to the cylinder and 

can be expressed as: 

𝜎𝑟 =  𝑃 (A.10) 

where P is the pressure.  

Assuming the WHTB is a capped cylinder (1 inch diameter and 0.083 inches wall thickness) 

exposed to the maximum permissible pressure set by the burst diaphragm (3075 psig), the 

longitudinal and hoop stresses are  

𝜎𝑧 =
𝑃𝑑

4𝑡
=

3075𝑝𝑠𝑖𝑔 1𝑖𝑛

4 · 0.083𝑖𝑛
=  9262.05 𝑝𝑠𝑖𝑔 

𝜎𝑟 =  𝑃 = 3075 𝑝𝑠𝑖𝑔 
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The ASME Code presents equations for determining the stress levels in a piping system and 

provides stress limits for comparison. These theories are maximum principal stress failure theory 

and maximum shear stress failure theory. The maximum principal stress failure theory states that 

when one of the mutually perpendicular principal stresses exceeds the yield strength of the 

material at temperature, failure will occur. The WHTB yield strength at the most severe 

temperature of 550°C was calculated, as previously stated, by multiplying the value at room 

temperature by the derating temperature factor at 566°C (0.755). The result of the yield strength 

is 22700 psi (0.755 x 30 ksi). Thus, the ASME code (principal stresses <material yield strength) 

is satisfied.  

The maximum shear failure theory states that when the maximum shear stress (arithmetic 

average of largest and smallest principal stresses) exceeds one-half the yield strength of the 

material at temperature, failure will occur. As the WHTB shear stress (Shear stress =

7033.13psig+2335psig

2
=  4684.1 psig) does not exceed one-half the yield strength (22.8 ksi/2=11.4 

ksi), the ASME condition is satisfied.] 

• “The total number of pressure-temperature variations above the design conditions must be less 

than 100 over the life of the system (note that this is the number anticipated in the design of the 

system, not some count taken during operation of the system; the ASME B31.3 Code is for design 

of new piping systems).” [ASME condition satisfied for the WHTB. Each reactor is used a 

maximum of 3 times.] 

• “The maximum pressure must be less than the test pressure; this can be a limitation if 
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pneumatic or alternative leak testing was used.” [ASME condition satisfied for the WHTB. 

Every new reactor is hydrostatically tested at ∼3500 psig (see Section A.6), which is over the 

maximum permissible pressure of 3075 psig defined by the burst diaphragm rupture pressure.] 

“. . . If the above conditions are satisfied [as in the case of the WHTB], and if the owner 

approves, the pressure rating or allowable stress (essentially the maximum allowable working 

pressure) may be exceeded by 33% for events that are not more than 10 hours at any one time 

nor more than 100 hours per year, and by 20% for events that are not more than 50 hours at any 

one time nor more than 500 hours per year.”  

In conclusion, the WHTB allowable working pressure in the worst case scenario, i.e. at the 

highest experimental temperature of 550°C, could reach a maximum pressure of 3158 psig (2375 

psig x 1.33) for events that are not more than 10 hours at any one time nor more than 100 hours 

per year.  

 

A.5. Burst Diaphragm Rupture Pressure 

 

“. . . the Piping Code allows the set pressure to be any value, as long as the maximum pressure 

during the relieving event, including consideration of potential accumulation (additional 

pressure buildup beyond the pressure at which the valve opens), does not exceed one of the 

following two alternatives: a) the maximum relieving pressure permitted by BPVC section VIII, 

Division 1, or b) the maximum pressure permitted in the allowances for variations provisions of 

ASME B31.3. However, the owners approval is required for the set pressure to exceed the design 

pressure.”230 
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In conclusion, the WHTB can have a rated burst diaphragm pressure greater than the allowable 

working pressure as long as the burst pressure does not exceed the maximum pressure plus 

allowances (3158 psig for events that are not more than 10 hours at any one time nor more than 

100 hours per year). A burst diaphragm rated at 3075 psig at 22°C was selected. 

The maximum relieving pressure permitted by BPVC section VIII, Division 1 mentioned above 

does not apply to the WHTB. BPVC section VIII, Division 1 does not cover, among others, 

“vessels having an inside diameter, width, height or cross section diagonal not exceeding 6 in., 

with no limitation on length of vessel or pressure.” 

 

A.6. Hydrostatic Testing Pressure 

 

According to the 2010 ASME Boiler & Pressure Vessel Code, “new power boilers or boilers that 

have been out of service for an extended period of time should be subjected to a hydrostatic test 

of 1.5 times the design pressure.”[Since the latter term is not used in the piping system, design 

pressure is replaced with maximum allowable working pressure (MAWP) for the WHTB 

system.] “. . . For new field erected units this is normally conducted by the boiler manufacturer 

as soon as the pressure parts are assembled.”230cBased on a defined allowable working pressure 

of 2341 psig, every new reactor needs to be tested at a hydrostatic pressure of around 3512 psig 

(1.5 x 2341cpsig). Due to the burst diaphragm pressure limitation of 3075 psig, the burst 

diaphragm needs to be removed and capped during the hydrostatic test.  
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A.7. Leak Testing Pressure 

 

Finally, periodic leak tests protects against leaks during experiments and ensures the reliability of 

the experimental pressure data collection. The leak testing pressure is performed under nitrogen 

the day prior to an experiment and is set at the maximum expected operating pressure for a 

particular experiment. The procedure is based on ASTM E2930-13233 which describes a method 

for determining the leakage rate of a vessel subject to a positive pressure difference. 

 

Leak testing pressures of experiments with predicted maximum expected operating pressures 

greater than the maximum pressure of a full nitrogen cylinder (around 2300 psig) are limited to 

this value. 
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APPENDIX B. ASME ALLOWABLE STRESS 

 

Table B.1. ASME basic allowable stresses in tension for metals 
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Table B.1. ASME basic allowable stresses in tension for metals (Continued) 
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APPENDIX C. MULTIPOINT AND HOSE CLAMP THERMOCOUPLES 

 

 
Figure C.1. Multipoint Thermocouple 
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Figure C.2. Hose Clamp Thermocouple D6-16-U for Reactor Walls and D6-6-U for Reactor 

Arms 
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APPENDIX D. SOP and JSA 1: Milling Biomass Material into 

Finely Divided Particles with a Fritsch Universal Cutting Mill 

“Pulverisette 19” 

 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Milling Biomass Material into Finely Divided Particles with a Fritsch Universal Cutting 

Mill “Pulverisette 19” 

Date: _04/20/2018___________ 

Principal Investigator: ____Scott Q. Turn____________________________ 

Produced By: Maider Legarra Arizaleta, Trevor Morgan and Scott Turn 

Room and Building: ___AEI 122 (Work Shop) ______________________________ 

Phone Number: PI Scott Turn: 808-956-2346  

UH Emergency: 808-956-6911 (on campus 66911)/  Emergency: 911 

 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP is for the use of the FRITSCH Universal Cutting Mill “Pulverisette 19”. The cutting mill 

can be used for rapid comminution of soft to medium-hard and fibrous materials. This SOP covers cutting biomass 

materials into smaller particles. 

The main hazards related to the use of the cutting mill are the exposure and handling of small particles of biomass 

material, the presence of a rotating cutting blade in the mill, and electricity. 

 
A detailed 'Operating Method' that describes how to operate the cutting mill is provided in FRITSCH’s manual. 

Read the operating instructions carefully before use! 

 

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification: 
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Chemical Health Fire Reactivity Specific 

Biomass Material  NAa NAa NAa NAa 
aNot Available 

 
Small particles of biomass material: Follow normal clean up procedures. Inhalation: Can irritate the nose and 

throat. Skin Contact: May cause mild irritation. Eye Contact: May cause mild irritation. Ingestion: Can irritate the 

mouth, throat and stomach. 

When oxidizable materials such as metals, organic materials, wood, coal, plastic, etc. are ground or sieved, the risk 

of spontaneous ignition (dust explosion) exists whenever the fine particles exceed concentrations in air of ~30 g/m3, 

a concentration that would appear like a dense fog (http://www.dustexplosion.info/dust%20explosions%20-

%20the%20basics.htm).  

 

Hot surfaces: Some surfaces can become hot while operating the mill 

 

Mains Electricity: Standard electrical connections to the cutting mill are provided by the equipment suppliers (see 

Table 2.2). 

 

Table 2.2.Nominal Voltage, Power Consumption, Power Output, Current Input of Universal cutting mill p-19 

Universal cutting mill p-19 

Nominal Voltage Power Consumption Power Output Current Input 

115V/1 ~ 1700W 1100W 15A 

 

Rotary Cutting Blades: The mill has 'safety interlocks' which prevent the operator from opening the mill to expose 

the cutting blades while it is in normal operation. A switch on the back of the mill has to set to the correct position to 

open the mill and access the cutting blades, when the blades are exposed it is NOT possible to start the mill.  

 

Section 3: Personal Protective Equipment. 

Safety goggles, nitrile gloves, covered shoes, dust mask, long pants. Wear hearing protection, i.e. ear muffs, while 

operating the mill. Beware of the sharp edges of the rotor! Wear protective leather work gloves while cleaning the 

cutting chamber or changing the rotor. If the surface is hot, use heat resistant gloves. 

 

Section 4: Engineering Controls. 

Finely divided biomass material: Use local exhaust or general ventilation to minimize exposure to dust. Provide 

eyewash in work area, if contact or splash hazard exists. Good housekeeping practice is required; e.g., frequent 

vacuuming of dust during operation to eliminate accumulation. 

 

Mill: Use the instrument indoors only. Do not operate in a confined space. The air must not contain any electrical 

conductive dust. When applicable, ventilation must be provided or the instrument must be operated under an exhaust 

hood. Ensure that the machine is fastened securely and the wheels are chocked, as considerable transverse forces do 

occur. Ensure that there is good access to the cutting mill. Ensure that to the right of the mill there is sufficient space 

for the upper housing section including the funnel to be opened. Do not block the ventilation louver at the rear. 

There is a danger of overheating if the louver is blocked. The ambient temperature must be between 0 and 40 ⁰C and 

the maximum relative humidity of 80% for temperatures up to 31 °C, linearly decreasing down to 50% relative 

humidity at 40 °C. A maximum of 20 starts per hour are permitted for the mill. The minimum switching cycle is 10 

seconds. Jog mode is prohibited, as this may cause damage to the device. 

 
Hot surfaces: If the mill gets too hot it could damage the mill (due to expansion), in addition, it is not good practice 

to mill biomass at elevated temps as changes in composition may result. If the mill gets too hot to touch then the mill 

is not being used correctly. When it gets hot, the breaker switch or the motor thermal protection will trip. Wait for it 

to cool down before restarting.  Mill the material in small batches with regular breaks to let it cool down.  Cycle and 
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break times are related to the material being milled, i.e. harder materials will create more heat. The operator needs to 

regularly check the temp and work accordingly.  

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

Section 5: Special Handling and Storage Requirements. 

Biomass material:  
Handling: Only use where there is adequate ventilation. Avoid ignition sources.  

Storage: Store in an area that is cool, ventilated. 

 

Mill:  

No one other than authorized persons should operate the instrument and it must be serviced and repaired by trained 

specialists. 

Protective equipment must be used as intended and must not be disabled or dismantled. 

All protective devices should be regularly checked for completeness and to ensure that they are functioning 

correctly. 

The cutting mill is equipped with a safety interlock for personal protection, which locks the front closure hatch 

during operation. 

The safety switch prevents operation of the cutting mill when the grinding chamber is not closed or when no 

collecting basin is inserted. 

Do not operate the machine without a feed funnel. The feed funnels are mechanical protective devices which permit 

safe feeding. 

When changing the funnel, disconnect the machine from the mains supply and fit the new funnel immediately. 

 

 

Section 6: Spill and Accident Procedures. 

Biomass material:  Stop or reduce leak if safe to do so. Collect using shovel/scoop or approved HEPA vacuum and 

place in a suitable container for disposal. Biomass can be disposed of in a standard trash receptacle.  

 

Small Fire: Fire extinguisher, appropriately trained personnel only. Locate nearest fire extinguishers in AEI 122 

(Work Shop) prior to using Fritsch cutting mill. 

 

Large Fire: Leave the room and call (x6-6911 or 911). 

 

Section 7: Waste Disposal Procedures. 

Sawdust: Follow normal clean up procedures. 

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval from PI. Read and understand all the methods, QRA’s, JSA's and SOP's 

developed for using the mill, the operating manual and the operating instructions of FRITSCH Universal Cutting 

Mill “Pulverisette 19” 

Section 10: Decontamination. 

All work surfaces shall be cleaned with paper towel at the end of the mill use and at the end of the day. 

Section 11: Designated Areas. 

AEI 122 (Work Shop) in location approved by Ryan Kurasaki. 
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Section 12: Method 

Note: Schematic instructions are given in this section. A detailed 'Operating Method' that describes how to operate 

the cutting mill is provided in FRITSCH’s manual. Read the operating instructions carefully before use! 

 

To Remove/ Clean Cutting Rotor & Chamber 

1. Plug in power and turn switch on back to HAND position. 

2. Open door hatch with red handle. As you open door, lift top hatch up and to right so that it rests on rubber 

stop. 

3. Pull out rotor, being careful of sharp cutting edges. 

4. Reverse procedure for reinstallation. Make sure inside of rotor fully engages drive in on motor shaft. 

 

To Remove/ Replace Outlet Bin 

1. Face front of chopper and pull black levers on each side of bin top toward you: Slide it in. 

2. To replace, slide bin in and push levers in. Chopper will not run if bin is not pushed all the way in. 

 

To Operate 

1. Plug in power cord and turn switch on back to AUTO position. Light in green START pushbutton will 

come on. Light indicates only that power is on. It does not indicate that chopper is ready to run, e.g., bin in 

place. 

2. Make sure cutting chamber door is closed and latched, and bin is in place. 

3. Push START pushbutton. Feed material slowly- do not overload. 

4. Push STOP button to turn off. 

5. Turn switch on back to OFF position and unplug power cord when finished. 

 

Problems 

 Chopper does not start: consult attachments and/or seek assistance 

 Chopper stops while running and light in STOP pushbutton comes on: motor was overloaded. Wait for light 

to turn off then restart. 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa 

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Milling Biomass Materials into Finely Divided Particles with Fritsch 
Universal Cutting Mill “Pulverisette 19” 

TASK HAZARDS CONTROLS 

1. Mill biomass 

materials into 

finely divided 

particles with the 

FRITSCH 

Universal Cutting 

Mill “Pulverisette 

19”  

Biomass materials can 

irritate eyes, the nose 

and throat. If ingested, 

can irritate mouth, 

throat and stomach. 

Biomass materials can 

burn easily if ignited. 

Sharp cutting blade in 

the mill 

 

Some surfaces can 

become hot while 

operating the mill 

 

120 V AC from mains 

to mill. 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Dust mask fitted to the worker CHECK 

Long pants 

Wear protective leather work gloves while cleaning the cutting chamber or 

changing the rotor. If the surface is hot, use heat resistant gloves. 

Wear hearing protection (ear muffs) while operating the mill 

Engineered controls 

Only handle where there is adequate ventilation. Use local exhaust or general 

ventilation to minimize exposure to dust. 

Provide eyewash in work area, if contact or splash hazard exists. 

Avoid ignition sources 

Mill: Use the instrument only indoors. Do not operate in a confined space. The 

air must not contain any electrically conductive dust. When applicable, 

ventilation must be provided or the instrument must be operated under an exhaust 

hood. .  Ensure that the machine is fastened securely and the wheels are blocked 

with chocks, as considerable transverse forces do occur. Ensure that there is good 
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access to the cutting mill. Do not block the ventilation louver at the rear. There is 

a danger of overheating if the louver is blocked. The ambient temperature must 

be between 0 and 40 ˚C and the maximum relative humidity of 80% for 

temperatures up to 31 °C, linearly decreasing down to 50% relative humidity at 

40 °C. A maximum of 20 starts per hour are permitted for the mill. The minimum 

switching cycle is 10 seconds. Jog mode is prohibited, as this may cause damage 

to the device. 

 

Beware of hot surfaces! If the mill gets too hot it could damage the mill (due to 

expansion), in addition, it's not good practice to mill biomass at elevated temps as 

you can change its composition.  If the mill gets too hot to touch then the mill is 

not being used correctly. When it gets hot, the breaker switch or the motor trips, 

you need to wait for it to cool down before you can restart it.  Mill the material in 

small batches with regular breaks to let it cool down.  Cycle and break times are 

related to the material being milled, i.e. harder materials will create more heat. 

The operator needs to regularly check the temp and work accordingly.  

Inspect electrical cords, plugs, and receptacles prior to each use. 

Required 

Training: EHSO 

Lab Safety Training, 

Read UH Chemical 

hygiene plan, Specific 

lab activity training 

by PI or lab 

supervisor. Read and 

understand all the 

methods, QRA’s, 

JSA's and SOP's 

developed for using 

the mill, the operating 

manual and the 

operating instructions 

of FRITSCH 

Universal Cutting 

Mill “Pulverisette 19” 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

Dust mask 

Long pants 

Wear protective gloves while cleaning the cutting chamber or changing the rotor in the mill. Wear ear 

protection while operating the mill 
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Other Information: See Scott Turn, Trevor Morgan and Maider Legarra-Arizaleta for more information on Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Scott Turn and Trevor Morgan  

Date Created: 04/20/2018 

OSHA Reference: __________________   

 
For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX E. SOP and JSA 2: Assembly, Loading and Leak 

Testing of the Wall Heated Tubing Bomb 

 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Assembly, Loading and Leak Testing of the Wall Heated Tubing Bomb   

Date: 04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. 

Arauzo Gimeno 

Room and Building: POST 11/12  

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903/POST 12: 808-956-3790/ 

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP covers the loading, assembly and leak testing the Wall Heated Tubing Bomb (WHTB). The 

main hazards related to the loading, assembly and leak testing the WHTB are potential exposure and handling of 

chemicals (sawdust and compressed nitrogen (N2)), exposure to elevated pressures (<3100 psig) and electricity (120 

V, 20 Amps). 

A detailed 'Operation Method' is provided in section 12. The method refers to additional SOP’s provided in separate 

documents: (1) an SOP for the moisture content analysis of the feed, (2) an SOP for Gas Chromatograph (GC) 

operation, (3) an SOP for Water Displacement Vessel (WDV) operation and (4) an SOP for volume evaluation.  

 

Useful definitions: 

Design Pressure:. . .the piping system must either be designed to safely contain the maximum possible pressure, 

considering such factors as failure of control devices and dynamic events such as surge[what the author refers to as 

the design pressure], or be provided with overpressure protection, such as safety relief valve. (Becht, 2002) 

Defining a design pressure value for the WHTB is tricky. One could think that the highest pressure ever observed 

from all WHTB constant-volume carbonization experiments could serve as a value for the design pressure. Another 

could think that the design pressure needs to consider all the worst cases scenarios. Since the pressure evolved 

during the experiments is influenced by the constant-volume carbonization experimental conditions—such as the 
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pretest nitrogen pressure, the mass loading and the heat treatment temperature.  The worst case scenarios would 

consider the highest possible mass loading—that would be ~240 g/L with birch powder of <0.2mm but higher if we 

use cellulose powder of 0.05-0.18mm or other fine powder with high packing density; the highest possible pretest 

nitrogen pressure which would be around 16.5 MPa (achieved if a tank of nitrogen completely full fills the WHTB 

reactor until equilibrium is achieved); and the highest possible heat treatment temperature—that would be 550°C 

(note that even though 600°C is specified as the maximum sand bath temperature by the manufacturer, 550°C was 

the maximum achieved in real life under full power). 

 

In the first case, i.e. when just the peak experimental pressures are considered, the design pressure would be 17.9 

MPa (2596 psi). This corresponds to the peak pressure observed during the carbonization of birch at a heat treatment 

temperature of 550°C, a pretest nitrogen pressure of 0.1 MPa and a standard mass loading of around 130g/L. Note 

that an experiment that carbonized birch at a heat treatment temperature of 400°C, a pretest nitrogen pressure of 2.17 

MPa and a standard mass loading of around 130 g/L also resulted in a great pressure rise with a recorded peak 

pressure of 17.5 MPa.  

 

In the second case, i.e. when all possible worst case scenarios are taken into account, the design pressure would be 

magnified to over 40 MPa. The inert gas contribution at 550 °C would be around 23 MPa (16,5 𝑀𝑃𝑎 
(550+273)𝐾

(298+273)𝐾
,not 

considering volume changes) and the reaction gases contribution would be over 17.9 MPa (pressure observed under 

a standard mass loading with atmospheric initial pressure, a higher loading would release higher pressures).  

 

In constant-volume carbonization experiments, it is critical that the experimenter is aware of the risk of 

overpressurization and ensure that the system is safe. Since installing a system that can hold the hypothetical and 

highly unlikely pressure of over 40MPa under high temperatures is impractical and costly, overpressure protection 

was implemented in the form of a burst diaphragm.  

  

Allowable Working Pressure or Maximum Allowable Working Pressure (MAWP): 

The concept of maximum allowable working pressure (or allowable working pressure)—even though not used in the 

ASME B31.3 code—is useful since piping systems are assemblies of standardized parts with allowable working 

pressures specified by the manufacturer. The WHTB reactor is built from Swagelok components.  Swagelok 

published on the web allowable working pressures for Fractional Stainless Steel Seamless piping at 37°C as a 

function of the outside diameter and wall thickness (https://www.swagelok.com/downloads/webcatalogs/EN/MS 01-

107.PDF., n.d.). This tubing is the one employed in the weakest part of the WHTB reactor, which is the reactor 

body, and therefore defines the allowable working pressure for the whole WHTB system. The rest of the WHTB 

parts are stronger due to them being made of tubing of smaller diameter and not being exposed to the severe 

conditions in terms of temperature and pressure the reactor body is exposed to. To determine allowable working 

pressure at elevated temperatures, the allowable working pressure at 37°C needs to be multiplied by temperature 

derating factors also published on the web. Figure 1.1 illustrates the allowable working pressures of the WHTB at 

temperatures ranging from room temperature to 537°C. Allowable variations above the maximum allowable 

working pressure are also permitted in the system for some periods of times as long as long as several conditions are 

satisfied, one of which is that this maximum allowable working pressure is not exceeded by more than some 

percentage. See section Allowances for Pressure below for a detailed description of permissible pressure variations. 
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Figure 1.1. Allowable working pressure with temperature for a 1” outer diameter Swagelok tube with a wall 

thickness of 0.21 cm (0.083”)  

 

Catastrophic Failure Pressure and Safety Factor: The catastrophic failure pressure (also referred as the burst 

pressure) is defined as the pressure at which the vessel will rupture. Large safety factors between the catastrophic 

failure pressure and the allowable working pressure are usually implemented in order to avoid serious accidents and 

ensure safe working conditions 

 

Swagelok components have a safety factor of 3.75 at all working temperatures. Below, fractions from emails 

exchanged with Byron Gregory, Swagelok’s Senior Account Manager, are presented to show Swagelok’s 

calculation of this safety factor value and the equation of the catastrophic failure pressure at elevated temperatures 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑈𝑇𝑆 𝑎𝑡 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑇𝑎𝑏𝑙𝑒 𝐴 − 1) (75000 𝑝𝑠𝑖)

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑇𝑎𝑏𝑙𝑒 𝐴 − 1) (20000 𝑝𝑠𝑖)
= 3.75 

(1.70) 

 

Burst pressure = Safety factor x Allowable Working Pressure of a given size of tubing less any derate. Example: For 

a 1/2” Outer Diameter and 0.049” thick SS tube, the Allowable Working Pressure is 3700 PSI at 100°F and the 

Burst Pressure is 3.75 X 3700 = 13,875. At 800°F: Burst Pressure=3.75 X 2941 =11,030 PSI.  

Table 1.1 tabulates WHTB catastrophic failure pressures from room temperature to 537°C.  The values are 

calculated as the product of Swagelok safety factor (3.75) and the allowable working pressures of the most 

vulnerable WHTB component, i.e. the reactor body, at temperature. 

 

Table 1.1. WHTB catastrophic failure pressure in ksi calculated with data from Swagelok. The unit kilopound per 

square inch (ksi) is a scaled unit derived from psi, equivalent to a thousand psi.  

T°F T°C 
Swagelok 

(ksi) 

Room T-200  Room T-93  11.63  

400  204  11.16  

600  315  9.88  

800  426  9.18  

1000  537  8.84  

 

Notice that the WHTB can experience temperatures of 550°C, which lays above the maximum temperature tabulated 

by Swagelok in Table 1.1. A derating factor of 0.755 has been estimated for temperatures between 537 and 566°C 

(see Section How Swagelok calculates the Derating Temperature Factors in Maider´s PhD manuscript for details). 
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Allowances for Pressure:  

. . . If the above conditions are satisfied [as in the case of the WHTB, see Appendix A1 for conditions], and if the 

owner approves, the pressure rating or allowable stress (essentially the maximum allowable working pressure) may 

be exceeded by 33% for events that are not more than 10 hours at any one time nor more than 100 hours per year, 

and by 20% for events that are not more than 50 hours at any one time nor more than 500 hours per year.  

In conclusion, the WHTB allowable working pressure in the worst case scenario, i.e. at the highest experimental 

temperature of 550°C, could reach a maximum pressure of 3158 psig (0.755 x 3100psig x 1.33) for events that are 

not more than 10 hours at any one time nor more than 100 hours per year.  

 

Burst Diaphragm Rupture pressure: . . . the Piping Code allows the set pressure to be any value, as long as the 

maximum pressure during the relieving event, including consideration of potential accumulation (additional 

pressure buildup beyond the pressure at which the valve opens), does not exceed one of the following two 

alternatives a)the maximum relieving pressure permitted by BPVC section VIII, Division 1, or b) the maximum 

pressure permitted in the allowances for variations provisions of ASME B31.3. However, the owner’s approval is 

required for the set pressure to exceed the design pressure. (Becht, 2002) 

In conclusion, the WHTB can have a burst diaphragm set over the allowable working pressure as long as the 

pressure does not exceed the maximum pressure plus allowances (3158 psig for events that are not more than 10 

hours at any one time nor more than 100 hours per year). A burst diaphragm rated at 3075 psig at 22°C was selected. 

The maximum relieving pressure permitted by BPVC section VIII, Division 1 mentioned above does not apply to 

the WHTB. BPVC section VIII, Division 1does not cover, among others, “vessels having an inside diameter, width, 

height or cross section diagonal not exceeding 6 in., with no limitation on length of vessel or pressure.”  

Hydrostatic Testing Pressure: According to the 2010 ASME Boiler & Pressure Vessel Code, new power boilers or 

boilers that have been out of service for an extended period of time should be subjected to a hydrostatic test of 1.5 

times the design pressure. [Since the latter term is not used in the piping system, design pressure is substituted for 

maximum allowable working pressure (MAWP) for the WHTB system.] . For new field erected units this is normally 

conducted by the boiler manufacturer as soon as the pressure parts are assembled. (Becht, 2002) Based on a defined 

allowable working pressure of 2341 psig (3100psig x 1.33), every new reactor needs to be tested at a hydrostatic 

pressure of around 3512 psig (1.5 x 2341psig). Due to the burst diaphragm pressure limitation of 3075 psig, the burst 

diaphragm needs to be removed and capped during the hydrostatic test.  

Leak Testing Pressure:  Finally, periodic leak tests ensure the absence of leaks during experiments and the 

reliability of the experimental pressure data collection. The leak testing pressure is performed under nitrogen the day 

prior to an experiment and is set at the maximum expected operating pressure for a particular experiment. The 

procedure is based on ASTM E2930-13 which describes a method for determining the leakage rate of a vessel 

subject to a positive pressure difference. Leak testing pressures of experiments that predict pressures beyond the 

maximum pressure of full nitrogen tanks (around 2300 psig) are compromised by the tank capacity. 

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classificationa Simple Asphyxiant, b Not Available: 

Chemical Health Fire Reactivity Specific 

Compressed Nitrogen 0 0 0 SA a 

Sawdust NAb NAb NAb NAb 

 

 

Sawdust: Inhalation: Can irritate the nose and throat. Skin Contact: May cause mild irritation. Eye Contact: May 

cause mild irritation. Ingestion: Can irritate the mouth, throat and stomach. 

 

Compressed Nitrogen: Inhalation: No known significant effects or critical hazards. Skin contact: Contact with 

rapidly expanding gas may cause burns or frostbite. Eye contact: Contact with rapidly expanding gas may cause 

burns or frostbite. In addition to any other important health or physical hazards, this product may displace oxygen 

and cause rapid suffocation (when concentrations are sufficient to reduce oxygen levels below 19.5%).  
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Mains Electricity: All the electrical connections and cables related to the mass balance, laptop, pressure sensors 

and National instrument (NI) data acquisition equipment are standard 120 V (20 amps) components as provided by 

the equipment suppliers. 

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, flame resistant lab coat, nitrile gloves, covered shoes. 

 

Sawdust: NIOSH-approved particulate mask. It is good practice to avoid breathing product; avoid skin and eye 

contact and wash hands after handling. 

 

Section 4: Engineering Controls. 

Compressed Nitrogen: General laboratory ventilation is sufficient to control worker exposure to airborne 

contaminants in the present location (POST 11). Install a 'flow restrictor' valve in the line from the nitrogen cylinder 

to the WHTB to prevent excessive release of nitrogen into the environment. 

 

Use appropriate tools to open and close valves in order to avoid direct contact of the experimenter with the 

pressurized reactor and lines. Ensure pressure does not exceed the burst disk pressure. 

Activate LabVIEW alarms to indicate when the reactor pressure is 100 psig over the test pressure or 200 psig below 

the burst disk pressure. 

 

Perform experiment inside the welded steel-Polycarbonate structure shown in Figure 4.1.Stay behind the protective 

polycarbonate panel in Figure 4.2 during experiments. The wall heated tubing bomb (WHTB) reactor is housed in a 

structure made of a welded steel frame with Hygard CG375 containment grade sheet—2 -ply polycarbonate 

laminate 3/8" thick that meets ASTM F 1915 and HP White TP 0500—covering each side of the structure, see Figure 

4.1. 

 
Figure 4.1. Welded steel-polycarbonate structure for enclosing WHTB during an experiment 

 

During the safety review (Sept 2016) one of the reviewers asked whether the polycarbonate (PC) sheet provides 

sufficient protection for the reaction conditions being used in the WHTB experiments. In particular the reviewer asked 

that we compare the impact resistance of the PC with the stored energy in the WHTB reactor at the most extreme test 

conditions, and improve the shielding if necessary. 
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The stored energy in the WHTB reactor was determined for the most extreme test conditions envisioned for the 

experimental campaign (max. pressure ~17.9 MPa (2596 psi) @ 550°C). The stored energy was determined according 

to the method outlined by the Lawrence Livermore National Laboratory (LBL), using the equation provided in 

Appendix E of the following link: http://www2.lbl.gov/ehs/pub3000/CH7.html#_Appendix_C:_Safety.  

The stored energy (U) is derived using equation 4.1:  

 

(4. 1) 

 

Where: Vh = The volume of the vessel (0.2184L for the WHTB); Ph = The absolute high pressure contained in the 

vessel; Pl = The absolute low pressure surrounding the vessel. Generally this would be one atmosphere; γ = The 

adiabatic exponent or ratio of specific heats, Cp/Cv. The value is 1.666 for monatomic gases such as argon and helium; 

1.4 for diatomic gases such as nitrogen, oxygen, hydrogen, and air; and variable for polyatomic gases such as methane, 

water, and carbon dioxide, but generally very nearly 1.3. 

 

Using equation 4.1, the stored energy in the WHTB reactor is 1887 psi ft.lbs, which is equivalent to ~0.5 g of TNT. 

According to LBL stored energies in excess of 73750 ft.lbs (100 kJ) are considered high hazard. 

 

An attempt was made to relate the stored energy in the WHTB reactor with the impact resistance of the PC sheet. 

Peer-reviewed articles on the design of blast shields and methods for calculating the force of impacts from explosions 

were referred to as a basis for the comparison (Moore) (Lozano & Petr, 2015). To determine the force of an impact it 

is necessary to know the mass of the projectile and its velocity. The Gurney equation (4.2) can be used to derive the 

initial velocity of fragments generated by detonation of an explosive device.  

 

(4. 71) 

 

Upon studying the literature it became apparent that there is no way to make a direct comparison between the stored 

energy in the WHTB reactor (as it is currently designed) with the force of an impact due to an uncontrolled release of 

the stored energy. To make this comparison a number of assumptions are required, specifically it is necessary to define 

the mass of a projectile which isn't readily apparent for our situation. In addition, the Gurney equation is for an 

explosion which is not the same phenomenon as would be experienced by rupture of the WHTB reactor vessel. In the 

case of the WHTB reactor a significant amount of the stored energy would be consumed by the rupturing of the vessel 

(the amount of energy is unknown and would be significantly different depending how the vessel ruptured). In 

addition, it is extremely unlikely that the entire vessel would fragment as in the case of an explosive device.  
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Furthermore, it should not be possible for the WHTB reactor to rupture or fragment under the conditions being used, 

i.e. the maximum pressure expected during an experiment is ~2596 psi. The maximum allowable working pressure is 

3100 psig at 37°C and 2356 psig at 537°C, and the catastrophic failure pressure is 11625 psig at 37°C and 8835 psig 

at 537°C. Therefore the primary engineered controls to prevent rupture of the vessel are(1) the selection of 

appropriately sized tubing, and (2) sensors to monitor temperature and pressure to prevent the system being over-

pressurized and audible alarms to notify personnel when reactor conditions are approaching levels beyond those 

prescribed for the experiment. 

 

The secondary engineered control is in the form of an appropriately rated burst disk (currently set at 3075 psi at 22°C) 

with the outlet directed into a ~5.4L volume of water to act as a shock absorber that will cool and disperse the energy 

of the escaping gases. The only way the WHTB reactor could rupture in an uncontrolled manner is if the burst disk 

failed to rupture (which is virtually impossible in this case) and if the temperature and pressure of the system ran out 

of control (this is also highly unlikely considering the design of the system and the control measures). The only other 

possibility of uncontrolled release of the stored energy is that a part of the WHTB reactor is seriously fatigued, and 

this is also highly unlikely due to regular inspection of the system, the type of materials used, regular replacement of 

the reactor after three uses, and a leak test before each experiment at the maximum pressure that would be achieved 

during the test.  

 

Therefore the PC sheeting on the structure housing the WHTB reactor is unlikely to be needed for protection against 

projectiles coming off the reactor due to rupture or fragmentation, it is instead a tertiary level of protection from 

splashes of heated sand bath solids or hot pyrolysis gases, liquid and solids that may leak from the reactor in the event 

of the vessel rupturing, however improbable.  

 

Nonetheless, to provide additional protection against a catastrophic failure of the primary and secondary engineered 

controls it was decided that a PC screen would be installed in the structure housing the WHTB reactor. Hygard CG375 

containment grade sheet (3/8" thick), 2-ply polycarbonate laminate that meets ASTM F 1915 was installed for this 

purpose. A description of the Hygard CG375 sheet obtained from the supplier is provided below: 

 

"Makrolon Hygard stands for transparent, multilayer laminated polycarbonate sheets. They meet all security 

requirements with regard to protection against forced entry and ballistic impact. The CG (containment glazing) 

grades are particularly suitable for protection against forced entry with heavy tools such as sledge hammers and axes. 

Containment grade Hygard CG375 containment grade sheet is a 3/8", 2-ply polycarbonate laminate that meets ASTM 

F 1915 and HP White TP 0500. Unlike glass-clad products, this all-polycarbonate laminate resists spalling and white-

out after repeated high force impacts, an advantage in maintaining visibility of a threat during an attack. Hygard 

CG375 sheet has a seven (7) year Limited Product Warranty against coating failure, yellowing, and hazing." 

 

As a final level of protection for the operator of the WHTB reactor an additional shielding screen was constructed 

using a wooden frame with 1/4" Makrolon GP sheet, this screen is located between the reactor housing structure and 

the computer used to monitor the reaction conditions, see Figure 4.2. This screen was already in use before the upgrade 

described in this document. The 1/4" PC sheet is the Makrolon GP (general purpose) type purchased locally from Min 

Plastics and Supply but also marketed by Covestro of Sheffield, MA, USA. According to data sheet provided by 

Covestro, the impact resistance of a 1/8" thick sheet of Makrolon GP is >47 ft.lbs based on ASTM D3763 where a 1" 

diameter steel dart is used. Covestro was contacted to obtain information for the 1/4" thick sheet. The impact resistance 

of the 1/4" PC sheet is >96 ft.lbs. For context, the impact from 0.22 caliber bullet fired from a pistol (handgun) is ~117 

ft.lbs (Wikipedia) and when fired from a long rifle ~135 ft.lbs (shooterscalculator.com). These values confirm the 

information from the PC sheet supplier who informed us that a 0.22 caliber bullet would pass through the 1/4" 

Makrolon GP sheet.  
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Figure 4.2. Polycarbonate screen shield 

Sawdust: Use a local exhaust ventilation and enclosure, if necessary, to control amount in the air. Provide eyewash 

in work area, if contact or splash hazard exists.  

 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

Section 5: Special Handling and Storage Requirements. 

Sawdust: 

Handling: Avoid generating dusts. Only use where there is adequate ventilation. Avoid ignition sources. Use heat 

resistant gloves when using the oven. 

Storage: Store in an area that is cool, ventilated. 

 
Compressed Nitrogen: 

Storage: Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct 

sunlight in a dry, cool and well-ventilated area. Keep container tightly closed and sealed until ready for use. 

Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being 

knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).  

Handling: Put on appropriate personal protective equipment. Contains gas under pressure. Avoid contact with eyes, 

skin and clothing. Avoid breathing gas. Empty containers retain product residue and can be hazardous. Do not 

puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when 

empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for 

cylinder movement. 

Section 6: Spill and Accident Procedures. 

 
Sawdust:  Stop or reduce leak if safe to do so. Avoid generating dust. Collect using shovel/scoop or approved 

HEPA vacuum and place in a suitable container for disposal. 

 

Compressed Nitrogen: 
No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep 

unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide adequate ventilation. Wear 

appropriate respirator (Self-Contained Breathing Apparatus SCBA) when ventilation is inadequate.  

Small spill: Shutoff source of gas. Stop leak if without risk. Contact emergency personnel (see Phone number 

information above) if necessary.  

Large spill: Immediately contact emergency personnel (see Phone number information above). Stop leak if without 

risk. Note: Call supplier for emergency contact information (AirGas 24-hour phone 1-866-734-3438). 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call (956-6911). 
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Section 7: Waste Disposal Procedures. 

Sawdust: Follow normal clean up procedures. 

 
Compressed Nitrogen: 

Unused product/ empty container: Return cylinder and unused product to supplier. Do not attempt to dispose of 

residual or unused quantities. 

Disposal: For emergency disposal, secure the cylinder and slowly discharge gas to the atmosphere in a well 

ventilated area or outdoors. 

 

Section 8: Special Precautions Animal Use. 

Not Applicable  

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval and training from PI or lab supervisor. Read and understand all methods, 

QRA’s, JSA's and SOP's developed for the operation of the Assembly, Loading and Leak Testing of the Wall 

Heated Tubing Bomb. 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 

 

Section 11: Designated Areas. 

The R3 Lab Room 11 and Room 12 framed sections in the maps below are designated, respectively, for leak testing 

and reactor loading. 
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Section 12. Method: 

1. Load the WHTB: An example of a Loading Form is given in Figure 13.1. The Loading Form is divided into five 

tables: Table 1 with data from the Proposal Conditions, Table 2 with data from the Reactant Moisture Content 

Analysis, Table 3 with data from the Solid Reactant Feed Bomb Load and finally, Table 4 with data of the 

Reactant Moist Mass and Table 5 with the Volume Evaluation.  

Fill Table 3 in the Loading Form following the instructions in section 13. 

2. See SOP for moisture content analysis of the feed (ASTM E871-82): To analyze the feed moisture content, fill 

in Table 2 in the Loading Form following the moisture content SOP.  

3. See SOP for Gas Chromatograph (GC) operation: Prepare GC, condition GC, check air leaks and fix them if 

necessary by following the corresponding SOP. 

4. See SOP for Water Displacement Vessel (WDV) operation: Follow the WDV SOP to fill the WDV with water 

in order to displace the gases inside. 

5. See SOP for WHTB Volume Evaluation: Determine the WHTB volume by following the corresponding SOP. 

6. Leak testing. Figure 12.1 shows a complete WHTB diagram  

 

6.1 Ensure that the WHTB is mounted in the welded steel-polycarbonate structure. Connect the 

WHTB Assembly to the Nitrogen Charging System at QD1. Do NOT immerse the reactor in the 

sandbath. Confirm the valve positions throughout the system match those in Table 12.1. Every 

time a valve or regulator position is modified a new Table will be presented. 

Table 12.1.  

V0 V1 V2 V3 V4 V5 Reg1 

Inlet 

Reg1 

Outlet 

Closed Closed Closed Closed Closed Closed 0 psig 0 psig 

 

6.2 Open V0.  The pressure at the inlet of regulator 1 will increase 

 

Table 12.2.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 

Outlet 

Open Closed Closed Closed Closed Closed N2 Supply Cylinder Pressure 0 psig 

 

 

6.2.1 Compare the pressure shown on the Reg1 inlet with the experiment pressure requirements.  

6.2.1.1 If the pressure shown on the Reg1 inlet is not sufficient to reach the experiment 

pressure requirements (Leak Testing Experimental Pressure), the N2 supply 

cylinder must be replaced; (see SOP for gas cylinder replacement).  After cylinder 

replacement, return to Step 6.1. 

 

6.2.1.2  If sufficient pressure exists in the N2 supply cylinder, turn the Reg1 knob 

clockwise until the pressure on the outlet of Reg1 equals the experiment pressure 

requirements 

Table 12.3.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Closed Closed Closed Closed Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

6.3 Apply Snoop to valves and reactor junctions. 
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6.4 Fully open V1 and V2 and slowly open V4 until the reactor pressure reaches 100 psig 

 

Table 12.4.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Open Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

6.5 Close V4 and inspect system for leaks 

Table 12.5.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Closed Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

6.5.1 If no snoop bubbles appear, continue to 6.6 

6.5.2 If bubbles appear, the reactor is leaking. Before attempting to fix any leaks, 

depressurize the reactor and lines by turning knob of regulator counterclockwise 

until completely disengaged and by slowly opening V3 and V5.  

Table 12.6.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Open Closed Open N2 Supply Cylinder 

Pressure 

>Leak Testing Experimental 

Pressure 

 

With a depressurized reactor, fix leaks by tightening the corresponding junction (or if 

necessary untightening, disconnecting, cleaning and retightening). Restart from6.5. If leaks are 

not fixed after two attempts, replace the leaking connection (you may need to reload a new 

reactor and start over again from 6.1). 

6.6 Slowly open V4 until the reactor pressure reaches the leak testing pressure while inspecting 

system for leaks 

Table 12.7.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Open Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

 

6.6.1  If bubbles appear, the reactor is leaking. Go back to 6.5.2 

 

6.6.2 If no snoop bubbles appear at the leak test pressure, close V4 and wait 1h. The 

reactor is successfully leak tested if no bubbles appear and the reactor can hold 

the leak test pressure during the 1h.  
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Table 12.8.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Closed Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

6.6.3 Finalize the leak test by closing V0, slowly opening V3 and V5 to avoid gas 

hammering while depressurizing the reactor and turning regulator 1 knob 

counterclockwise. 

Table 12.9.  

V0 V1 V2 V3 V4 V5 Reg1 

Inlet 

Reg1 

Outlet 

Closed Open Open Open Closed Open 0 psig 0 psig 

 

 

6.7 Close V1, V2, V3 and V5 once depressurized.  

  

Table 12.8. 

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 

Outlet 

Closed Closed Closed Closed Closed Closed 0 psig 0 psig 

 

 

7. Perform volume evaluation (see SOP 6: Volume Evaluation of the Wall Heated Tubing Bomb) 

 

8. Install three clamp thermocouples (TC7, TC8 and TC11). TC7 and TC8in the middle of the WHTB bodies (see 

Fig 12.1) and TC11 in the tubing arms. 

 

9. Connect all thermocouple plugs (From TC1 to TC11) to the extension wires connected to LabVIEW.  

 

10. Pressurize WHTB ~ 100 psig over the desired initial nitrogen experimental pressure to keep the biomass under 

an inert atmosphere and be ready for experiments.  

 

o Ensure that the WHTB is mounted in the welded steel-polycarbonate structure. Connect the 

WHTB Assembly to the Nitrogen Charging System at QD1. Do NOT immerse the reactor in 

the sandbath. Confirm the valve positions throughout the system match those in Table 12.9.  

 

Table 12.9  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Closed Closed Closed Closed Closed Closed 0 psig 0 psig 
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o Open V0.  The pressure at the inlet of regulator 1 will increase 

 

Table 12.10  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Closed Closed Closed Closed Closed N2 Supply Cylinder Pressure 0 psig 

 

o Turn the Reg1 knob clockwise until the pressure on the outlet of Reg1 reaches ~ 

100 psig  

 

 

Table 12.11.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Closed Closed Closed Closed Closed N2 Supply Cylinder Pressure ~ 100 psig 

o Fully open V1 and V2 and slowly open V4 until the reactor pressure reaches 100 psig 

 

Table 12.12.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Open Closed N2 Supply Cylinder Pressure ~ 100 psig 

o  Close V4  

Table 12.13.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Open Open Open Closed Closed Closed N2 Supply Cylinder 

Pressure 

Leak Testing Experimental 

Pressure 

 

o Finalize the leak test by closing V0, slowly opening V3 and V5 to avoid gas hammering while 

depressurizing the reactor and turning regulator 1 knob counterclockwise. 

Table 12.14.  

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Closed Open Open Open Closed Open 0 psig 0 psig 

 

o Close V1, V2, V3 and V5 once depressurized.   

Table 12.15. 

V0 V1 V2 V3 V4 V5 Reg1 Inlet Reg1 Outlet 

Closed Closed Closed Closed Closed Closed 0 psig 0 psig 

 

Ensure pressure transducer PT2 reads zero and disconnect Quick Disconnect QD1. The WHTB is ready for the 

experiment.  
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Figure 12.1. WHTB diagram
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Section 13. Loading Form

Figure 13.1. Loading Form 
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Instructions for Table 3 in Loading Form 

The components mentioned in the instructions are shown and labeled in Figure 13.2. 

1. Weigh cork. The cork is NOT part of the assembled reactor. It serves as a weight reference and holds the 

reactor and filter paper upright. 

2. Weigh cork plus reactor body 

3. Weigh cork plus thermocouple  

4. Weigh cork plus stainless steel (SS) screen 

5. Weigh cork plus reactor top 

6. Weigh cork, reactor body and TC 

7. Weigh cork, reactor body, TC and SS screen 

8. Weigh cork, reactor body, TC, SS screen and reactor top 

9. Weigh cork plus filter paper. The filter is NOT part of the assembled reactor. It will hold the biomass in 

excess. 

10. Weigh cork plus the filter paper with around 20-30 grams of sawdust biomass taken from the batch (named 

maximum reactants in Table 3 of the Loading Form) 

11. Away from the balance, with the reactor body and TC assembled; carefully pour biomass from the filter 

paper into the reactor body until 0.5 inches from its top. Using a funnel to pour biomass will prevent losing 

sample and tapping the reactor will compact the biomass and will allow more sample mass to be loaded. 

When the loading step is finished (with an approximate weight of 14g of sawdust in the reactor body in a 

standard experiment), weigh cork plus the filter paper with the remaining reactants  

12. Weigh the cork, reactor top and the SS screen with the SS screen inserted in the reactor top. 

13. Spread an anti-seize paste on the threads of the reactor top in an attempt to reduce wear and increase the 

number of times the reactor can be reused. Weigh the cork, reactor top with the anti-seize paste, and SS 

screen 

14. Hand tighten reactor top and reactor body. Weigh cork with the assembled reactor, i.e. with the TC in the 

reactor body, the SS screen on top, the biomass loaded and the reactor top hand tightened. Finalize the 

process by tightening the reactor top with a torque wrench. The reactor is now ready to be leak tested. 

15. Weigh the stem 
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Figure 13.2 The Wall Heated Tubing Bomb (WHTB) components. 

APPENDIX 1. Allowances for Pressure requirements: 

The following conditions are requirements for use of the variations according to the ASME (Becht, 2002): 

 The piping system shall not have pressure-containing components of cast iron or other nonductile material. 

 The nominal pressure stress (hoop stress for straight pipe or, for rated components, the pressure divided by 

the allowable pressure plus two-thirds the yield strength) must be less than the yield strength of the 

material. 

 The longitudinal stresses must be within the normally permitted limits. 

 The total number of pressure-temperature variations above the design conditions must be less than 100 over 

the life of the system (note that this is the number anticipated in the design of the system, not some count 

taken during operation of the system; the ASME B31.3 Code is for design of new piping systems). 

 The maximum pressure must be less than the test pressure; this can be a limitation if pneumatic or 

alternative leak testing was used. 

Before continuing with the requirements, let's examine the mentioned conditions in our WHTB 

 The WHTB does not contain nonductile material components. 

 The nominal pressure stress in our WHTB ( the pressure divided by the allowable pressure plus two-thirds 

the yield strength) must be less than the yield strength of the material, i.e., 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 =
𝑅𝑒𝑎𝑐𝑡𝑜𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
+

2

3
𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ <  𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ        𝐴. 3 

The nominal pressure is calculated using a reactor pressure equal to the maximum permissible pressure in the 

WHTB, which is defined by the burst diaphragm set pressure of 2900 psig, and using the allowable working 

pressure and yield strength at the most aggressive experimental conditions reached in the WHTB, i.e.at 400°C. 

Reactor Top Filter 
Reactor Body 

 

Thermocouple 

Anti-seize paste 

 

Cork 

 

SS screen 

 

Stem 
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Allowable working pressure and yield strength at elevated temperatures are calculated by multiplying the values at 

room temperatures from ASME B31.3 Table A-1 (See Appendix A.3) by the Swagelok derating temperature factor 

at 426°C (closest value to 400°C (https://www.swagelok.com/downloads/webcatalogs/EN/MS 01-107.PDF.) Thus, 

allowable working pressure and yield strength at 426 °C are 2449 psig (0.76 x 3100 psig, see also Figure 1) and 22.8 

ksi (0.76 x 30ksi) and the nominal pressure stress is 16.38 ksi (Nominal Pressure Stress =2900/2449 + 2/3x22.8ksi = 

16.38ksi). Thus, ASME condition (Nominal pressure < Yield Strength) is satisfied. 

 The longitudinal stresses are within the normally permitted limits. 

When a capped thin-walled tube or cylinder is subjected to internal pressure, a hoop and longitudinal stress are 

produced in the wall. 

The longitudinal stress is a normal stress parallel to the axis of the cylinder and can be expressed as: 

𝜎𝑧 =
𝑃𝑑

4𝑡
                                                                                            𝐴. 4 

where P, d and t are the pressure, tube diameter and tube thickness respectively. 

The radial stress is a stress in direction coplanar with but perpendicular to the cylinder and can be expressed as: 

𝜎𝑟 = 𝑃                                                                                            𝐴. 5 

where P is the pressure. 

Assuming our WHTB is a capped cylinder with the reactor body dimensions (1 inch diameter and 0.083 inches wall 

thickness) that is exposed to the maximum permissible pressure set by the burst diaphragm equal to 2900 psig, the 

longitudinal and hoop stresses are 

𝜎𝑧 =
𝑃𝑑

4𝑡
=

2900psig  1in

4 ∙ 0.083𝑖𝑛
= 8734.94 𝑝𝑠𝑖𝑔 

 

𝜎𝑟 = 2900𝑝𝑠𝑖𝑔                               
 

The ASME Code presents equations for determining the stress levels in a piping system and provides stress limits 

for comparison. These theories are maximum principal stress failure theory and maximum shear stress failure 

theory. The maximum principal stress failure theory states that when anyone of the mutually perpendicular principal 

stresses exceed the yield strength of the material at temperature, failure will occur. The WHTB yield strength at the 

most severe temperature of 400°Cis calculated, as previously stated, by multiplying the value at room temperature 

by the derating temperature factor at 426°C (closest value to 400°C tabulated). The result of the yield strength is 

22.8 ksi (0.76 x 30ksi). Thus, ASME condition (principal stresses <material yield strength) is satisfied. 

The maximum shear failure theory states that when the maximum shear stress (arithmetic average of largest minus 

smallest principal stresses) exceeds one-half the yield strength of the material at temperature, failure will occur. As 

the WHTB shear stress (Shear stress = (8734.94psig+2900psig)/2 = 5817.47psig) does not exceed one-half the yield 

strength (22.8 ksi/2=11.4ksi), ASME condition is satisfied. 

 The total number of pressure-temperature variations above the design conditions are less than 100 over the 

life of the system. Each reactor is used less than 10 times. 

 The maximum pressure is less than the test pressure. Every new reactor is hydrostatically tested at ~3200 

psig, which is over the maximum permissible pressure of 2900 psig defined by the burst diaphragm rupture 

pressure. 

Once all the conditions are tested and satisfied, let's continue with ASME requirements (Becht, 2002):“If the above 

conditions are satisfied, and if the owner approves, the pressure rating or allowable stress (essentially the maximum 

allowable working pressure) may be exceeded by 33% for events that are not more than 10 hours at any one time nor 

more than 100 hours per year, and by 20% for events that are not more than 50hours at any one time nor more than 

500 hours per year. It is clear how a variation in pressure is handled. There is sometimes confusion relative to 

variations in temperature. The variation in temperature decreases the allowable stress or pressure rating. Thus, the 

stress or pressure may exceed the allowable value during a variation in temperature, without a change in pressure. If 

the above variations are used, the designer must determine that the piping system, including the effects of the 

variations, is safe over the service life of the piping, using methods that are acceptable to the owner.” 

In conclusion, the WHTB allowable working pressure in the worst case scenario, i.e. at the highest experimental 

temperature of 400°C, could reach a maximum pressure of 3257 psig (2449psig x 1.33) for events that are not more 

than 10 hours at any one time nor more than 100 hours per year. And of 2939 psig for events that are not more than 

50 hours at any one time nor more than 500 hours per year. 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Assembly, Loading and Leak Testing of the Wall Heated Tubing Bomb 

TASK HAZARDS CONTROLS 

2. 1.Load Reactor Sawdust can irritate eyes, the nose and 

throat. If ingested, can irritate mouth, 

throat and stomach. 

Sawdust can burn easily if ignited. 

120 V AC from mains to mass balance. 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat 

NIOSH-approved particulate mask 

Covered shoes 

Engineered controls 

Only handle where there is adequate ventilation. Use a local 

exhaust ventilation and enclosure, if necessary, to control amount 

in the air. 

Provide eyewash in work area, if contact or splash hazard exists. 

Avoid generating dusts. Avoid ignition sources. 

Inspect electrical cords, plugs, and receptacles prior to each use. 

2. Check and fix 

leaks in the 

reactor 

 

Compressed nitrogen 

H280 – Contains gas under pressure; 

may explode if heated.  

OSHA-H01 – May displace oxygen 

and cause rapid suffocation. 

 

Overpressurization of the reactor 

120 V AC from mains to electrical 

equipment (NI data acquisition 

system, laptop and pressure 

sensors). 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

 

Engineered controls 
Implement pressure alarms in LabVIEW for experimental 

pressure objective and for warning of impending burst disk 

rupture.  

 

Good general ventilation should be sufficient to control worker 

exposure to airborne contaminants.  
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Perform leak testing inside the Unistrut-Polycarbonate structure 

 

Direct tube from burst diaphragm to a bucket full of water 

 

Use appropriate tool to open and close valves in order to avoid 

direct contact of the experimenter with the pressurized reactor and 

lines. 

 

Inspect electrical cords, plugs, and receptacles prior to each use. 

Required 

Training: 
EHSO Lab Safety 

Training, Read UH 

Chemical hygiene 

plan, Specific lab 

activity training by 

PI or lab 

supervisor, read 

and understand all 

methods, QRA’s, 

JSA's and SOP's 

developed for the 

operation of the 

Assembly, Loading 

and Leak Testing 

of the Wall Heated 

Tubing Bomb. 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

NIOSH-approved particulate mask  

Covered shoes 

 

   

Other Information: 
See Scott Turn, Trevor Morgan, Lloyd Paredes, Pablo J. Arauzo-Gimeno and Maider Legarra-Arizaleta for more information on Job 

Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Scott Turn, Trevor Morgan, Lloyd Paredes and Pablo J. Arauzo-Gimeno  

Date Created: April 20, 2018 

OSHA Reference: ________________   

 
For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX F. SOP and JSA 3: Analysis of Feed Moisture Content 

 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Analysis of Feed Moisture Content 

Date: 04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra Arizaleta, Trevor Morgan and Scott Turn 

Room and Building: POST 11/12  

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903/POST 12: 808-956-3790/ 

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP covers the analysis of the feed moisture content. The main hazards related to this SOP are 

potential exposure and handling of biomass feedstock, elevated temperatures (<105 °C) and electricity (220 V, 20 

Amps).A detailed 'Operation Method' that describes how to determine the feed moisture content is provided in 

section 12.  

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

 

Table 2.1. NFPA Hazard Classification aNot Available: 

Chemical Health Fire Reactivity Specific 

Sawdust NAa NAa NAa NAa 
 

Sawdust: Inhalation: Can irritate the nose and throat. Skin Contact: May cause mild irritation. Eye Contact: May 

cause mild irritation. Ingestion: Can irritate the mouth, throat and stomach. 

 

Mains Electricity: All the electrical connections and cables related to the drying oven and mass balance are 

standard 120 V (20 amps) components as provided by the equipment suppliers. 

 
Elevated Temperature: Internal oven surfaces, sample holder, and sample are ~105˚C. 
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Section 3: Personal Protective Equipment. 

Safety glasses or goggles, flame resistant lab coat, heat resistant gloves, covered shoes, long pants 

. 

Sawdust: NIOSH-approved particulate mask. It is good practice to avoid breathing product; avoid skin and eye 

contact and wash hands after handling. 

 

Section 4: Engineering Controls. 

Sawdust: Use a local exhaust ventilation and enclosure, if necessary, to control amount in the air. Provide eyewash 

in work area, if contact or splash hazard exists.  

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

 

Section 5: Special Handling and Storage Requirements. 

Sawdust 

Handling: Avoid generating dusts. Only use where there is adequate ventilation. Avoid ignition sources. Use heat 

resistant gloves when using the oven. Promptly remove and properly dispose of accumulations. 

Storage: Store in an area that is cool, ventilated. 

 

Section 6: Spill and Accident Procedures. 

Sawdust: Stop or reduce leak if safe to do so. Avoid generating dust. Collect using shovel/scoop or approved HEPA 

vacuum and place in a suitable container for disposal. 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call (956-6911). 

 

Section 7: Waste Disposal Procedures. 

Sawdust: Follow normal clean up procedures. 
 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval and training from PI or lab supervisor. Read and understand all methods, 

QRA’s, JSA's and SOP's developed for the determination of the feed moisture content. 

 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 
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Section 11: Designated Areas. 

The R3Lab Room 11 and Room 12 framed sections in the maps below are designated for the feed moisture content 

analysis. 
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Section 12. Method: 

This test method follows the Standard Test Method ASTM E871-82, which covers the determination of 

total weight basis moisture in the analysis sample of particulate wood fuel. For practical purposes, several 

modifications are implemented and described in the corresponding steps. 

1. Sampling 

 Place of Sampling: Take the sample where the wood is being loaded into or unloaded from means of 

transportation or when discharged from storage bins or conveyors. 

NOTE 1—Samples collected from the surface of piles are, in general, unreliable because of the exposure to 

the environment. If necessary, collect nine increments from a foot or more below the surface at nine points 

covering the pile. 

 Collection of Gross Sample: 

o Collect increments regularly, systematically, and with such frequency that the entire quantity of 

wood sampled will be represented proportionally in the gross sample. 

o The quantity of the sample shall be large enough to be representative but not less than 10 kg (22 

lb.). 

 

o Place the samples in an airtight container immediately after collection. Maintain the samples in the 

airtight container whenever possible to prevent gains or losses in moisture from the atmosphere. 

 

 Sample reduction may be done by two methods, a coning and dividing process, or by using a riffle. The 

operations of mixing, coning, and quartering are described in Practice D346. 

 

o Accomplish coning and dividing reduction by placing the gross sample on a sheet of rubber or oil 

cloth. Thoroughly mix it by raising first one corner of the cloth and then the other. After mixing 

cone and quarter sample, continue the operations until the sample is reduced sufficiently so that 

one quarter weighs about 50 g (0.11 lb.). This shall constitute a laboratory sample. 

 

o Accomplish riffle reduction using a standard coal riffle. Riffle the gross sample repeatedly until 

one half of the riffle sample equals about 50 g (0.11 lb.), which will constitute a laboratory 

sample. Riffles and procedures are described in Practice D2013. 

 

2. Fill Table 2 in the Loading Form following the instructions in section 13. Figure 13.1 shows an example of 

a Loading Form, which is divided into four tables: Table 1 with data from the Proposal Conditions, Table 2 
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with data from the Reactant Moisture Content Analysis, Table 3 with data from the Solid Reactant Feed 

Bomb Load and finally, Table 4 with data of the Reactant Moist Mass and Table 5 with the Volume 

Evaluation.  
 

Section 13. Loading Form 

Figure 13.1. Loading Form 
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Instructions for Table 2 in Loading Form 

16. Dry sample container (see Figure 13.2) for 30 min at 103 ± 1°C in the oven, then cool in desiccator to room 
temperature. Weigh to the nearest 0.0001 g and record as Tare Mass[g] .The high precision of 0.0001 g 
specified here is in accordance with the balance precision even though in this case ASTM E871 just 
requires a precision of 0.02 g. 
 

17. Place around 5 g of sample in the container, weigh the sample and container to the nearest 0.0001 g and 
record as Tare and Sample Mass[g]. 
This step introduced the following modifications from the ASTM E871 method: a minimum of 50 g of 
sample is required by ASTM E871 instead of the 5 g specified here. However, the sample weight was 
greatly reduced in order not to run out of sample. Again, the high precision of 0.0001 g is in accordance 
with the balance precision. In this case ASTM E871 requires a precision of 0.01 g. 
 

18. Place the sample and container in the oven for 16 h at 103 ± 1°C. 
Remove the sample and the container from the oven and cool in the desiccator to room temperature. 
Remove the sample and container from the desiccator, weigh immediately to the nearest 0.0001g and 
record the weight as Final Mass 1 [g]. In this case ASTM E871 requires a precision of 0.01 g. 
 

19. Return the sample and container to the oven at 103 ± 1°C for 2 h. Remove the sample and the container 
from the oven and cool in the desiccator to room temperature. Remove the sample and container from 
the desiccator, weigh immediately to the nearest 0.0001 g. 
 

20.  Repeat 4 recording each weight in Final Mass 2 [g], Final Mass 3 [g]… 
 

21. Continue 4 until the total weight change between weightings varies less than 0.0005 g or the weight 
increases. The minimum weight recorded will be automatically selected by the Excel spreadsheet as the 
Valid final mass [g].ASTM E871 specifies variation between weightings of 0.2 %. The modification 
introduced here imposes a more severe restriction. 

 

22. The spreadsheet displays the mass percent moisture content in the analysis sample as Moisture Content 
[%]. The moisture content is calculated as: 
 
 

𝑀𝑎𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [%] =
𝑇𝑎𝑟𝑒 𝑎𝑛𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠[𝑔] − 𝑉𝑎𝑙𝑖𝑑 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 [𝑔]

𝑇𝑎𝑟𝑒 𝑎𝑛𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠[𝑔] − 𝑇𝑎𝑟𝑒 𝑀𝑎𝑠𝑠[𝑔]
× 100 

 

 

Figure 13.2 Glass Feed Moisture Content Container 
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 JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Analysis of the Feed Moisture Content 

TASK HAZARDS CONTROLS 

3. 1.Feed Moisture 

Content Analysis 

Sawdust can irritate eyes, the nose and 

throat. If ingested, can irritate mouth, 

throat and stomach. 

Sawdust can burn easily if ignited. 

Hot sawdust and oven surfaces when 

removing samples from the oven 

120 V AC from mains to drying oven and 

mass balance. 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat 

Heat resistant gloves when taking sample of the oven 

NIOSH approved particulate mask. 

 

Engineered controls 

Only handle where there is adequate ventilation. Use a local 

exhaust ventilation and enclosure, if necessary, to control 

amount in the air. 

Provide eyewash in work area, if contact or splash hazard 

exists. 

Avoid generating dusts. Avoid ignition sources. 

Inspect electrical cords, plugs, and receptacles prior to each 

use. 

Required 

Training: EHSO 

Lab Safety 

Training, Read UH 

Chemical hygiene 

plan, Specific lab 

activity training by 

PI or lab supervisor, 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Heat resistant gloves 

Nitrile Gloves 

Flame resistant lab coat  

NIOSH approved particulate mask. 
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Read and 

understand ASTM 

E871-82, all 

methods, QRA’s, 

JSA's and SOP's 

developed for the 

determination of the 

feed moisture 

content. 

 

   

Other Information: 
See Scott Turn, Trevor Morgan, Lloyd Paredes, Pablo J. Arauzo-Gimeno and Maider Legarra-Arizaleta for more information on 

Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Scott Turn, and Trevor Morgan 

Date Created: April 20, 2018 

OSHA Reference: _______________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX G. SOP and JSA 4: Gas Chromatograph Operation 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Gas Chromatograph Operation 

Date: 04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. 

Arauzo-Gimeno and  

Room and Building: POST 11/12 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/  

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP is for the use of a Micro Gas Chromatograph (MicroGC) instrument. This SOP covers the 

use of the MicroGC instrument for the analysis of gas samples, as well as the transfer of calibration gases from 

cylinders to gas bags. The main hazards related to the use of the MicroGC are potential exposure to chemicals 

(Matheson Calibration Gas Mix E and Matheson Calibration Gas Mix G, experimental gases, vacuum oil, and 

helium gas), the presence of pressurized gas cylinders and electricity (120 V, 20 Amps). 

The main steps for using the MicroGC that are relevant to the SOP are listed in section 12. A detailed 'Operation 

Method' that is PC based, i.e. changing settings to control the MicroGC, and therefore do not pose a hazard to the 

operator, is provided in a separate document. 

 
Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification (Health, Fire, reactivity and Specific) and Exposure limit.  

Chemical        Health Fire Reactivity Specific      Exposure limit 

Compressed Helium   0 0 0 SAa  

Calibration Gas Mix G (Matheson): 2 0 0   

Carbon dioxide 15%    SAa ACGIHbTWAc5000 ppm 

Carbon monoxide 7%                                                                               SAa ACGIHbTWAc 25 ppm 

Oxygen 5%      

Methane 4.5 %    SAa  

Nitrogen Balance    SAa  
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Calibration Gas Mix E# 

(Matheson): 

2 4 0   

Nitrogen <91%    SAa  

Oxygen <=23.5%      

Carbon dioxide <20%    SAa ACGIHbTWAc5000 ppm 

Carbon monoxide 3-100%    SAa ACGIHbTWAc25 ppm 

Hydrogen  3-100%    SAa  

Methane 3-100%    SAa  

Pyrolysis Gases:      

Nitrogen   0 0 0 SAa  

Carbon monoxide                 2 4 0 SAa ACGIHbTWAc 25 ppm 

Carbon dioxide                      1 0 0 SAa ACGIHbTWAc5000 ppm 

Methane    1 4 0 SAa  

Hydrogen                               0 4 0 SAa  
a Simple Asphyxiant 
bACGIH: American Conference of Governmental Industrial Hygienist 
cTWA: Time Weighted Average 
#: Matheson SDS library does NOT contain an SDS for our specific calibration gas identified as Mix E (1% CO2, 

1%CO, 1%O2, 1%CH4, 1%H2, Nitrogen balance). Matheson recommended the use of a SDS for a Matheson gas 

mixture closest to our calibration gas and based on ranges of concentrations, i.e. nitrogen <91%, oxygen ≤23.5%, 

carbon dioxide 1-20%, carbon monoxide 3-100%, hydrogen 3-100%, methane 3-100%. 

This generic SDS covers various calibration gases with the same gas components as Mix E but different 

concentration ranges as shown by Table 2.1.  Oxygen and carbon dioxide concentrations in Mix E falls within the 

generic SDS concentration ranges. However, concentrations of CO, H2 and CH4 falls below their respective 

generic SDS concentration ranges and N2 concentration exceeds the generic SDS N2 range. Thus, the 

concentration ranges covered by the generic SDS represent potentially more hazardous mixtures than Mix E. 

 
Calibration gas Mix G: Contains gas under pressure; may explode if heated. May damage fertility or the unborn 

child. May cause damage to organs through prolonged or repeated exposure. May displace oxygen and cause rapid 

suffocation. Rapid release of compressed gas may cause frostbite. 

 
Calibration gas Mix E: Extremely flammable gas. Contains gas under pressure; may explode if heated. Harmful if 

inhaled. May damage fertility or the unborn child. May cause damage to organs through prolonged or repeated 

exposure. May displace oxygen and cause rapid suffocation. Rapid release of compressed gas may cause frostbite. 

 
Compressed Helium: Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid 

suffocation (when concentrations are sufficient to reduce oxygen levels below 19.5%). 

 
Pyrolysis gases: The final experimental gases, consisting of a maximum of ~10 grams of the pyrolysis products 

(CO, CO2, CH4 and H2) and the N2 originally fed into the reactor, are transferred at the end of an experiment from 

the Wall Heated Tubing Bomb (WHTB) to the Water Displacement Vessel (WDV) and finally released into a lab 

snorkel exhaust. The calculation below shows that a release of the pyrolysis gases into the lab is too small to present 

a hazard to lab personnel. Therefore, good ventilation is sufficient to prevent the exposure of the lab personnel to 

high local concentrations, nonetheless, all pyrolysis gases must be vented into a lab snorkel exhaust. 

POST 12 has an approximate volume of 129.80 m3 (VPOST 12, approx=5.18m x 9.75m x 2.57m). The room filled with 

air at 1 am and ~20 °C equates to a mass of air of 156.5 kg as shown by the following equation: 

 

𝑚𝐴𝑖𝑟 =
1 𝑎𝑡𝑚 129800𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28.966 𝑔

1 𝑚𝑜𝑙
= 156488.3𝑔 ≈ 156.5 𝑘𝑔 
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The release of the final pyrolysis gases into POST 12 will change the composition and concentration of gas in the 

room. The 10 g of pyrolysis products that are released consist of a mixture of mainly CO2 (more than half), then CO 

with traces of CH4 and H2. The nitrogen released into the Lab is equal to the nitrogen originally fed into the reactor 

volume which is around 0.22 L. The mass of nitrogen fed in the reactor varies from an approximate value of 0.14 g 

to around 5.5 g depending on the initial nitrogen reactor pressure, from 0 psig to 300psig respectively, as shown by 

the following equations: 

 

𝑚𝑁2 𝑎𝑡 0 𝑝𝑠𝑖𝑔 =
1 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 0.26𝑔 

 

 
 

𝑚𝑁2 𝑎𝑡 300 𝑝𝑠𝑖𝑔 =
21.41 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 5.5𝑔 

 

The release of 10 g of pyrolysis gas and 5.5 g of nitrogen (maximum nitrogen mass fed into the reactor) do not 

coexist as it will exceed the maximum reactor pressure ratings. Releasing 10 g of pyrolysis gas into the POST 12 

environment corresponds with mass concentrations of pyrolysis gases of 63.9ppmw (10 g pyrolysis gases / 156488 g air) 

and 5.5 g of nitrogen concentration correspond to35.14ppmw (5.5g N2/156488 g air). Thus, unintended release of the 

final experimental pyrolysis gases into the lab environment does not pose a hazard for the experimenter. Notice that 

these calculations are somewhat simplistic; this assumes instantaneous and complete mixing of the leaked 

contaminant and the entirety of the room’s air. An exhaust snorkel directed to the reactor could eliminate localized 

high concentrations.  

 

 

Prior to measuring their volume in the WDV, gases contained in the WHTB are at elevated pressure (420 to 2000 

psig at experimental test temperature).  The total volume of these contained gases at standard pressure and 

temperature are <8 L. 

 
Mains Electricity: All electrical connections to the laptop, MicroGC and vacuum pump are standard 120 V (20 

amps) lines as provided by the equipment suppliers.  

 

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, flame resistant lab coat, covered shoes, long pants. 

 

Calibration Gas Mix G and Calibration Gas Mix E: Under conditions of frequent use or heavy exposure, 

respiratory protection may be needed. Respiratory protection is ranked in order from minimum to maximum. 

Consider warning properties before use. Any supplied-air respirator with a full face piece that is operated in a 

pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained breathing 

apparatus operated in pressure-demand or other positive-pressure mode. Any self-contained breathing apparatus that 

has a full face piece and is operated in a pressure-demand or other positive-pressure mode. Protective gloves are not 

required, but recommended. 
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Section 4: Engineering Controls. 

 

Compressed Helium: Good general ventilation should be sufficient to control worker exposure to airborne 

contaminants. Monitor oxygen level to ensure the experimenter is not exposed to oxygen concentrations below the 

hazardous level of 19.5%.  Install a 'flow restrictor' valve in the line from the helium cylinder to the MicroGC to 

prevent excessive release of helium into the environment. 

 

Calibration Gas Mix G and Calibration Gas Mix E: Lab snorkel or fume hood. Ensure lab snorkel or fume hood 

are working properly. 

Pyrolysis gases: A standard laboratory air exchange ventilation rate is sufficient to prevent worker exposure to 

hazardous concentrations of airborne contaminants, nonetheless, pyrolysis gases should be released into the lab 

snorkel exhaust or fume hood. 

 
Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

Section 5: Special Handling and Storage Requirements. 

Compressed Helium: 
Handling: During normal operation, the gas cylinder is NEVER to be closed or the flow to the MicroGC stopped; 

the MicroGC requires a constant flow of helium to prevent damage to the column. Before handling a cylinder put on 

appropriate personal protective equipment. The cylinder contains gas under pressure. Avoid contact with eyes, skin 

and clothing. Avoid breathing gas. Empty containers retain product residue and can be hazardous. Do not puncture 

or incinerate container. Use equipment rated for cylinder pressure. Protect cylinders from physical damage; do not 

drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. 

 
Storage: Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct 

sunlight in a dry, cool and well-ventilated area. Keep container tightly closed and sealed until ready for use. 

Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being 

knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).  

 
Calibration gas Mix G: 

Handling: Use only outdoors or in a well-ventilated area. Do not breathe gas. Wash hands thoroughly after handling. 

Avoid ignition sources. 

 
Calibration gas Mix E: 

Handling: Use only outdoors or in a well-ventilated area. Do not breathe gas. Wash hands thoroughly after 
handling. Avoid ignition sources. All equipment used when handling the product must be grounded.  

 
 
Calibration gas Mix G and Calibration gas Mix E: 

Storage: Store locked up. Protect from sunlight. Store in a well-ventilated place. Store and handle in accordance 

with all current regulations and standards. Subject to storage and handling regulations: U.S. OSHA 29 CFR 

1910.101. Keep separated from incompatible substances, i.e. oxidizing materials, metals, combustible materials, 

halo carbons, bases, reducing agents, amines, metal salts, metal carbide, halogens, lithium, and metal oxides. 

 
Pyrolysis gases: 

Use only outdoors or in a well-ventilated area. Do not breathe gas. Wash hands thoroughly after handling. Avoid 

ignition sources. 

 

Section 6: Spill and Accident Procedures. 

Calibration gas Mix G: Stop leak if possible without personal risk. Keep unnecessary people away, isolate hazard 

area and deny entry. Remove sources of ignition. Stay upwind and keep out of low areas. Do not direct water at spill 
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or source of leak. Ventilate closed spaces before entering. Avoid release to the environment. Call emergency phone 

(see above) for large releases. 

 
Calibration gas Mix E: Stop leak if possible without personal risk. Keep unnecessary people away, isolate hazard 

area and deny entry. Remove sources of ignition. All equipment used when handling the product must be grounded. 

Stay upwind and keep out of low areas. Do not direct water at spill or source of leak. Ventilate closed spaces before 

entering. Avoid release to the environment. Call emergency phone (see above) for large releases. 

 
 

Compressed Helium: No action shall be taken involving any personal risk or without suitable training. Evacuate 

surrounding areas. Keep unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide 

adequate ventilation. Wear appropriate respirator (Self-Contained Breathing Apparatus SCBA) when ventilation is 

inadequate.  

Small spill: Shutoff source of gas. Stop leak if without risk. Contact emergency personnel (see Phone number 

information above) if necessary.  

Large spill: Immediately contact emergency personnel (see Phone number information above). Stop leak if without 

risk. Note: Call supplier for emergency contact information (AirGas 24-hour phone 1-866-734-3438). 

 
Pyrolysis gases: Stop or reduce leak if safe to do so. Provide adequate ventilation. According to the above 

mentioned calculations, exposure to mixed pyrolysis gases at the concentrations generated under the test conditions 

is not hazardous. 

 
Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call emergency phone (see above). 

 

Section 7: Waste Disposal Procedures. 

Calibration gases Mix G and Mix E: Return cylinder and unused product to supplier. (MATHESON TRI-GAS, 

INC. General Information: 1-800-416-2505) 

 
Compressed Helium: Disposal or return of cylinders is only to be performed by appropriately trained personnel.  

Unused product/ empty container: Return cylinder and unused product to supplier (AirGas 24-hour phone 1-866-

734-3438). Do not attempt to dispose of residual or unused quantities.  

Disposal: For emergency disposal, secure the cylinder and slowly discharge gas to the atmosphere in a well 

ventilated area or outdoors.  

 
Pyrolysis gases: For emergency disposal, slowly discharge gas to the lab snorkel exhaust or fume hood. Ensure lab 

snorkel or fume hood are working properly. 

 

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval and training from PI or lab supervisor. Read and understand all methods, 

QRA’s, JSA's and SOP's developed for the operation of the MicroGC instrument. 

 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 
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Section 11: Designated Areas. 

The R3Lab Room 11 framed sections in the maps below is designated for GC operation  
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12. Method: 

 
Notes: 

The filter inside the gastight syringe, consisting of Drierite desiccant (Drierite from MIDLAND SCIENTIFIC, INC. 

Stock# 23005, 8 mesh, ≥ 98% CaSO4, < 2% CoCl2) between two glass wool pieces, adsorbs small drops of liquid 

and prevent them from entering the micro GC. The change in color of desiccant from blue to pink (see Figure 12.1) 

corresponds with a change from a dry to a moist desiccant, and therefore it indicates the need of filter replacement. 

 

Figure 12.1. Gastight syringe with blue dry drierite desiccant (left) and with moist drierite desiccant (Right) 

Every time the filter is replaced and joints disassembled, use DOW CORNING high vacuum grease while 

assembling before tightening it for a better seal.  

When analyzing gases, set the needle at a 90° angle from its injection port (see Figure 12.2) in order to prevent air 

leaks 
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Figure 12.2 Correct position of the needle during injection from the gas bag (Left) and from the Water 

Displacement Vessel (Right) 

 

Method 1.Micro Gas Chromatograph (MicroGC) Leak Test, Analysis of gases and Conditioning 

1. Figures 12.3 and 12.4 show a complete diagram of the MicroGC assembly connected to the gas bag and to 

the Water Displacement Vessel assembly respectively.  

Helium Cylinder

Micro GC Septum & V13

Gas Bag

O2 Filter H2O Filter

V12

Injection 
Port 1

Injection 
Port 2

V11:
Ports 
 1 2

MicroGC 
Assembly

 

Figure 12.3 MicroGC Assembly connected to Gas Bag 
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Legend
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Figure 12.4 MicroGC Assembly connected to Water Displacement Vessel (WDV) Assembly 

2. Fill Gas Bag with Calibration Gas Mix G (See Instructions in Method 2 below) 

3. Perform leak test to the MicroGC assembly  

3.1 Ensure that the MicroGC assembly is NOT connected either to the gas bag or to the WDV assembly as 

in Figures 12.3 and 12.4 respectively. 

3.2 Assess the status of the Helium cylinder by reading the inlet and outlet pressures on regulator Reg3 

and confirm the valve positions match those of Table 12.1. Every time a valve or regulator position is 

modified a new Table will be presented. 

Table 12.1.  

V11 V12 V13 Reg3 

Inlet 

Reg3 

Outlet 

Port 

1 

Open Closed >500 

psig 

80-90 psig 
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3.1 Determine the helium pressure requirements. 

 If the pressure shown on the Reg3 inlet is over 500 psig, proceed to Step 4. If not, the helium supply 

cylinder must be replaced (see SOP for gas cylinder replacement).  After cylinder replacement, return to 

Step 3. 

3.2 Follow instructions in the GC operation manual, section MicroGC Assembly Leak Test. The 

instructions specify, step by step, the computer commands to perform a leak test and the moment the 

MicroGC assembly connects to the Gas Bag as in Figure 12.3. 

4. If leaks are detected, identify and fix them 

Based on years of experience with the GC; the gas bag, the MicroGC syringe, and joints in the tubing are potential 

leak spots ranked from more to less frequent. To fix leaks, these elements are revised and fixed in the same order. 

4.1 Change gas bag. 

4.1.1 Keep the used gas bag, labelled it as used.  

Note: Usually a gas bag leaks due to too many punctures in the septum. Once we collected enough 

used gas bags, all the septa will be replaced at once by following the manual instructions and the gas 

bags will be retested with leak tests to the MicroGC assembly (See instructions in the GC operation 

manual, section MicroGC Assembly Leak Test). Relabel and reuse gas bags that do not leak and 

dispose of the ones that leak.  

4.1.2 Refill a new gas bag with Calibration Gas Mix G (See Method 2).  

4.1.3 Perform leak test to the MicroGC assembly (See GC operation manual, section 

MicroGC Assembly Leak Test). If no leaks are detected, proceed to step 5. If 

leaks are detected, proceed to 4.2. 

4.2 Check syringe. 

4.2.1 Untighten, disassemble, clean joints, assemble and retighten the syringe. 

4.2.2 Perform leak test to the MicroGC assembly (See GC operation manual, section 

MicroGC Assembly Leak Test). If no leaks are detected, proceed to step 5. If 

leaks are detected, proceed to 4.2.3. 

4.2.3 Replace the used syringe for a new one and perform leak test to the MicroGC 

assembly (See GC operation manual, section MicroGC Assembly Leak Test). If 

no leaks are detected, proceed to step 5. If leaks are detected, proceed to 4.3. 

4.3 Tubing leaks. 

4.3.1 Check the equipment employed to transfer calibration gases from the gas 

cylinders to the gas bags (see Figure 12.5). Apply Snoop to valves and junctions. 

Pressurize the tubing and check for snoop bubbles.   

4.3.1.1 If bubbles do not appear, proceed to 4.3.2 

4.3.1.2If bubbles appear, the tubing is leaking. Before attempting to fix any 

leaks, depressurize the tubing. To fix leaks: untighten, disassemble, clean joints, assemble 

and retighten the leaking joints. Repeat 4.3.1 one more time. 

If bubbles do not appear after the repetition, tubing leaks are fixed. Perform leak test to 

the MicroGC assembly (See GC operation manual, section MicroGC Assembly Leak 

Test). If no leaks are detected, proceed to step 5. If leaks are detected, proceed to 4.3.2. 

If bubbles appear after the repetition, change the tubing. Bubbles should disappear. 

Perform leak test to the MicroGC assembly (See GC operation manual, section MicroGC 

Assembly Leak Test).  If no leaks are detected, proceed to step 5.  If leaks are detected, 

proceed to 4.3.2. 

4.3.2 Check the GC tubing connecting syringe and GC. Untighten and disassemble the 

tubing from the GC. Apply Snoop to valves and junctions. Pressurize the tubing 

and check for snoop bubbles.   

4.3.2.1 If bubbles do not appear, call MicroGC technician in Oahu: Dorian 

Taylor 808-542-8326. 

4.3.2.2 If bubbles appear, the tubing is leaking. Before attempting to fix any 

leaks, depressurize the tubing. To fix leaks, untighten, disassemble, clean joints, 

assemble and retighten the leaking joints. Repeat 4.3.2 one more time. 
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If bubbles do not appear after the repetition, tubing leaks are fixed. Perform leak 

test to the MicroGC assembly (See GC operation manual, section MicroGC 

Assembly Leak Test).  If no leaks are detected, proceed to step 5. If leaks are 

detected, call MicroGC technician in Oahu: Dorian Taylor 808-542-8326. 

. 

4 Ensure the MicroGC assembly is disconnected from the Gas Bag or from the WDV Assembly 

5 Analysis of Calibration and Experimental Gases: Fill Gas Bag with Calibration Gas Mix E (See Instructions in 

Method 2 below). Wait until the experimental day to analyze calibration and experimental gases. Follow 

instructions in the GC operation manual, section Analysis of Calibration and Experimental Gases. The 

instructions specify, step by step, the computer commands to perform analysis to calibration and experimental 

gases and the moments the MicroGC needs to be connected to the Gas Bag or to the WDV Assembly. The 

MicroGC is connected to a Gas Bag as in Figure 12.3when analyzing calibration gases and to the WDV 

assembly as in Figure 12.4 when analyzing experimental gases. 

6 When the analysis is complete, ensure the MicroGC assembly is disconnected from the Gas Bag or from the WDV 

Assembly 

7 Condition the column for at least one day. Follow instructions in the GC operation manual, section 

Conditioning.  

Method 2: Transfer Calibration Gases from Cylinder to Gas Bag 

 

1. Perform tasks under a lab snorkel that is working correctly. Connect the vacuum pump, gas bag and 

calibration gas cylinder as shown in Figure 12.5. Confirm the valve positions throughout the system match 

those in Table 12.2. Every time a valve position is modified a new Table will be presented. 

Table 12.2. 

V13 V14 V15 

Closed Closed Closed 
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Figure 12.5. Gas bag filling diagram. 

 

2. Purge lines and empty gas bag. Plug in the vacuum pump and open valves V13 and V14 for ~1 minute (DO 

NOT OPEN V15!! while purging otherwise the calibration gas in the cylinder will be vacuumed by the 

pump).  

Table 12.3. 

V13 V14 V15 

Open Open Closed 

 

3. Stop purging by closing V14 and unplugging the pump. As the system is vacuumed at this point, the air will 

enter the system if any joint is not sealed. 

Table 12.4. 

V13 V14 V15 

Open Closed Closed 

 

4. Fill the gas bag by opening V15. 

V14

v15

Vacuum Pump

Gas Bag

Septum & V13

Calibration Gas 
Cylinder

Legend

Needle valve
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Table 12.5. 

V13 V14 V15 

Open Closed Open 

5. Close all valves when gas bag is full  

Table 12.6. 

V13 V14 V15 

Closed Closed Closed 

 

6. Disconnect the pump, air bag and cylinder. Clean and put everything in place. 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: GC Operation 

TASK HAZARDS CONTROLS 
1.GC leak test 

 
Calibration gas Mix G 

Gases Under Pressure - Compressed gas 

Reproductive Toxicity (1A) 

Specific Target Organ Toxicity - Repeated Exposure 

(1) (Central nervous system)  

Simple Asphyxiant 

Helium 

Contains gas under pressure; may explode if heated. 

May displace oxygen and cause rapid suffocation. 

 

120 V AC from mains to MicroGC and laptop. 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Under conditions of frequent use or heavy 

exposure, respiratory protection may be 

needed. 

Engineered controls 

Use Lab snorkel to collect gases from GC exhaust  

Good general ventilation should be sufficient to 

control worker exposure to airborne 

contaminants. 

Inspect electrical cords, plugs, and receptacles prior 

to each use. 

2. Identify and 

Fix Leaks 
Calibration gas Mix G 

Gases Under Pressure - Compressed gas 

Reproductive Toxicity (1A) 

Specific Target Organ Toxicity - Repeated Exposure 

(1) (Central nervous system)  

Simple Asphyxiant 

Helium 

Contains gas under pressure; may explode if heated. 

May displace oxygen and cause rapid suffocation. 

120 V AC from mains to MicroGC and laptop. 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Under conditions of frequent use or heavy exposure 

of calibration gases, respiratory protection 

may be needed. 

Engineered controls 

Use Lab snorkel to collect gases from GC exhaust 

Good general ventilation should be sufficient to 

control worker exposure to airborne 

contaminants. 
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Inspect electrical cords, plugs, and receptacles prior 

to each use. 

3. Analysis of 

Calibration 

and 

Experimental 

Gases 

Calibration gas Mix G 

Gases Under Pressure - Compressed gas 

Reproductive Toxicity (1A) 

Specific Target Organ Toxicity - Repeated Exposure 

(1) (Central nervous system)  

Simple Asphyxiant 

Calibration gas Mix X (attributed to Mix E) 

Flammable Gases (1) 

Gases Under Pressure - Compressed gas 

Acute Toxicity - Inhalation - Gas (4) 

Reproductive Toxicity (1) 

Specific Target Organ Toxicity - Single Exposure (1) 

(circulatory system, nervous system, 

Hematopoietic System)  

Specific Target Organ Toxicity - Repeated Exposure 

(1) (blood, Cardiovascular system, respiratory system)  

Specific Target Organ Toxicity - Repeated Exposure 

(2) (heart)  

Simple Asphyxiant 

Helium 

Contains gas under pressure; may explode if heated. 

May displace oxygen and cause rapid suffocation. 

Pyrolysis gases 

Unintended release of the final experimental pyrolysis 

gases into the lab environment does not pose a hazard 

for the experimenter (See SOP). 

 

120 V AC from mains to MicroGC and laptop. 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Under conditions of frequent use or heavy 

exposure, respiratory protection may be 

needed. 

 

Engineered controls 

Use Lab snorkel to collect gases from GC exhaust  

Good general ventilation should be sufficient to 

control worker exposure to airborne contaminants. 

Inspect electrical cords, plugs, and receptacles prior 

to each use. 
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4.Conditioning  Helium 

Contains gas under pressure; may explode if heated. 

May displace oxygen and cause rapid suffocation 

120 V AC from mains to MicroGC and laptop. 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

 

Engineered controls 

Use Lab snorkel to collect gases from GC exhaust 

Good general ventilation should be sufficient to 

control worker exposure to airborne 

contaminants. 

Inspect electrical cords, plugs, and receptacles prior 

to each use. 

5. Transfer 

Calibration 

Gases from 

Cylinder to 

Gas Bag 

Calibration gas Mix G 

Gases Under Pressure - Compressed gas 

Reproductive Toxicity (1A) 

Specific Target Organ Toxicity - Repeated Exposure 

(1) (Central nervous system)  

Simple Asphyxiant 

Calibration gas Mix X (attributed to Mix E) 

Flammable Gases (1) 

Gases Under Pressure - Compressed gas 

Acute Toxicity - Inhalation - Gas (4) 

Reproductive Toxicity (1) 

Specific Target Organ Toxicity - Single Exposure (1) 

(circulatory system, nervous system, 

Hematopoietic System)  

Specific Target Organ Toxicity - Repeated Exposure 

(1) (blood, Cardiovascular system, respiratory system)  

Specific Target Organ Toxicity - Repeated Exposure 

(2) (heart)  

Simple Asphyxiant 

120 V AC from mains to vacuum pump. 

 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Under conditions of frequent use or heavy 

exposure, respiratory protection may be 

needed. 

 

Engineered controls 

Use Lab snorkel to collect gases from GC exhaust  

Good general ventilation should be sufficient to 

control worker exposure to airborne contaminants. 

Inspect electrical cords, plugs, and receptacles prior 

to each use. 
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Required 

Training: EHSO 

Lab Safety 

Training, Read 

UH Chemical 

hygiene plan, 

Specific lab 

activity training 

by PI or lab 

supervisor, read 

and understand all 

methods, QRA’s, 

JSA's and SOP's 

developed for the 

operation of the 

MicroGC 

instrument. 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Under conditions of frequent use or heavy exposure of calibration gases Mix E and Mix G, respiratory 

protection may be needed. 

 

 

Other Information: 
See Trevor Morgan, Lloyd Paredes, Scott Turn, Pablo J. Arauzo-Gimeno and Maider Legarra-Arizaleta for more information on 

Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. Arauzo-Gimeno and  

Date Created: April 20, 2018 

OSHA Reference: ______________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX H. SOP and JSA 5: Water Displacement Vessel 

Operation 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Water Displacement Vessel Operation 

Date: _04/20/2018 

Principal Investigator: ____Scott Q. Turn____________________________ 

Produced By: ___Maider Legarra Arizaleta____________________________________ 

Room and Building: ___POST 11/12 ______________________________ 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/  

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

 

Summary:  

This covers the operation of the Water Displacement Vessel (WDV). The main hazards related to the WDV 

operation are potential exposure and handling of chemicals (pyrolysis gases) and exposure to elevated pressures 

(<3200 psig). 

This SOP includes two methods in section 12. Method 1prepares the WDV for the experimental day by replacing all 

the gas inside the WDV with water.  Method 2, performed on the experimental day, transfers the final experimental 

gases to water-filled WDV and prepares the WDV for next experiment.  
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Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification and Exposure limit.  aSimple Asphyxiant,bACGIH: American 

Conference of Governmental Industrial Hygenist,cTWA: Time Weighted Average  

 

Chemical        Health Fire Reactivity Specific      Exposure limit 
Pyrolysis gas products:      

Nitrogen        0 0 0 SAa  

Carbon monoxide                 2 4 0 SAa ACGIHbTWAc 25 ppm 

Carbon dioxide 1 0 0 SAa ACGIHbTWAc5000 ppm 

Methane    1 4 0 SAa  

Hydrogen   0 4 0 SAa  
 

Pyrolysis gases: The final experimental gases, consisting of a maximum of ~10 grams of the pyrolysis products 

(CO, CO2, CH4 and H2) and the N2 originally fed into the reactor, are transferred at the end of an experiment from 

the Wall Heated Tubing Bomb (WHTB) to the Water Displacement Vessel (WDV) and finally released into a lab 

snorkel exhaust. The calculation below shows that a release of the pyrolysis gases into the lab is too small to present 

a hazard to lab personnel. Therefore, good ventilation is sufficient to prevent the exposure of the lab personnel to 

high local concentrations, nonetheless, all pyrolysis gases must be vented into a lab snorkel exhaust. 

POST 12 has an approximate volume of 129.80 m3 (VPOST 11, approx=5.18m x 9.75m x 2.57m). The room filled with 

air at 1 atm and ~20 °C equates to a mass of air of 156.5 kg as shown by the following equation: 

 

𝑚𝐴𝑖𝑟 =
1 𝑎𝑡𝑚 129800𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28.966 𝑔

1 𝑚𝑜𝑙
= 156488.3𝑔 ≈ 156.5 𝑘𝑔 

 

The release of the final pyrolysis gases into POST 12 will change the composition and concentration of gas in the 

room. The 10 g of pyrolysis products that are released consist of a mixture of mainly CO2 (more than half), then CO 

with traces of CH4 and H2. The nitrogen released into the Lab is equal to the nitrogen originally fed into the reactor 

volume which is around 0.22 L. The mass of nitrogen fed in the reactor varies from an approximate value of 0.14 g 

to around 5.5 g depending on the initial nitrogen reactor pressure, from 0 psig to 300 psig respectively, as shown by 

the following equations: 

 

𝑚𝑁2 𝑎𝑡 0 𝑝𝑠𝑖𝑔 =
1 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 0.26𝑔 

 

 
 

𝑚𝑁2 𝑎𝑡 300 𝑝𝑠𝑖𝑔 =
21.41 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 5.5𝑔 

 

The release of 10 g of pyrolysis gas and 5.5 g of nitrogen (maximum nitrogen mass fed into the reactor) do not 

coexist as it will exceed the maximum reactor pressure ratings. Releasing 10 g of pyrolysis gas into the POST 12 
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environment corresponds with mass concentrations of pyrolysis gases of 63.9ppmw (10 g pyrolysis gases / 156488 g air) 

and 5.5 g of nitrogen concentration correspond to35.14ppmw (5.5g N2/156488 g air). Thus, unintended release of the 

final experimental pyrolysis gases into the lab environment does not pose a hazard for the experimenter. Notice that 

these calculations are somewhat simplistic; this assumes instantaneous and complete mixing of the leaked 

contaminant and the entirety of the room’s air. A snorkel directed to the reactor could eliminate localized high 

concentrations.  

 

Prior to measuring their volume in the WDV, gases contained in the WHTB are at elevated pressure (420 to 2000 

psig at experimental test temperature).  The total volume of these contained gases at standard pressure and 

temperature are <8 L. 

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, flame resistant lab coat, long pants, covered shoes. 

 

Section 4: Engineering Controls. 

Pyrolysis gases: A standard laboratory air exchange ventilation rate is sufficient to prevent worker exposure to 

hazardous concentrations of airborne contaminants, nonetheless, pyrolysis gases should be released into the lab 

snorkel exhaust. 

 
Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 
Section 5: Special Handling and Storage Requirements. 

Pyrolysis gases 

Handling: Avoid contact with eyes, skin and clothing. Avoid breathing gas. Only use where there is adequate 

ventilation. Avoid ignition sources. Use the custom-made WHTB holder (shown in Figure 5.1) for WHTB reactor 

relocation. 

Storage: Store the WDV in an area that is cool, ventilated. 

 
Figure 5.1. Custom-made WHTB -holder for reactor relocation. 

 

Section 6: Spill and Accident Procedures. 

Stop or reduce leak if safe to do so. Provide adequate ventilation. According to the above mentioned calculations, 

exposure to mixed pyrolysis gases at the concentrations generated under the test conditions is not hazardous. 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call (956-6911). 
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Section 7: Waste Disposal Procedures. 

Pyrolysis gases: For emergency disposal, slowly discharge gas to the lab snorkel exhaust or fume hood. Make sure 

hood is working, e.g. with a Kim wipe. 

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval and training from PI or lab supervisor. Read and understand all methods, 

QRA’s, JSA's and SOP's developed for the operation of the WDV. 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day in keeping with 

good laboratory practice. 

 

Section 11: Designated Areas. 

The R3Lab Room 11 framed section in the map below is designated for WDV preparation and loading. 
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Section 12. 

Method1: Fill Water Displacement Vessel (WDV) 

Figure 12.1and Figure 12.2show, respectively, a schematic diagram of the WDV and a photograph of the WDV with 

its parts labelled. The schematic diagram in Figure 12.1 labels the inlet/outlets of the 3-way valve (V10) as A, B and 

C, as well as an extra position X in between B and C. The X position is not a real position, i.e. it is half way (90 

degree) between B and C as shown on the diagram and effectively serves to shut off all flow. The valve can be 

positioned as A-X, i.e. Closed; A-B, connecting WDV with Water Collection Vessel; and A-C, connecting WDV 

with Water Displacement Vessel Reservoir (WDVR). Figure 12.3 shows a photograph of the 3-way valve with the 

actual labels as Valve Closed, Fill WDV and Empty WDV. These labels respectively correspond to positions A-X, A-

B and A-C. 

1. Check the initial valve positions match those in Table 12.1. Every time valve positions are modified, a new 

table will be shown. 

Table 12.1.  
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V9 V10 

Closed  A-

X 

 

2. Position V10 in Fill WDV mode (or A-B) 

Table 12.2.  

V9 V10 

Closed  A-B 

 

3. Open V9. Water will start flowing from WDVR to WDV displacing the gas inside into the snorkel exhaust. 

Add water to the WDVR when the vessel becomes half empty. 

Table 12.3.  

V9 V10 

Open  A-B 

 

4. Eliminate any gas pocket inside the WDV with the help of a pipette at QD1.In order to unseal QD1, an 

auxiliary connection is attached in this step in order to open it. 

 

5. When WDV is completely filled with water (i.e. all gas has been purged), close V9 and V10  

Table 12.4.  

V9 V10 

Closed  A-X 
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Figure 12.1. Water Displacement Vessel 

 
 

 

Figure 12.2. Water Displacement Vessel Photograph  

Tube from 

WDV to 

collection 

glass vessel 

V9 

WDVR 

WDV  

V10 

Fill Port 
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Figure 12.3. 3-way Valve (V10) Photograph  

 
Method 2: Loading experimental gases from the WHTB to the Water Displacement 
Vessel (WDV) 

1. Read the output from thermocouple TC1 and verify that the Wall Heated Tubing Bomb (WHTB) is 

at ambient temperature. 

2. Secure the WHTB to the custom-made hand truck shown in Figure 5.1 and safely transport the 

WHTB from its position next to the sand bath to the WDV. 

3. Connect the WHTB to the WDV with Quick Disconnect QD1. Figure 12.4 shows a diagram of the 

WHTB setup. A weighed conical glass flask is placed by the outlet from V10 to collect the displaced 

water.  

The schematic diagram in Figure 12.4 labels the inlet/outlets of the 3-way valve (V10) as A, B and 

C, as well as an extra position X in between B and C. The X position is not a real position, i.e. it is 

half way (90 degree) between B and C as shown on the diagram and effectively serves to shut off 

all flow. The valve can be positioned as A-X, i.e. Closed; A-B, connecting WDV with Water 

Collection Vessel; and A-C, connecting WDV with Water Displacement Vessel Reservoir WDVR. 

Figure 12.3 shows a photograph of the 3-way valve with the actual labels as Valve Closed, Fill 

WDV and Empty WDV. These labels respectively correspond to positions A-X, A-B and A-C.  

 

4. Check the initial valve positions match those in Table 12.5. Every time valve positions are 

modified, a new table will be shown. 

Table 12.5.  

V4 V5 V9 V10 

Closed Closed Closed  A-

X 

 

5. Position V10 in Empty WDV (or A-C). This will prevent the pressure from building up in the 

WDV as the WDV cannot withstand elevated pressures.  

Table 12.6.  

V4 V5 V9 V10 
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Closed Closed Closed  A-C 

 

6. Open V4 

Table 12.7.  

V4 V5 V9 V10 

Open Closed Closed  A-C 

 

7. Slowly open V9 until gas starts flowing from the WHTB to the WDV displacing the water inside 

the WDV. The displaced water is collected by the water collection vessel. 

Table 12.8.  

V4 V5 V9 V10 

Open Closed Open A-C 

 

 

 

 

 

 

8. When water stops flowing, close V4and V9. 

Table 12.9.  

V4 V5 V9 V10 

Closed Closed Closed A-C 

 

9. Weigh the filled water collector and record its weight on the Excel file 

 

10. Disconnect WHTB from WDV with the quick disconnect valve QD1 

 

11. Position V10 in Fill WDV mode (or A-B). It will add small amounts of water into the WDV to 

maintain it at atmospheric pressure  

Table 12.10.  

V4 V5 V9 V10 

Closed Closed Closed A-B 

 

12. The GC analysis can be started 

 

13. After the GC analysis is complete, vent the pyrolysis gases from the system.  Check the initial valve 

positions match those of Table 12.11.  

Table 12.11.  

V9 V10 

Closed  A-

X 

 

14. Position V10 in Fill WDV mode (or A-B) 

Table 12.12.  
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V9 V10 

Closed  A-B 

 

15. Open V9. Water will start flowing from WDVR to WDV displacing the gas inside into the lab 

snorkel exhaust. Keep adding water to the Water Displacement Vessel Reservoir. Maintain water 

level of WDVR above half its volume   

Table 12.13.  

V9 V10 

Open  A-B 
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Legend

Water Displacement Vessel Reservoir

Burst Diaphragm

Thermocouple

3-way Ball Valve

Needle Valve

Pressure Gauge

Pressure Transducer

WDVR

WDV Water Displacement Vessel 

Metering Needle Valve

Quick Disconnect

3-way Ball Valve Inlet/Outlet AA

B 3-way Ball Valve Inlet/Outlet B

C 3-way Ball Valve Inlet/Outlet C

Check Valve

x 3-way Ball Valve Position x

WHTB Assembly

 
 

 
 
 

Figure 12.4. WHTB connected to WDV diagram 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Water Displacement Vessel Operation 

TASK HAZARDS CONTROLS 

4. 1. Prepare 

Water 

Displacement 

Vessel (WDV) 

Pyrolysis gas product in the WDV 

 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

Long pants 

Engineered controls 

Good general ventilation should be sufficient to 

control worker exposure to airborne contaminants. 

Use lab exhaust snorkel to avoid accumulation of 

high concentrations of gas. 

Avoid ignition sources. 

2. Loading 

experimental 

gases from 

the reactor to 

the WDV 

Pyrolysis gas product  

Transportation of a pressurized WHTB 

Overpressurization of the WDV  

 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

Long pants 

Engineered controls 

Good general ventilation should be sufficient to 

control worker exposure to airborne contaminants. 

Use lab exhaust snorkel to avoid accumulation of 

high concentrations of gas. 

Avoid ignition sources. 

Use the custom-made hand truck for WHTB 

reactor transportation 
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Ensure the WDV 3-way valve is positioned in 

empty mode while transferring gases from the 

reactor to the WDV to avoid overpressurization in 

the WDV 

Required 

Training: EHSO 

Lab Safety 

Training, Read 

UH Chemical 

hygiene plan, 

Specific lab 

activity training 

by PI or lab 

supervisor, Read 

and understand all 

methods, QRA’s, 

JSA's and SOP's 

developed for the 

operation of the 

WDV 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

Long pants 

 

   

Other Information: 
See Scott Turn, Trevor Morgan, Lloyd Paredes, Pablo J. Arauzo-Gimeno and Maider Legarra-Arizaleta for more information on 

Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. Arauzo-Gimeno 

Date Created: April 20, 2018 

OSHA Reference: _______________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX I. SOP and JSA 6: Volume Evaluation of the Wall 

Heated Tubing Bomb 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Volume Evaluation of the Wall Heated Tubing Bomb   

Date: _04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. 

Arauzo-Gimeno 

Room and Building: POST 11/12 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903/POST 12: 808-956-3790/ 

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP is for evaluating the volume of the Wall Heated Tubing Bomb (WHTB). The main hazards 

related to the volume evaluation of the Wall Heated Tubing Bomb (WHTB) are potential exposure to chemicals 

(compressed N2 gas), the exposure to elevated pressures (<3000 psig) and electricity (220 V, 20Amps). A detailed 

'Operation Method' is provided in section 12.   

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification and Exposure limit.  aSimple Asphyxiant,bACGIH: American 

Conference of Governmental Industrial Hygenist,cTWA: Time Weighted Average 

Chemical        Health Fire Reactivity Specific      Exposure limit 

Nitrogen        0 0 0 SAa   

Alundum NA NA NA NA 10mg/m3 8-hour TWAc inhalable dust 

Charcoal 1 2 1  ACGIHbTWAc2mg/m3 

 
Compressed Nitrogen: Inhalation: No known significant effects or critical hazards. Skin contact: Contact with 

rapidly expanding gas may cause burns or frostbite. Eye contact: Contact with rapidly expanding gas may cause 

burns or frostbite. In addition to any other important health or physical hazards, this product may displace oxygen 

and cause rapid suffocation (when concentrations are sufficient to reduce oxygen levels below 19.5%).  
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Mains Electricity: All the electrical connections and cables related to the laptop, pressure sensors, and National 

instrument (NI) data acquisition equipment are standard 120 V (20 amps) components as provided by the equipment 

suppliers.  

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, heat resistant gloves, flame resistant lab coat, covered shoes, long pants. 

 

Section 4: Engineering Controls. 

Compressed Nitrogen: General laboratory ventilation is sufficient to control worker exposure to airborne 

contaminants in the present location (POST 11). Install an excess 'flow restrictor' valve in the line from the Nitrogen 

cylinder to the WHTB to prevent excessive release of nitrogen into the environment. 

Perform experiment inside the Unistrut- polycarbonate structure in Figure 4.1. Polycarbonate sheets are 2-ply 

polycarbonate laminate3/8’’ thick each (Hygard CG375). The Hygard sheet meets all security requirements with 

regard to protection against forced entry and ballistic impact. 

Use appropriate tools to open and close valves in order to avoid direct contact of the experimenter with the 

pressurized reactor and lines. Ensure pressure does not exceed the burst disk pressure. 

Activate LabVIEW alarms to indicate when the reactor pressure is 100 psig over the test pressure or 200 psig below 

the burst disk pressure. 

 
 
 

Figure 4.1. Welded steel-polycarbonate structure for enclosing WHTB during an experiment 

 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 
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Section 5: Special Handling and Storage Requirements. 

Compressed Nitrogen: 

Storage: Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct 

sunlight in a dry, cool and well-ventilated area. Keep container tightly closed and sealed until ready for use. 

Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being 

knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).  

Handling: Put on appropriate personal protective equipment. Contains gas under pressure. Avoid contact with eyes, 

skin and clothing. Avoid breathing gas. Empty containers retain product residue and can be hazardous. Do not 

puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when 

empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for 

cylinder movement. 

Section 6: Spill and Accident Procedures. 

Compressed Nitrogen: 

No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep 

unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide adequate ventilation. Wear 

appropriate respirator (Self-Contained Breathing Apparatus SCBA) when ventilation is inadequate.  

Small spill: Shutoff source of gas. Stop leak if without risk. Contact emergency personnel (see Phone number 

information above) if necessary.  

Large spill: Immediately contact emergency personnel (see Phone number information above). Stop leak if without 

risk. Note: Call supplier for emergency contact information (AirGas 24-hour phone 1-866-734-3438). 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call (956-6911). 

 

Section 7: Waste Disposal Procedures. 

Compressed Nitrogen: 

Unused product/ empty container: Return cylinder and unused product to supplier. Do not attempt to dispose of 

residual or unused quantities. 

Disposal: For emergency disposal, secure the cylinder and slowly discharge gas to the atmosphere in a well 

ventilated area or outdoors.  

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, Hazardous Waste Generator Safety Training, approval and training from PI or lab 

supervisor. Read and understand all methods, QRA’s, JSA's and SOP's developed for evaluating the volume of the 

WHTB. 

Section 10: Decontamination. 

EHSO Lab Safety Training, Hazardous Waste Generator Safety Training, approval and training from PI or lab 

supervisor. Read and understand all methods, JSA's and SOP's developed for evaluating the volume of the WHTB. 

 

Section 11: Designated Areas. 
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The R3Lab Room 11 framed section in the maps below is designated for volume evaluation. 
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Section 12. Method: 

1. Figure 12.1 shows a complete diagram of the WHTB assembly connected to the nitrogen charging system. The 

equipment is divided into sections in order to provide a clear volume nomenclature. Ensure that the reactor is 

disconnected from the WHTB assembly at QD1.   
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Legend

Reg 1

N2 
cylinder

QD1

Exhaust

Exhaust

LabView

filter
V1 V2

P1

V3

V4

Pressure Regulator

Burst Diaphragm

Thermocouple
c

Quick Disconnect

Needle Valve

Pressure gauge

Filter

Check Valve

Pressure Transducer

V5

TC8

TC7

Nitrogen 
Charging System

WHTB Assembly

LabView

V0

PT1

PT2

TC1-TC3

TC4-TC6
TC9

TC10

TC11

Dry Gas Meter

V6

QD2

Dry Gas Meter

Dry Gas Meter 
Assembly

Excess Flow Valve

Figure 12.1. WHTB Diagram with Volume Nomenclature 
 

2. Confirm the valves positions match those of Table 12.1. Every time a valve or regulator position is modified a 

new Table will be presented. 

 

 

Table 12.1.  
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Closed Closed Closed Closed Closed Closed Open 0 psig 0 psig 

 

 

 

3. Open V0.  The pressure at the inlet of regulator 1 will increase 

 

Table 12.2.  
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 
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Open Closed Closed Closed Closed Closed Open N2 

Supply 

Cylinder 

Pressure 

0 psig 

 

4. Assess the status of the nitrogen charging system by reading the pressures on the Reg1 inlet 

 

4.1. If the pressure shown on the Reg1 inlet is not sufficient to reach the volume evaluation pressure requirements 

(>300 psig), the N2 supply cylinder must be replaced; (see SOP for gas cylinder replacement).  After cylinder 

replacement, return to Step 2. 

 

4.2.  If sufficient pressure exists in the N2 supply cylinder, turn the Reg1 knob clockwise until the pressure on 

the outlet of Reg1 equals the volume evaluation pressure requirements 

Table 12.3.  
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Closed Closed Closed Closed Closed Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

5. Place the loaded reactor (refer to reactor loading SOP) inside the welded steel-polycarbonate structure, mount it 

on the square tube. Do not immerse the reactor in the sandbath.   

6. Connect the reactor to the nitrogen charging system and to the Dry Gas Meter assembly using the quick 

disconnects QD1 and QD2.  

 
7. An example of a Loading Form is given in Figure 12.2. The Loading Form is divided into five tables: Table 1 

with data from the Proposal Conditions, Table 2 logs data from the Reactant Moisture Content Analysis, Table 

3 data from the Solid Reactant Feed Bomb Load, Table 4 with Reactant Moisture Content data and finally, 

Table 5 with data from the Void Volume Evaluation. In Table 5 of the Loading Form, write down the Room 

Temperature from the lab mercury thermometer and the Room Pressure from the lab mercury barometer. 

8. Write down the Initial Reactor Pressure from pressure transducer PT1 (atmospheric pressure), and write down 

the reading on the dry gas meter. 

 

9. Open V1and V2 

Table 12.4. 
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Open Open Closed Closed Closed Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

10. Slowly open V4.  

Table 12.5. 
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Open Open Closed Open Closed Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

11. When PT1 reaches~50 psig, close V4 rapidly 
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Table 12.6. 
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Open Open Closed Closed Closed Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

 

12. After stabilization, write down the Initial Reactor Pressure from Pressure gauge PT1andthe Initial Dry Gas 

Meter volume in Table 5 of the Loading Form. 

 

13. Slowly open V5to avoid gas hammering while depressurizing the reactor. Once depressurized, write down the 

Final Reactor Pressure and Final Dry Gas Meter volume in Table 5 of the Loading Form. 

 

Table 12.7. 
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Open Open Closed Closed Open Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

 

14. Close valve V5 

 

 

Table 12.8. 
V0 V1 V2 V3 V4 V5 V6 Reg1 

Inlet 

Reg1 

Outlet 

Open Open Open Closed Closed Closed Open N2 

Supply 

Cylinder 

Pressure 

300psig 

 

 
15. Repeat steps 8to 14four times and with each repetition, change PT1 pressure in step 11 to approximately 100, 

150, 200 and 250 psig, respectively. 

 

The loaded 𝑉𝐵𝑜𝑚𝑏 can finally be calculated with equation 12.1. 

𝑉𝐵𝑜𝑚𝑏 = (𝑉𝐷𝐺𝑀,𝑓 − 𝑉𝐷𝐺𝑀,𝑖)
𝑃𝐿𝑎𝑏

𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑖 − 𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑓
                                             12.1 

 

In order to minimize errors and increase reliability in the calculation of the test volume, the described process is 

repeated at several test pressures, and the test volume is determined from the slope of the regression equation of 

(𝑉𝐷𝐺𝑀,𝑓 − 𝑉𝐷𝐺𝑀,𝑖)𝑃𝐿𝑎𝑏 versus (𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑖 − 𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑓)(see equation 12.2) 

(𝑉𝐷𝐺𝑀,𝑓 − 𝑉𝐷𝐺𝑀,𝑖)𝑃𝐿𝑎𝑏 = 𝑉𝐵𝑜𝑚𝑏(𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑖 − 𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑓)                          12.2 

 

The Excel file will automatically plot (𝑉𝐷𝐺𝑀,𝑓 − 𝑉𝐷𝐺𝑀,𝑖)𝑃𝐿𝑎𝑏versus (𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑖 − 𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑓) and display the test 

volume𝑉𝐵𝑜𝑚𝑏. 
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Figure 12.2. Loading Form 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Wall Heated Tubing Bomb Volume Evaluation 

TASK HAZARDS CONTROLS 

1. Volume 

Evaluation 

 

Compressed nitrogen 

H280 – Contains gas under pressure; may 

explode if heated.  

OSHA-H01 – May displace oxygen and 

cause rapid suffocation. 

 

Overpressurization of the reactor 

 

120V AC from mains to pressure sensors, 

laptop and NI data acquisition system. 

 

PPE 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Long pants 

 

Engineered controls 
Implement pressure alarms in LabVIEW for experimental 

pressure objective and for warning of impending burst disk 

rupture.  

Good general ventilation should be sufficient to control 

worker exposure to airborne contaminants.  

Perform WHTB volume evaluation inside the Unistrut-

polycarbonate structure 

 

Direct tube from burst diaphragm to a bucket full of water 

 

Use appropriate tool to open and close valves in order to 

avoid direct contact of the experimenter with the pressurized 

reactor and lines. 

 

Install excess flow restrictors on all gas cylinders actively 

used in the experiment. 

 

Inspect electrical cords, plugs, and receptacles prior to each 

use. 
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Required 

Training: EHSO 

Lab Safety 

Training, Read UH 

Chemical hygiene 

plan, Specific lab 

activity training by 

PI or lab 

supervisor, Read 

and understand all 

methods, QRA’s, 

JSA's and SOP's 

developed for 

evaluating the 

volume of the 

WHTB. 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Flame resistant lab coat  

Covered shoes 

Long pants 

 

   

Other Information: See Scott Turn, Trevor Morgan, Lloyd Paredes and Maider Legarra-Arizaleta for more information on Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. Arauzo-Gimeno 

Date Created: April 20, 2018 

OSHA Reference: ________________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX J. SOP and JSA 7: Performing an Experiment, 

Unloading and Disassembly of the Wall Heated Tubing Bomb 

Laboratory 

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Performing an Experiment, Unloading and Disassembly of the Wall Heated Tubing Bomb   

Date: 04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. 

Arauzo-Gimeno 

Room and Building: POST 11/12 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/  

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP is for performing an experiment and unloading and disassembly of the Wall Heated Tubing 

Bomb (WHTB) after an experiment.  

The main hazards related to an experiment, unloading and disassembly of the Wall Heated Tubing Bomb (WHTB)  

are potential exposure to chemicals (compressed N2 gas, alundum, charcoal and cleaning solvent), the exposure to 

elevated pressures (<3000 psig) , elevated temperatures (<550 °C, note that even though 600°C is specified as the 

maximum sand bath temperature by the manufacturer, 550°C was the maximum achieved in real life under full 

power), and electricity (120 V, 20 Amps for the mass balance, laptop, pressure sensors, fan, and National Instrument 

(NI) data acquisition equipment and 240 V 50/60 Hz for the sand bath). 

A detailed 'Operation Method' is provided in section 12. The method refers to additional SOP’s provided in separate 

documents: (1) an SOP for purging air from the reactor with nitrogen, (2) an SOP for Gas Chromatograph (GC) 

operation, (3) an SOP for Water Displacement Vessel (WDV) operation, (4) an SOP for determining the charcoal 

moisture content and (5) an SOP for changing gas cylinders.  
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Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification and Exposure limit.  aSimple Asphyxiant, bACGIH: American 

Conference of Governmental Industrial Hygienist, cTWA: Time Weighted Average, dWEEL: Workplace 

Environmental Exposure Levels, ePEL: California permissible exposure limits for chemical contaminants (Title 8, 

Article 107) 

 

Chemical        Health Fire Reactivity Specific      Exposure limit 

Nitrogen        0 0 0 SAa   

Alundum NA NA NA NA 10mg/m3 8-hour TWAc inhalable dust 

Charcoal 1 2 1  ACGIHbTWAc2mg/m3 

N-Methyl-2-pyrrolidone 

(NMP)cleaning solvent 

2 2 0  WEELd TWAc 10ppm 

PELe1 ppm, 4 mg/m3 

Pyrolysis Gases:      

Nitrogen   0 0 0 SAa    

Carbon monoxide                 2 4 0 SAa   ACGIHbTWAc 25 ppm 

Carbon dioxide                      1 0 0 SAa   ACGIHbTWAc5000 ppm 

Methane    1 4 0 SAa    

Hydrogen                               0 4 0 SAa    

 
Compressed Nitrogen: Inhalation: No known significant effects or critical hazards. Skin contact: Contact with 

rapidly expanding gas may cause burns or frostbite. Eye contact: Contact with rapidly expanding gas may cause 

burns or frostbite. In addition to any other important health or physical hazards, this product may displace oxygen 

and cause rapid suffocation (when concentrations are sufficient to reduce oxygen levels below 19.5%).  

 

Alundum: Components: Aluminum Oxide 92 - 99% Non-Hazardous, Titanium Dioxide 1.0 - 4.0%, Silicon Dioxide 

0.2 – 1.7% Amorphous, Iron Oxide 0.1 – 1.5%. 

Abrasives are not dangerous substances or their preparation or handling according to directive 1999/45/EC.No 

toxicological effects if inhaled or swallowed or with eye or skin contact are known. 

 
Charcoal: Charcoal powder and dust may cause eye and skin irritation. Inhalation and ingestion of charcoal dust 

may cause nose, throat, and gastrointestinal irritation. 

Carbon monoxide hazard: Burning charcoal inside without adequate ventilation can kill you. Odorless carbon 

monoxide is given off upon combustion. NEVER burn charcoal inside homes, vehicles or tents. 

Char dust is not found on the IARC, OSHA, or NTP carcinogen list. Char dust is produced by charcoal breakage. 

Thus, the concentration of charcoal dust will vary based on the amount of the breakage. 

Caution: Wet charcoal may remove oxygen from air causing a potential hazard to workers in a confined space. 

Reactivity data: Stable under normal temperatures and pressures. May react vigorously or violently when mixed 

with strong oxidizing agents, especially when heated. Oxidation rate increases with temperature and oxygen 

availability. Charcoal fines may heat spontaneously in air. This process is accelerated at increased temperatures and 

through the addition of water. 

 

NMP: 1-Methyl-2-pyrrolidinone99.5% 

GHS Classification: Flammable liquids (Category 4), Skin Corrosion/Irritation, Category 2; Serious Eye 

Damage/Eye Irritation, Category 2A; Reproductive toxicity (Category 1B), May damage fertility or the unborn 

child, Specific Target Organ Toxicity (single exposure), Category 3, May cause respiratory irritation. 

 

Pyrolysis gases: The final experimental gases, consisting of a maximum of ~10 grams of the pyrolysis products 

(CO, CO2, CH4 and H2) and the N2 originally fed into the reactor, are transferred at the end of an experiment from 

the Wall Heated Tubing Bomb (WHTB) to the Water Displacement Vessel (WDV) and finally released into a lab 

snorkel exhaust. The calculation below shows that a release of the pyrolysis gases into the lab is too small to present 
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a hazard to lab personnel. Therefore, good ventilation is sufficient to prevent the exposure of the lab personnel to 

high local concentrations, nonetheless, all pyrolysis gases must be vented into a lab snorkel exhaust. 

POST 12 has an approximate volume of 129.80 m3 (VPOST 12, approx=5.18m x 9.75m x 2.57m). The room filled with 

air at 1 atm and ~20 °C equates to a mass of air of 156.5 kg as shown by the following equation: 

 

𝑚𝐴𝑖𝑟 =
1 𝑎𝑡𝑚 129800𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28.966 𝑔

1 𝑚𝑜𝑙
= 156488.3𝑔 ≈ 156.5 𝑘𝑔 

 

The release of the final pyrolysis gases into POST 12 will change the composition and concentration of gas in the 

room. The 10 g of pyrolysis products that are released consist of a mixture of mainly CO2 (more than half), then CO 

with traces of CH4 and H2. The nitrogen released into the Lab is equal to the nitrogen originally fed into the reactor 

volume which is around 0.22 L. The mass of nitrogen fed in the reactor varies from an approximate value of 0.14 g 

to around 5.5 g depending on the initial nitrogen reactor pressure, from 0 psig to 300 psig respectively, as shown by 

the following equations: 

 

𝑚𝑁2 𝑎𝑡 0 𝑝𝑠𝑖𝑔 =
1 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 0.26𝑔 

 

 
 

𝑚𝑁2 𝑎𝑡 680 𝑝𝑠𝑖𝑔 =
21.41 𝑎𝑡𝑚0.22𝐿

0.082 
𝑎𝑡𝑚𝐿

𝑚𝑜𝑙 𝐾
293𝐾

28 𝑔

1 𝑚𝑜𝑙
= 5.5𝑔 

 

The release of 10 g of pyrolysis gas and 5.5 g of nitrogen (maximum nitrogen mass fed into the reactor) do not 

coexist as it will exceed the maximum reactor pressure ratings. Releasing 10 g of pyrolysis gas into the POST 12 

environment corresponds with mass concentrations of pyrolysis gases of 63.9 ppmw (10 g pyrolysis gases / 156488 g air) 

and 5.5 g of nitrogen concentration correspond to35.14 ppmw (5.5g N2/156488 g air). Thus, unintended release of the 

final experimental pyrolysis gases into the lab environment does not pose a hazard for the experimenter. Notice that 

these calculations are somewhat simplistic; this assumes instantaneous and complete mixing of the leaked 

contaminant and the entirety of the room’s air. A snorkel directed to the reactor could eliminate localized high 

concentrations.  

  

Prior to measuring their volume in the WDV, gases contained in the WHTB are at elevated pressure (420 to 2000 

psig at experimental test temperature).  The total volume of these contained gases at standard pressure and 

temperature are <8 L. 

 

High Temperature:  The sandbath used to heat the alundum bed material and reactor system is operated at a 

maximum temperature of 550°C.  The sandbath is fluidized with compressed air that is heated by resistance heaters 

and discharged into the room after fluidizing the alundum bed. 

 
Mains Electricity: All the electrical connections and cables related to the mass balance, laptop, pressure sensors, 

fan, and National Instrument (NI) data acquisition equipment are standard 120 V (20 amps) components as provided 

by the equipment suppliers. The sand bath is connected to an electrical supply of 240 V 50/60 Hz as specified by the 

supplier. 

 

 



302 

 

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, heat resistant gloves, flame resistant lab coat, covered shoes, long pants, NIOSH approved 

dust mask. 

 

Alundum: NIOSH-approved particulate mask with category P1 filter must be used if fine dust limits are exceeded.  

Charcoal: Use a NIOSH-approved particulate mask under conditions where TLV limits may be exceeded.  

NMP: Use fume hood to keep airborne levels below their exposure limits. Ensure fume hood is working properly. If 

fume hood is not used, you must use a properly fitted and maintained NIOSH approved respirator for organic 

vapors. A dust mask does not provide protection against vapors. Contact lenses should not be worn while working 

with chemicals. 

 

Section 4: Engineering Controls. 
Compressed Nitrogen: General laboratory ventilation is sufficient to control worker exposure to airborne 

contaminants in the present location (POST 11). Install an excess 'flow restrictor' valve in the line from the nitrogen 

cylinder to the WHTB to prevent excessive release of nitrogen into the environment. 

Perform experiment inside the welded steel-polycarbonate structure in Figure 4.1. Stay behind the protective 

polycarbonate panel in Figure 4.2 during experiments. Polycarbonate sheets of Figure 4.1are 2-ply polycarbonate 

laminate 3/8" thick each (Makrolon Hygard CG375) and polycarbonate sheet of Figure 4.2 is¼ inch Makrolon GP 

(General Purpose). Makrolon Hygard sheets meet all security requirements with regard to protection against forced 

entry and ballistic impact. Makrolon GP is virtually unbreakable with 250 times the impact strength of float glass 

and 30 times that of acrylic.  

Use appropriate tools to open and close valves in order to avoid direct contact of the experimenter with the 

pressurized reactor and lines. Ensure pressure does not exceed the burst disk pressure. 

Activate LabVIEW alarms that will signal when the reactor pressure is 100 psig over the test pressure and when the 

pressure is 200 psig below the burst disk pressure. 
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Figure 4.1. Welded steel-polycarbonate structure for enclosing WHTB during an experiment 

 

 
Figure 4.2. Polycarbonate panel to protect experimenters from equipment 

Alundum: Use process enclosures to keep airborne levels below recommended exposure limits. Do not use in 

unventilated spaces. 

 
Charcoal: Use local exhaust or general ventilation to minimize exposure to dust. 

 

NMP: Use ONLY in a fume hood to control airborne levels below recommended exposure limits. Use only with 

adequate ventilation to prevent buildup of vapors. . Ensure fume hood is working properly. Do not use in areas 

where vapors can accumulate and concentrate, such as basements, bathrooms or small enclosed areas without a fume 

hood. Whenever possible, use outdoors in an open air area. If using indoors open all windows and doors and 

maintain a cross ventilation of moving fresh air across the work area. If strong odor is noticed or you experience 

slight dizziness, headache, nausea or eye-watering -- STOP -- ventilation is inadequate. Leave area immediately and 

move to fresh air. 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 
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Section 5: Special Handling and Storage Requirements. 
Compressed Nitrogen: Storage: Store in accordance with local regulations. Store in a segregated and approved 

area. Store away from direct sunlight in a dry, cool and well-ventilated area. Keep container tightly closed and 

sealed until ready for use. Cylinders should be stored upright, with valve protection cap in place, and firmly secured 

to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F). Handling: Put on 

appropriate personal protective equipment. Contains gas under pressure. Avoid contact with eyes, skin and clothing. 

Avoid breathing gas. Empty containers retain product residue and can be hazardous. Do not puncture or incinerate 

container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders 

from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. 

Alundum: Handling: Avoid dust formation. No danger of fire or dust explosion. Storage: No special precautionary 

measures 

Charcoal: Handling: Wash hands thoroughly after direct contact. Use with adequate ventilation. Minimize dust 

generation and accumulation. Avoid contact with eyes, skin, and clothing. Keep away from heat, sparks and open 

flames. 

Storage: Keep away from heat, sparks, and open flames. Store in a tightly closed container away from oxidizing 

materials. Keep in a well-ventilated cool dry area.   

 

NMP: Keep away from sources of ignition - No smoking. Take measures to prevent the build-up of electrostatic 

charge. For precautions see material safety data sheet. Keep container tightly closed in a dry and well-ventilated 

place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Store under inert 

gas. Moisture sensitive 

Pyrolysis gases: Use only outdoors or in a well-ventilated area. Do not breathe gas. Wash hands thoroughly after 

handling. Avoid ignition sources. 

 

Section 6: Spill and Accident Procedures. 
 

Compressed Nitrogen: No action shall be taken involving any personal risk or without suitable training. Evacuate 

surrounding areas. Keep unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide 

adequate ventilation. Wear appropriate respirator (Self-Contained Breathing Apparatus SCBA) when ventilation is 

inadequate.  

Small spill: Shutoff source of gas. Stop leak if without risk. Contact emergency personnel (see Phone number 

information above) if necessary.  

Large spill: Immediately contact emergency personnel (see Phone number information above). Stop leak if without 

risk. Note: Call supplier for emergency contact information (AirGas 24-hour phone 1-866-734-3438). 

 

Alundum: Take up mechanically and dispose of in the trash.  

 
Charcoal: Remove all sources of ignition. To avoid generating dusty conditions, use a vacuum cleaner to collect the 

material or carefully pick up the material and place it into a clean dry container and cover for disposal. Wash 

residual to on-site treatment area, where appropriate. Notice that charcoal may react vigorously or violently when 

mixed with strong oxidizing agents, especially when heated. Oxidation rate increases with temperature and oxygen 

availability. Charcoal fines may heat spontaneously in air. This process is accelerated at increased temperatures and 

through the addition of water. 

 

NMP: Small spills (<1L): Do not attempt cleanup if you feel unsure of your ability to do so or if you perceive 

the risk to be greater than normal laboratory operations. Remove all sources of ignition. Use appropriate personal 

protective equipment and clean-up the spilled chemical. Avoid breathing vapors, mist or gas. Ensure adequate 
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ventilation. Prevent further leakage or spillage if safe to do so. Do not let product enter drains. A vapor suppressing 

foam may be used to reduce vapors. Absorb or cover with dry earth, sand, or other non-combustible material and 

transfer to compatible containers. 

Large spills (>1L): Notify others in area of spill. Remove all sources of ignition. Avoid breathing vapors, mist 

or gas. Ensure adequate ventilation. Prevent further leakage or spillage if safe to do so. Do not let product enter 

drains if safe to do so. Dike ahead of the spill. Evacuate area and post entrance ways to spill area. Call the EHSO 

(808-956-3918) or after hours (956-6911) for spill response. Restrict persons from area of spill or leak until cleanup 

is complete.  

 

 

Pyrolysis gases: Stop or reduce leak if safe to do so. Provide adequate ventilation. According to the above 

mentioned calculations, exposure to mixed pyrolysis gases at the concentrations generated under the test conditions 

is not hazardous. 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call emergency phone (see above). 

Section 7: Waste Disposal Procedures. 
Compressed Nitrogen: Unused product/ empty container: Return cylinder and unused product to supplier. Do not 

attempt to dispose of residual or unused quantities. Disposal: For emergency disposal, secure the cylinder and 

slowly discharge gas to the atmosphere in a well ventilated area or outdoors.  

Alundum: Dispose of alundum in the trash. 

Charcoal: Reclaim if possible; dispose in small quantities (<1 kg) in a closed bag. 

NMP: Dispose of as hazardous waste. Do not reuse container 

Pyrolysis gases: For emergency disposal, slowly discharge gas to the lab snorkel exhaust or fume hood. Ensure lab 

snorkel or fume hood are working properly. 

 

Section 8: Special Precautions Animal Use. 
Not Applicable 

Section 9: Required Approvals 

EHSO Lab Safety Training, Hazardous Waste Generator Training, approval and training from PI or lab supervisor. 

Read and understand all methods, QRA’s, JSA's and SOP's developed for performing the experiment. 

 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 

Section 11: Designated Areas. 

The R3Lab Room 11 and Room 12 framed sections in red in the maps below are designated, respectively, for 

experiment performance and reactor unloading. The R3Lab Room 11 framed section in green in the map below is 

designated for cleaning the WHTB with NMP solvent. 
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Section 12. Method: 

1. Make sure the WHTB has already been assembled, loaded and leak tested (see WHTB Assembly, Loading 

and Leak Testing SOP)  

2. Heat up the alundum in the Techne fluidized sand bath (model SBL-2D). Figure 12.1 shows the sand bath 

equipment with all its components labelled. 

2.1. Turn on the sand bath air 

2.2 Turn on the four heating elements using the appropriate Switches 

2.3 Turn the 'power control knob ‘clockwise to Maximum power. 

2.4 Turn on the digital temperature controller and input a set-point temperature 20°C above the 

experimental heat treatment temperature. 

2.5 Measure and record the current (amps) flowing to the sand bath heating elements.   

2.6 Compare the measured current flow with historical current flow.  If comparable, continue on.  If 

there is a significant difference, cancel the experiment, report situation to lab manager and PI. 
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3. See SOP for Gas Chromatograph (GC) operation: Analyze calibration gases by following the 

corresponding SOP. 

While the sand bath is coming up to temperature and the GC is analyzing calibration gases, the following tasks are 

performed. 

4. Immediately after energizing the sandbath, turn on the NI Data Acquisition devices and the computer, and 

launch the LabVIEW program. To record pressure and temperature experimental data every second, change 

Input Sample in LabVIEW from 0 to 1. 

5. In order to reach and maintain the desired temperature, ensure sand is well fluidized by breaking the sand 

with a bamboo rod. Moisture can agglomerate sand at the bottom of the sand bath resulting in a poor 

fluidization and consequent failure of the heating elements! 

6. Start cooling air delivery fan mounted to the side of the canopy hood. It will prevent the WHTB from 

heating before it is inserted into the sand bath and it will protect the pressure gauge, pressure transducer and 

WHTB arms from overheating. 

7. Check that the battery for the hand drill has sufficient charge to allow it to run the worm gear winch used to 

lower the reactor into the sand bath.  Charge as needed. 

8. Wait for the Alundum sand bath temperature to stabilize at the desired set point temperature with the 

WHTB suspended over the sand bath. 

9. Ensure that the WHTB is mounted on the Unistrut support frame within the welded steel-polycarbonate 

structure. Confirm the valve positions throughout the system match those in Table 12.1. Every time a valve 

or regulator position is modified a new Table will be presented. 

Table 12.1. 

V0 V1 V2 V3 V4 V5 Reg1 

Inlet 

Reg1 

Outlet 

PT1 PT2 

Closed Closed Closed Closed Closed Closed 0 psig 0 psig 100 psig above planned initial test pressure 0 psig 

 

10. Figure 12.2 shows a schematic diagram of the WHTB.Ensure pressure transducer PT2 reads zero and that 

Quick Disconnect QD1 is disconnected.  

 

Controller 

Switches 

Figure 12.1. Techne fluidized sand bath (Model SBL-2D) 
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Figure 12.2. WHTB Diagram  

  

 
 

11. Depressurize WHTB to experimental pressure.  

10.1 Slowly open V5 and monitor output from PT1 on the data acquisition system. 

Table 12.2.  

V0 V1 V2 V3 V4 V5 Reg1 

Inlet 

Reg1 

Outlet 

PT1 PT2 

Closed Closed Closed Closed Closed Closed 0 

psig 

0 psig 100 

psig 

above 

planned 

initial 

test 

pressure 

0 

psig 
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10.2 Close V5 when pressure gage P1 and transducer PT1 (LabVIEW) readings indicate the desired 

initial nitrogen experimental pressure. 

Table 12.3.  

V0 V1 V2 V3 V4 V5 Reg1 

Inlet 

Reg1 

Outlet 

PT1 PT2 

Closed Closed Closed Closed Closed Closed 0 

psig 

0 psig planned 

initial 

test 

pressure 

0 

psig 

 

11 With the Alundum sandbath at the desired initial experimental temperature and the WHTB at the desired initial 

nitrogen experimental pressure, restart LabVIEW and immediately immerse the WHTB into the sand bath using 

the motorized pulley.  Monitor the movement of the Unistrut frame supporting the reactor to ensure free descent 

of the reactor into the fluidized alundum bed material. 

12 Wait behind the protective polycarbonate sheet until the end of the experiment. 

12.1 The endpoint of long experiments is defined as 190 minutes after immersion of the WHTB reactor 

pressure in the sandbath. 

12.2 The endpoint of short experiments is defined as 10 minutes after the peak of exotherm is observed.  

13 After arriving at the endpoint of the experiment, lift the WHTB out of the sand bath with the motorized pulley 

and position it in front of the fan to accelerate the cooling down stage.  

14 Wait until the WHTB has cooled down to ~Room Temperature before stopping LabVIEW and disconnecting 

the thermocouples  

15 See SOP for Water Displacement Vessel (WDV) operation: Transfer experimental gases from the WHTB to the 

WDV 

16 See SOP for GC operation: Analyze experimental gases by following the corresponding SOP. 

17 Verify that the reactor is depressurized by reading the pressure on gage P1. Loosen and remove the 7/16’’ 

Swagelok connections at the reactor top and replace it with a 7/16’’ Swagelok cap nut. 

18 Unload the reactor: An example of the Unloading Form is given in Figure 13.1. The Unloading Form is divided 

into four tables: Table 1 logs data from the Test Conditions, Table 2 data from the Solid Product Bomb 

Loading, Table 3 with data from the Product Moist Mass and Table 4 with data from the Moisture Content 

Charcoal. Fill Table 2 in the Unloading Form following the instructions in section 13.  

19 In a fume hood, fill the empty WHTB reactor bodies with NMP cleaning solvent and immerse reactor tops in a 

bucket with NMP cleaning solvent. 

20 See SOP for moisture content analysis of the charcoal (ASTM 1756-08): To analyze the charcoal moisture 

content, fill in Table 3 in the Unloading Form following the moisture content SOP.  

21 See SOP for proximate analysis of the charcoal (ASTM 1762-84) 

22 Turn off computer and Data Acquisition devices. 
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Section 13. Unloading Form 

 

Figure 13.1. Unloading Form 
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Instructions for Table 2 in Unloading Form 

The components mentioned in the instructions are shown and labelled in Figure 13.2. 

23. Weigh cork. The cork is NOT part of the assembled WHTB. It serves as a weight reference and holds the 

reactor upright. 

24. Weigh cork plus Aluminum Tray for charcoal or a Ziploc bag. The bag is NOT part of the assembled 

WHTB. It serves to store the unloaded charcoal. 

25. Weigh cork with the reactor, i.e. with a capped reactor top and the reactor body with TC, SS screen and 

solid products (charcoal and volatiles) inside. 

26. Loosen and disassemble the reactor top, weigh cork with the partly disassembled reactor, i.e. with TC, SS 

screen and charcoal in the reactor body. 

27. Disassemble TC, unload solid products into the Ziploc bag. Weigh cork and Ziploc bag with solid products. 

28. Weigh cork plus an aluminum disk. The disk is NOT part of the assembled WHTB. It serves to hold the 

unloaded products during the Moisture Content Analysis. 

29. Transfer the entire sample of solid products from Ziploc bag into the aluminum disk. Weigh cork and 

aluminum disk with solid products. 

30. Weigh cork, reactor top and the SS screen. 

31. Weigh cork plus an aluminum disk. The disk is NOT part of the assembled WHTB. It serves to hold the SS 

screen during the Moisture Content Analysis. 

32. Disassemble SS screen, weigh cork and the SS screen. 

33. Weigh cork and reactor top. 

34. Weigh cork with reactor body with remaining products in the reactor body, plus TC. 

35. Weigh cork with reactor body with remaining products in the reactor body, plus TC and reactor top. 

36. Weigh cork and the reactor body with remaining products. 

37. Weigh cork and TC. 

38. Weigh cork and reactor top capped 

39. Weigh cap 

40. Weigh stem 
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Figure 13.2 The Wall Heated Tubing Bomb (WHTB) components. 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Experiment Performance and Unloading and Disassembly of the Wall 
Heated Tubing Bomb   

TASK HAZARDS CONTROLS 
1. Heat up the 

alundum in the 

Techne fluidized 

sand bath (model 

SBL-2D). 

5.  

Alundum: Abrasives are not dangerous 

substances or their preparation according to 

directive 1999/45/EC. 

Alundum at elevated temperatures. 

240V AC from mains to sand bath. 

PPE 

Safety goggles. 

Flame resistant lab coat. 

NIOSH approved particulate mask. 

Covered shoes. 

Long pants. 

Engineered controls 

Use process enclosures to keep airborne levels below 

recommended exposure limits. Do not use in unventilated 

spaces. 

Inspect electrical cord and plug prior to each use. 

2. Pressurized 

WHTB <400 

psig  

Compressed nitrogen 

H280 – Contains gas under pressure; may 

explode if heated.  

OSHA-H01 – May displace oxygen and 

cause rapid suffocation. 

Overpressurization of the reactor 

120V AC from mains to pressure sensors, 

laptop, fan, NI data acquisition 

system. 

 

PPE 

Safety glasses or goggles. 

Flame resistant lab coat. 

Covered shoes. 

Long pants. 

Engineered controls 
Implement pressure alarms in LabVIEW to warn of over 

pressurization of the WHTB reactor and impending burst disk 

rupture. 
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Perform WHTB pressurization inside the welded steel-

polycarbonate structure. 

 

Place welded steel-polycarbonate structure directly beneath the 

canopy hood in POST 11.  

 

Good general ventilation.  

 

Direct tube from burst diaphragm to the water reservoir in the 

corner of the welded steel-polycarbonate structure. 

 

Use appropriate tool to open and close valves in order to avoid 

direct contact of the experimenter with the pressurized reactor 

and lines. 

 

Install excess flow restrictors on all gas cylinders actively used 

in the experiment. 

 

Inspect electrical cord and plug prior to each use. 

3. Immerse 

WHTB into 

the sand bath 

with the 

motorized 

pulley.  

 

Alundum at elevated temperatures. 

Elevated Nitrogen Pressure in the WHTB. 

Alundum: Abrasives are not dangerous 

substances or their preparation according to 

directive 1999/45/EC. 

Compressed nitrogen 

H280 – Contains gas under pressure; may 

explode if heated.  

OSHA-H01 – May displace oxygen and 

cause rapid suffocation. 

240V AC from mains to sand bath. 

120V AC from mains to pressure sensors, 

laptop, fan, NI data acquisition system and 

motorized pulley. 

PPE 

Safety glasses or goggles. 

Flame resistant lab coat. 

Heat resistant gloves. 

NIOSH approved particulate mask. 

Covered shoes. 

Long pants. 

Engineered controls 
Implement pressure alarms in LabVIEW to warn of over 

pressurization of the WHTB reactor and impending burst disk 

rupture. 

 

Perform WHTB pressurization inside the welded steel-

polycarbonate structure. 

 

Place welded steel-polycarbonate structure directly beneath the 

canopy hood in POST 11.  

 

Good general ventilation. 
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Direct tube from burst diaphragm to the water reservoir in the 

corner of the welded steel-polycarbonate structure. 

 

Perform immersion of the WHTB into the sandbath while 

standing outside of the welded steel-polycarbonate structure. 

 

Install excess flow restrictors on all gas cylinders actively used 

in the experiment. 

No action is required in regard to electricity. 

 

4. Run 

experiment 

Alundum at elevated temperatures 

Alundum: Abrasives are not dangerous 

substances or preparations according to 

directive 1999/45/EC. 

 

Elevated Pressure and Temperature in the 

WHTB 

 

240V AC from mains to sand bath. 

120V AC from mains to pressure sensors, 

laptop, fan, NI data acquisition system. 

PPE 

Safety glasses or goggles. 

Nitrile Gloves. 

Flame resistant lab coat. 

Heat resistant gloves. 

NIOSH approved particulate mask. 

Covered shoes. 

Long pants. 

Engineered controls 

Implement pressure alarms in LabVIEW to warn of over 

pressurization of the WHTB reactor and impending burst disk 

rupture. 

 

Perform WHTB pressurization inside the welded steel-

polycarbonate structure. 

 

Place welded steel-polycarbonate structure directly beneath the 

canopy hood in POST 11.  

 

Good general ventilation.  

 

Direct tube from burst diaphragm to the water reservoir in the 

corner of the welded steel-polycarbonate structure. 

 

Perform immersion of the WHTB into the sandbath while 

standing behind the Unistrut-polycarbonate panel. 
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Install excess flow restrictors on all gas cylinders actively used 

in the experiment. 

 

Stand behind the polycarbonate protective panel during the 

experiment. 

 

No action is required in regard to electricity. 

 

6. Lift the WHTB 

out of the 

sand bath 

with the 

motorized 

pulley and 

place it in 

front of the 

fan 

Alundum at elevated temperatures 

 

Elevated Pressure and Temperature in the 

WHTB 

 

Alundum: Abrasives are not dangerous 

substances or preparations according to 

directive 1999/45/EC. 

240V AC from mains to sand bath. 

120V AC from mains to pressure sensors, 

laptop, NI data acquisition system, fan and 

motorized pulley. 

 

PPE 

Safety glasses or goggles. 

Flame resistant lab coat. 

Heat resistant gloves. 

NIOSH approved particulate mask. 

Covered shoes. 

Long pants. 

Engineered controls 
Implement pressure alarms in LabVIEW to warn of over 

pressurization of the WHTB reactor and impending burst disk 

rupture. 

 

Good general ventilation should be sufficient to control worker 

exposure to airborne contaminants.  

 

Perform removal of the WHTB from the sandbath while 

standing outside the Unistrut-polycarbonate panel. 

 

Direct tube from burst diaphragm to a bucket full of water. 

 

Install excess flow restrictors on all gas cylinders actively used 

in the experiment. 

 

Stand behind the polycarbonate protective panel. 

 

No action is required in regard to electricity. 
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7. Unload 
the 
reactor 

 

Charcoal 

GHS Classification: None 

NFPA Health 1, Fire 2, Reactivity 1, No 

specific 

120V AC from mains to mass balance. 

 

PPE 

Safety glasses or goggles. 

Nitrile Gloves. 

Flame resistant lab coat. 

NIOSH approved particulate mask. 

Covered shoes. 

Long pants. 

Engineered controls 

Good general ventilation should be sufficient to control worker 

exposure to airborne contaminants.  

 

Minimize dust generation and accumulation. Avoid contact 

with eyes, skin, and clothing. Keep away from heat, 

sparks and open flames. 

 

8. Soak 
WHTB 
into a 
bucket 
with 
diluted 
cleaning 
solvent 
(NMP) 

 

Cleaning solvent (NMP): May cause burn 

to eyes, skin irritant  

GHS Classification: 

Skin Corrosion/Irritation, Category 2 

Serious Eye Damage/Eye Irritation, 

Category 2A 

Reproductive toxicity, Category 1B 

Specific Target Organ Toxicity (single 

exposure), Category 3 

H227: Combustible liquid. 

H315: Causes skin irritation. 

H319: Causes serious eye irritation. 

H335: May cause respiratory irritation. 

H360: May damage fertility or the unborn 

child. 

 

PPE 

Safety glasses or goggles 

Nitrile Gloves 

Flame resistant lab coat  

Covered shoes 

Long pants 

 

Engineered controls 

Use fume hood to control airborne levels below recommended 

exposure limits. Ensure fume hood is working properly. 

Required 

Training: EHSO 

Lab Safety 

Required Personal Protective Equipment (PPE) 

Safety glasses or goggles 

Flame resistant lab coat  
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Training, Read 

UH Chemical 

hygiene plan, 

Specific lab 

activity training 

by PI or lab 

supervisor, Read 

and understand all 

methods, QRA’s, 

JSA's and SOP's 

developed for 

performing the 

experiment 

Heat resistant gloves 

NIOSH approved particulate mask 

Covered shoes 

Long pants 

   
Other Information: See Scott Turn, Trevor Morgan, Lloyd Paredes and Maider Legarra-Arizaleta for more information on Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Trevor Morgan, Scott Turn, Lloyd Paredes and Pablo J. Arauzo-Gimeno  

Date Created: April 20, 2018 

OSHA Reference: _______________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone 

at 956-3204 
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APPENDIX K. SOP and JSA 8: Analysis of the Charcoal Moisture 

Content 

 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Analysis of the Charcoal Moisture Content 

Date: _04/20/2018____________ 

Principal Investigator: ____Scott Q. Turn____________________________ 

Produced By: Maider Legarra Arizaleta, Trevor Morgan and Scott Turn 

Room and Building: ___POST 11/12 ______________________________ 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/  

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP covers the analysis of the charcoal moisture content by Standard Test Method for 

Determination of Total Solids in Biomass ASTM 1756-08. The main steps for determining the charcoal moisture 

content that are relevant to the SOP are listed in section 12. 

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification and Exposure limit. aACGIH: American Conference of Governmental 

Industrial Hygenist. b TLV-TWA: Threshold Limit Value-Time Weighted Average (TLV-TWA) 

Chemical       

  

Health Fire Reactivity Specific      Exposure limit 

Charcoal 1 2 1  ACGIHa TLV-

TWAb 2mg/m3 

 
Charcoal: Charcoal powder and dust may cause eye and skin irritation. Inhalation and ingestion of charcoal dust 

may cause nose, throat, and gastrointestinal irritation. 
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Carbon monoxide hazard: Burning charcoal inside without adequate ventilation can kill you. Odorless carbon 

monoxide in given off upon combustion. NEVER burn charcoal inside homes, vehicles or tents. 

Char dust is not found on the IARC, OSHA, or NTP carcinogen list. Char dust is produced by charcoal breakage. 

Thus, the concentration of charcoal dust will vary based on the amount of the breakage. 

Caution: Wet charcoal may remove oxygen from air causing a potential hazard to workers in a confined space. 

Reactivity data: Stable under normal temperatures and pressures. May react vigorously or violently when mixed 

with strong oxidizing agents, especially when heated. Oxidation rate increases with temperature and oxygen 

availability. Charcoal fines may heat spontaneously in air. This process is accelerated at increased temperatures and 

through the addition of water. 

 

Elevated Temperature: Internal oven surfaces are ~105˚C. 

 

Vacuum System: All the vacuum fittings and tubing are rated appropriately for the size of the vacuum pump. 

 

Mains Electricity: All the electrical connections and cables related to the mass balance, vacuum oven and vacuum 

pump are standard 120 V (20 amps) components as provided by the equipment suppliers.  

 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, nitrile gloves, heat resistant gloves, flame resistant lab coat, covered shoes, NIOSH 

approved particulate mask, long pants. 

Charcoal: Use a NIOSH-approved respirator under conditions where TLV-TWA may be exceeded. 

 

Section 4: Engineering Controls. 

Charcoal: Use local exhaust or general ventilation to minimize exposure to dust. 

Vacuum Oven: Appropriately sized vacuum pump, tubing and connections. 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

Section 5: Special Handling and Storage Requirements. 

Charcoal:  

Handling: Wash hands thoroughly after direct contact. Use with adequate ventilation. Minimize dust generation and 

accumulation. Avoid inhalation and contact with eyes, skin, and clothing. Keep away from heat, sparks and open 

flames. 

Storage: Keep away from heat, sparks, and open flames. Store in a tightly closed container away from oxidizing 

materials. Keep in a well-ventilated cool dry area.   

 

Section 6: Spill and Accident Procedures. 

Charcoal: Remove all sources of ignition. To avoid generating dusty conditions, use a vacuum cleaner to collect the 

material. Or carefully pick up the material and place it into a clean dry container and cover for disposal. Wash 

residual to on-site treatment area, where appropriate.  

Notice that charcoal may react vigorously or violently when mixed with strong oxidizing agents, especially when 

heated. Oxidation rate increases with temperature and oxygen availability. Charcoal fines may heat spontaneously in 

air. This process is accelerated at increased temperatures and through the addition of water. 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call 956-6911 or 911. 
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Section 7: Waste Disposal Procedures. 

Reclaim if possible; otherwise dispose of in accordance with all applicable federal, state and local regulations. 

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval from PI, read and understand all methods, QRA’s, JSA's and SOP's developed 

for determining the charcoal moisture content. 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 

 

Section 11: Designated Areas. 

The R3Lab Room 11 and Room 12 framed sections in red in the maps below are designated for charcoal moisture 

content tasks.  

BS S
B

FE

To corridor

To Room 12

C

B

C

Oven

B

B

B

C

C

C

SHSH
Refrig

SH

B B

C C
FH/BFH/B

SH

SH

SH

SH

SHSH

Metal 
Pipes

Floor  
Sink

Circulating
Water

XRF
Mill

CVC
Toolbox

Oven

FC 
reactor

GC

CVC 
new 

Reactor

G

G

G

Eyewash 
Station

Emergency
Shower

Circulating
Water

Protective panel/Desk

ROOM 11: Apparatus Room

B: Bench Unit, C: Cabinet, D: Desk, FE: Fire Extinguisher, FH:Fume Hood, 
G: Gas Cylinder, Refrig: Refrigerator, S: Sink, SH: Shelf

Furnace

SH

SH

SH

SH

Eyewash 
Station

Emergency
Shower

FE

S

S

B

B

B

C

C

C

Refrig

B

Balance

D

D

LECO
S Unit

LECO
CHN Unit

G

G

GC/MS 

D

B B

Bomb
Calorimeter

FE Balance

FH/B

S

S

B

B

FE

C C C FH/B

SHSH SHSH

To corridor

To Room 11

ROOM 12: Instrumentation Room

BET

 

 

Section 12. Method: 

This test method follows all steps of the Standard Test Method for Determination of Total Solids in 

Biomass ASTM E1756-08 (Method A).  Read and understand ASTM 1756-08 before proceeding. For 

practical purposes, several modifications are implemented and described in the corresponding steps. 

3. Sampling  

According to ASTM 1756-08, the sample is material prepared according to Practice E1757 or extractives-

free material prepared according to Test Method E1690. Nonetheless, we do not follow any preparation 

practice or method and the moisture content analysis is performed immediately after unloading it from the 

reactor. Experience taught us that charcoal loses moisture when following preparation methods and gets 

reflected in erratic moisture contents between reproducible experiments and therefore results in uncertain 

mass balances for reactants and products. A quick unload and an immediate moisture content analysis was 

found to improve mass balances.  
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4. An example of the Unloading Form is given in Figure 13.1. The Unloading Form is divided into four 

tables: Table 1 details the Test Conditions, Table 2 logs data from the Solid Product Bomb Loading, Table 

3 data from the Product Moist Mass and Table 4 data for the charcoal moisture content determination. Fill 

Table 4 following the instructions in section 13. 

Section 13. Loading Form

Figure 13.1. Unloading Form 

Instructions for Table 4 in Unloading Form 

Notice that the first two weights recorded in Table 4 (Aluminum container and Aluminum container +charcoal) are 

automatically displayed after filling Table 2 of the Unloading form. The masses of Table 2 were weighted on the 

analytical balance to the nearest 0.01 g.  

The precision of 0.01 g is in accordance with the mass balance precision employed while filling Table 2 even though 

ASTM 1756-08 requires a precision of 0.0001 g. In addition, the moisture content analysis is performed to the entire 

sample while ASTM 1756-08 only requires a nominal 0.5 g of sample into the aluminum container. Nonetheless, 

due to the elimination of preparation methods, an analysis of the full sample is needed to reflect a reliable moisture 

content of the sample. 
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1. Place the sample in the vacuum oven at 105 ± 3°C for 16 h. ASTM 1756-08 specifies drying for at least 3 h 

but not longer than 72 h in a drying oven .A vacuum oven is used to prevent charcoal from burning. As 

stated on section 2, charcoal fines may heat spontaneously in air. This process is accelerated at increased 

temperatures and through the addition of water. 

 
2. Remove the sample and the container from the oven and cool in a desiccator equipped with a pressure relief 

valve for 1 hour. The cooling down period and a relief valve in the desiccator are not specified in the 

standard. The standard specifies to cool down to room temperature (1 hour has proved to be a reasonable 

time) and the relief valve was introduced due to the vacuum created in desiccators while charcoal cools 

down that impedes the opening of the desiccators.  

 

3. Weigh each sample to the nearest 0.0001 mg and record this mass. 

 
After weighing, return the samples to the drying oven at 105°C for 1 h, cool again in the desiccator, and 

weigh again. Repeat this step until the mass of the samples varies by less than 0.0003 g from the previous 

weighing. This will be the valid final mass. 

 
4. The spreadsheet displays the moisture content of the charcoal calculated as: 

 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 [%] =
𝑇𝑎𝑟𝑒 𝑎𝑛𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠[𝑔] − 𝑉𝑎𝑙𝑖𝑑 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 [𝑔]

𝑇𝑎𝑟𝑒 𝑎𝑛𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠[𝑔] − 𝑇𝑎𝑟𝑒 𝑀𝑎𝑠𝑠[𝑔]
× 100 

 
Where 𝑇𝑎𝑟𝑒 𝑎𝑛𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠[𝑔]refers to the Aluminum container plus charcoal [g] and the 

𝑇𝑎𝑟𝑒 𝑀𝑎𝑠𝑠[𝑔]refers to the Aluminum container [g]. 

 

5. Clean used containers with a paper towel and store them in desiccator. If a new aluminum container is 

used, place in the drying oven at 105°C for at least one hour. Cool the containers to room temperature in 

the desiccator.  
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Charcoal Moisture content based on ASTM D1756-08 

TASK HAZARDS CONTROLS 

1. Moisture 
Content Analysis 
 

Charcoal GHS classification: None 

Charcoal powder and dust may cause eye and 

skin irritation. Inhalation and ingestion of 

charcoal dust may cause nose, throat, and 

gastrointestinal irritation. 

 

Crucibles can be dropped 

Hot vacuum oven (105°C) 

120 V AC from mains to mass balance, 

vacuum pump and vacuum oven 

Vacuum system. 

 

PPE 

Safety goggles 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

NIOSH approved particulate mask. 

Nitrile gloves 

Long pants 

Engineered controls 

Use crucible tongs and carriers to handle hot crucibles 

Appropriately sized vacuum pump, tubing and 

connections. 

Inspect electrical cords, plugs, and receptacles prior to 

each use. 

Required Training: 
EHSO Lab Safety 

Training, Read UH 

Chemical hygiene plan, 

Specific lab activity 

training by PI or lab 

supervisor, Read and 

understand ASTM 

D1756-08 for chemical 

analysis of wood 

Required Personal Protective Equipment (PPE) 

Safety goggles 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

NIOSH approved particulate mask. 

Nitrile gloves 

Long pants 
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charcoal,  all methods, 

JSA's, QRA’s and SOP's 

developed for 

determining the charcoal 

moisture content 

 

 

   

Other Information: See Scott Turn, Trevor Morgan, Lloyd Paredes and Maider Legarra-Arizaleta for more information on Job Hazard Analysis 

JSA Completed By: Maider Legarra-Arizaleta, Trevor Morgan, and Scott Turn  

Date Created: 04/20/2018 

OSHA Reference: 

_____________________

_____________________

_ 

  

 
For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone at 

956-3204 
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APPENDIX L. SOP and JSA 9: Proximate Analysis 

Laboratory 

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Proximate Analysis 

Date: _04/20/2018 

Principal Investigator: Scott Q. Turn 

Produced By: Maider Legarra Arizaleta, Trevor Morgan and Scott Turn  

Room and Building: POST 11/12  

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/  

UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

Summary: This SOP covers the proximate analysis of charcoal. The analysis determines the volatile matter, fixed 

carbon content and ash content of charcoal following ASTM D1762-84 “Standard Test Method for Chemical 

Analysis of Wood Charcoal”. 

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

Table 2.1. NFPA Hazard Classification and Exposure limit.aACGIH: American Conference of Governmental 

Industrial Hygenist. b TLV-TWA: Threshold Limit Value-Time Weighted Average  

Chemical       

  

Health Fire Reactivity Specific      Exposure limit 

Charcoal 1 2 1  ACGIHa TLV-

TWAb2mg/m3 

 
Charcoal: Charcoal powder and dust may cause eye and skin irritation. Inhalation and ingestion of charcoal dust 

may cause nose, throat, and gastrointestinal irritation. 



327 

 

Carbon monoxide hazard: Burning charcoal inside without adequate ventilation can kill you. Odorless carbon 

monoxide in given off upon combustion. NEVER burn charcoal inside homes, vehicles or tents. 

Char dust is not found on the IARC, OSHA, or NTP carcinogen list. Char dust is produced by charcoal breakage. 

Thus, the concentration of charcoal dust will vary based on the amount of the breakage. 

Caution: Wet charcoal may remove oxygen from air causing a potential hazard to workers in a confined space. 

Reactivity data: Stable under normal temperatures and pressures. May react vigorously or violently when mixed 

with strong oxidizing agents, especially when heated. Oxidation rate increases with temperature and oxygen 

availability. Charcoal fines may heat spontaneously in air. This process is accelerated at increased temperatures and 

through the addition of water. 

Elevated Temperature: Internal oven and furnace working surfaces are 105-950˚C. 

 
Vacuum System: All the vacuum fittings and tubing are rated appropriately for the size of the vacuum pump. 

 

Mains Electricity: All the electrical connections and cables related to the mass balance, furnace, vacuum oven and 

vacuum pump are standard 120 V (20 amps) components as provided by the equipment supplier.  
 

Section 3: Personal Protective Equipment. 

Safety glasses or goggles, nitrile gloves, heat resistant gloves, flame resistant lab coat, covered shoes, NIOSH-

approved particulate mask.  

Charcoal: Use a NIOSH-approved respirator under conditions where TLV limits may be exceeded. 

 

Section 4: Engineering Controls. 

Charcoal: Use local exhaust or general ventilation to minimize exposure to dust. 

Grinding/milling: Ensure glass on the side of the mill is properly position and secured.  Use the tool provided (not 

fingers) to feed the charcoal into the mill 

Muffle Furnace: Use crucible tongs and carriers to handle hot crucibles 

Vacuum Oven: Appropriately sized vacuum pump, tubing and connections. 

Mill, Muffle Furnace, Vacuum Pump and Vacuum Oven: No action is required in regard to electricity. 

Muffle Furnace: Perform tasks in fume hood and ensure it is operating properly, e.g. with a Kim wipe 

Cooling in Desiccator: Use a desiccator with a quarter turn valve to release vacuum 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

Section 5: Special Handling and Storage Requirements. 

Charcoal: Handling: Wash hands thoroughly after direct contact. Use with adequate ventilation. Minimize dust 

generation and accumulation. Avoid inhalation and contact with eyes, skin, and clothing. Keep away from heat, 

sparks and open flames. 

Storage: Keep away from heat, sparks, and open flames. Store in a tightly closed container away from oxidizing 

materials. Keep in a well-ventilated cool dry area.   

 

Section 6: Spill and Accident Procedures. 

Charcoal: Remove all sources of ignition. To avoid generating dusty conditions, use a vacuum cleaner to collect the 

material. Or carefully pick up the material and place it into a clean dry container and cover for disposal. Wash 

residual to on-site treatment area, where appropriate.  
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Notice that charcoal may react vigorously or violently when mixed with strong oxidizing agents, especially when 

heated. Oxidation rate increases with temperature and oxygen availability. Charcoal fines may heat spontaneously in 

air. This process is accelerated at increased temperatures and through the addition of water. 

 

Small Fire: Fire extinguisher, appropriately trained personnel only. There are fire extinguishers in POST 11 and 

POST 12 indicated as FE on the floor map below.  

 

Large Fire: Leave the room and call emergency phone (see above). 

 

Section 7: Waste Disposal Procedures. 

Reclaim if possible; otherwise dispose of in accordance with all applicable federal, state and local regulations. 

 

Section 8: Special Precautions Animal Use. 

Not Applicable 

Section 9: Required Approvals: 

EHSO Lab Safety Training, approval and training from PI or lab supervisor. Read and understand all methods, 

QRA’s, JSA's and SOP's developed for the proximate analysis. 

Section 10: Decontamination. 

All work surfaces will be cleaned with paper towel at the end of the test and at the end of the day. 

Section 11: Designated Areas. 

The R3Lab Room 11 and Room 12 framed sections in red in the maps below are designated for proximate analysis 

tasks.  
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Section 12. Method: 

Sample preparation 

1. Cut sample into pieces <1cm with jigsaw 

2. Using a series of successively smaller mill screens, grind sample with mill and collect in the receiver jar 

until all of the material passes a No. 20 mesh screen. 

3. Store ground sample in an airtight container 

Crucible preparation 
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1. Heat the muffle furnace to 750°C 

2. Using tongs and wearing heat resistant gloves, place 3 empty crucibles and covers in the furnace for 10 min 

3. Using tongs and wearing heat resistant gloves, remove the crucibles and covers from the muffle furnace 

and place them in a desiccator. 

4. Allow crucibles to cool for 1 h 

Moisture analysis 

1. Weigh the crucibles and add to each approximately 1g, weighed to the nearest 0.0001 g, of the ground 

sample.  

2. Place the crucibles in the vacuum oven at 105°C for 2 h (or overnight if wet). ASTM D1762-84 does not 

specify the type of oven, a vacuum oven is used to prevent charcoal from burning.  

3. Place the dried samples in a desiccator for 1 h and weigh 

4. Repeat drying of the sample (steps 2 and 3) in 1 h intervals until a difference of 0.0005g or less is observed 

between successive weights. 

Volatile matter analysis 

1. Heat the muffle furnace to 950°C. 

2. Preheat the crucibles used for the moisture determination, with lids in place and containing the sample, as 

follows: with the furnace door open, for 2 min on the outer ledge of the furnace (300°C) and then for 3 min 

on the edge of the furnace (500°C). Then move the samples to the rear of the furnace for 6 min with the 

muffle door closed. If possible, watch the samples through a small peep-hole in the muffle door. If sparking 

occurs, results will be in error (If sparking occurs compare the result with its non-sparking duplicate, if the 

values are not within 0.5 % the analysis shall be repeated).  

3. Cool the samples in a desiccator for 1 h  

5. Weigh the samples 

Ash analysis 

1. Place the lids and the uncovered crucible used for the volatile matter determination, and containing the 

sample in the muffle furnace at 750°C for 6 h. 

2. Cool the crucibles with lids in place in a desiccator for 1 h and weigh. 

3. Repeat burning of the sample until a succeeding 1-h period of heating results in a loss of less than 0.0005 g. 

Calculate and Report 

 Calculate the percentage of moisture in the sample as follows: 

Moisture, % =
𝐴 − 𝐵

𝐴
 100 

where: 

A = grams of air-dry sample used, and 

B = grams of sample after drying at 105°C (Moisture analysis). 

 

Calculate the percentage of volatile matter in the sample as follows: 

Volatile matter, % =
𝐵 − 𝐶

𝐵
 100 

 

where: 

C = grams of sample after heating at 950°C (Volatile Matter analysis). 

 

Calculate the percentage of ash in the sample as follows: 

Ash, % =
𝐷

𝐵
 100 
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where: 

D = grams of residue (Ash analysis). 

Report all results to the first decimal place. Values for duplicate determinations should agree within the following: 

 

Constituent Determined Permissible Differences Between Duplicates, % 

Moisture  0.1 

Volatile matter  0.5 

Ash  0.1 
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Proximate Analysis based on ASTM D1762-84 

TASK HAZARDS CONTROLS 

1. Sample 

Preparation  

 

Charcoal GHS classification: None 

Charcoal powder and dust may cause eye and 

skin irritation. Inhalation and ingestion of 

charcoal dust may cause nose, throat, and 

gastrointestinal irritation. 

Sharp cutting blade in the grinder/mill 

120 V AC from mains to grinder/mill. 

PPE 

Safety goggles 

Nitrile gloves 

Flame resistant lab coat  

NIOSH-approved particulate mask  

Long pants 

Engineered controls 

Ensure glass on the side of the mill is properly position 

and secured.  Use the tool provided (not fingers) 

to feed the charcoal into the mill 

Inspect electrical cords, plugs, and receptacles prior to 

each use. 

2. Transporting 

crucibles in 

desiccator 

Desiccator can be dropped PPE 

Safety goggles 

Nitrile gloves 

Flame resistant lab coat  

Covered shoes 

Long pants 

3. Moisture 
analysis 

Charcoal GHS classification: None PPE 

Safety goggles 
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 Charcoal powder and dust may cause eye and 

skin irritation. Inhalation and ingestion of 

charcoal dust may cause nose, throat, and 

gastrointestinal irritation. 

 

Crucibles can be dropped 

Hot vacuum oven (105°C) 

120 V AC from mains to mass balance, vacuum 

pump and vacuum oven 

Vacuum system. 

 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

Long pants 

Engineered controls 

Use crucible tongs and carriers to handle hot crucibles 

Appropriately sized vacuum pump, tubing and 

connections. 

Inspect electrical cords, plugs, and receptacles prior to 

each use. 

4. Volatile 
matter and 
ash analysis 
 

Charcoal GHS classification: None 

Charcoal powder and dust may cause eye and 

skin irritation. Inhalation and ingestion of 

charcoal dust may cause nose, throat, and 

gastrointestinal irritation. 

Hot furnace oven (750 to 950°C) 

Sample releases volatile gases 

While cooling in desiccator, a vacuum may be 

created 

120 V AC from mains to furnace and mass 

balance 

 

PPE 

Safety goggles 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

Long pants 

Engineered controls 

Use crucible tongs and carriers to handle hot crucibles 

Perform tasks in fume hood and ensure it is operating 

properly 

Use a desiccator with a quarter turn valve to release 

vacuum 

Inspect electrical cords, plugs, and receptacles prior to 

each use. 

5. Crucible 

preparation 

Hot furnace oven (750°C) 

While cooling in desiccator, a vacuum may be 

created 

120 V AC from mains to furnace and mass 

balance 

 

PPE 

Safety goggles 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

Long pants 

Engineered controls 

Use crucible tongs and carriers to handle hot crucibles 
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Perform tasks in fume hood and ensure it is operating 

properly 

Use a desiccator with a quarter turn valve to release 

vacuum 

 

Inspect electrical cords, plugs, and receptacles prior to 

each use. 

 

Required Training: 
EHSO Lab Safety 

Training, Read UH 

Chemical hygiene 

plan, Specific lab 

activity training by PI 

or lab supervisor, 

Read and understand 

ASTM D1762-84 for 

chemical analysis of 

wood charcoal , all 

methods, QRA’s, 

JSA's and SOP's 

developed for the 

proximate analysis. 

 

 

Required Personal Protective Equipment (PPE) 

Safety goggles 

Heat resistant gloves 

Flame resistant lab coat  

Covered shoes 

NIOSH-approved particulate mask 

Nitrile gloves 

Long pants 

Other 

Information: 
See Scott Turn, Trevor Morgan, Lloyd Paredes and Maider Legarra-Arizaleta for more information on Job Hazard Analysis 

JSA Completed 

By: 
Maider Legarra-Arizaleta, Daylan Siemman, Trevor Morgan and Scott Turn   

Date Created: 04/20/2018 

OSHA Reference: __________________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone at 

956-3204 
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APPENDIX M. SOP and JSA 10: Replacing and Operating Gas 

Cylinders 

Laboratory  

Standard Operating Procedures 

University of Hawaii at Manoa 
Please fill out and place in your Chemical Hygiene Plan 

Replacing and Operating Gas Cylinders Date: 4/20/2018 

 

Principal Investigator: Scott Turn 

Produced By: Maider Legarra 

Room and Building:  POST 11/12 

Phone Number: PI Scott Turn: 808-956-2346/ POST 11: 808-956-9903 /POST 12: 808-956-

3790/ UH Emergency: 808-956-6911 (on campus 66911)/ Emergency: 911 

Section 1 Process: 

(Check One)☒Process  ☐Hazardous Chemical  ☐Hazard Class 

 

 

Summary:  

One gas cylinder of helium is used as a carrier gas for the MicroGC instrument, the outlet 

pressure from the cylinder regulator to the MicroGC is 80 psig (5.5 bar-g).  

One gas cylinder of nitrogen is used for the wall heated tubing bomb (WHTB) 

experiment. 

 

 

 

Section 2: Describe Process Hazards, Hazardous Chemical or Hazard Class. 

 
Asphyxiation: Simple asphyxiation is the primary hazard associated with inert gases (helium and nitrogen 

in this case). Because inert gases are colorless and odorless, they can escape into the atmosphere undetected and 

quickly reduce the concentration of oxygen below the level necessary to support life (when the oxygen 

concentration is reduced below 19.5%). 

The calculation below shows that an accidental release of a full He or N2 cylinder into POST 11 would not 

be capable of reducing the oxygen level below the hazardous limit of 19.5%.  

POST 11 has an approximate volume of 521.22 m3 (VPOST 11, approx= 14.6 m x 8.5 m x 4.2 m). The room 

filled with air at 1 atm and ~20 °C equates to 21,694 moles of air composed of ~ 79% N2 and ~21% O2, i.e., 17,138 

moles of nitrogen and 4,556 moles of oxygen as shown by equations 1.1 and 1.2 (ideal gas equation): 

 

𝑛𝑁2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=

0.79 𝑎𝑡𝑚 521,220𝐿 

0.082 
𝑎𝑡𝑚 𝐿

𝑚𝑜𝑙 𝐾
293 𝐾

= 17,138 𝑚𝑜𝑙                                                1.1 
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𝑛𝑂2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=

0.21 𝑎𝑡𝑚 521,220𝐿 

0.082 
𝑎𝑡𝑚 𝐿

𝑚𝑜𝑙 𝐾
293 𝐾

= 4,556 𝑚𝑜𝑙                                                   1.2 

 
 

The release of a full Airgas helium or nitrogen cylinder into POST 11 would change the composition and 

concentration of gas in the room. A full Airgas helium or nitrogen cylinder with a specified maximum volume of 

304 ft3 at STP (equal to 8.61 m3 at STP) would release 352 moles of helium or nitrogen as given by equation 1.3. 

(Note: 8.61 m3 of nitrogen at STP are compressed to a cylinder volume of 0.0421 m3 at a maximum cylinder pressure 

of 3000 psi at 25 °C, see eq 1.4). 

 

 

𝑛𝐻𝑒 𝑜𝑟 𝑁2𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑
=

1 𝑎𝑡𝑚 8,610𝐿 

0.082 
𝑎𝑡𝑚 𝐿

𝑚𝑜𝑙 𝐾
298 𝐾

= 352 𝑚𝑜𝑙                                                 1.3 

 

· 𝑉1(at 25 °C and 3000 psi) =
14.7 𝑝𝑠𝑖 · 8,61 𝑚3

3000 𝑝𝑠𝑖
= 0.0421 𝑚3 = 42.1 𝐿                      1.4 

 

 
After the release of a full helium cylinder into POST 11, the composition of the air would be 17138 moles 

of nitrogen, 4556 moles of oxygen and 352 moles of helium. After the release of a full nitrogen cylinder into POST 

11, the composition of the air would be 17490 moles of nitrogen (17138 moles+352 moles) and4556 moles of 

oxygen.  

In both cases, the room oxygen concentration after the release of helium or nitrogen full cylinder is 20.67 

% which is above the hazardous level of 19.5%.  The oxygen concentration would remain above the hazardous level, 

even if the two cylinders were to simultaneously vent into the lab space.  Notice that these calculations are 

somewhat simplistic; this assumes instantaneous and complete mixing of the leaked contaminant and the entirety of 

the room’s air.   

 

High Pressure: All compressed gases are potentially hazardous because of the high pressure stored inside 

the cylinder (even low pressure cylinders). A sudden release of pressure can cause injuries by propelling a cylinder 

or whipping a line. Gases under pressure may explode if heated. Contact with rapidly expanding gas may cause 

burns or frostbite. 

 
Improper Handling of Cylinders: Compressed gas cylinders are heavy and awkward to handle. Improper 

handling of cylinders could result in sprains, strains, falls, bruises, and broken bones. Other hazards such as cold 

burns could occur if gases accidentally escape from the cylinder due to mishandling. 

 

 

Section 3: Personal Protective Equipment. 

 
Safety glasses, flame resistant lab coat, covered shoes, safety shoes and leather work gloves are recommended when 

handling cylinders 

 
Section 4: Engineering Controls. 

 
The use of oxygen monitoring equipment in the vicinity of the gas cylinders is strongly recommended for enclosed 

areas where inert gases are being used, especially in small areas that are not well ventilated. The MicroGC and 

helium gas cylinder are located next to one another in POST 11, the nitrogen cylinder is located next to the WHTB 

in POST 11 too. This is a large laboratory (approx.14.6 m x 8.5 m x 4.2 m) with good ventilation (air conditioning, 

air recirculation and extraction). It has been determined that accidental release of a full helium or nitrogen cylinder 
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into POST 11 would reduce the oxygen concentration in the room to 20.67 % which is above the hazardous level of 

19.5 % (see Section 2).  

 

Excess 'flow restrictor' valve in the line from the nitrogen cylinder to the WHTB and from the helium cylinder to the 

MicroGC installed to prevent excessive release of nitrogen and helium into the environment. 

Electricity: Inspect electrical cords, plugs, and receptacles prior to each use. 

 

Section 5: Special Handling and Storage Requirements. 

 
 Only trained and approved personnel are allowed to move gas cylinders. 

 All cylinder movement should be done with a compressed gas cylinder cart. 

 Always secure the cylinders when in storage or use. Cylinders secured with a chain or strap must have the 

chain or strap attached 2/3 of the way up on the cylinder.  

 Compressed gas cylinders should not be subjected to any mechanical shock that could cause damage to 

their valves or pressure relief devices.  

 Cylinders should not be dropped, dragged, slid, or used as rollers for moving material or other equipment.  

 When in storage, empty or full the caps must be on and the labels viewable.  Cylinder caps should not be 

removed until the cylinder is secured in place and ready for use. Cylinder caps perform two functions:  

o Protecting the valve on the top of the cylinder from damage if it is knocked over; 

o Ventilating the gas out of both sides, and minimizing the likelihood that the cylinder will topple 

when gas is accidentally released through the valve. 

 Cylinders should be stored upright and secured at all times.  

 Cylinders should not be stored near radiators or other heat sources, and places where they could come into 

contact with any electrical apparatus or circuits, and corrosion due to weather or chemicals. 

 Cylinders should not be exposed to sparks, flames, or temperatures above 125°F. 

 Gases should be used and stored only in a well-ventilated area.  

 Never store gases for longer than one year without use.  

 

 

 

Section 6: Leaking and Accident Procedures. 
 

Handling of leaking cylinders: Most leaks occur at the valve in the top of the cylinder and may involve the valve 

threads, valve stem, valve outlet, or pressure relief devices. No action shall be taken involving any personal risk or 

without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. 

Avoid breathing gas. Provide adequate ventilation. Wear appropriate respirator (Self-Contained Breathing Apparatus 

SCBA) when ventilation is inadequate.  

Small spill: Shutoff source of gas. Stop leak if without risk. Contact emergency personnel (see Phone number 

information above) if necessary.  

Large spill: Call supplier for emergency contact information (AirGas 24-hour phone 1-866-734-3438). Whenever a 

large or uncontrollable leak occurs, evacuate the area/building and immediately call X6-6911 from internal UH 

phones or 911 otherwise. 

. 

 

Personnel should not attempt to repair a leaking cylinder. Where action can be taken, trained personnel should move 

the cylinder to an isolated, well-ventilated area when it is safe to do so. 

 

 

Section 7: Waste Disposal Procedures. 

 
Unused product/ empty container: When returning an empty cylinder to the vender, close the valve and cap the 

cylinder before shipment. Leave 25-30 psig of residual pressure in the cylinder, when possible. 
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Disposal: For emergency disposal, secure the cylinder and slowly discharge gas to the atmosphere in a well 

ventilated area or outdoors.  

 

Section 8: Special Precautions Animal Use. 

NA. 

 

 

Section 9: Required Approvals: 

 
 Only approved personnel are allowed to change the gas cylinder connected to the MicroGC or WHTB 

instruments, contact Scott Turn or Trevor Morgan for approval.  

 EHSO Lab Safety Training. 

 MicroGC Operation Method for helium cylinder, Experiment Performance and Unloading and Disassembly 

of the WHTB for nitrogen cylinder, Quantitative Risk Assessment (QRA), Job Safety Analysis (JSA) and 

Standard Operating Procedure (SOP). 

 

 

Section 10: Decontamination. 

NA. 

 

 

Section 11: Designated Areas. 

 
The instrument is set up in POST 11. The working area is the same place where the instruments (MicroGC and 

WHTB) are located.  
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JOB SAFETY ANALYSIS 
Safety Information for the University of Hawaii at Manoa  

NAME OF DEPARTMENT: HAWAII NATURAL ENERGY INSTITUTE 

Title of Job or Task: Replacing & Operating Gas Cylinder (Micro-GC) - POST 11 

TASK HAZARDS CONTROLS 

1. Helium cylinder used as 

carrier gas for a MicroGC 

instrument. 

 

        Nitrogen cylinder used for the 

WHTB volume evaluation, for the 

WHTB leak testing, for purging air 

from the WHTB and for WHTB 

pressurization. 

Compressed Helium 

H280 – Contains gas under 

pressure; may explode if 

heated.  

OSHA-H01 – May displace 

oxygen and cause rapid 

suffocation. 

 

Heavy helium cylinder. 

Compressed Nitrogen 

H280 – Contains gas under 

pressure; may explode if 

heated.  

OSHA-H01 – May displace 

oxygen and cause rapid 

suffocation. 

 

Heavy nitrogen cylinder. 

 

 

PPE 

Safety glasses, flame resistant lab coat, covered 

shoes. 

Leather gloves and safety shoes are recommended 

when handling cylinders 

 

Engineered controls 

General lab ventilation should be sufficient to control 

worker exposure to airborne contaminants (POST-

11).  

 

Store cylinder in a segregated and approved area. 

Store cylinder away from direct sunlight in a dry, cool 

and well-ventilated area. Keep container tightly 

closed and sealed until ready for use. Cylinders 

should be stored upright, with valve protection cap in 

place, and firmly secured to prevent falling or being 

knocked over.  

 

Cylinder temperatures should not exceed 52 °C (125 

°F). Avoid contact with eyes, skin and clothing. 

Avoid breathing gas. Do not puncture or incinerate 

container. Use equipment rated for cylinder pressure.  
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Protect cylinders from physical damage; do not drag, 

roll, slide, or drop. Use a suitable hand truck 

for cylinder movement. 

Install excess flow restrictors on all gas cylinders 

actively used in the experiment. 

 

Required Training: EHSO Lab 

Safety Training. Read UH Chemical 

Hygiene Plan. Specific lab activity 

training by PI or lab supervisor. Read 

and understand all methods, QRA’s, 

JSA's and SOP's developed for 

replacing and operating gas cylinders 

Required Personal Protective Equipment (PPE) 

Safety glasses, flame resistant lab coat, covered shoes. 

Leather gloves and safety shoes are recommended when handling cylinders 

 

   
Other 

Information: 
See Scott Turn, Trevor Morgan, Lloyd Paredes and Maider Legarra-Arizaleta for more information on Job Hazard Analysis  

JSA Completed 

By:: 
Maider Legarra-Arizaleta 

Date Created: April 20, 2018 

OSHA Reference: ___________________________________________   
 

For more information about this JSA, contact the University of Hawaii  Environmental Health and Safety Office http://www.hawaii.edu/ehso/industrial/ or by phone at 

956-3204 
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APPENDIX N. Proximate Analysis Reproducibility Study 

 

A certified reference charcoal with known values of fixed-carbon, volatile matter and ash content 

would be a suitable feedstock material for validating the proximate analysis techniques employed 

in the WHTB carbonization experiments. Unfortunately, such material could not be found for 

purchase. Instead, the following three standard materials were employed in this study: The first 

standard was a Kiawe wood charcoal from Maui (Hawaiian charcoal co. Wailuku, Maui) bought 

from the store with unknown proximate analysis values. Around half a kilogram of Kiawe 

charcoal was ground to a particle size below 0.2 mm and was homogenized by rolling and 

shaking its container for over one hour. The second standard was a coal certified reference 

material (Leco CRM, Prox-Plus coal 502-680) with the following specified proximate analysis 

values: volatile matter – 18.4%±0.3%, ash – 9.03%±0.13%, fixed carbon – 72.6%±0.3%.The 

third standard was another coal certified reference material (ARMI CRM, Prox-X Coal (IARM 

HC30800A), certificate #: HC30800A-07242008-IARM-F) with specified proximate analysis 

values of: volatile matter – 35%±1%, ash – 23.9%±0.1%, fixed carbon– 42%±2%.  

Since the amounts of both certified reference materials (CRMs) were limited (around 50 grams 

of each sample), the influence of a number of variables on the proximate analysis results was 

studied using the Kiawe charcoal (lab standard). The CRMs were subsequently used to validate 

the proximate analysis technique and to determine which version of the method is best suited to 

our application. In this way, the number of tests that used the costly CRMs was kept to a 

minimum. Table N.1 displays an outline of the conditions and goal of the proximate analysis 

tests undertaken for this study. The bullet points below provide a detailed description of each set 

of test conditions (variables studied and levels), including tables showing the proximate analysis 
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results for each test and summarizes the conclusions regarding the most suitable conditions based 

on the results. 

Table N.1. Outline of the experimental conditions and goal for the proximate analysis 

reproducibility study. 

Method and 

sample 

Oven/ 

Furnace 

Crucibles 

in furnace 

(#) 

Sample 

per 

crucible 

(g) 

Crucible 

type 

Repeats 

(#) 
Goal 

Moisture Content 

Analysis on 

Kiawe charcoal 

Vacuum 

oven 

 

3 1 Glass 2 Determine crucible type 

for moisture content 

analysis 3 1 Ceramic 2 

Method 

300C-500C-

950C-6 mins 

on Kiawe 

charcoal 

Small 

furnace 
3 1 Ceramic 2 

Determine accuracy for 

proximate analysis values 

(fC, VM and ash) with 

method used in preliminary 

experiments 

Method 

950C- 6 mins 

on Kiawe 

charcoal 

 

 

 

Small/ 

Large 

furnace 

3 1 Ceramic 2 

Determine accuracy for 

proximate analysis values 

(fC, VM and ash) with new 

method 

9 1 Ceramic 1 

Determine the influence of 

the number of crucibles 

loaded in the furnace 

3 0.5 Ceramic 2 Determine the influence of 

the sample amount per 

crucible 
3 0.25 Ceramic 2 

Method 

20C-950C-100C 

on Kiawe 

charcoal 

Small/ 

Large 

furnace 

3 1 Ceramic 1 

Determine accuracy for 

proximate analysis values 

(fC, VM and ash) of the 

modified method 

Modified Method 

950C-100C on 

Kiawe charcoal 

Small/ 

Large 

furnace 

3 1 Ceramic 1 

Determine accuracy for 

proximate analysis values 

(fC, VM and ash) of the 

modified method 

Method 

950C- 6 mins 

on Kiawe 

charcoal 

Small/ 

Large 

furnace 

3 1 Ni-Cr 2 
Determine the influence of 

crucible type 

Method 

950C- 6 mins 

on CRM Prox-

Plus coal 502-680 

Small/ 

Large 

furnace 

3 1 Ni-Cr 1 
Validate the method with a 

CRM 

Method 

950C- 6 mins 

on CRM Prox-

Plus coal 502-680 

Small/ 

Large 

furnace 

3 0.5 Ni-Cr 1 

Validate the method and 

lower sample loading with 

a CRM 
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Table N.2. Outline of the experimental conditions and goal for the proximate analysis 

reproducibility study (Continued). 

Method and 

sample 

Oven/ 

Furnace 

Crucibles 

in furnace 

(#) 

Sample 

per 

crucible 

(g) 

Crucible 

type 

Repeats 

(#) 
Goal 

Method 

950C- 6 mins 

on CRM Prox-X 

Coal 

Small/La

rge 

furnace 

3 1 Ni-Cr 1 
Validate the method with a 

second CRM 

Method 

950C- 6 mins 

on CRM Prox-X 

Coal 

Small/La

rge 

furnace 

3 0.5 Ni-Cr 1 

Validate the method and 

lower sample loading with 

a second CRM 

 

 

 Determine the type of crucibles employed for moisture content analysis. Levels: 

Glass and ceramic. 

Since proximate analysis calculations of volatile matter, ash and fixed-carbon contents are 

derived on  a dry basis, the moisture content of each sample was determined by ASTM E871-

82205. Moisture and proximate analysis can be determined simultaneously using material from 

the same batch and the volatile matter, ash and fixed-carbon values later corrected for moisture.  

Charcoal samples are dried in crucibles placed in a vacuum oven at 105°C as described in ASTM 

E1756-08208.Glass and ceramic crucibles were tested. The results displayed in Table N.2 

indicated that ceramic crucibles are more appropriate as the weights recorded were stable and 

moisture values of seven different samples were consistent. In contrast, the use of glass crucibles 

showed unstable weights. It was thought that this instability was due to electrostatic charge 

building up on the glassware, however the stability did not improve after removing the 

electrostatic charge and the moisture values showed considerable uncertainty. 
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Table N.3. Results of moisture content analysis of Kiawe charcoal loaded in two different types 

of crucibles. 

Date 170303 170306 170313 170303 170306 170313 

Oven/ 
Furnace 

Vacuum Oven 

Method Moisture Content Analysis 

Crucibles Glass Glass Glass Ceramic Ceramic 
Ceramic 

Sample Kiawe charcoal 

Masso 

[g]a 0.9908 1.5736 1.2401 1.2579 1.3256 
1.3140 1.4917 1.3292 1.2607 1.1066 

MCb [%] 6.4 6.9 7.3 7.2 7.2 
7.2 7.2 7.2 7.2 7.2 

a. Masso: Initial wet sample mass 
b. MC: Moisture content 

 

 

 Proximate analysis method and furnace size. Levels: (1) Method 300-500-950°C-6 

mins, (2) Method 950°C- 6 mins, (3) Modified method 20-950-100°Cand (4) 

Modified method 950-100°C: 

Four methods were tested 

o Method 300-500-950°C-6 mins: This method used the small furnace model (Thermolyne 

1300 Model FB 1315M) and was applied to charcoals produced in preliminary WHTB 

experiments that carbonized oak and cellulose. The standard ASTM-D1762-84209 was 

followed. First the charcoal was dried. Then, it was devolatilized in three steps—(1) for 2 

minutes on the outer ledge of the furnace at around 300°C with the furnace door open, (2) 

for 3 minutes on the edge of the furnace at around 500°C with the door open and (3) at the 

rear of the furnace at 950°C for 6 minutes with the muffle door closed. Finally, the charcoal 

was ashed at 750°C for a minimum of 6 hours. The use of this procedure often resulted in 

dropped crucibles and loss of experimental samples due to the difficulties of moving and 
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placing the crucibles in the different locations in a stable manner during the first two steps of 

devolatilization.  

o Method 950°C- 6 mins: Proximate analysis was performed by following standards ASTM 

E872-82(2013)200 and ASTM E830-87(1996)201. This method devolatilizes the sample in a 

single step at 950°C for 6 minutes (ASTM E872-82(2013)200, the standard for coal samples) 

and ashes it at 750°C for a minimum of 6 hours (ASTM E830-87(1996),201 the standard for 

refuse derived fuel). This method removed the more problematic steps during 

devolatilization of the earlier method minimizing sample losses and improving practicality. 

o Modified method 20-950-100°C: A modified version was also tested.  In this method, the 

furnace (Fisher Scientific Isotemp muffle furnace model 58, cat. # 10-650-58) was 

programmed to heat the samples from room to 950°C at the maximum specified heating rate 

allowed by the furnace (200°C /min). Samples were held at 950°C for 6 minutes and 

subsequently cooled down to 100°C to prevent moisture pick-up.  The goal was to perform 

char devolatilization overnight and to offer the possibility to remove the samples on the 

following day. 

o Modified method 950-100°C: In this method, samples were introduced in the furnace (Fisher 

Scientific Isotemp muffle furnace model 58, cat. # 10-650-58) already heated to 950°C, were 

held for 6 minutes and subsequently cooled down to 100°C to prevent moisture pick-up. 

In all methods, volatile matter, ash and fixed-carbon contents are calculated as follows: The 

volatile matter is estimated by difference between the dried and the devolatilized charcoal, the 

ash content between the dried and ashed charcoal, and finally, the fixed-carbon content is 

calculated on a dry basis by subtracting all the other constituents percentages from 100%, that is 

to say, %fC = 100 − %VM − %ashchar.  
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The results displayed in Table N.3 indicates that the method 950°C- 6 mins—as opposed to the 

method 300-500-950°C-6 mins—displayed around 2-3% higher volatile matter content values 

(20.9-21.6% vs. 18.6-19.1%), and similar ash contents of around 2%. Compared to the modified 

method 20-950-100°C, the 950°C- 6 mins method showed radically higher volatile matter values 

(20.9-21.6% versus 3.6-3.9%). And finally, compared to the modified method 950-100°C, the 

950°C- 6 mins method estimated somewhat lower volatile matter contents (20.9-21.6% versus 

25.2-28%).  

Sub-section Validation with certified reference materials (CRMs)below presents the proximate 

analysis results of the coal reference materials with the 950°C- 6 mins method, the results show 

good accuracy when compared to the certified values. Therefore, it seems that the method used 

in preliminary experiments300-500-950°C-6 mins is likely to slightly underestimate the volatile 

matter content (and slightly overestimate the fixed-carbon content), the modified method 20-950-

100°Cresult in proximate analysis values that greatly deviate from the actual values with 

significant underestimations of the volatile matter contents, while the modified method 950-

100°Csomewhat overestimates the volatile matter content. 

The low devolatilization degree observed in the modified method 20-950-100°Cwas the result of 

the furnace heating profile. In this method, the furnace was programmed to ramp from room 

temperature to 950°C at 200°C/min and ramp down to 100°C after 6 min at 950°C. Nonetheless, 

the 200°C/min heating rate was unachievable. The actual furnace temperature could not match 

the temperature set point specified by the program resulting in actual heating rates considerably 

lower than 200°C/min especially when approaching higher temperatures. When the cool down 

step began, the actual furnace temperature had never reached the 950°Ctarget. The result was the 

removal of just a tiny amount of volatiles from the sample. 
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To check whether the modified method 20-950-100°C was worth exploring, another modified 

method (950-100°C) was tested. Three charcoal samples were inserted in the oven at 950°C. 

After exactly 6 minutes, the furnace temperature was set to100°C. In this method, a very slow 

cool down stage was observed (it took almost 5 hours for the furnace to cool down from 950 to 

120°C). As a result, the sample was exposed to temperatures close to 950 C for an extended 

period of time which probably partially combusted the sample and therefore resulted in 

overestimated volatile matter values. In conclusion, the method selected for the proximate 

analysis evaluation in WHTB experimental samples is method 950°C- 6 mins as it gave the most 

accurate fixed-carbon, volatile matter and ash values. Modified methods were discarded since the 

calculated values do not reflect the true values. 
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Table N.4. Results of proximate analysis tests of Kiawe charcoal analysed using several methods. 

Date 170307 170307 170307 170314 170323 170324 

Oven/ 

Furnace 

Small Furnace Small Furnace Large Furnace Large Furnace Large Furnace Large Furnace 

Method Method 300-500-
950°C-6 mins 

Method 300-500-
950°C-6 mins 

Method 950°C-6 
mins 

Method 950°C-6 
mins 

Modified method 
20-950-100°C 

Modified method 
950-100°C 

Crucibles Ceramic Ceramic Ceramic Ceramic Ni-Crf Ni-Crf 

Sample Kiawe charcoal 

Masso[g]a 
0.92

89 
0.89

84 
0.93

79 
1.22

81 
0.96

30 
1.17

19 
0.81

29 
0.91

07 
0.98

67 
0.91

90 
1.02

04 
1.18

11 
0.99

00 
0.93

66 
1.04

66 
1.13

72 
1.01

51 
0.96

88 

MCb,c [%] 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

VMd [%] 
18.6 18.9 18.7 18.9 19.1 19.0 21.4 21.6 20.9 21.2 20.9 21.0 3.9 3.6 3.7 25.3 25.2 28.0 

Ash [%] 
2.11 2.03 2.11 2.12 1.95 1.93 2.11 2.18 2.15 1.98 2.05 2.11 NAg NAg NAg NAg NAg NAg 

fCe [%] 
79.3 79.1 79.2 79.0 78.9 79.1 76.4 76.2 77.0 76.8 77.1 76.9 NAg NAg NAg NAg NAg NAg 

a. Masso: Initial wet sample mass 
b. MC: Moisture content 
c. Moisture content analysis was performed on a different charcoal sample from the same batch.  VM, fC and ash have been corrected using this value. 
d. VM: Volatile Matter 
e. fC: fixed Carbon 
f. Note that the modified method used nickel-chromium crucibles instead of ceramic. It was determined that the crucible type did not present a 
significant difference in the results (see section Crucible types. Levels: Ceramic and nickel-chromium). 
g. NA: Not Available 
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 Number of crucibles in furnace: Levels: 3 crucibles in furnace and 9 crucibles in 

furnace. 

In order to determine whether proximate analysis could be performed on multiple samples 

simultaneously, nine samples were analyzed together. All nine analysis showed similar fixed-

carbon, volatile matter and ash contents to one-another (see Table N.4), the values were also 

consistent to the three–sample tests shown previously in Table N.3. For example, volatile matter 

contents of the 9-sample test ranged from 19.9 to 21.6% whereas the volatile matter in the 3-

sample tests varied from 20.9 to 21.6%. 

Note: ceramic crucibles were used for these tests which meant each sample was introduced in to 

the furnace one by one prolonging the time the furnace was open. This resulted in the furnace 

temperature dropping below 950 C. It is likely that minimizing the time the furnace remains open 

during sample introduction would improve the standard deviation of volatile matter and fixed-

carbon contents. This could be accomplished by placing several crucibles in the furnace at the 

same time using a tray to hold multiple crucibles.  Thus, crucibles made out of a Ni-Cr alloy 

were tested. This type of crucible can be held in custom-made Ni-Cr trays. Each tray holds 3-

cruciblesthat can be inserted in the furnace in a single step which simplifies and reduces the time 

of the analysis. 
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Table N.5. Results of nine proximate analysis tests of Kiawe charcoal analyzed simultaneously. 

Date 170310 

Oven/ 
Furnace 

Large Furnace 

Method Method 950°C-6 mins 

Crucibles Ceramic 

Sample Kiawe charcoal 

Masso[g]a 0.8578 1.0195 1.2666 0.9789 1.4977 1.1851 1.1594 1.4004 1.7497 

MCb,c [%] 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

VMd [%] 21.6 20.8 21.0 21.5 20.3 20.5 20.5 20.3 19.9 

Ash [%] 1.998 2.019 2.025 1.949 2.022 1.882 2.082 2.093 2.063 

fCe [%] 76.4 77.1 76.9 76.6 77.7 77.6 77.4 77.7 78.1 
a. Masso: Initial wet sample mass 
b. MC: Moisture content 
c. Moisture content analysis was performed in a different charcoal sample from the same batch.  VM, fC and ash 
have been corrected using this value. 
d. VM: Volatile Matter 
e. fC: fixed Carbon 

 

 Amount of sample per crucible. Levels : 1, 0.5 and 0.25 g per crucible 

In addition to analyzing 1g samples per crucible as specified by the ASTM, lower sample mass 

loadings were also subjected to proximate analysis. The goal is to determine whether and how 

much the sample amount can be reduced without influencing the volatile matter, fixed-carbon 

and ash content results. Due to the limited amounts of charcoal produced during the WHTB 

experiments, reduced loadings would be beneficial as more experimental sample would remain 

for other types of analysis. 

The fixed-carbon, volatile matter and ash values calculated from the analysis of 0.5 and 0.25 g of 

sample per crucible are presented in Table N.5. Reducing the mass loading appears to result in 

higher mass losses during the devolatilization step.  The analysis of 0.5 g of sample per crucible 

showed volatile matter contents of 20.9 -22.8% and the analysis of 0.25 g of sample per crucible 

presented contents of 23.4-26.3%. These values compare to a volatile matter content of 20.9-

21.6% observed when the specified loading of 1 g of sample per crucible was analyzed. In 
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conclusion, differences in results between analysis of 0.5 g of sample per crucible and 1 g were 

small or negligible but became larger when the amount analyzed was reduced to 0.25 g. The sub-

section below Validation with certified reference materials (CRMs) confirms that reducing the 

mass loadings from 1 to 0.5 g per crucible does not have a significant impact on the proximate 

analysis values calculated for the two certified reference materials. 
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Table N.6. Results of proximate analysis tests of various mass loadings of Kiawe charcoal. 

Date 170314 170316 170314 170316 170321 

Oven/ 

Furnace 

Large Furnace VM. Small 

furnace ash 

Large Furnace 

VM. Large 

furnace ash 

Large Furnace VM. Small 

furnace ash 

Large Furnace VM. Small 

furnace ash 

Large Furnace VM. Small 

furnace ash 

Method Method 950°C-6 mins 
Method 950°C-6 

mins 
Method 950°C-6 mins Method 950°C-6 mins Method 950°C-6 mins 

Crucibles Ceramic Ceramic Ceramic Ceramic Ceramic 

Sample Kiawe charcoal 

Masso[g]a 0.5472 0.5541 0.5950 0.4172 0.5133 0.5395 0.6275 0.5395 0.2952 0.2396 0.3193 0.2790 0.2341 0.2791 

MCb,c [%] 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

VMd [%] 22.2 22.6 NAf 22.8 21.6 22.1 20.9 22.4 NAf 24.3 24.0 24.1 26.3 23.4 

Ash [%] 2.067 2.100 NAf 1.937 1.973 2.256 2.180 2.124 NAf 2.023 2.159 2.085 1.611 2.161 

fCe [%] 75.7 75.3 NAf 75.3 76.4 75.7 77.0 75.4 NAf 73.6 73.9 73.8 72.1 74.5 
a. Masso: Initial wet sample mass 
b. MC: Moisture content 
c. Moisture content analysis was performed in a different charcoal sample from the same batch.  VM, fC and ash have been corrected using this value. 
d. VM: Volatile Matter 
e. fC: fixed Carbon 
f. NA: Not Available 
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 Crucible types. Levels: Ceramic and nickel-chromium.   

Two types of crucibles were tested for the proximate analysis: ceramic and nickel-chromium. 

Ceramic ones are specified by the ASTM standards and were used in preliminary experiments. 

The Ni-Crones can be mounted in a manufactured Ni-Cr tray that can hold three crucibles at 

once and therefore introduces practical advantages such as reducing the time to place and remove 

crucibles from the furnace or improving the stability of the crucibles. Table N.6 shows the 

proximate analysis results of samples loaded in Ni-Cr crucibles. Using the Ni-Cr crucibles, 

instead of ceramic, does not have an effect on the proximate analysis values and improves the 

practicality of the proximate analysis. Note: It is essential to have crucible lids loosely placed 

over the crucible during the devolatilization step. If the lids are fitted too tightly it can result in 

pressure build-up in the crucibles that ultimately causes the lids and sample to be violently 

ejected. 

Table N.7. Results of proximate analysis tests of Kiawe charcoal analysed in Ni-Cr crucibles. 

Date 170316 170324 

Oven/Furnace Large Furnace VM and ash Large Furnace VM 

Method Method 950°C-6 mins Method 950°C-6 mins 

Crucibles Ni-Cr Ni-Cr 

Sample Kiawe charcoal 

Masso[g]a 0.9324 0.9895 1.0529 0.9691 0.7758 1.0939 

MCb,c [%] 7.2 7.2 7.2 7.2 7.2 7.2 

VMd [%] 20.9 20.8 20.9 21.2 21.3 21.5 

Ash [%] 2.484 2.373 2.271 2.234 2.249 2.147 

fCe [%] 76.6 76.8 76.8 76.6 76.5 76.3 
a. Masso: Initial wet sample mass 
b. MC: Moisture content 
c. Moisture content analysis was performed in a different charcoal sample from 
the same batch.  VM, fC and ash have been corrected using this value. 
d. VM: Volatile Matter 
e. fC: fixed Carbon 
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 Validation with certified reference materials (CRMs).  

Method 950°C-6 mins with Ni-Cr crucibles was validated by two coal certified reference 

materials (CRMs): Prox-Plus coal 502-68 with the following specified proximate analysis 

values: volatile matter – 18.4%±0.3%, ash – 9.03%±0.13%, fixed carbon – 72.6%±0.3%., and 

Prox-X Coal (IARM HC30800A) with specified proximate analysis values of: volatile matter – 

35%±1%, ash – 23.9%±0.1%, fixed carbon– 42%±2%.  

Sample loadings of 0.5 and 1 g per crucible were tested for both CRMs. That is, a total of four 

different set of conditions were tested (2 samples plus 2 mass loadings). All analysis showed 

close agreement with the coal certifications (see Table N.7).In the case of CRM Prox-Plus Coal 

(502-680), the analysis of 1 g of sample appeared to slightly underestimate the amount of 

volatiles while the analysis of 0.5 g of sample slightly overestimated it. The tests using 0.5g 

samples gave values closer to the certified values. In the case of CRM Prox-X Coal (IARM 

HC30800A), both the 1 g and 0.5g analysis slightly overestimated the amount of volatiles with 

values a little bit higher from 0.5 g samples. Both samples also slightly underestimated the fixed 

carbon content. The 0.5 g samples displayed better reproducibility for both the fixed carbon and 

ash and were closer to the certified values.  

Based on the results, it was concluded that a 0.5 g of sample per crucible was an appropriate 

loading to perform proximate analysis. This amount results in accurate values and at the same 

time, leaves a generous amount of additional experimental sample for performing other analysis. 
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Table N.8. Results of proximate analysis tests of various mass loadings of certified reference 

coal materials. 

Date 170321 170314 170328 170328 

Oven/ 
Furnace 

Large Furnace 
VM/Small furnace ash 

Large Furnace 
VM/Small furnace ash 

Large Furnace 
VM/Small furnace ash 

Large Furnace 
VM/Small furnace ash 

Method Method 950°C-6 mins Method 950°C-6 mins Method 950°C-6 mins Method 950°C-6 mins 

Crucible
s 

Ni-Cr Ni-Cr Ni-Cr Ni-Cr 

Sample CRM Prox-Plus Coal 
(502-680) 

CRM Prox-Plus Coal 
(502-680) 

Prox-X Coal (IARM 
HC30800A) 

Prox-X Coal (IARM 
HC30800A) 

Masso[g
]a 

1.149
1 

1.129
5 

0.981
1 

0.466
7 

0.444
4 

0.620
9 

1.025
9 

0.976
0 

0.933
9 

0.470
7 

0.519
1 

0.516
4 

MCb,c 
[%] 0.6 0.6 0.6 0.6 0.6 0.6 1.9 1.9 1.9 1.9 1.9 1.9 

VMd [%] 17.8 17.9 17.9 18.7 18.7 18.6 36.0 35.9 35.6 36.5 36.4 36.8 

Ash [%] 9.068 9.074 9.073 NAf 9.212 9.007 
23.40
5 

25.44
7 

25.21
9 

23.69
7 

23.96
2 

23.73
2 

fCe [%] 73.1 73.1 73.0 NAf 72.1 72.4 40.6 38.6 39.1 39.8 39.6 39.5 
a. Masso: Initial wet sample mass 
b. MC: Moisture content 
c. Moisture content analysis was performed in a different charcoal sample from the same batch.  VM, fC and ash 
have been corrected using this value. 
d. VM: Volatile Matter 
e. fC: fixed Carbon 
f. NA: Not Available 
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APPENDIX O. MATLAB code CVC model 1 

 

function main 

 
t=0:1:15000;   % s time scale 
% initialconditions: 
x1_o=10; %x1_o=Mw_o=100g 
x2_o=0; %x2_o=Mc_o=0g 
x3_o=0; %x3_o=Mt_o=0g 
x4_o=0; %x4_o=Mg_o=0g 
x5_o=298 ;%x5_o=T=25 degree C= 298K  
x6_o=100;  %x6_o=P=1 atm=100 kPaapprox. 
[t,x]=ode45( @rhs, t, [x1_o x2_o x3_o x4_o x5_o x6_o] ); 
figure(1); 
plot(t,x(:,1),'r',t,x(:,2),'b',t,x(:,4),'g',t,x(:,3),'y', 'linewidth',2); 
xlabel('time[s]'); ylabel('Yields[wt%]'); 
legend('show') ; 
legend('Wood','Char','Gas','Tar')  

 
figure(2); 
subplot(1,2,1) 
plot(t,x(:,5), 'linewidth',2); 
xlabel('time[s]'); ylabel('Temperature [oC]'); 

 
subplot(1,2,2) 
plot(t,x(:,6),'linewidth',2) 
xlabel('time[s]'); ylabel('Pressure [kPa]'); 
x(15000,6) 
x(15000,4) 
x(15000,2) 
end 

 

 
functiondxdt=rhs(t,x) 
%x1_o=Mw=100g 
%x2_o=Mc=0g 
%x3_o=Ct=0g 
%x4_o=Cg=0g 
%Kinetic data kl-k3: Thurner and Mann (1981), k4 Liden et al. and k5 Di 
%Blasi 1993 

  Mwo=10; 
A1 = 1.43E4;%s^(-1) 
A2 = 4.13E6;%s^(-1) 
A3 = 7.38E5;%s^(-1) 
E1 = 88.6; %kJ/moI 
E2 = 112.7; %kJ/mol 
E3 = 106.5; %kJ/mo1 
A4=4.28E6;%s^(-1) 
A5=1E5;%s^(-1) 
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E4=107.5;%kJ/mol 
E5=107.5;%kj/mol 
R=8.314E-3;%kJ/molK 

k1=A1*exp(-E1/R/x(5)); 
k2=A2*exp(-E2/R/x(5)); 
k3=A3*exp(-E3/R/x(5)); 
k4=A4*exp(-E4/R/x(5)); 
k5=A5*exp(-E5/R/x(5)); 
Wg=44; %g/mol molecular weight non-condensable gas 
Wt=200; %g/mol molecular weight tar 
tw=0.0021; %m wall thickness 0.083 in in m  
k_ss=0.019;%kW/mk thermal conductivity stainless steel at 225C 
Rad=0.0127;%m reactor radious 1 in in m 
L=0.1524; %m reactor length 6 in in m 
A_ss=2*pi()*Rad*L; %m^2 Area reactor 
V=pi()*Rad^2*L; %m^3 Volume reactor  
Vwo=0.2*V; % Initial Volume solid  
cp1 = 1.5E-3 ;%kJ/gKcpw Lee et al. (1976) 

 
cp4 = 1.1E-3; %kJ/g K cpg Di Blasi (1993a) 
cp2 = 1.5E-3;% kJ/gK cpc Lee et al. (1976) 
cp3=1.1E-3; %kJ/gK cpt Di Blasi (1993a) 
Ts=573;%K Temperature sandbath 
r1=k1*x(1)/V; 
r2=k2*x(1)/V; 
r3=k3*x(1)/V; 
r4=k4*x(3)/V; 
r5=k5*x(3)/V; 
h1=0.418;%kJ/g Chan et al. 
h2=0.418;%kJ/g Chan et al. 
h3=0.418;%kJ/g Chan et al. 
h4=-0.042;%kJ/g Koufopanos et al. 
h5=-0.042;%kJ/g Koufopanos et al. 

 
dxdt_1 = -(k1+k2+k3)*x(1); 
        dxdt_2 = k3*x(1) + k5*x(3); 
        dxdt_3 = k2*x(1) -k4*x(3)-k5*x(3); 
        dxdt_4 = k1*x(1) +k4*x(3); 
        denom=x(1)*cp1+x(2)*cp2+x(3)*cp3+x(4)*cp4-R*V*(x(4)/Wg+x(3)/Wt)/(V-

Vwo*(x(1)+x(2))/Mwo); 
Qcond=k_ss/tw*A_ss*(Ts-x(5)); 
Qreac=V*(r1*(-h1)+r2*(-h2)+r3*(-h3)+r4*(-h4)+r5*(-h5)); 
        Alpha=(1/Wg*dxdt_4+1/Wt*dxdt_3)/(V-

Vwo*(x(1)+x(2))/Mwo)+((x(4)/Wg+x(3)/Wt)*Vwo/Mwo*(dxdt_1+dxdt_2))/(V-

Vwo*(x(1)+x(2))/Mwo)^2; 
        dxdt_5=(Qcond+Qreac+V*R*x(5)*Alpha)/denom; 

 
        dxdt_6=(R*x(5)*(dxdt_4/Wg+dxdt_3/Wt)+R*dxdt_5*(x(4)/Wg+x(3)/Wt))/(V-

Vwo*(x(1)+x(2))/Mwo)+(x(4)/Wg+x(3)/Wt)*R*x(5)*Vwo/Mwo*(dxdt_1+dxdt_2)/(V-

Vwo*(x(1)+x(2))/Mwo)^2; 

 
dxdt=[dxdt_1; dxdt_2;  dxdt_3;  dxdt_4; dxdt_5;dxdt_6]; 
end 
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APPENDIX P. Temperature, pressure and product distribution 

history profiles at various heat transfer coefficients predicted 

by CVC model 1 

 

 

Figure P.1. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 1 using a heat transfer coefficient of 10-3 kW/K. The rest of the model 

parameters are given in Table 7.2. 

 

Figure P.2. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 1 using a heat transfer coefficient of 10-4 kW/K. The rest of the model 

parameters are given in Table 7.2. 
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Figure P.3. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 1 using a heat transfer coefficient of 10-5 kW/K. The rest of the model 

parameters are given in Table 7.2. 
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APPENDIX Q. MATLAB code CVC model 2 

 

function main 

 
t=0:1:15000;   % s time scale 
% initial conditions: 
x1_o=10; %x1_o=Mw_o=10g 
x2_o=0; %x2_o=Mc1_o=0g 
x3_o=0; %x3_o=MG1_o=0g 
x4_o=0; %x4_o=Mc2_o=0g 
x5_o=0; %x5_o=MG2_o=0g 
x6_o=298 ; %x6_o=T=25 degree C= 298K  
x7_o=100;  %x7_o=P=1 atm=100 kPaapprox. 
[t,x]=ode45( @rhs, t, [x1_o x2_o x3_o x4_o x5_o x6_o x7_o] ); 
figure(1); 
plot(t,x(:,1),'r',t,x(:,2)+x(:,4),'b',t,x(:,3)+x(:,5),'g', 'linewidth',2); 
xlabel('time[s]'); ylabel('Yields[wt%]'); 
legend('show') ; 
legend('Wood','Char',' Volatiles')  

 
figure(2); 
subplot(1,2,1) 
plot(t,x(:,6), 'linewidth',2); 
xlabel('time[s]'); ylabel('Temperature [oC]'); 

 
subplot(1,2,2) 
plot(t,x(:,7),'linewidth',2) 
xlabel('time[s]'); ylabel('Pressure [kPa]'); 

 
end 

 

 
functiondxdt=rhs(t,x) 
%x1_o=Mw_o=10g 
%x2_o=Mc1_o=0g 
%x3_o=MG1_o=0g 
%x4_o=Mc2_o=0g 
%x5_o=MG2_o=0g 
%x6_o=T=25 degree C= 298K  
%x7_o=P=1 atm=100 kPaapprox. 
%Kinetic data kl-k3 
Mwo=10; 
A1 = 9.973E-5;%s^(-1) 
D1 = 17254.4; %K 

L1 = -9061227;%K^2 
A2 = 1.068E-3;%s^(-1) 
D2 = 10224.4;%K 
L2 = -6123081;%K^2 
A3 = 5.7E5;%s^(-1) 
E3 = 81; %kJ/mo1 
R=8.314E-3;%kJ/molK 
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k1=A1*exp(D1/x(6)+L1/x(6)^2); 
k2=A2*exp(D2/x(6)+L2/x(6)^2); 
k3=A3*exp(-E3/R/x(6)); 
Wg=200; %g/mol molecular weight volatiles 
tw=0.0021; %m wall thickness 0.083 in in m  
k_ss=0.019;%kW/mk thermal conductivity stainless steel at 225C 
Rad=0.0127;%m reactor radious 1 in in m 
L=0.1524; %m reactor length 6 in in m 
A_ss=2*pi()*Rad*L; %m^2 Area reactor 
V=pi()*Rad^2*L; %m^3 Volume reactor  
Vwo=0.2*V; % InitialVolumesolid 
cp1 = 1.5e-3 ;%kJ/gKcpw 
cp2 = 1.5e-3 ;%kJ/gK cpc1  
cp3 = 1.1E-3; %kJ/g K cpg1  
cp4 = 1.5e-3 ;%kJ/gK cpc2  
cp5=1.1E-3; %kJ/gK cpg2  
Ts=573;%K Temperature sandbath 
r1=k1*x(1)/V; 
r2=k2*x(1)/V; 
r3=k3*x(2)/V; 

 
h1=0.418;%kJ/g  
h2=0.418;%kJ/g  
h3=-0.042;%kJ/g  
delta=1.45; 
        dxdt_1 = -(k1+k2)*x(1); 
dxdt_2 = k2*x(1) -k3*x(2); 
        dxdt_3 = k1*x(1) -k3*x(2); 
dxdt_4 = delta*k3*x(2); 
        dxdt_5 = (2-delta)*k3*x(2); 
        denom=x(1)*cp1+x(2)*cp2+x(3)*cp3+x(4)*cp4+x(5)*cp5-

R*V*((x(3)+x(5))/Wg)/(V-Vwo*(x(1)+x(2)+x(4))/Mwo); 
Qreac=V*(r1*(-h1)+r2*(-h2)+r3*(-h3)); 
        Alpha=1/Wg*(dxdt_3+dxdt_5)/(V-

Vwo*(x(1)+x(2)+x(4))/Mwo)+((x(3)+x(5))/Wg*Vwo/Mwo*(dxdt_1+dxdt_2+dxdt_4))/(V-

Vwo*(x(1)+x(2)+x(4))/Mwo)^2; 
Qcond=k_ss/tw*A_ss*(Ts-x(6)); 
        dxdt_6=(Qcond+Qreac+V*R*x(6)*Alpha)/denom; 
        dxdt_7=(R*x(6)*(dxdt_3+dxdt_5)/Wg+R*dxdt_6*(x(3)+x(5))/Wg)/(V-

Vwo*(x(1)+x(2)+x(4))/Mwo)+((x(2)+x(5))/Wg*R*x(6)*Vwo/Mwo*(dxdt_1+dxdt_2+dxdt_

4))/(V-Vwo*(x(1)+x(2)+x(4))/Mwo)^2; 
dxdt=[dxdt_1; dxdt_2;  dxdt_3;  dxdt_4; dxdt_5;dxdt_6;dxdt_7]; 
end  
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APPENDIX R. Temperature, pressure and product distribution 

history profiles at various heat transfer coefficients predicted 

by CVC model 2 

 

 

Figure R.1. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 2 using a heat transfer coefficient of 10-3 kW/K. The rest of the model 

parameters are given in Table 7.4. 

 

Figure R.2. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 2 using a heat transfer coefficient of 10-4 kW/K. The rest of the model 

parameters are given in Table 7.4. 
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Figure R.3. History profiles of product yields (Left) and pressure and temperature (Right) 

predicted by CVC model 2 using a heat transfer coefficient of 10-5 kW/K. The rest of the model 

parameters are given in Table 7.4. 

 

 

  



363 

 

BIBLIOGRAPHY 

 

(1)  Cama, T.; Henry, D. Trump: We Are Getting out of Paris Climate Deal | TheHill. June 1, 
2017. 

(2)  EC. Paris Agreement | Climate Action 
https://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed Mar 
8, 2018). 

(3)  Crooks, E. Business and World Leaders Criticise Trump’s Paris Exit. Financ. times 2017. 

(4)  Zhang, H.-B.; Dai, H.-C.; Lai, H.-X.; Wang, W.-T. U.S. Withdrawal from the Paris 
Agreement: Reasons, Impacts, and China’s Response. Adv. Clim. Chang. Res. 2017, 8 (4), 
220–225. 

(5)  Bendix, A. The Global Reaction to Trump’s Climate-Change Decision - The Atlantic. Atl. 
2017. 

(6)  McBride, J. The Consequences of Leaving the Paris Agreement | Council on Foreign 
Relations https://www.cfr.org/backgrounder/consequences-leaving-paris-agreement 
(accessed Mar 8, 2018). 

(7)  CNBC. Environmental groups react to Trump’s decision to withdraw from Paris 
Agreement https://www.cnbc.com/2017/06/02/environmental-groups-react-to-trumps-
decision-to-withdraw-from-paris-agreement.html (accessed Mar 8, 2018). 

(8)  Trømborg, E.; Leistad, Ø. IEA Bioenergy Task 40 – Country Report 2009 for Norway. 2009. 

(9)  Skreiberg, Ø. Https://Www.Sintef.No/Projectweb/Biocarb/a-Potential-Revolution-in-the-
Norwegian-Bioenergy-Future. 

(10)  Http://Oilprice.Com/Alternative-Energy/Biofuels/Waste-Wood-Norway-Taps-into-a-
Huge-Source-of-Biomass-Fuel.Html. 2013. 

(11)  Eikeland, J.; Monsen, B. E.; Modahl, I. S. Reducing CO2 Emissions in Norwegian Ferroalloy 
Production in COM 2001. 2001. 

(12)  BioCarb+ Research | Hawaii Natural Energy Institute 
https://www.hnei.hawaii.edu/projects/biocarb-research (accessed Jun 17, 2018). 

(13)  EDMST; Carnegie Mellon University. History of the Energy System 
http://environ.andrew.cmu.edu/m3/s3/01history.shtml# (accessed Mar 9, 2018). 

(14)  Walker, N. Biomass: Fueling Change; Crabtree Publishing Company, 2007. 

(15)  Fuller, R. J.; Aye, L. Human and Animal Power – The Forgotten Renewables. Renew. 
Energy 2012, 48 (Supplement C), 326–332. 



364 

 

(16)  Rodrigue, J. P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Taylor & 
Francis, 2016. 

(17)  Maschio, G.; Koufopanos, C.; Lucchesi, A. Pyrolysis, a Promising Route for Biomass 
Utilization. Bioresour. Technol. 1992, 42 (3), 219–231. 

(18)  Demirbas, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24 (5), 
471–482. 

(19)  Lohri, C. R.; Rajabu, H. M.; Sweeney, D. J.; Zurbrügg, C. Char Fuel Production in 
Developing Countries – A Review of Urban Biowaste Carbonization. Renew. Sustain. 
energy Rev. 2016, 59, 1514–1530. 

(20)  Chhiti, Y.; Kemiha, M. Thermal Conversion of Biomass, Pyrolysis and Gasification. Int. J. 
Eng. Sci. 2013, 2 (3), 75–85. 

(21)  Antal  *, M. J. J.; Mochidzuki, K.; Paredes, L. S. Flash Carbonization of Biomass. Ind. Eng. 
Chem. Res. 2003, 42 (16), 3690–3699. 

(22)  Nunoura, T.; Wade, S. R.; Bourke, J. P.; Antal, M. J. Studies of the Flash Carbonization 
Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic 
Afterburner. Ind. Eng. Chem. Res. 2006, 45 (2), 585–599. 

(23)  Czernik, S. Fundamentals of Charcoal Production. In IBI Conference on Biochar, 
Sustainability and Security.; 2008. 

(24)  Grønli, M. Pyrolysis and Charcoal. Present. Biokarboniseringsseminarium 2010. 

(25)  Williams, S.; Higashi, C.; Phothisantikul, P.; Wesenbeeck, S. Van; Jr, M. J. A. The 
Fundamentals of Biocarbon Formation at Elevated Pressure: From 1851 to the 21st 
Century. J. Anal. Appl. Pyrolysis 2014, No. 0. 

(26)  Wesenbeeck, S. Van; Higashi, C.; Legarra, M.; Wang, L.; Michael Jerry Antal, J. Biomass 
Pyrolysis in Sealed Vessels. Fixed-Carbon Yields from Avicel Cellulose That Realize the 
Theoretical Limit. Energy & Fuels 2016, 30 (1), 480–491. 

(27)  Legarra, M.; Morgan, T.; Turn, S. Q.; Wang, L.; Skreiberg, Ø.; Antal, M. J. Carbonization of 
Biomass in Constant-Volume Reactors. Energy & Fuels 2017. 

(28)  van der Stelt, M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass Upgrading by 
Torrefaction for the Production of Biofuels: A Review. Biomass and Bioenergy 2011, 35 
(9), 3748–3762. 

(29)  Shankar Tumuluru, J.; Sokhansanj, S.; Hess, J. R.; Wright, C. T.; Boardman, R. D. A Review 
on Biomass Torrefaction Process and Product Properties for Energy Applications. Ind. 
Biotechnol. 2011, 7 (5), 384–401. 

(30)  Peng, J. H.; Bi, H. T.; Sokhansanj, S.; Lim, J. C. A Study of Particle Size Effect on Biomass 
Torrefaction and Densification. Energy & Fuels 2012, 26 (6), 3826–3839. 

(31)  Hoekman, S. K.; Broch, A.; Robbins, C. Hydrothermal Carbonization (HTC) of 



365 

 

Lignocellulosic Biomass. Energy Fuels 2011, 25, 1802–1810. 

(32)  Libra, J.; Ro, K.; Kammann, C.; Funke, A.; Berge, N.; Neubauer, Y.; Titirici, M.-M.; Fühner, 
C.; Bens, O.; Kern, J.; et al. Hydrothermal Carbonization of Biomass Residuals: A 
Comparative Review of the Chemistry, Processes and Applications of Wet and Dry 
Pyrolysis; 2011; Vol. 2. 

(33)  Kim, D.; Yoshikawa, K.; Park, K. Y. Characteristics of Biochar Obtained by Hydrothermal 
Carbonization of Cellulose for Renewable Energy. Energies 2015, 8 (12), 12412. 

(34)  Reza, M. T.; Becker, W.; Sachsenheimer, K.; Mumme, J. Hydrothermal Carbonization 
(HTC): Near Infrared Spectroscopy and Partial Least-Squares Regression for 
Determination of Selective Components in HTC Solid and Liquid Products Derived from 
Maize Silage. Bioresour. Technol. 2014, 161, 91–101. 

(35)  Xu, Q.; Qian, Q.; Quek, A.; Ai, N.; Zeng, G.; Wang, J. Hydrothermal Carbonization of 
Macroalgae and the Effects of Experimental Parameters on the Properties of Hydrochars. 
ACS Sustain. Chem. Eng. 2013, 1 (9), 1092–1101. 

(36)  Colophon Technology Watch; Ravindranathan Thampi, K., Wubben, E., Nuhoff-
Isakhanyan, G., Eds.; 2015. 

(37)  Wannapeera, J.; Worasuwannarak, N. Upgrading of Woody Biomass by Torrefaction 
under Pressure. J. Anal. Appl. Pyrolysis 2012, 96, 173–180. 

(38)  Chiaramonti, D.; Prussi, M.; Nistri, R.; Pettorali, M.; Rizzo, A. M. Biomass Carbonization: 
Process Options and Economics for Small Scale Forestry Farms. Energy Procedia 2014, 61, 
1515–1518. 

(39)  Antal, M. J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. 
Chem. Res. 2003, 42 (8), 1619–1640. 

(40)   Food of the United Nations. FAO Forestry Department, Agriculture Organization. Simple 
Technologies of Charcoal Making. FAO For. Pap. 41 1987. 

(41)  Smith, K. R.; Pennise, D. M.; Khummongkol, P.; Chaiwong, V.; Ritgeen, K.; Zhang, J.; 
Panyathanya, W.; Rasmussen, R. A.; Khalil, M. A. K.; Thorneloe, S. A. Greenhouse Gases 
from Small-Scale Combustion Devices in Developing Countries. Phase III: Charcoal-
Making Kilns in Thailand. US Environ. Prot. Agency, Off. Res. Dev. Washingt. DC 1999. 

(42)  Mok, W. S. L.; Antal, M. J.; Szabo, P.; Varhegyi, G.; Zelei, B. Formation of Charcoal from 
Biomass in a Sealed Reactor. Ind. Eng. Chem. Res. 1992, 31 (4), 1162–1166. 

(43)  Domac, J.; Trossero, M.; Siemons, R. Industrial Charcoal Production: Water Nanagement. 
FAO, TCP: 3101; Rome, 2008. 

(44)  Kempegowda, R. S.; Skreiberg, Ø.; Tran, K.-Q. Biocarbonization Process for High Quality 
Energy Carriers: Techno-Economics. Energy Procedia 2017, 105, 628–635. 

(45)  Foley, G. Charcoal Making in Developing Countries; Earthscan, International Institute for 



366 

 

Environment and Development, 1986. 

(46)  Industrial Charcoal Making; Food Agriculture Organization of the United Nations, 1985. 

(47)  Krevelen, D. W.; Schuyer, J. Coal Science Aspects of Coal Constitution; Elsevier, 1957. 

(48)  Budai, A.; Zimmerman A R; Cowie A L; Webber J B; Singh B P; Glaser B; Masiello C A; 
Andersson D; Shields F; Lehmann J; et al. Biochar Carbon Stability Test Method: An 
Assessment of Methods to Determine Biochar Carbon Stability | International Biochar 
Initiative; 2013. 

(49)  Solomon, P. R. Relation between Coal Aromatic Carbon Concentration and Proximate 
Analysis Fixed Carbon. Fuel 1981, 60 (1), 3–6. 

(50)  Tran, K.-Q.; Alonso, M. Z.; Wang, L.; Skreiberg, Ø. Simultaneously Boosting the Mass and 
Fixed-Carbon Yields of Charcoal from Forest Residue via Atmospheric Carbonization. 
Energy Procedia 2017, 105, 787–792. 

(51)  European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. 
European Biochar Foundation (EBC). Arbaz, Switzerland 2016. 

(52)  Van Wesenbeeck, S.; Wang, L.; Ronsse, F.; Prins, W.; Skreiberg, Ø.; Antal, M. J. Charcoal 
“Mines” in the Norwegian Woods. Energy & Fuels 2016, 30 (10), 7959–7970. 

(53)  Fuwape, J. A. Carbonization of Five Short Rotation Tropical Tree Species. Dev. 
Thermochem. Biomass Convers. 1997, 1. 

(54)  Violette, M. No Title. Ann. Chim. Phys. 1853, 32, 304. 

(55)  Varhegyi, G.; Jr., M. J. A.; Szekely, T.; Till, F.; Jakab, E.; Szabo, P. Simultaneous 
Thermogravimetric-Mass Spectrometric Studies of the Thermal Decomposition of 
Biopolymers. 2. Sugarcane Bagasse in the Presence and Absence of Catalysts. Energy & 
Fuels 1988, 2 (3), 273–277. 

(56)  Wang, L.; Skreiberg, Ø.; Gronli, M.; Specht, G. P.; Antal Jr, M. J. Is Elevated Pressure 
Required to Achieve a High Fixed-Carbon Yield of Charcoal from Biomass? Part 2: The 
Importance of Particle Size. Energy & Fuels 2013, 27 (4), 2146–2156. 

(57)  Antal, M. J.; Allen, S. G.; Dai, X.; Shimizu, B.; Tam, M. S.; Grønli, M. Attainment of the 
Theoretical Yield of Carbon from Biomass. Ind. Eng. Chem. Res. 2000, 39 (11), 4024–
4031. 

(58)  Van Wesenbeeck, S.; Higashi, C.; Legarra, M.; Wang, L.; Antal, M. J. Biomass Pyrolysis in 
Sealed Vessels. Fixed-Carbon Yields from Avicel Cellulose That Realize the Theoretical 
Limit. Energy and Fuels 2016, 30 (1). 

(59)  Morgan, T. J.; Kandiyoti, R. Pyrolysis of Coals and Biomass: Analysis of Thermal 
Breakdown and Its Products. Chem. Rev. 2014, 114 (3), 1547–1607. 

(60)  Stiles, H. N.; Kandiyoti, R. Secondary Reactions of Flash Pyrolysis Tars Measured in a 
Fluidized Bed Pyrolysis Reactor with Some Novel Design Features. Fuel 1989, 68 (3), 275–



367 

 

282. 

(61)  Blasi, C. Di; Branca, C.; Masotta, F.; Biase, E. De. Experimental Analysis of Reaction Heat 
Effects during Beech Wood Pyrolysis. Energy & Fuels 2013, 27 (5), 2665–2674. 

(62)  Blasi, C. Di; Branca, C.; Sarnataro, F. E.; Gallo, A. Thermal Runaway in the Pyrolysis of 
Some Lignocellulosic Biomasses. Energy & Fuels 2014, 28 (4), 2684–2696. 

(63)  Mok, W. S.-L.; Antal, M. J. Effects of Pressure on Biomass Pyrolysis. II. Heats of Reaction 
of Cellulose Pyrolysis. Thermochim. Acta 1983, 68 (2), 165–186. 

(64)  Zaror, C. A.; Hutchings, I. S.; Pyle, D. L.; Stiles, H. N.; Kandiyoti, R. Secondary Char 
Formation in the Catalytic Pyrolysis of Biomass. Fuel 1985, 64 (7), 990–994. 

(65)  Palmer, R. C. Effect of Pressure on Yields of Products in the Destructive Distillation of 
Hardwood. J. Ind. \& Eng. Chem. 1914, 6 (11), 890–893. 

(66)  Frolich, P. K.; Spalding, H. B.; Bacon, T. S. Destructive Distillation of Wood and Cellulose 
under Pressure1. Ind. Eng. Chem. 1928, 20 (1), 36–40. 

(67)  Pindoria, R. V; Megaritis, A.; Messenböck, R. C.; Dugwell, D. R.; Kandiyoti, R. Comparison 
of the Pyrolysis and Gasification of Biomass: Effect of Reacting Gas Atmosphere and 
Pressure on Eucalyptus Wood. Fuel 1998, 77 (11), 1247–1251. 

(68)  Shafizadeh, F. Pyrolytic Reactions and Products of Biomass. In Fundamentals of 
thermochemical biomass conversion; Overend, R. P., Milne, T. A., Mudge, L. K., Eds.; 
Springer Netherlands: Dordrecht, 1985; pp 183–217. 

(69)  Antal  *, M. J. J.; Croiset, E.; Dai, X.; DeAlmeida, C.; Mok, W. S. L.; Norberg, N.; Richard, J.-
R.; Majthoub, M. Al. High-Yield Biomass Charcoal. Energy & Fuels 1996, 10 (3), 652–658. 

(70)  Lédé, J.; Li, H. Z.; Villermaux, J.; Martin, H. Fusion-like Behaviour of Wood Pyrolysis. J. 
Anal. Appl. Pyrolysis 1987, 10 (4), 291–308. 

(71)  Lédé, J.; Blanchard, F.; Boutin, O. Radiant Flash Pyrolysis of Cellulose Pellets: Products 
and Mechanisms Involved in Transient and Steady State Conditions. Fuel 2002, 81 (10), 
1269–1279. 

(72)  Dauenhauer, P. J.; Colby, J. L.; Balonek, C. M.; Suszynski, W. J.; Schmidt, L. D. Reactive 
Boiling of Cellulose for Integrated Catalysis through an Intermediate Liquid. Green Chem. 
2009, 11 (10), 1555–1561. 

(73)  Mettler, M. S.; Vlachos, D. G.; Dauenhauer, P. J. Top Ten Fundamental Challenges of 
Biomass Pyrolysis for Biofuels. Energy Environ. Sci. 2012, 5, 7797–7809. 

(74)  Cetin, E.; Gupta, R.; Moghtaderi, B. Effect of Pyrolysis Pressure and Heating Rate on 
Radiata Pine Char Structure and Apparent Gasification Reactivity. Fuel 2005, 84 (10), 
1328–1334. 

(75)  Newalkar, G.; Iisa, K.; D’Amico, A. D.; Sievers, C.; Agrawal, P. Effect of Temperature, 
Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor. Energy & 



368 

 

Fuels 2014, 28 (8), 5144–5157. 

(76)  Illerup, J. B.; Rathmann, O. CO2 Gasification of Wheat Straw, Barley Straw, Willow and 
Giganteus. Roskilde, Denmark Riso Natl. Lab. 1996. 

(77)  Serio, M. A.; Solomon, P. R.; Heninger, S. G. Coal Pyrolysis in a High Pressure Entrained 
Flow Reactor. Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem.;(United States) 1986, 31 
(CONF-8609181-). 

(78)  Punsuwan, N.; Tangsathitkulchai, C. Product Characterization and Kinetics of Biomass 
Pyrolysis in a Three-Zone Free-Fall Reactor. Int. J. Chem. Eng. 2014, 2014. 

(79)  Diebold, J. Workshop Summary. In Specialists’ workshop on fast pyrolysis of biomass 
proceedings; Copper Mountain, Colorado, 1980; pp 3–6. 

(80)  Kosstrin, H. M. Direct Formation of Pyrolysis Oil from Biomass. In Specialists’ workshop 
on fast pyrolysis of biomass proceedings; Copper Mountain, Colorado, 1980; pp 105–121. 

(81)  Morgan, T. J.; Turn, S. Q.; George, A. Fast Pyrolysis Behavior of Banagrass as a Function of 
Temperature and Volatiles Residence Time in a Fluidized Bed Reactor. PLoS One 2015. 

(82)  Morgan, T. J.; Turn, S. Q.; Sun, N.; George, A. Fast Pyrolysis of Tropical Biomass Species 
and Influence of Water Pretreatment on Product Distributions. PLoS One 2016, 11 (3), 1–
27. 

(83)  Li, C.; Suzuki, K. Tar Property, Analysis, Reforming Mechanism and Model for Biomass 
Gasification—An Overview. Renew. Sustain. energy Rev. 2009, 13 (3), 594–604. 

(84)  Herod, A. A.; Bartle, K. D.; Morgan, T. J.; Kandiyoti, R. Analytical Methods for 
Characterizing High-Mass Complex Polydisperse Hydrocarbon Mixtures: An Overview. 
Chem. Rev. 2012, 112 (7), 3892–3923. 

(85)  Scott, D. S.; Legge, R. L.; Piskorz, J.; Majerski, P.; Radlein, D. Fast Pyrolysis of Biomass for 
Recovery of Specialty Chemicals. In Developments in Thermochemical Biomass 
Conversion; Springer, 1997; pp 523–535. 

(86)  Lede, J.; Diebold, J. P.; Peacocke, G. V. C.; Piskorz, J. The Nature and Properties of 
Intermediate and Unvaporized Biomass Pyrolysis Materials. Dev. Thermochem. Biomass 
Convers. 1997, 27–42. 

(87)  Peacocke, G. V. C. Ablative Pyrolysis of Biomass. PhD Thesis, The University of Aston in 
Birmingham (UK), 1994. 

(88)  Piskorz, J.; Scott, D. S.; Radlein, D. Mechanisms on the Fast Pyrolysis of Biomass- 
Comments on Some Sources of Confusion. In Frontiers of Pyrolysis: Biomass Conversion 
and Polymer Recycling; Breckenridge, USA, 1995. 

(89)  Jarvis, M. W.; Haas, T. J.; Donohoe, B. S.; Daily, J. W.; Gaston, K. R.; Frederick, W. J.; 
Nimlos, M. R. Elucidation of Biomass Pyrolysis Products Using a Laminar Entrained Flow 
Reactor and Char Particle Imaging. Energy & Fuels 2010, 25 (1), 324–336. 



369 

 

(90)  Gonenc, Z. S.; Gibbins, J. R.; Katheklakis, I. E.; Kandiyoti, R. Comparison of Coal Pyrolysis 
Product Distributions from Three Captive Sample Techniques. Fuel 1990, 69 (3), 383–390. 

(91)  Biagini, E.; Simone, M.; Tognotti, L. Characterization of High Heating Rate Chars of 
Biomass Fuels. Proc. Combust. Inst. 2009, 32 (2), 2043–2050. 

(92)  Pastor-Villegas, J.; Durán-Valle, C. J.; Valenzuela-Calahorro, C.; Gómez-Serrano, V. 
Organic Chemical Structure and Structural Shrinkage of Chars Prepared from Rockrose. 
Carbon N. Y. 1998, 36 (9), 1251–1256. 

(93)  Fraga-Araujo, A. R. Pyrolytic Decomposition of Lignocellulosic Materials. PhD Thesis, 
Imperial College of Science, Technology and Medicine, London, 1990. 

(94)  Martin, C. E.; Purdy, K. R.; Dubayeh, S. A.; Kerr, C. P.; Garr, T. D. The Effect of 
Carbonization Heating Rate on Charcoal and Active Carbon Yields. Appl. Biochem. 
Biotechnol. 1991, 28 (1), 21–32. 

(95)  Angin, D. Effect of Pyrolysis Temperature and Heating Rate on Biochar Obtained from 
Pyrolysis of Safflower Seed Press Cake. Bioresour. Technol. 2013, 128, 593–597. 

(96)  Chen, D.; Zhou, J.; Zhang, Q. Effects of Heating Rate on Slow Pyrolysis Behavior, Kinetic 
Parameters and Products Properties of Moso Bamboo. Bioresour. Technol. 2014. 

(97)  Chan, W. C. R.; Kelbon, M.; Krieger-Brockett, B. Single-Particle Biomass Pyrolysis: 
Correlations of Reaction Products with Process Conditions. Ind. Eng. Chem. Res. 1988, 27 
(12), 2261–2275. 

(98)  Antal, M. J. J.; Mok, W. S. L.; Varhegyi, G.; Szekely, T. Review of Methods for Improving 
the Yield of Charcoal from Biomass. Energy & Fuels 1990, 4 (3), 221–225. 

(99)  Pindoria, R. V; Megaritis, A.; Messenbock, R. C.; Dugwell, D. R.; Kandiyoti, R. Comparison 
of the Pyrolysis and Gasification of Biomass: Effect of Reacting Gas Atmosphere and 
Pressure on Eucalyptus Wood. Fuel 1998, 77, 1247–1251. 

(100)  Shafizadeh, F. Utilization of Biomass by Pyrolytic Methods. TAPPI For. Biol./Wood Chem. 
Conf., Madison 1977. 

(101)  Reed, T. B.; Diebold, J. P.; Desrosiers, R. Perspectives in Heat Transfer Requirements and 
Mechnisms for Fast Pyrolysis. Spec. Work. fast pyrolysis biomass Proc. 1980. 

(102)  Lewellen  W. A. Howard J. B., P. C. P. Cellulose Pyrolysis Kinetics and Char Formation 
Mechanism. Fire Explos. 16th Symp. Combust. Combust. Inst. 1976, 1471–1480. 

(103)  Bradbury, A. G. W.; Sakai, Y.; Shafizadeh, F. A Kinetic Model for Pyrolysis of Cellulose. J. 
Appl. Polym. Sci. 1979, 23 (11), 3271–3280. 

(104)  Zanzi, R.; Sjöström, K.; Björnbom, E. Rapid High-Temperature Pyrolysis of Biomass in a 
Free-Fall Reactor. Fuel 1996, 75 (5), 545–550. 

(105)  Biagini, E.; Tognotti, L. Characterization of Biomass Chars: Reactivity and Morphology of 
Chars Obtained in Different Conditions. Int. J. Energy a Clean Environ. 2005, 6 (4). 



370 

 

(106)  Stubington, J. F.; Sumaryono. Release of Volatiles from Large Coal Particles in a Hot 
Fluidized Bed. Fuel 1984, 63 (7), 1013–1019. 

(107)  Suuberg, E. M. Rapid Pyrolysis and Hydropyrolysis of Coal. PhD Thesis, Massachussets 
Institute of Technology (MIT): Boston, MA, 1977. 

(108)  Kandiyoti, R.; Herod, A.; Bartle, K. D.; Morgan, T. J. Solid Fuels and Heavy Hydrocarbon 
Liquids: Thermal Characterization and Analysis; Elsevier Science, 2016. 

(109)  Gonenc, S.; Sunol, A. K. Pyrolysis of Coal. In Coal: Resources, Properties, Utilization, 
Pollution,; Kural, O., Ofset, O., Eds.; Istanbul, 1994. 

(110)  Di Blasi, C. Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids. Ind. 
Eng. Chem. Res. 1996, 35 (1), 37–46. 

(111)  Demirbas, A. Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of 
Agricultural Residues. J. Anal. Appl. Pyrolysis 2004, 72 (2), 243–248. 

(112)  Beaumont, O.; Schwob, Y. Influence of Physical and Chemical Parameters on Wood 
Pyrolysis. Ind. Eng. Chem. Process Des. Dev. 1984, 23 (4), 637–641. 

(113)  Gábor Várhegyi, *; Szabó, P.; Till, F.; Zelei, B.; Michael Jerry Antal, J.; Dai, X. TG, TG-MS, 
and FTIR Characterization of High-Yield Biomass Charcoals. Energy & Fuels 1998, 12 (5), 
969–974. 

(114)  Bennadji, H.; Smith, K.; Serapiglia, M. J.; Fisher, E. M. Effect of Particle Size on Low-
Temperature Pyrolysis of Woody Biomass. Energy & Fuels 2014, 28 (12), 7527–7537. 

(115)  Machado, J. G. M. da S.; Osório, E.; Vilela, A. C. F. Reactivity of Brazilian Coal, Charcoal, 
Imported Coal and Blends Aiming to Their Injection into Blast Furnaces. Mater. Res. 2010, 
13, 287–292. 

(116)  Várhegyi, G.; Szabó, P.; Mok, W. S.-L.; Antal, M. J. Kinetics of the Thermal Decomposition 
of Cellulose in Sealed Vessels at Elevated Pressures. Effects of the Presence of Water on 
the Reaction Mechanism. J. Anal. Appl. Pyrolysis 1993, 26 (3), 159–174. 

(117)  Wang, L.; Skreiberg, Ø.; Van Wesenbeeck, S.; Grønli, M.; Antal, M. J. Experimental Study 
on Charcoal Production from Woody Biomass. Energy & Fuels 2016, 30 (10), 7994–8008. 

(118)  Bai, X.; Xue, Y. Transport and Secondary Reactions of Depolymerized/Deconstructed 
Species. In Fast Pyrolysis of Biomass – Advances in Science and Technology # 8538; 
Brown, R. C., Wang, K., Eds.; 2017; pp 57–78. 

(119)  Krumm, C.; Pfaendtner, J.; Dauenhauer, P. J. Millisecond Pulsed Films Unify the 
Mechanisms of Cellulose Fragmentation. Chem. Mater. 2016, 28 (9), 3108–3114. 

(120)  Bai, X.; Johnston, P.; Sadula, S.; Brown, R. C. Role of Levoglucosan Physiochemistry in 
Cellulose Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 99, 58–65. 

(121)  Bai, X.; Johnston, P.; Brown, R. C. An Experimental Study of the Competing Processes of 
Evaporation and Polymerization of Levoglucosan in Cellulose Pyrolysis. J. Anal. Appl. 



371 

 

Pyrolysis 2013, 99, 130–136. 

(122)  Hosoya, T.; Kawamoto, H.; Saka, S. Different Pyrolytic Pathways of Levoglucosan in 
Vapor- and Liquid/Solid-Phases. J. Anal. Appl. Pyrolysis 2008, 83 (1), 64–70. 

(123)  Ningbo, G.; Baoling, L.; Aimin, L.; Juanjuan, L. Continuous Pyrolysis of Pine Sawdust at 
Different Pyrolysis Temperatures and Solid Residence Times. J. Anal. Appl. Pyrolysis 2015, 
114, 155–162. 

(124)  Mohamed, A. R.; Hamzah, Z.; Daud, M. Z. M.; Zakaria, Z. The Effects of Holding Time and 
the Sweeping Nitrogen Gas Flowrates on the Pyrolysis of EFB Using a Fixed–Bed Reactor. 
Procedia Eng. 2013, 53, 185–191. 

(125)  Mayor, J. R.; Williams, A. Residence Time Influence on the Fast Pyrolysis of Loblolly Pine 
Biomass. J. Energy Resour. Technol. 2010, 132 (4), 041801. 

(126)  Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of Biochar Properties from 
Wood Material and Crop Residues at Different Temperatures and Residence Times. 
Energy & Fuels 2013, 27 (10), 5890–5899. 

(127)  Ling, C. K.; Kyin, E. H.; Hua, L. S.; Chen, L. W.; Yee, C. Y. Yield and Calorific Value of Bio Oil 
Pyrolysed from Oil Palm Biomass and Its Relation with Solid Residence Time and Process 
Temperature. Asian J. Sci. Res. 2015, 8 (3), 351–358. 

(128)  Lin, Y.; Yan, W.; Sheng, K. Effect of Pyrolysis Conditions on the Characteristics of Biochar 
Produced from a Tobacco Stem. Waste Manag. Res. 2016, 34 (8), 793–801. 

(129)  Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of 
Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB 
Bioenergy 2013, 5 (2), 104–115. 

(130)  McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. 
Technol. 2002, 83 (1), 37–46. 

(131)  Bajpai, P. Structure of Lignocellulosic Biomass. In Pretreatment of Lignocellulosic Biomass 
for Biofuel Production; 2016; pp 7–12. 

(132)  Stefanidis, S. D.; Kalogiannis, K. G.; Iliopoulou, E. F.; Michailof, C. M.; Pilavachi, P. A.; 
Lappas, A. A. A Study of Lignocellulosic Biomass Pyrolysis via the Pyrolysis of Cellulose, 
Hemicellulose and Lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. 

(133)  Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H.; Liang, D. T. In-Depth Investigation of 
Biomass Pyrolysis Based on Three Major Components:  Hemicellulose, Cellulose and 
Lignin. Energy Fuels 2006, 20 (1), 388–393. 

(134)  Raveendran, K.; Ganesh, A.; Khilar, K. C. Pyrolysis Characteristics of Biomass and Biomass 
Components. Fuel 1996, 75 (8), 987–998. 

(135)  Ounas, A.; Aboulkas, A.; El harfi, K.; Bacaoui, A.; Yaacoubi, A. Pyrolysis of Olive Residue 
and Sugar Cane Bagasse: Non-Isothermal Thermogravimetric Kinetic Analysis. Bioresour. 



372 

 

Technol. 2011, 102 (24), 11234–11238. 

(136)  Stenseng, M.; Jensen, A.; Dam-Johansen, K. Investigation of Biomass Pyrolysis by 
Thermogravimetric Analysis and Differential Scanning Calorimetry. J. Anal. Appl. Pyrolysis 
2001, 58–59, 765–780. 

(137)  Rao, T. R.; Sharma, A. Pyrolysis Rates of Biomass Materials. Energy 1998, 23 (11), 973–
978. 

(138)  Manyà, J. J.; Velo, E.; Puigjaner, L. Kinetics of Biomass Pyrolysis: A Reformulated Three-
Parallel-Reactions Model. Ind. Eng. Chem. Res. 2003, 42 (3), 434–441. 

(139)  Orfão, J. J. M.; Antunes, F. J. A.; Figueiredo, J. L. Pyrolysis Kinetics of Lignocellulosic 
Materials—three Independent Reactions Model. Fuel 1999, 78 (3), 349–358. 

(140)  Koufopanos, C. A.; Lucchesi, A.; Maschio, G. Kinetic Modelling of the Pyrolysis of Biomass 
and Biomass Components. Can. J. Chem. Eng. 1989, 67 (1), 75–84. 

(141)  Miller, R. S.; Bellan, J. A Generalized Biomass Pyrolysis Model Based on Superimposed 
Cellulose, Hemicelluloseand Liqnin Kinetics. Combust. Sci. Technol. 1997, 126 (1–6), 97–
137. 

(142)  Antal, M. J. . In Advances in Solar Energy Vol. 2; Boer, K. W., Duffle, J. A., Eds.; American 
Solar Energy Society: New York, 1983; pp 175–239. 

(143)  Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W. Pyrolysis Behaviors of Rice 
Straw, Rice Husk, and Corncob by TG-MS Technique. J. Anal. Appl. Pyrolysis 2007, 78 (2), 
265–271. 

(144)  Wang, G.; Li, W.; Li, B.; Chen, H. TG Study on Pyrolysis of Biomass and Its Three 
Components under Syngas. Fuel 2008, 87 (4–5), 552–558. 

(145)  Hosoya, T.; Kawamoto, H.; Saka, S. Pyrolysis Behaviors of Wood and Its Constituent 
Polymers at Gasification Temperature. J. Anal. Appl. Pyrolysis 2007, 78 (2), 328–336. 

(146)  Hosoya, T.; Kawamoto, H.; Saka, S. Influence of Inorganic Matter on Wood Pyrolysis at 
Gasification Temperature. J. Wood Sci. 2007, 53 (4), 351–357. 

(147)  Wang, S.; Guo, X.; Wang, K.; Luo, Z. Influence of the Interaction of Components on the 
Pyrolysis Behavior of Biomass. J. Anal. Appl. Pyrolysis 2011, 91 (1), 183–189. 

(148)  Mackay, D. M.; Roberts, P. V. The Dependence of Char and Carbon Yield on 
Lignocellulosic Precursor Composition. Carbon N. Y. 1982, 20 (2), 87–94. 

(149)  Akhtar, J.; Saidina Amin, N. A Review on Operating Parameters for Optimum Liquid Oil 
Yield in Biomass Pyrolysis. Renew. Sustain. Energy Rev. 2012, 16 (7), 5101–5109. 

(150)  Shafizadeh, F.; DeGroot, W. F. Thermal Analysis of Forest Fuels. In Fuels and energy from 
renewable resources; Tillman, D. A., Sarkanen, K. V, Anderson, L. L., Eds.; Academic Press: 
New York, 1977; pp 95–114. 



373 

 

(151)  Jin, W.; Singh, K.; Zondlo, J. Pyrolysis Kinetics of Physical Components of Wood and 
Wood-Polymers Using Isoconversion Method. Agriculture 2013, 3 (1), 12–32. 

(152)  Haykiri-Acma, H.; Yaman, S. Thermogravimetric Investigation on the Thermal Reactivity 
of Biomass During Slow Pyrolysis. Int. J. Green Energy 2009, 6 (4), 333–342. 

(153)  Biagini, E.; Tognotti, L. Characterization of Biomass Chars. In Proceedings of the seventh 
international conference on energy for clean environment; Lisbon, Portugal, 2003. 

(154)  Antal, M. J.; Mok, W. S. L.; Varhegyi, G.; Szekely, T. Review of Methods for Improving the 
Yield of Charcoal from Biomass. Energy & Fuels 1990, 4 (3), 221–225. 

(155)  Sonobe, T.; Worasuwannarak, N. Kinetic Analyses of Biomass Pyrolysis Using the 
Distributed Activation Energy Model. Fuel 2008, 87 (3), 414–421. 

(156)  Tumuluru, J.; Sokhansanj, S.; Wright, C.; Boardman, R. A Review on Biomass Classification 
and Composition, Co-Firing Issues and Pretreatment Methods. ASABE American Society 
of Agricultural and Biological Engineers Annual International Meeting: Louisville, 
Kentucky, 2011. 

(157)  Raveendran, K.; Ganesh, A.; Khilar, K. C. Influence of Mineral Matter on Biomass Pyrolysis 
Characteristics. Fuel 1995, 74 (12), 1812–1822. 

(158)  Tang, W. K.; Eickner, H. W. Effect of Inorganic Salts on Prolysis of Wood, Cellulose and 
Lignin Determined by Differential Thermal Analysis. 1968. 

(159)  Encinar, J. M.; Beltrán, F. J.; Ramiro, A.; González, J. F. Catalyzed Pyrolysis of Grape and 
Olive Bagasse. Influence of Catalyst Type and Chemical Treatment. Ind. Eng. Chem. Res. 
1997, 36 (10), 4176–4183. 

(160)  Nik-Azar, M.; Hajaligol, M. R.; Sohrabi, M.; Dabir, B. Mineral Matter Effects in Rapid 
Pyrolysis of Beech Wood. Fuel Process. Technol. 1997, 51 (1–2), 7–17. 

(161)  Qiu, H.-X.; Richards, G. N. Attempted Removal of Metal Ions and Subsequent Vacuum 
Pyrolysis of Barks from Five Species of Softwoods. J. Wood Chem. Technol. 1989, 9 (2), 
251–263. 

(162)  Shafizadeh, F.; Furneaux, R. H.; Cochran, T. G.; Scholl, J. P.; Sakai, Y. Production of 
Levoglucosan and Glucose from Pyrolysis of Cellulosic Materials. J. Appl. Polym. Sci. 1979, 
23 (12), 3525–3539. 

(163)  Shafizadeh, F.; Chin, P. S. Thermal Deterioration of Wood. In Wood Technology: Chemical 
Aspects. Vol. 43; 1977; pp 57–81. 

(164)  Fang, P.; McGinnis, G. D. Flash Pyrolysis of Hollocellulose from Loblolly Pine Bark. In 
Thermal uses and properties of carbohydrates and lignins; Shafizadeh, F., Sarkanen, K. V, 
Tillman, D. A., Eds.; Academic Press, 1976; pp 37–47. 

(165)  Pan, W.-P.; Richards, G. N. Influence of Metal Ions on Volatile Products of Pyrolysis of 
Wood. J. Anal. Appl. Pyrolysis 1989, 16 (2), 117–126. 



374 

 

(166)  Gray, M. R.; Corcoran, W. H.; Gavalas, G. R. Pyrolysis of a Wood-Derived Material. Effects 
of Moisture and Ash Content. Ind. Eng. Chem. Process Des. Dev. 1985, 24 (3), 646–651. 

(167)  Richards, G. N.; Zheng, G. Influence of Metal Ions and of Salts on Products from Pyrolysis 
of Wood: Applications to Thermochemical Processing of Newsprint and Biomass. J. Anal. 
Appl. Pyrolysis 1991, 21 (1–2), 133–146. 

(168)  Nassar, M. M.; Bilgesu, A.; MacKay, G. D. M. Effect of Inorganic Salts on Product 
Composition during Pyrolysis of Black Spruce. Wood fiber Sci.  2007, 18 (1), 3–10. 

(169)  Pütün, E. Catalytic Pyrolysis of Biomass: Effects of Pyrolysis Temperature, Sweeping Gas 
Flow Rate and MgO Catalyst. Energy 2010, 35 (7), 2761–2766. 

(170)  Zhou, L.; Yang, H.; Wu, H.; Wang, M.; Cheng, D. Catalytic Pyrolysis of Rice Husk by Mixing 
with Zinc Oxide: Characterization of Bio-Oil and Its Rheological Behavior. Fuel Process. 
Technol. 2013, 106, 385–391. 

(171)  Kabakcı, S. B.; Hacıbektaşoğlu, Ş. Catalytic Pyrolysis of Biomass. In Pyrolysis; Mohamed 
Samer, Ed.; InTech, 2017. 

(172)  Zabeti, M.; Nguyen, T. S.; Lefferts, L.; Heeres, H. J. In Situ Catalytic Pyrolysis of 
Lignocellulose Using Alkali-Modified Amorphous Silica Alumina. Bioresour. Technol.   
2012, 118, 374–381. 

(173)  Mihalcik, D. J.; Mullen, C. A.; Boateng, A. A. Screening Acidic Zeolites for Catalytic Fast 
Pyrolysis of Biomass and Its Components. J. Anal. Appl. Pyrolysis 2011, 92 (1), 224–232. 

(174)  Iisa, K.; Stanton, A. R.; Czernik, S. Production of Hydrocarbon Fuels from Biomass by 
Catalytic Fast Pyrolysis; Golden, CO, 2012. 

(175)  Zhang, H.; Xiao, R.; Jin, B.; Shen, D.; Chen, R.; Xiao, G. Catalytic Fast Pyrolysis of Straw 
Biomass in an Internally Interconnected Fluidized Bed to Produce Aromatics and Olefins: 
Effect of Different Catalysts. Bioresour. Technol. 2013, 137, 82–87. 

(176)  Huang, W.; Gong, F.; Fan, M.; Zhai, Q.; Hong, C.; Li, Q. Production of Light Olefins by 
Catalytic Conversion of Lignocellulosic Biomass with HZSM-5 Zeolite Impregnated with 6 
Wt.% Lanthanum. Bioresour. Technol. 2012, 121, 248–255. 

(177)  Galgano, A.; Blasi*, C. Di. Modeling Wood Degradation by the Unreacted-Core-Shrinking 
Approximation. Ind. Eng. Chem. Res. 2003, 42 (10), 2101–2111. 

(178)  Koufopanos, C. A.; Papayannakos, N.; Maschio, G.; Lucchesi, A. Modelling of the Pyrolysis 
of Biomass Particles. Studies on Kinetics, Thermal and Heat Transfer Effects. Can. J. 
Chem. Eng. 1991, 69 (4), 907–915. 

(179)  Blasi, C. Di. Heat, Momentum and Mass Transport through a Shrinking Biomass Particle 
Exposed to Thermal Radiation. Chem. Eng. Sci. 1996, 51 (7), 1121–1132. 

(180)  Hagge, M. J.; Bryden, K. M. Modeling the Impact of Shrinkage on the Pyrolysis of Dry 
Biomass. Chem. Eng. Sci. 2002, 57 (14), 2811–2823. 



375 

 

(181)  Lu, H.; Ip, E.; Scott, J.; Foster, P.; Vickers, M.; Baxter, L. L. Effects of Particle Shape and 
Size on Devolatilization of Biomass Particle. Fuel 2010, 89 (5), 1156–1168. 

(182)  Chan, W.-C. R.; Kelbon, M.; Krieger, B. B. Modelling and Experimental Verification of 
Physical and Chemical Processes during Pyrolysis of a Large Biomass Particle. Fuel 1985, 
64 (11), 1505–1513. 

(183)  Babu, B. V; Chaurasia, A. S. Heat Transfer and Kinetics in the Pyrolysis of Shrinking 
Biomass Particle. Chem. Eng. Sci. 2004, 59 (10), 1999–2012. 

(184)  Di Blasi, C. Modeling and Simulation of Combustion Processes of Charring and Non-
Charring Solid Fuels. Prog. Energy Combust. Sci. 1993, 19 (1), 71–104. 

(185)  Haseli, Y. Modeling Combustion of Single Biomass Particle, Eindhoven University, 2012. 

(186)  Babu, B. V. Biomass Pyrolysis: A State-of-the-Art Review. Biofuels, Bioprod. Biorefining 
2008. 

(187)  Hawley, L. F. Wood Distillation. Chem. Cat. Co. New York 1923. 

(188)  Grønli*, M. G.; Melaaen, M. C. Mathematical Model for Wood PyrolysisComparison of 
Experimental Measurements with Model Predictions. Energy & Fuels 2000, 14 (4), 791–
800. 

(189)  Chorley, J.; Ramsay, W. On the Destructive Distillation of Wood. J. Soc. Chem. Ind. 1892, 
11, 395–403, 872–874. 

(190)  Klason, P.; Heidenstam, G.; Norlin, E. Untersuchungen Zur Holzverkohlung. I. Die 
Trockene Destillation Der Cellulose. Z. Angew. Chem. 1909, 25, 1205. 

(191)  Klason, P.; Heidenstam, G. V; Norlin, E. Teoretiska Undersokningar Rorande Kolning Af 
Ved. I. Om Torrdestillation of Cellulosa. Ark. Kemi, Miner. Geol. 1908, 3. 

(192)  Klason, P.; Heidenstam, G. V; Norlin, E. No Title. Ark. kemi Min. och Geol. 1910, 27, 1252. 

(193)  Milosavljevic, I.; Oja, V.; Suuberg, E. M. Thermal Effects in Cellulose Pyrolysis:  
Relationship to Char Formation Processes. Ind. Eng. Chem. Res. 1996, 35 (3), 653–662. 

(194)  Arseneau, D. F. Competitive Reactions in the Thermal Decomposition of Cellulose. Can. J. 
Chem. 1971, 49 (4), 632–638. 

(195)  Rath, J.; Wolfinger, M. G.; Steiner, G.; Krammer, G.; Barontini, F.; Cozzani, V. Heat of 
Wood Pyrolysis. Fuel 2003, 82 (1), 81–91. 

(196)  Roberts, A. F. The Heat of Reaction during the Pyrolysis of Wood. Combust. Flame 1971, 
17 (1), 79–86. 

(197)  Ramiah, M. V. Thermogravimetric and Differential Thermal Analysis of Cellulose, 
Hemicellulose, and Lignin. J. Appl. Polym. Sci. 1970, 14 (5), 1323–1337. 

(198)  Alves, S. S.; Figueiredo, J. L. Pyrolysis Kinetics of Lignocellulosic Materials by Multistage 



376 

 

Isothermal Thermogravimetry. J. Anal. Appl. Pyrolysis 1988, 13 (1), 123–134. 

(199)  Kilzer, F. J.; Broido, A. Speculations on the Nature of Cellulose Pyrolysis. 1965. 

(200)  ASTM E872 - 82(2013), Standard Test Method for Volatile Matter in the Analysis of 
Particulate Wood Fuels. 2013. 

(201)  ASTM E830-87(1996), Standard Test Method for Ash in the Analysis Sample of Refuse-
Derived Fuel . ASTM International: West Conshohocken, PA 1996. 

(202)  ASTM E777-17, Standard Test Method for Carbon and Hydrogen in the Analysis Sample 
of Refuse-Derived Fuel. ASTM International: West Conshohocken, PA, 2017 2017. 

(203)  ASTM E775-15, Standard Test Methods for Total Sulfur in the Analysis Sample of Refuse-
Derived Fuel. ASTM International: West Conshohocken, PA 2015. 

(204)  ASTM E778-15, Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis 
Samples. ASTM International: West Conshohocken, PA 2015. 

(205)  ASTM E871-82(2013), Standard Test Method for Moisture Analysis of Particulate Wood 
Fuels. 2013. 

(206)  Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G.; Morgan, T. J. An Overview of 
the Organic and Inorganic Phase Composition of Biomass. Fuel 2012, 94, 1–33. 

(207)  ASTM D1576-13, Standard Test Method for Moisture in Wool by Oven-Drying. 2013. 

(208)  ASTM E1756 - 08(2015) Standard Test Method for Determination of Total Solids in 
Biomass. 2015. 

(209)  ASTM D1762-84, Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM 
International: West Conshohocken, PA 2013. 

(210)  Legarra, M.; Morgan, T.; Turn, S.; Wang, L.; Skreiberg, Ø.; Antal, M. J. Carbonization of 
Biomass in Constant-Volume Reactors; 2018; Vol. 32. 

(211)  Ziegler, E. N.; Brazelton, W. T. Mechanism of Heat Transfer to a Fixed Surface in a 
Fluidized Bed. Ind. Eng. Chem. Fundam. 1964, 3 (2), 94–98. 

(212)  Koufopanos, C. A.; Lucchesi, A.; Maschio, G. Kinetic Modelling of the Pyrolysis of Biomass 
and Biomass Components. Can. J. Chem. Eng. 1989, 67 (1), 75–84. 

(213)  Thurner, F.; Mann, U. Kinetic Investigation of Wood Pyrolysis. Ind. Eng. Chem. Process 
Des. Dev. 1981, 20 (3), 482–488. 

(214)  Font, R.; Marcilla, A.; Verdu, E.; Devesa, J. Kinetics of the Pyrolysis of Almond Shells and 
Almond Shells Impregnated with Cobalt Dichloride in a Fluidized Bed Reactor and in a 
Pyroprobe 100. Ind. Eng. Chem. Res. 1990, 29 (9), 1846–1855. 

(215)  Liden, A. G.; Berruti, F.; Scott, D. S. A Kinetic Model for the Production of Liquids from the 
Flash Pyrolysis of Biomass. Chem. Eng. Commun. 1988, 65, 207–221. 



377 

 

(216)  Blasi, C. Di. Analysis of Convection and Secondary Reaction Effects Within Porous Solid 
Fuels Undergoing Pyrolysis. Combust. Sci. Technol. 1993, 90 (5), 315–340. 

(217)  Wagenaar, B. M.; Prins, W.; van Swaaij, W. P. M. Flash Pyrolysis Kinetics of Pine Wood. 
Fuel Process. Technol. 1993, 36 (1), 291–298. 

(218)  Nunn, T. R.; Howard, J. B.; Longwell, J. P.; Peters, W. A. Product Compositions and 
Kinetics in the Rapid Pyrolysis of Sweet Gum Hardwood. Ind. Eng. Chem. Process Des. 
Dev. 1985, 24 (3), 836–844. 

(219)  The Energy Balance for Chemical Reactors 
https://www.scribd.com/document/381428810/The-Energy-Balance-for-Chemical-
Reactors (accessed Jun 12, 2018). 

(220)  Thermal Conductivity of common Materials and Gases 
https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html (accessed Mar 
29, 2018). 

(221)  Lee, C. K.; Chaiken, R. F.; Singer, J. M. Charring Pyrolysis of Wood in Fires by Laser 
Simulation. Symp. Combust. Elsevier 1977, 16 (1), 1459–1470. 

(222)  Bjoerseth, A.; Ramdahl, T. (eds. . Handbook of Polycyclic Aromatic Hydrocarbons, Volume 
2, Emission Sources and Recent Progress in Analytical Chemistry; Marcel Dekker, Inc.,New 
York, NY, 1985. 

(223)  Van de Kamp, W.; De Wild, P.; Zielke, U.; Suomalainen, M. Tar Measurement Standard 
for Sampling and Analysis of Tars and Particles in Biomass Gasification Product Gas. 
Energy Res. Cent. Netherlands 2005. 

(224)  Oesch, P.; Leppämäki, E.; Ståhlberg, P. Sampling and Characterization of High-Molecular-
Weight Polyaromatic Tar Compounds Formed in the Pressurized Fluidized-Bed 
Gasification of Biomass. Fuel 1996, 75 (12), 1406–1412. 

(225)  Liu, Z.; Balasubramanian, R. Upgrading of Waste Biomass by Hydrothermal Carbonization 
(HTC) and Low Temperature Pyrolysis (LTP): A Comparative Evaluation. Appl. Energy 
2014, 114, 857–864. 

(226)  Thunman, H.; Niklasson, F.; Johnsson, F.; Leckner, B. Composition of Volatile Gases and 
Thermochemical Properties of Wood for Modeling of Fixed or Fluidized Beds. Energy & 
Fuels 2001, 15 (6), 1488–1497. 

(227)  Richard, N.; Thunman, H. General Equations for Biomass Properties. Available at 
Https://Www.Researchgate.Net/Profile/Henrik_Thunman/Publication/237809816; 2002. 

(228)  Sadhukhan, A. K.; Gupta, P.; Saha, R. K. Modelling and Experimental Studies on Pyrolysis 
of Biomass Particles. J. Anal. Appl. Pyrolysis 2008, 81 (2), 183–192. 

(229)  Koufopanos, C. A. Modelling of the Pyrolysis of Lignocellulosic Materials, Dept. Chem. 
Engineering, Nat.  Tech. Univ. Athens, 1989. 



378 

 

(230)  Charles Becht, I. V. PROCESS PIPING. The Complete Guide to ASME B31.3 (Charles Becht 
IV); 2002. 

(231)  Https://Www.Swagelok.Com/Downloads/Webcatalogs/EN/MS-01-107.PDF. 

(232)  Callahan, F. J. Swagelok Tube Fitter’s Manual; 1993. 

(233)  ASTM E2930-13, Standard Practice for Pressure Decay Leak Test Method. 2013. 

 


