

SCAFFOLDING AND ASSESSING ENGINEERING DESIGN: EFFECTING PROGRAM CHANGE FROM COURSE INNOVATIONS

Department/Program Facts

- Number of faculty 5
- Number of students 45
- Number of graduates every year 7
- Established program accredited by ABET

Introduction

The Biological Engineering program sought to improve student performance during program level assessment, specifically in the application of the engineering design process. Most recently, 59%, 50%, and 33% of students were meeting 3rd year target levels midway through the year.

Our approach was to implement parallel class and individual design projects at the junior level that would provide both a way for students to learn together in a guided exercise and to apply learned concepts to a project of their choosing. The resulting student work, assessment, and insights gained were used to scaffold assignments and content in courses throughout the curriculum.

2018-19 Assessment Results

- 77% meeting 3rd year targets for identifying complex engineering problems. [i]
- 77% meeting 3rd year targets for **formulating** complex engineering problems. [ii]
- 55% meeting 3rd year targets for **solving** complex engineering problems. [iii. Iv]

Student Learning Outcome 1 Rubric

Students will have an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science and mathematics.

	Indicator	Incoming	2 nd Year	3 rd Year	4 th Year
	engineering problem within the overall	Identifies a problem of importance. Broadly suggests that engineering can help solve the problem.	overall problem.	how engineering can address a specific task, function, or capability.	
	SOLUTION MAST MEET.	Qualitatively describes a requirement or goal of the solution. Relies on prior or common knowledge to identify requirements.	least one requirement.	Evaluates the more important considerations to quantify the requirements.	Evaluates all relevant considerations to quantify well-specified requirements.
	engineering methods to		engineering to develop a solution that meets some specified requirements.	Applies math, science, and engineering to develop a solution that meets all specified requirements. Solution may include minor errors.	Systematically and consistently applies math, science, and engineering to develop a rigorous solution that meets the all requirements and is essentially error-free .
	iv. Evaluates and refines the effectiveness of the solution.	Theorizes the feasibility of a solution.	describes how the solution	Evaluates the outcome and refines the solution to improve the final outcome.	Thoroughly evaluates the outcome and refines the solution to achieve the most feasible outcome.

Rubric Development

- Use actual student work to help reach consensus on rubric language.
- Focus on development and ability of a student progressing through the curriculum rather than deficit.

Faculty Insights

- Create more effective assignments that specifically support achievement.
- Improve communication of expectations and outcomes
- Vertically integrate a design project throughout curriculum in parallel with student course work on design.

Student Insights

- Engineering design is a new experience.
- Peer feedback very helpful.
- Allocate class time for interactions.
- Allow student the iterative process for project revision.

Successful Strategies

- Engage faculty in conversations about expectations for learning
- Use rubric as a catalyst to reflect on teaching and student development

SCAFFOLDING PLAN

Ryan Kurasaki

Challenge students to

identify specific ways

engineering can address

problems facing society.

Identify, formulate, and

ended project of student's

Formulate and solve the

design of a temperature

control system for yeast

solve an engineering

problem in an open-

choosing.

BE 350L

growth.

WITH VERTICALLY BE 260 Challeng identify

INTEGRATED PROJECT

Molecular Biosciences and Bioengineering

INTRO BE 350

Carotenoid production in yeast. Problem exploration.

CHALLENGE 1

Design a system to extract carotenoids

CHALLENGE 2

Implemented as primary course project.

BE 420

CHALLENGE 3 Identify, formulate, solve, fabricate, and test a

Design a sensor to determine carotenoid levels through color measurement.

BE 437

CHALLENGE 4 Design a scaled-up system to produce carotenoids in large quantities.

CHALLENGE 5
Implemented as primary course project.

LEADING TO SUCCESSSFUL

Use simulation software to **solve** an engineering problem and refine solution.

sensor or instrument.

BE 460

Experimental acquisition of parameters required to **solve** the problem of suppliying the oxygen required for yeast growth.

CAPSTONE PROJECT

