
Increasing the Interactivity in Software Engineering MOOCs - A Case Study

Stephan Krusche
Technische Universität München

krusche@in.tum.de

Andreas Seitz
Technische Universität München

seitz@in.tum.de

Abstract

MOOCs differ from traditional university courses:
instructors do not know the learners who have a diverse
background and cannot talk to them in person due
to the worldwide distribution. This has a decisive
influence on the interactivity of teaching and the
learning success in online courses. While typical online
exercises such as multiple choice quizzes are interactive,
they only stimulate basic cognitive skills and do not
reflect software engineering working practices such as
programming or testing. However, the application
of knowledge in practical and realistic exercises is
especially important in software engineering education.

In this paper, we present an approach to increase
the interactivity in software engineering MOOCs.
Our interactive learning approach focuses on a
variety of practical and realistic exercises, such as
analyzing, designing, modeling, programming, testing,
and delivering software stimulating all cognitive skills.
Semi-automatic feedback provides guidance and allows
reflection on the learned theory. We applied this
approach in the MOOC software engineering essentials
SEECx on the edX platform. Since the beginning of
the course, more than 15,000 learners from more than
160 countries have enrolled. We describe the design of
the course and explain how its interactivity affects the
learning success.

1. Introduction

Massive open online courses (MOOCs) offer new
possibilities. Learners can participate in courses of
interest with higher flexibility and are not bound to
schedules, locations, or university costs. Universities
can reach larger audiences outside of organizational
boundaries [1]. With the help of the internet,
education can be brought to countries with lower social
and educational standards. MOOCs are becoming
increasingly popular and more and more universities
offer them in professional programs and micro masters.

However, it is not sufficient to replicate standard
university lecture courses to design a MOOC [2]. It
is not possible to promote an active learning process in
online courses, only by broadcasting video recordings
of lectures [1]. This poses the risk of students becoming
passive and unmotivated. While embedding discussions
and offering multiple choice quizzes can increase the
interactivity, they typically do not stimulate higher
cognitive skills [3, 4]. Most activities in existing online
courses focus on lower cognitive skills, testing only
the degree of understanding of the main concepts and
forcing the learner to face recurrent mistakes [4].

Due to these limitations, simple software
engineering MOOCs do not yet support the acquisition
of higher cognitive skills such as applying, analyzing,
evaluating and creating. However, software engineering
is an activity that requires collaboration and practical
application of knowledge [5, 6], in particular interaction
and collaboration [7]. Video lectures, simple quizzes
and reading material are not sufficient [8] because they
do not reflect working practices such as programming,
modeling and testing. The creation of new software
depends on higher cognitive skills including application
of knowledge, analysis, evaluation and creation.

Active learning engages course participants in the
learning process by involving them into learning
activities, e.g. into problem solving. It is used in more
and more university courses [9], positively influences
knowledge transfer and learners’ performance, and leads
to an improved learning experience [10]. However,
instructors need to guide learners in these activities
to facilitate learning and prevent misconceptions [11].
With several thousand learners in MOOCs, it is
challenging to guide all learners.

In summary, MOOCs face the following three
problems:

(P1) Lecture recordings are too static
(P2) Quizzes only stimulate basic cognitive skills
(P3) Guidance is challenging to scale

We present an interactive learning approach for
software engineering MOOCs that addresses these

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60197
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7592



problems by using a variety of practical exercises.
These interactive exercises go beyond multiple choice
questions and stimulate cognitive skill acquisition on all
levels. They provide individual guidance to learners
through feedback and scale to a large number of
students. The focus of the paper is not a discussion
whether MOOCs can or will replace university courses.

The remainder of the paper is structured as
follows: Section 2 describes active learning, Bloom’s
taxonomy for cognitive skills and existing definitions for
interactivity as the foundations of this paper. Section 3
shows our interactive learning approach with different
exercise types that stimulate all cognitive skills. In
Section 4, we present a case study, in which we applied
this approach in a software engineering online course.
Section 5 discusses our learnings in this course and
describes best practices for other instructors who want
to adopt our approach. Section 6 presents related work
and Section 7 concludes the paper.

2. Foundations

“MOOCs mostly replicated the standard lecture,
an uninspiring teaching style but one with which the
computer scientists were most familiar” [2].

2.1. Bloom’s Taxonomy

Bloom developed a framework to classify
expectations of what students should learn as the
result of an instruction [12]. It serves as common
language about learning goals. An example would be:
“learners are able to describe the waterfall model”.
Bloom classified six major categories of cognitive
processes ordered by their complexity from lowest
to highest: knowledge, comprehension, application,
analysis, synthesis and evaluation.

Constructive alignment proposes to align learning
goals with activities and assessment. It was introduced
by John Biggs [13] and is derived from constructivism
and curriculum theory [14]. Biggs refers to the basic
idea of constructivism that learners construct their
own learning through learning activities, instead of
passively receiving knowledge from the instructor. All
components in the learning system - the learning goals,
the learning activities, and the assessment tasks - are
aligned to each other.

2.2. Active Learning

Active learning led to improved learning experiences
on different cognitive skill levels of Bloom’s taxonomy
in university courses. It emphasizes on developing
skills through active participation and engagement

in activities. It moves away from teacher-centered
approaches, where teachers instruct and learners listen
passively, to a more learner-centered approach, where
learners play an active role. Bonwell and Eison define
active learning as “anything that involves students in
doing things and thinking about the things they are
doing” [15]. It requires learners to regularly assess their
own problem-solving skills and their understanding of
the taught concepts [16]. Brophy and Good identify four
main premises of active learning [17]:

1. Learners construct their own meanings
2. New learning builds on prior knowledge
3. Learning is enhanced by social interaction
4. Learning develops through ‘authentic’ tasks

Prince [10] and Michael [16] found support for
all forms of examined active learning in their studies.
They concluded that active learning improves learning
outcomes compared to passive learning approaches.

2.3. Interactivity

When an instructor says ‘I am trying to make my
classes more interactive’, the meaning of interactive
seems clearly intuitive, however an agreed-upon
definition of interactivity is hard to find. The term
is used in the context of various fields, such as
communication, advertising, websites, internet and
education to name a few [18]. Since Rafaeli’s statement
“Interactivity is an underdefined concept” [19], a
number of attempts have been made to define the
concept of interactivity in its different contexts leading
to the inconsistent use of the term [20].

The term interactivity is rooted in the term
interaction. The Cambridge dictionary defines
interaction as “an occasion when two or more
people or things communicate with or react to each
other”. Steffensen differentiates between interaction
and interactivity: “[...] interaction captures a relation
of dependence between separable systems, interactivity
explores their bidirectional coupling” [21].

Jones and Gerard propose that all social interaction
is goal-oriented [22]. They distinguish four different
types of interactions according to their influence on the
interaction partners:

1. Pseudo interaction: A sequence of actions
that follow predefined patterns. The actions of
an involved participant are not intended to be
interpreted by the other participant.

2. Asymmetrical interaction: One participant
follows his or her intentions while another party
reacts complementarily to the previous actions.

Page 7593



3. Reactive interaction: The involved parties do not
interpret the intentions of the actions of the other
party and react in an isolated form.

4. Interdependent symmetrical interaction:
Aligning one’s action to the own intentions while
considering the intentions of the others in a
reciprocal fashion.

Similarly, Rafaeli argues that interactivity is best
defined by considering the degree of responsiveness
[19]. He recognizes three levels of communication.
Two-way (non-interactive), reactive (quasi-interactive)
and fully interactive communication. For an interaction
to be classified as two-way communication, messages
must flow bilaterally. If the messages cohere with
previous messages, the interaction is at least reactive
or quasi-interactive. The third level, full interactivity,
adds a reference to the content, nature or presence
of earlier references. Rafaeli defines interactivity as
“an expression of the extent that in a given series
of communication exchanges, any third (or later)
transmission (or message) is related to the degree
to which previous exchanges referred to even earlier
transmissions.” Domagk, Schwartz and Plass [23]
and Johnson et al. [24] identified two fundamental
conditions common in interactivity research: (1) At least
two participants interact with each other. (2) Actions of
these participants are reciprocal1 and responsive2.

Yacci examined interactivity in the context of
distance learning and computer-based teaching
and identified major interactivity attributes [25].
Interactivity is a message loop, whose messages must
be mutually coherent. Instructional interactivity occurs
from the learner’s perspective. Its outputs are content
learning and affective benefits.

3. Interactive Learning Approach

Interactive learning combines theory and practice
into interactive classes with multiple, small iterations of
theory, example, exercise, solution and reflection [26].
It is based on active, computer based and experiential
learning [27] and focuses on immediate feedback to
provide guidance and improve the learning experience
in large university classes. Hands-on activities in
class increase motivation and engagement and allow
continuous assessment.

Instructors teach and exercise small chunks of
knowledge in short cycles. Learners reflect and
increase their knowledge incrementally. This approach

1Reciprocal means that actions of one participant trigger responses
from the other and lead to change in the first.

2Responsive means that actions and reactions are related and
sustain the continuity of the interaction.

expects active participation and the use of computers.
Instructors provide guidance to prevent misconceptions
and to facilitate the learning process. Considering
the existing definitions of interactivity in literature, we
define interactivity in terms of MOOCs as follows:

Interactivity means a reciprocal and
responsive communication which is
addressed in a context-sensitive way by the
learning management system as a whole,
so that learners can construct meaningful
knowledge increments.

This definition focuses on automatic feedback using
a learning management system, but also allows
instructors, teaching assistants (TAs) and peer learners
to respond to communication initiated by learners. The
purpose of semi-automatic, context-sensitive feedback
is guidance and reflection to prevent misconceptions.
Communication in MOOCs can be initiated by
instructors, e.g. when motivating students using course
announcements or emails. It can also be initiated by
learners when they ask questions or face problems.

Figure 1 shows the idea of continuous interactive
learning3 that we adapted from Scrum [28] and
experiential learning [27]. The course syllabus consists
of high-level learning goals that are typically structured
into lectures giving them meaningful boundaries in
the learning activities. Each lecture consists of more
detailed learning goals. The instructor teaches each
learning goal in a learning sprint, a cycle that starts
with theory and examples. Learners then work on
an exercise and receive immediate feedback building
a second small cycle that allows them to iteratively
improve their solution to the exercise. After the exercise,
the instructor stimulates reflection so that students relate
their experience in the exercise with the taught theory.
This closes the cycle of the learning sprint and leads to a
learning gain, which we call knowledge increment, with
respect to the taught learning goal.

Examples and exercises are important elements
and play a central role in the early phases of
cognitive skill acquisition [30]. Carefully developed
and integrated examples increase the learning outcome
[31, 32]. Dynamic exercises with context-sensitive
feedback solve P1 and enable a richer learning
experience. Continuous interactive learning focuses on
the application of knowledge in a variety of exercise
types, e.g. programming and modeling exercises with
instant feedback. This supports the cognitive skill
acquisition [30] on all levels of Bloom’s taxonomy
shown in Figure 2 and solves P2. Multiple choice

3We first integrated continuous interactive learning into a
classroom course on games development [29] in 2016.

Page 7594



Section
Unit 1

Video Quiz

Lecture

Knowledge 
Increment

Unit 2
Video Quiz

Unit n
Video Quiz…

Interactive Exercise

Lecture

Lecture
Learning Goal

Learning Goal

Learning Goal

Exercise

ExampleFeedback

LearnerReflection Theory

Course Syllabus Lecture Learning Sprint Learning Gain

Figure 1. Continuous interactive learning embedded into a course consisting of lectures, each with a number of

learning goals. Each learning goal is taught in a learning sprint through theory, example, exercise, feedback and

reflection and leads to a new knowledge increment (adapted from Scrum [28] and experiential learning [27]).

quizzes focus on the first two levels, programming and
modeling address the four higher and more complex
levels4. The sample solution and the instant and
context-sensitive feedback in the end of the cycle
provide guidance. If feedback can be generated
automatically (e.g. through test cases in programming
exercises) or by other learners (e.g. through peer review
in modeling exercises), it is scalable to a large number
of learners and solves P3. This might require a higher
effort for the creation of exercises, but reduces the effort
during the conduction of the course.

create }
}

programming,
modeling

creation effort

quizzes

evaluate

analyze

apply

understand

remember

cognitive skills

Figure 2. Mapping of exercises to cognitive skills

Depending on the type of the exercise, the learner’s
submission is automatically assessed or a manual review
of the solution is carried out, involving other learners
(peer review). The assessment leads to manual or
automatic feedback which needs to be context-sensitive
to be meaningful. Learners can use it to improve and
submit another solution. Feedback motivates learners
and allows them to reflect their learning progress.

We developed the concept of interactive instructions
that visually explain the problem to be solved. Such
instructions are dynamic and provide continuous and
granular feedback with self-updating elements, e.g.
tasks and UML diagrams with respect to the structure of

4While it might be possible to create multiple choice tests
for higher cognitive skills, it is difficult and does not reflect
software engineering working practices: software engineers do not
answer multiple choice questions in their daily work when applying,
analyzing, evaluating or creating something. Williams and Haladyna
recommend to limit multiple choice tests to lower cognitive skills [3].

the exercise. These elements respond to the interaction
of learners by changing their color from red to green to
indicate that the solution is correct as shown in Figure 3.

An interactive task is dynamically updated based
on the learner’s progress. It is associated with the
assessment, e.g. a test or a peer review. An interactive
task in a programming exercise is completed when all
associated tests are passing. This association allows
to refer the learner to the problem in the source code
when the user clicks on the unfulfilled, red task. After
completion, the task is displayed in green and ticked off.

An interactive diagram is dynamically created and
updated based on the learner’s progress. It consists
of multiple elements, such as classes, attributes, or
methods in a UML class diagram. A diagram element
can be associated with an assessment and a source file.
The implementation of a method is e.g. associated with
its method name in the class diagram. Based on the
test results, the color of this diagram element changes to
green, if all associated tests succeed, or to red, if at least
one test fails. Learners can immediately identify which
parts of their exercise are correctly solved and which
are still incorrect. In addition, the associated feedback
includes context-sensitive information, why a test failed
and refers to the theory learned in videos and handouts.

Figure 3. Interactive assignments (with UML

diagrams) provide immediate feedback to learners

about the correctness (red, green) of their solution

Page 7595



4. Case Study

We describe the application of interactive learning
for the design, creation, implementation and execution
of the MOOC Software Engineering Essentials (SEECx)
that we offer on edX5. Our goal was to make the course
as interactive as possible. The MOOC was launched in
May 2017 as instructor-paced course over 9 weeks. We
repeated the course in October 2017. Since May 2018,
the course is available as self-paced course. In all three
instances, 15,276 students enrolled in total until now.

It is an intensive course with interactive exercises
that go beyond the learning experience of existing
software engineering MOOCs. It has the following
learning goals: Learners get to know methods and
techniques to develop software for different domains
and platforms using agile techniques in the context of
change. Starting from a problem statement, we teach the
participants how to analyze requirements and transform
them into models using textual analysis. They model
multiple representations of the system consistently,
understand and identify patterns. They map models to
source code, integrate it into an app and deliver this app
using build and release management techniques.

4.1. Course Structure

4 instructors and 7 TAs organized the course. It
includes 8 sections (comparable to lectures) covering
8 major topics: project organization and management,
software configuration management, object oriented
programming, requirements analysis, system design,
object design, testing, build and release management.
All sections are decomposed into smaller topics and
consists of 3 to 5 units, each covering a concrete learning
goal. The whole course includes 34 units.

A unit includes a video in which the theory of
the topic is taught and an example is shown, followed
by a small exercise with feedback and a summary
to reflect on the learned concepts. The duration of
the videos ranges from 3 to 15 minutes (mean: 8.2
min). The videos are kept short in order to enable
the learners to apply the newly acquired knowledge in
practice in the exercises. In addition to slide-based
lecture videos, we added short clips with animations
in an explanation style and real world scenes into the
video to make them more entertaining and rich in
variety. Such videos make the thinking process visible
and support cognitive apprenticeship [33]. After each
unit, there is a quiz to assess whether the learners can
remember and explain the learned concepts (level 1

5www1.in.tum.de/seecx or www.edx.org/course/
software-engineering-essentials

and 2 in Bloom’s taxonomy). Learners get immediate
feedback on their response and test their newly acquired
knowledge. Learners can try each quiz two times in
the course, so even if they failed initially, they can have
another look at the video and then score the full points
in the assessment. This keeps the learners motivated.

Each section also includes programming and
modeling exercises which focus on higher cognitive
skills. They assess if learners can apply the previously
obtained knowledge, analyze a problem, evaluate
different solution strategies and create new solutions to
given problems (level 3 - 6 in Bloom’s taxonomy).

In order to pass the course, learners have to achieve
at least 60 % of all available points (400). By
participating in the interactive exercises, learners can
earn up to 60 % of the total points (240), 30 points
for each section. At the end of the course, students
can participate in a final assessment which accounts the
remaining 40 % of the total points (160).

4.2. Participation

In the following, we want to show how learners
participated in the first instance (instructor-paced) of the
course between May and July 2017. Figure 4 shows that
in the beginning, our course had 786 active learners6

and 620 learners who scored in at least one exercise
(in section 1). In the last section 8, 47 % of the
learners were still active and 15 % scored in exercises.
Between section 1 and 3, there was a drop of 33 %
of the active learners and 68 % of the learners who
scored. We attribute this to the increased complexity
of the exercises. In addition, multiple instructors of
other software engineering courses initially participated
in our course due to advertisement on typical software
engineering mailing lists such as SE World and
SIGCSE. They tried out some videos and exercises, but
were not interested in completing the course. Towards
the end of the course, the dropout rate decreased.

0

100

200

300

400

500

600

700

800

900

1000

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8

96105122127
209198

374

620

334362380
430

502525

707
786

Active learners Scored in at least one exercise

Figure 4. Number of active learners (blue) and

learners who scored in at least one exercise (green)

for each section in the first instructor-paced instance.

6Learners who visited at least one page in the course content.

Page 7596



4.3. Interactive Exercises

We use different types of exercises to make the
course interactive and rich in variety following the
learning goals. We used multiple choice, text input and
drag & drop questions to support learning goals on level
1 and 2 of Bloom’s taxonomy. In addition, we integrated
interactive programming and modeling exercises.

We based all programming and modeling exercises
on a common problem statement about the “University
App”, which we also used for examples in the videos.
This allows the learners to recognize relationships
between the topics (e.g. between the requirements and
system design) and makes it easier to understand the
context of the problem. In the following, we explain
the different exercise types in more details.

4.3.1. Interactive Programming Exercises
We use an automated assessment system ArTEMiS

for programming exercises based on version control
and continuous integration [34]. Learners submit
their exercise solution and receive immediate feedback
through structural and behavioral tests. Learners
can use this feedback to iteratively improve their
solution. ArTEMiS automatically assesses the learners’
submissions and provides context-sensitive feedback on
their submissions.

The online editor of ArTEMiS includes assignments
using interactive tasks and interactive diagrams. After
each submission through the Commit & Run Tests
button, the code of the learner is assessed. The result
is shown immediately and the interactive tasks and
diagrams are updated accordingly. In addition, learners
can see detailed, individual feedback why their solution
is wrong by clicking on the result. This helps to identify,
which tasks the learners have already solved and which
parts of their program does not work as expected.

4.3.2. Modeling Exercises
The ability to understand and create models is

an important learning goal for software engineers.
Therefore, modeling is an essential part of our course.
However, it is difficult to automatically correct models
because there are different correct solutions. Modeling
is a creative activity and we do not want to limit
the creative thinking processes of students [35]. One
learning goal of the course is that participants can review
models given a set of quality criteria. Therefore, we used
the concept of peer reviews consisting of the following
steps: (1) upload response, (2) learn to assess responses,
and (3) assess peers.

Learners first create a solution to a given problem
and upload it, then they review sample solutions towards
a given set of criteria to learn how to assess other
solutions. Finally, they assess multiple other learners’
solution, so that each model is evaluated by at least three
reviewers (other learners). The final score is the average
of three reviews. Learners receive valuable feedback
about their models and can improve their modeling skills
in the future. While edX’s peer review system does not
allow to improve the model according to the feedback,
we are working on an interactive system that allows
learners to iterate on their model solution.

While peer reviews lead to additional effort for
learners, they stimulate the acquisition of higher
cognitive skills: by assessing other solutions, students
reflect about alternative solution approaches and
evaluate if they are correct with respect to the given
problem statement. This is particularly helpful, but it
should be used carefully to not overload the learners.
We include two peer review exercises in the course, one
on creating low-fidelity mockups for the university app,
and another one on creating an analysis object model.

4.3.3. Project Work
In addition, we also offer project work which allows

the students to experience the full software engineering
process from analysis over design to implementation,
testing and delivery. A second problem statements
allows learners to apply and transfer their knowledge
to a different problem domain. The exercises in the
project work focus on the upper two cognitive skill
levels in Bloom’s taxonomy where learners should
create and evaluate a new solution to a problem. The
project work starts in the fourth section and allows the
learners to evaluate how their own decisions, e.g. in the
requirements analysis, influence the system design and
the implementation.

Examples of project work exercises are the analysis
of the problem domain, the design of the software
architecture, sketches of user interfaces up to the
implementation, testing and delivery of a small app.
We cannot assess such exercises automatically because
we do not want to limit the creativity of learners. We
motivated the learners to discuss their solutions with
us and each other to get feedback on their solutions
and the TAs provided timely feedback. Project work is
optional for learners, they can pass the course without
active participation. Nonetheless, we highly recommend
to participate and give the learners the opportunity to
deepen their knowledge and gain practical experience.

Page 7597



4.4. Communication

Guàrdia describes that designing a MOOC is to
”[s]et up a space to foster social interaction and
frequent contact between the learners.” This results
in our approach using a chat for instant and direct
communication instead of discussion forums to further
improve interactivity between course participants and
instructors. Many existing MOOCs rely on discussion
forums, which are limited in interactivity. We promote
the exchange with and between learners. Both
instructors and TAs can be approached directly in the
chat, learners can provide feedback and ask for help.

We use Slack as instant messaging service because
it has a lower entry barrier than discussion forums.
Learners can get in touch with each other and write
direct messages to instructors and TAs in case they need
help. They ask questions more easily without having
to pay attention to the exact wording and phrasing.
We add repeating questions to a question and answer
page. In total, 754 learners regularly used Slack
to get in touch and already sent 14,282 messages.
The #questions, #general and #feedback channels were
the most important ones. In the #questions channel,
learners asked question, in #feedback, they stated how
to improve the learning material. Instructors and TAs
answer questions within one working day to keep the
interactivity high.

Clear communication of learning goals, expectations
and deadlines is important. The course description
clarifies what the learners can expect and what they have
to accomplish to pass the course.

4.5. Survey Results

We evaluated our approach using two surveys, an
entry and an exit survey. The entry survey covered the
background and motivation of learners. 83 % of the
participants are male, 17 % are female. The median
learner age is 28 and most learners are between 20
and 40 years old. 3 % are pupils at school, 31 % are
students in university or college, 51 % are employees
in a company and 15 % are unemployed or searching
for a job. 51 % have already participated in another
software engineering course before. 86 % have already
participated in another programming course before.
Regarding motivation, 27 % need the certificate of the
course, 96 % are interested in the topic, 84 % need to
know the concepts taught in the course for their career
and 66 % assume the course is fun.

The exit survey asked about the opinion on the
interactivity of the course. 67 learners took part in

both surveys and allowed us to compare their existing
knowledge and motivation with their results.

We asked the learners how the different components
of the course contributed to their learning. Figure 5
shows that all components of the contribute. Videos
play an essential role in the transfer of knowledge, as
they impart the theoretical content to learners. Learners
indicate that the contribution of programming exercises
is higher (82 %) to their learning than in quizzes (62 %).
Modeling exercises also have a high contribution with
65 %. We attribute the smaller numbers of modeling
exercises to the higher complexity that peer reviews
entail.

We also evaluated the helpfulness of immediate
feedback in programming exercises, as well as the
usefulness of Slack. 83 % of the respondents agree
that feedback in programming exercises is helpful (left
diagram in Figure 6). 57 % of the participants agree
to prefer Slack over traditional discussion forums (right
diagram in Figure 6).

These results represent first anecdotal evidence.
Further studies are required to evaluate the approach.
Due to the small amount of participants in the
exit survey, selection bias is a threat to validity.
The participants opinion might not be generalizable.
Nevertheless, the first survey results show that our
approach improves the learning experience: there are
ways to make MOOCs more interactive and to reduce
the gap to interactive classroom courses.

5. Discussion

This section discusses both the approach and the
experience we have gained in developing and carrying
out a software engineering MOOC. We first discuss the
learnings before we derive best practices that can be
useful for other MOOC instructors.

We faced a trade-off between too detailed and
superficial feedback. Too detailed feedback has the risk
of including the actual solution which might prevent
learning. However, if the feedback is too superficial, it
does not help learners and demotivates them. Especially
at the end of the course, when the exercises became
more demanding, less learners participated. As the
difficulty increases, so does the amount of time spent
by the learners. Many learners are not willing to invest
this extra time in solving difficult exercises.

We experienced that learners who have completed
the course, look back positively on the varied exercises,
even if they were sometimes more demanding. One
learner stated: “The lectures include both practical and
theoretical videos and explanatory test cases. The final
exam, quizzes, peer review projects and programming

Page 7598



Table 1

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Video 
lectures]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? 
[Explanation 
videos]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Quizzes]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? 
[Programming 
exercise]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Peer 
review exercises]

High 58 88 % 53 80,3030303030303 % 41 62,1212121212121 % 54 81,8181818181818 % 42 64,6153846153846 %
Medium 6 9 % 10 15,1515151515152 % 17 25,7575757575758 % 8 12,1212121212121 % 8 12,3076923076923 %
Low 2 3 % 3 4,54545454545455 % 8 12,1212121212121 % 4 6,06060606060606 % 15 23,0769230769231 %

Do you agree to 
the following 
statements about 
the programming 
exercises? [The 
immediate 
feedback was 
helpful for solving 
the tasks.]

Do you agree to 
the following 
statements about 
the course? [The 
usage of Slack 
instead of the 
discussion forum 
was good.]

0

Agree 52 0,825396825396825 36 0,571428571428571

Neutral 9 0,142857142857143 22 0,349206349206349

Disagree 2 0,0317460317460317 5 0,0793650793650794

0 %

25 %

50 %

75 %

100 %

High Medium Low

3 %9 %

88 %

High Medium Low

12 %
26 %

62 %

Video Lectures Quizzes

High Medium Low

6 %12 %

82 %

Programming 
Exercises

High Medium Low

23 %
12 %

65 %

Modeling  
Exercises

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

3 %
14 %

83 %

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

8 %

35 %

57 %

The feedback was helpful for  
solving programming exercises

The usage of Slack instead of the 
discussion forum was good

High Medium Low

5 %
15 %

80 %

Explanation Videos

�1

Figure 5. Answer distribution of learners about the contribution to their learning in the course.

Table 1

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Video 
lectures]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? 
[Explanation 
videos]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Quizzes]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? 
[Programming 
exercise]

How much did the 
following 
elements 
contribute to your 
learning in this 
course? [Peer 
review exercises]

High 58 88 % 53 80,3030303030303 % 41 62,1212121212121 % 54 81,8181818181818 % 42 64,6153846153846 %
Medium 6 9 % 10 15,1515151515152 % 17 25,7575757575758 % 8 12,1212121212121 % 8 12,3076923076923 %
Low 2 3 % 3 4,54545454545455 % 8 12,1212121212121 % 4 6,06060606060606 % 15 23,0769230769231 %

Do you agree to 
the following 
statements about 
the programming 
exercises? [The 
immediate 
feedback was 
helpful for solving 
the tasks.]

Do you agree to 
the following 
statements about 
the course? [The 
usage of Slack 
instead of the 
discussion forum 
was good.]

0

Agree 52 0,825396825396825 36 0,571428571428571

Neutral 9 0,142857142857143 22 0,349206349206349

Disagree 2 0,0317460317460317 5 0,0793650793650794

0 %

25 %

50 %

75 %

100 %

High Medium Low

3 %9 %

88 %

High Medium Low

12 %
26 %

62 %

Video Lectures Quizzes

High Medium Low

6 %12 %

82 %

Programming 
Exercises

High Medium Low

23 %
12 %

65 %

Modeling  
Exercises

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

3 %
14 %

83 %

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

8 %

35 %

57 %

The feedback was helpful for  
solving programming exercises

The usage of Slack instead of the 
discussion forum was good

High Medium Low

5 %
15 %

80 %

Explanation Videos

�1

Figure 6. Helpfulness of feedback (left), Slack over

discussion forums (right)

exercises are well thought and help in understanding
and reviewing the core concepts of each week.“ This
statement confirms the right mix of theory and practice
contributing to learning success.

5.1. Learnings

We initially used a rather serious tone in the
communication with the learners, but during the course
we have moved further away from it. We approached
the learners personally and asked them about their
experiences via mail and Slack. This removes the
barrier between instructors and learners and facilitates
interactivity. We made clear why it is important
for learners to participate in the interactive exercises.
The typical MOOC learner is not accustomed to
this multitude of varied exercises. Therefore, we
communicate clearly from the beginning that our
MOOC is an intensive course in which we expect active
participation in exercises and discussions on Slack.

As a consequence of the learners’ feedback, we
have changed several aspects already during the first run
of the MOOC. We extended the time for all exercises
from one to two weeks to allow all participants to
complete the exercises. This alleviated the stress factor,
in particular for learners who worked in a full-time job
and had families. In a further step, we increased the
number of attempts for all quizzes from 1 to 2. This
gives learners the opportunity to study the theory again
after a wrong answer and motivates them. They can
improve their knowledge and try the quiz a second time.
It is important that learners receive feedback on their

given answers, regardless of whether they are correct
or incorrect. Only then, they can reflect on the theory
again. We want learners to internalize the acquired
knowledge. The feedback must be motivating and can
include a sense of humor.

We also introduced a question and answers page
and summary pages for each section. Many questions
reached us multiple times via Slack, so we decided to
collect the most frequently asked questions on a separate
FAQ page. The section summary ensures that learners
fully grasp the learning objectives of each section and
connect the units with each other. This allows learners
to reflect on the contents of the whole section again.

5.2. Best Practices

Make sure that all exercises are aligned with the
learning goals in terms of constructive alignment.
Double check the consistency of all exercises, especially
with regard to difficulty and comprehensibility. Plan
the learning goals before the production of the videos
and adapt the exercises accordingly. Use the same
working example throughout the course, ideally by
using a problem statement that relates to the personal
experience of the learners. Explain learners what
they did wrong and why they did it wrong in the
exercises using context-sensitive feedback. However,
the feedback should not directly contain the solution,
instead it should explain aspects of the theory related to
the exercise. Learners have to come up with the correct
solution themselves.

Be open to change and listen to the wishes and
preferences of your learners. With small iteration cycles
in interactive MOOCs, changes and wishes can be
addressed easily. Small iteration cycles are only possible
if the length of videos is limited. Address learners
personally in videos to overcome the barriers in the
beginning of the unit. Include animations and real world
scenes in the videos and do not only rely on lecture
style slides with too many text and bullet points. In
programming exercises, write test cases to assess the
behavior of the learners’ solution and make sure the
feedback in the assertions of the tests is understandable.

Page 7599



6. Related Work

In [36] and [37], we describe the application of
interactive learning in the classroom. In the following,
we focus on online courses.

Alario-Hoyos et al. describe their MOOC for
introduction to programming with Java [4]. The authors
state that they designed the course to enhance the
learners’ activity with learning contents. They found
that traditional multiple choice quizzes only assess the
two lower levels of Bloom’s taxonomy. In addition to
quizzes, they also rely on peer review and programming
exercises, which they carried out with the help of the
external tools Blockly, Codeboard and Greenfoot.

Daun et al. integrate conceptional modeling into
their MOOC [38] by using ambiguous exercises and
sketching multiple solutions in brief whiteboard-style
videos. They state that it enables the students to assess
their own solutions and fulfills their educational needs.
In contrast, we use peer reviews to allow the students to
receive feedback on their model solutions.

Kloos et al. use MOOCs as out-of-class-activities
in addition to normal interactive classes following
the inverted classroom approach [39]. They argue
that more time can then be spent in interactive
participation and on-site interaction leading to more
effective learning. This confirms that MOOCs need to
become more interactive in order to achieve a better
learning experience for learners.

Krugel et al. describe their experiences on
designing an interactive MOOC about object-oriented
programming [40]. In addition to traditional quizzes,
the authors rely on interactive programming exercises
in order to put the theoretical knowledge into practice.
They use various external tools, such as SVG-edit,
trinket, Java-Tutor, and Codeboard. Kolas et al.
introduce interactive modules [41], which are either
videos or presentations to motivate and activate learners.
In contrast to our approach, the authors do not focus on
exercises.

Gruenewald et al. focus on the challenge
of conducting interactive programming lectures as
MOOCs [42]. They integrate active experimentation
and relate to concrete experience. Existing literature
shows that interactivity plays a role in online courses.
Nevertheless, as far as we know, no one has yet defined
what interactivity means in the context of MOOCs.

7. Conclusion

MOOCs can complement university courses and
provide education to places that would otherwise have
no access. However, they also face challenges in terms

of interactivity, the stimulation of all cognitive skills
and the provision of context-sensitive guidance to a
large number of learners. We introduced an interactivity
model for MOOCs that addresses these challenges. It
includes a variety of practical exercises, in particular
programming and modeling, which are typical learning
goals in software engineering.

Learners can participate multiple times in exercises
and learn from their failures and the context-sensitive
feedback. We found first evidence that this improves
the learning success. The different exercise types,
the division into small learning sprints, direct
communication and immediate feedback increase
the interactivity and improve the learning experience.

In the future, we want to integrate semi-automatic
assessment of modeling exercises using machine
learning. It allows multiple solutions to be assessed
as correct and does not limit the creative thinking of
students. Using this approach, we can integrate more
modeling exercises. In addition, we plan to integrate
code reviews as described in [43]. It is important that
students do not only learn to write correct programs, the
code also needs to be understandable.

References

[1] T. Daradoumis, R. Bassi, F. Xhafa, and S. Caballé, “A
review on massive e-learning (MOOC) design, delivery
and assessment,” in 8th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing,
pp. 208–213, IEEE, 2013.

[2] R. Ubell, “How the pioneers of the mooc got it wrong,”
IEEE Spectrum, 2017.

[3] R. Williams and T. Haladyna, “Logical operations for
generating intended questions (logiq): A typology for
higher level test items,” A technology for test-item
writing, pp. 161–186, 1982.

[4] C. Alario-Hoyos, C. Kloos, I. Estévez-Ayres,
C. Fernández-Panadero, J. Blasco, S. Pastrana, and
J. Villena-Román, “Interactive activities: the key to
learning programming with MOOCs,” Proceedings of
the European Stakeholder Summit on Experiences and
Best Practices in and Around MOOCs, 2016.

[5] T. Connolly, M. Stansfield, and T. Hainey, “An
application of games-based learning within software
engineering,” British Journal of Educational Technology,
vol. 38, no. 3, pp. 416–428, 2007.

[6] D. Shaffer, “Pedagogical praxis: The professions as
models for postindustrial education,” Teachers College
Record, vol. 106, no. 7, pp. 1401–1421, 2004.

[7] J. Whitehead, “Collaboration in software engineering: A
roadmap,” FOSE, vol. 7, no. 2007, pp. 214–225, 2007.

[8] T. Staubitz et al., “Towards Practical Programming
Exercises and Automated Assessment in Massive
Open Online Courses,” in International Conference on
Teaching, Assessment, and Learning for Engineering,
pp. 23–30, 2015.

[9] S. Freeman, S. Eddy, M. McDonough, M. Smith,
N. Okoroafor, H. Jordt, and M. Wenderoth, “Active

Page 7600



learning increases student performance in science,
engineering, and mathematics,” Proceedings of the
National Academy of Sciences, vol. 111, no. 23,
pp. 8410–8415, 2014.

[10] M. Prince, “Does active learning work? a review of the
research,” Journal of Engineering Education, vol. 93,
no. 4, pp. 223–231, 2004.

[11] P. Kirschner, J. Sweller, and R. Clark, “Why minimal
guidance during instruction does not work: An analysis
of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching,” Educational
psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[12] B. Bloom, M. Engelhart, E. Furst, W. Hill, and
D. Krathwohl, “Taxonomy of educational objectives:
The classification of educational goals,” 1956.

[13] J. Biggs, “Aligning teaching and assessing to course
objectives,” Teaching and learning in higher education:
New trends and innovations, vol. 2, pp. 13–17, 2003.

[14] F. Marton and S. Booth, Learning and awareness.
Psychology, 1997.

[15] C. Bonwell and J. Eison, Active Learning: Creating
Excitement in the Classroom. ASHE-ERIC Higher
Education Reports, 1991.

[16] J. Michael, “Where’s the evidence that active learning
works?,” Advances in physiology education, vol. 30,
no. 4, pp. 159–167, 2006.

[17] T. Good and J. Brophy, Looking in classrooms. Harper
& Row, 1987.

[18] P. Lowry, N. Romano, J. Jenkins, and R. Guthrie, “The
CMC interactivity model: How interactivity enhances
communication quality and process satisfaction in
lean-media groups,” Journal of Management Information
Systems, vol. 26, no. 1, pp. 155–196, 2009.

[19] S. Rafaeli, “From new media to communication,” Sage
annual review of communication research: Advancing
communication science, vol. 16, pp. 110–134, 1988.

[20] R. Mayer, The Cambridge handbook of multimedia
learning. Cambridge university press, 2005.

[21] S. Steffensen, “Human interactivity: problem-solving,
solution-probing and verbal patterns in the wild,” in
Cognition beyond the brain, pp. 195–221, 2013.

[22] E. Jones and H. Gerard, “Foundations of social
psychology,” 1967.

[23] S. Domagk, R. Schwartz, and J. Plass, “Interactivity in
multimedia learning: An integrated model,” Computers
in Human Behavior, vol. 26, no. 5, 2010.

[24] G. Johnson, G. Bruner, and A. Kumar, “Interactivity and
its facets revisited: Theory and empirical test,” Journal
of Advertising, vol. 35, no. 4, 2006.

[25] M. Yacci, “Interactivity demystified: A structural
definition for distance education and intelligent CBT,”
Educational Technology, vol. 40, no. 4, pp. 5–16, 2000.

[26] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge,
“Interactive learning: Increasing student participation
through shorter exercise cycles,” in Proceedings of the
19th Australasian Computing Education Conference,
pp. 17–26, ACM, 2017.

[27] D. Kolb, Experiential learning: Experience as the source
of learning and development, vol. 1. Prentice Hall, 1984.

[28] K. Schwaber, “Scrum development process,” in
Proceedings of the OOPSLA Workshop on Business
Object Design and Information, 1995.

[29] S. Krusche, B. Reichart, P. Tolstoi, and B. Bruegge,
“Experiences from an experiential learning course
on games development,” in Proceedings of the 47th
SIGCSE, pp. 582–587, 2016.

[30] K. VanLehn, “Cognitive skill acquisition,” Annual
Review of Psychology, vol. 47, pp. 513–539, 1996.

[31] J. Sweller and G. Cooper, “The use of worked examples
as a substitute for problem solving in learning algebra,”
Cognition and Instruction, vol. 2, no. 1, pp. 59–89, 1985.

[32] J. Trafton and B. Reiser, “Studying examples and solving
problems: Contributions to skill acquisition,” tech. rep.,
Naval HCI Research Lab, 1993.

[33] A. Collins, J. Brown, and A. Holum, “Cognitive
apprenticeship: Making thinking visible,” American
educator, 1991.

[34] S. Krusche and A. Seitz, “ArTEMiS - An Automatic
Assessment Management System for Interactive
Learning,” in Proceedings of the 49th SIGCSE, ACM,
2018.

[35] S. Krusche, B. Brügge, I. Camilleri, K. Krinkin, A. Seitz,
and C. Wöbker, “Chaordic learning: A case study,” in
Proceedings of the 39th ICSE, pp. 87–96, 2017.

[36] A. Seitz and B. Bruegge, “Teaching pattern-based
development,” in Proceedings of the 1st Workshop on
Innovative Software Engineering Education, pp. 20–23,
2018.

[37] S. Krusche, N. von Frankenberg, and S. Afifi,
“Experiences of a software engineering course based on
interactive learning.,” in Proceedings of the 15th SEUH
Workshop, pp. 32–40, 2017.

[38] M. Daun, J. Brings, P. Obe, K. Pohl, S. Moser,
H. Schumacher, and M. Rieß, “Teaching conceptual
modeling in online courses: Coping with the need
for individual feedback to modeling exercises,” in 30th
Conference on Software Engineering Education and
Training, pp. 134–143, 2017.

[39] C. Kloos, C. Alario-Hoyos, I. Estévez-Ayres,
P. Muñoz-Merino, M. Ibáñez, and R. Crespo-Garcı́a,
“Boosting interaction with educational technology,”
in Global Engineering Education Conference,
pp. 1763–1767, April 2017.

[40] J. Krugel and P. Hubwieser, “Computational thinking
as springboard for learning object-oriented programming
in an interactive mooc,” in IEEE Global Engineering
Education Conference, pp. 1709–1712, 2017.

[41] L. Kolås, H. Nordseth, and J. Hoem, “Interactive
modules in a mooc,” in 15th International Conference
on Information Technology Based Higher Education and
Training, pp. 1–8, Sept 2016.

[42] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems,
“Designing MOOCs for the Support of Multiple
Learning Styles,” in European Conference on
Technology Enhanced Learning, pp. 371–382, 2013.

[43] S. Krusche, M. Berisha, and B. Bruegge, “Teaching code
review management using branch based workflows,” in
Proceedings of the 38th ICSE, pp. 384–393, 2016.

Page 7601


