
A Conceptual Architecture for Enabling Future Self-Adaptive Service
Systems

Fabian Burzlaff
University of Mannheim

burzlaff@es.uni-mannheim.de

Christian Bartelt
University of Mannheim

bartelt@es.uni-mannheim.de

Abstract

Dynamic integration methods for unknown data
sources and services at system design time are currently
primarily driven by technological standards. Hence,
little emphasis is being placed on integration methods.
However, the combination of heterogeneous data
sources and services offered by devices across domains
is hard to standardize. In this paper, we will shed light
on the interplay of self-adaptive system architectures
as well as bottom-up, incremental integration methods
relying on formal knowledge bases. An incremental
integration method has direct influences on both the
system architecture itself and the way these systems are
engineered and operated during design and runtime.
Our findings are evaluated in the context of a case study
that uses an adapted bus architecture including two tool
prototypes. In addition, we illustrate conceptually how
control loops such as MAPE-K can be enriched with
machine-readable integration knowledge.

1. Introduction

Currently more and more companies are making
their domain-specific data available for third-party
usage. Well-known examples are projects like BIG
IoT, FIWARE or Industrial Data Space . For example,
FIWARE aims at establishing an open data platform
in the context of Smart City applications whereas
the Industrial Data Space project is closely related
to business models that are built upon Industry 4.0
data sources. In general, such platforms integrate
different data sources and interfaces by connecting
service providers with requesters by using some
sort of adapter. For example, necessary semantic
translations between the system data model as well
as the IoT-device data model are codified within
these adapters. Unfortunately, this use-case specific
integration knowledge is trapped as it cannot be queried
in a structured way. Consequently, when an IoT-device
with similar functionality should be integrated with

other platform services, integration knowledge cannot
be reused automatically.

Current integration approaches utilized at design
time are primarily driven by technologies and do
not address this problem efficiently [1]. These
technologies are often crafted for supporting certain
domain standards. However, such standards are mostly
the results of tedious and slow voting process. Hence,
they are out-of-date as soon as they are available as
new devices and data sources enter the IoT market
almost daily in a decentralized manner. This means,
that such standards are never complete as a basis for full
automation even though, by definition, they should be.

Self-adaptive systems are predestined to work within
such dynamic and undetermined context as they do
include rules and mechanisms for reacting to context
changes. However, they mostly rely on the assumption
that once all adaptation rules are formalized, the system
can perform all necessary adaptations autonomously.
It is hard to believe that a system designer can
anticipate all possible states an IoT-System can enter
and hence provide a consistent view of all possible
integration rules. Nevertheless, a machine-readable
description of data and service semantics is fundamental
for realizing automated device integration and service
composition scenarios. Our contribution in this work
is a conceptual architecture for future self-adaptive bus
systems that allows for an evolutionary definition of
device integration rules. Consequently, we also provide
an integration approach that handles incomplete context
knowledge for self-adaptive system architectures. To
show the technical feasibility of our approach, we
introduce tool support for formalizing integration
knowledge in an incremental way.

1.1. Motivating Example

In order to motivate the challenge of semantic
ambiguity of data and services within the IoT domain,
we will use an example from the field of homonyms.
Consider the verb close. Depending on the context,

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60184
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7472



this term stands for physically moving so that an
opening is closed or to make a gap smaller. For
example, a mobile robot approaching a door may
expose the service close(Object object). Without the
implicit integration knowledge of a system integrator,
the adequate semantic assignment for this concrete
use-case is undecidable for an automatic service matcher
without context knowledge.

An application developer also faces other challenges
among homonyms when figuring out the meaning of a
service regarding request parameters, response elements
as well as their types when integrating an API into an
overall workflow (see Figure 1).

Figure 1. IoT-Interface Example

In case no machine-readable semantic standard for
such drill exists, a system integrator must either consult
an informal standard (e.g. ISO 16100 for Industrial
Automation Systems and Integration ) or simulate the
drill to assign an unambiguous semantic label to the
necessary model elements. Once a crisp semantic is
established, an adapter could be programmed to map
the device model element to the bus data model in
a meaningful way. However, the mental mappings
residing in the system integrators head are only stored
inside imperative code structures, which in turn are
hard to query. Hence, as soon as a similar interface
has to be integrated in the future, all work must
be repeated without any possibility to reuse already
available integration knowledge from within adapters.

1.2. Problem statement and Paper Outline

Current approaches for formalizing adaptation
scenarios in self-adaptive systems follow the idea of a
revolutionary adaptation plan. If a condition holds, then
a plan is executed [2]. However, for such a scenario
to work a complete and shared knowledge base must
be defined upfront. In this work we will shed light on
incorporating a shared knowledge base that allows for
an evolutionary formalization approach. Furthermore,
we will provide first technical insights on how to
deal with incomplete instead of complete integration
knowledge in an automated way. To do so, our leading
research questions is:

RQ: How can system integrators be enabled to
formalize semantic knowledge within self-adaptive
service systems and which challenges are still unsolved
towards using this knowledge?

The objective of this paper is to conceptually align
a novel integration method called Knowledge-driven
Architecture Composition and self-adaptive service
systems. The key results of this work are the following:
First, to present all additional architectural elements
needed and to discuss conceptually emerging upstream-
as well as downstream consequences. Second, to
demonstrate necessary tools and technologies that
can be used to overcome ambiguous data elements
and semantic shifts for IoT interfaces when using
knowledge-driven architecture composition. Third and
last, to demonstrate the potential of the introduced
method within a simple case-study.

Our paper is structured in the following way:
Chapter 2 gives a short overview of an incremental,
use-case based integration method and its delamination
to existing work. Chapter 3 represents our main
contribution: A conceptual architecture as well as an
adequate tool support for capturing semantic integration
knowledge as a new component for self-adaptive
systems. Furthermore, an example is used to exemplify
our method as well as its potential benefits for control
loops. Chapter 4 answers the second part of our research
question by outlining challenges faced during the case
study. Finally, chapter 5 concludes our work.

2. Knowledge-driven Architecture
Composition and Service Integration
Methods

Currently, several actors within the IoT market come
up with new models for describing, managing and
acting upon IoT devices [3]. However, such standards
seldomly formalize the semantics in a machine-readable
way. Among other factors, the applicability of
negotiated standards is influenced by their claim to be
complete. Hence, as soon as a new standard must
be supported, manufacturers are forced to support it
in a revolutionary big-bang approach (e.g. OPC UA
). Current formal scientific solutions are also driven
by the goal of being formulate for all possible use
cases in a complete manner. For example, SOAP-based
descriptions in bus systems must be created for every
possible use case that may occur during runtime.
Hence, the formalization effort for practitioners tends
to be too high as the effort for describing each
integration case usually does not pay off. Although such

Page 7473



approaches facilitate automated component coupling
scenarios, practitioners currently rely on implementing
point-to-point adapters. Consequently, current top-down
integration approaches (i.e. standards) are not applicable
within the dynamic and decentralized IoT market as new
devices with new functionality enter the market almost
daily.

Figure 2. KDAC Principles Illustrated

To tackle this problem, we introduced a novel
integration method called Knowledge-driven
Architecture Composition (KDAC) that relies on
an incremental semantic formalization process. This
method explicitly allows for incompleteness of
integration knowledge and supports an evolutionary
instead of a revolutionary definition (i.e. big-bang
formalization) of integration cases (see Figure 2). By
using declarative languages based on first-order logic
(e.g. OWL-DL), the inherited problem of partially
incomplete integration knowledge can be tackled. The
rationale for this is the usage of reasoning principles
from the field of ontologies.

For example, due to the transitive characteristics of
converting temperature units, a reasoner could infer new
integration knowledge. So, if the integration knowledge
base contains the mathematical conversion formulas
from Celsius to Fahrenheit and from Fahrenheit to
Kelvin, a logic-based reasoner can directly infer the
conversion function from Celsius to Kelvin. Based on
the underlying principle such inference procedures and
the reuse of machine-readable integration knowledge
from previous integration cases can facilitate automated
component composition (e.g. plug-and-play principle).
Automated component coupling is achievable as soon as
all functional service and data characteristics are present
and/or can be deduced.

In other words, one can think of the reasoning
process over integration knowledge bases as playing

the game Sudoku: As soon as enough integration
knowledge for an unknown and new integration case
is present, the missing information can be calculated
based on rigorous mathematical rules.

The novelty of this approach is formalizing semantic
integration knowledge per use-case in a bottom-up
manner. By focusing on integration knowledge instead
of conforming to technological-oriented interface
descriptions, it maximizes the effort for formalizing the
semantic coupling process as a concrete use-case must
be present. Hence, formalization does only take place if
there is a specific need for it.

In previous work [4], it was shown that this approach
is feasible and could reduce the integration time in the
context of the Industrial Internet of Things from 90 to
20 minutes. Furthermore, the evaluation shows that
reusability of semantic mappings between endpoints is
significantly higher than adapting imperative software
adapters. The resulting knowledge base is a promising
source for self-adaptive control loops.

2.1. Impacts of KDAC on Self-Adaptive
Service Systems

The IoT system integration market is expected
to increase from 17.0 billion US$ (2017) to 35.7
billion US$ (2020). One central driver for this
are services and applications realized by IoT-devices.
Hence, self-adaptive service systems are a promising
way for applying a novel integration method for
supporting system integrators as they already offer
mechanisms for dealing with context uncertainty at
different complexity levels. When integrating software
components in a semantical way based on partially
incomplete integration knowledge, there are several
upstream (i.e. system integrator viewpoint looking from
technical integration layer) and downstream effects (i.e.
user goals and need looking from data and service
request layer) from an architectural perspective (see
Figure 3):

• An upstream effect is the reusability of integration
knowledge for new IoT device. In case each
IoT device has a unique resource identifier (URI)
attached, the respective device type can be
matched against the integration knowledge base
and already existing composition knowledge from
previous cases can be automatically generated.
However, there must be a possibility to tell
the system integrator which mapping elements
between IoT device model and system model are
missing. Nevertheless, as integration knowledge
is only formalized if a use-case is present these

Page 7474



Figure 3. Conceptual System Architecture for a self-adaptive Service System supporting KDAC

<condition, event> combinations can be reused
for the definition of more complex adaptation
plans. In addition, they must not be made up by
adaptation plan designers at design time out of
thin air.

• A downstream effect when formalizing
integration knowledge in an incremental way
is the enrichment of the knowledge base that
can be consulted by algorithms that implement
the MAPE-K loop. Here the KDAC approach
can be seen as a moderator that sets the stage
for compositions approaches. Hence, basic
communication semantics must not be defined
in a revolutionary way and can be utilized by
composition algorithms. Subsequently, this also
means that in the beginning a human must be
present. However, following the assumption that
IoT integration cases are similar across multiple
sites, an empty knowledge base may initial be
filled with generic integration knowledge. This is
illustrated as three global boxes in Figure 2.

• Another downstream effect is the way user
goals are evaluated. In an evolutionary
designed self-adaptive IoT System that realizes
user goals by using data and services offered
by decentralized IoT components, it would
theoretically be feasible to locate missing devices.
For example, a user-specific goal realizable by a
system residing on one site may be not realizable
by a system at another site. However, as

the shared integration knowledge-base contains
semantic integration knowledge and does not
depend on a concrete interface syntax, new IoT
devices and/or data sources can be integrated
on demand. Now the aforementioned upstream
effect of formalizing data and service models
can support a plug-and-play-like component
integration mechanism. Hence, new user-specific
goals can be realized efficiently without altering
the overall adaptation logic or even stopping the
system.

As a result, this discussion shows that the
unique characteristics of incomplete case-bases and
an evolutionary instead of a revolutionary approach
for formalizing basic composition rules influences the
architecture of self-adaptive systems. Despite this
observation, user centric self-adaptation plans in such
systems require a lot of distinct integrations cases to
enable IoT ensembles to fulfill a desired user need in
an automated way.

3. Integrating an Evolutionary
Maintained Knowledge Base into a Bus
Architecture

A central problem for applying knowledge-driven
architecture composition to self-adaptive systems is
to capture semantic integration knowledge. Hence, a
necessary step is the development of adequate tools and
technologies. A major problem to resolve ambiguous

Page 7475



Figure 4. Integration Knowledge Base for trigger-request pattern

data and interface declaration is the formalization of
the needed case-specific integration knowledge in an
explicit way. To minimize the formalization effort, we
explicitly allow for a domain-specific schema. Hence,
based on our preliminary results gained from simple
client-server architectures [4] the upcoming sections
focus on demonstrating the basic tools needed for
applying knowledge-driven architecture composition
within self-adaptive system.

As hardware as well as technically standardized
software gets cheaper (e.g. embedded operating
systems), system integration can be seen as the
future bottleneck for delivering IoT-Services to
users seamlessly. Ideally, devices can be exchanged
in self-adaptive IoT-systems (e.g. DeltaIoT [5])
seamlessly. However, integrating a new IoT-Device
is currently not only linked to a significant manual
integration effort but also relies on shared knowledge
bases for control loops.

In the context of self-adaptive systems, one of the
most commonly used architectural paradigms are event
buses. For this architectural style, one can locate
technical service integration issues at the following
abstract layers [6]:

– Technical Layer: On this layer, it must be
ensured that at least one communication protocol
is supported at the network layer from the bus as
well as the device that should be attached to it

– Syntactic Layer: On this layer, all data and
services must be normalized in a sense that
they conform to the overall bus schemata.
Furthermore, configuration services may already
provide different predefined configuration tactics

– Semantic Layer: On this layer, the relations of

different services and their interaction style are
defined

Based on the assumption that future service
providers are conforming to some syntactical domain
standards (e.g. OPC UA for industrial devices), one
central challenge is the automation of device integration
based on heterogenous service and data semantics.
A conceptual self-adaptive bus system architecture
that supports automated component composition is
illustrated in Figure 3. The central architectural
elements needed are sorted according to different layers:

• On the Technical Integration Layer, the concrete
interfaces of devices are connected on the basis
of their communication protocol with the bus
communication channels (e.g. REST or HTTP
for Web Services and SQL or MQTT for data
sources)

• On the Virtual Data Management Layer, the
different local data schemes from various data
sources are integrated

• On the Virtual Service Engineering Layer, two
types of services reside: The first one is an atomic
service that can directly invoke a proprietary
service running on a device. The second type of
service is a complex service. This means, that
such a service can be composed of other existing
services or is subject to adaptation logic to fulfill
a user goal.

• On the Data and Service Requester Layer,
services can be accessed by the platform user in
order to realize a certain need or a goal.

At the technical integration layer, additional formal
interface descriptions are plotted. Although such
semantic service descriptions are not commonly used
in practice, they may still be present. If there exists

Page 7476



Figure 5. Mapping-Assistant for System Integrators

a symmetrical mapping between interface description
as well as the provided interface functionality, then
such descriptions are an additional valuable information
source for the presented KDAC approach [7]. It
was shown that the usage of this integration method
can improve the matching result for semantic service
matchers such as SAWSDL-MX [8] significantly.

Consequently, our main technological contribution
will be focusing on the technical integration layer and
its upstream effects on the proposed architecture (i.e.
IoT-Device integration). Downstream effects such as
user goal realization or service composition will not be
focused for the remainder of this paper.

As a first prototypical evaluation, we will showcase
the impact of our method by outlining the integration
process for our motivating example within a simple
case study. Furthermore, we will illustrate how
the architectural elements Integration Knowledge
Repository and Mapping-Runtime can be utilized by
other processes during the adaptation life cycle (c.f.
Figure 2). In addition, we will outline how our
central theme of incomplete and evolutionary defined
integration knowledge can be exploited by control loops.

3.1. Case Study IoT-Device Integration

An IoT-device, such as a drill, typically offers
ways to access its information model and execute
device-specific functionality. Typically, for sensing
purposes values of information model elements such

as torque can be read (c.f. Figure 1). For executing an
action, at least one value must be written or one function
(c.f. Service Layer in Figure 1) must be invoked.

In our use case, the following communication
scenarios serves as a basis. There exists a drill device
with the information model plotted in Figure 1. An iron
rod is placed on the working area and the drill starts
drilling a hole inside the rod. After the drilling process
is finished, a message with the specific parameters used
should be sent to a Manufacturing Execution System
(MES). In this case, information elements offered by
the drill can be accessed via OPC UA and the MES
System offers a TCP/IP interface that can be fed with
domain-specific XML telegrams. An XML telegram
including several device parameters should be sent
to the MES as soon as the value of the trigger item
partProcessed is set by the drill device to true. For
implementing the knowledge-base, we have chosen the
OWL-DL language and used the HermiT 1.3 reasoner
as a validation and reasoning engine. Hence, the IoT
device provides a domain-specific functionality and the
MES system requests a use-case specific information
chunk. Regarding the proposed integration approach,
the following steps must be taken (c.f. Figure 2).

At t=0, a system integrator must define the sketched
integration scenario within the knowledge base. If
the needed relationships are not defined within the
ontology, the system integrator must define them using
the Mapping Assistant (see Figure 5). Here, a new

Page 7477



Figure 6. Overview Web App for Shopfloor Integration

<trigger, event> pair is defined as:

IF valueOf(trigger Item) OPERATOR trigger value
THEN Event(requestItem [], responseItem [])

Next, the system integrator must translate each
needed information model element within the use-case
into individuals of the type triggerItem, requestItem
and responseItem (see Figure 4): In our example, it
is sufficient to transfer the information model elements
partProcessed:triggerItem and diameter:requestItem as
well as distance:requestItem as individuals.

At t=1, the use-case should be extended by also
sending the requestItem torque within the event to the
MES systems. However, the domain-specific MES
telegram defines the torque as speed. Hence, the system
integrator defines speed as an equivalent class of torque
and reuses the existing integration knowledge.

At t=n, already integrated interfaces for the
communication style trigger-event can be automatically
reused by matching the device specific type IDs as well
as their information and service model elements with a
syntactical matcher.

When discussing our Mapping-Assistant with
domain experts from our research project, it quickly
appeared that the introduced tool may still be too
complex for integrating a new device intuitively.
Hence, we designed an additional input application
for formalizing integration knowledge. Here, we
used a progressive web application framework (i.e.
IONIC) that only allows to add individuals to an
existing ontology without allowing for adding new
structural elements (see Figure 6). A benefit of such
a progressive web-application is that it can be easily
compiled to native-code for all known mobile devices
(e.g. running on a tablet or a laptop). Hence, during

Figure 7. Message sent over Bus

the integration iterations within the KDAC process this
tool can also be used to perform some integration work
at the Shopfloor incrementally without changing any
code. Practically, this means that the system integrator
can deploy changes to the Integration Knowledge
Repository. After all files are updated in this repository,
the Mapping-Runtime parses the OWL-File and
provides the formalized integration knowledge during
runtime for other interested architectural components.
To conclude our use-case, the message being sent to
the MES after all request values have been retrieved or
derived is illustrated in Figure 7.

Please note that the proposed integration process
must be performed in addition to connecting the services
on a technical and syntactical level (i.e. implementing
an adapter). Please notice further, that the bus used
does not provide any means neither for integrating new
IoT services automatically nor the possibility to search
for manually defined integration knowledge. This is
also due to the fact that the ontology schema is highly
driven by the use-case and not driven by any community

Page 7478



standard. A rational for doing so is the intuitive
applicability of logic-based languages within the IoT
domain.

3.2. Related Work

Future self-adaptive systems must deal with
adaptation strategies in decentralized settings and with
unanticipated changes. Here, the Internet-of-Things
serves as a new application opportunity for this system
class. However, dealing with unanticipated changes
within such system combinations is still a challenge
yet to be solved. Therefore, we position the proposed
method as a necessary pre-stage to enrich self-adaptive
systems with knowledge.

Other research communities have already produced
valuable solutions for interface matching, automated
integration technologies and adaptation mechanisms [9].
As we cannot provide a concluding literature overview,
we will focus on sketching possible solutions for our
motivating IoT-Interface example (c.f. Figure 1) from
different research perspectives.

The MAPE-K control loop can be regarded as
the state-of-the-art for performing adaptation plans.
From an engineering perspective, there must be a
human-in-the-loop to create and maintain suitable
models [2]. Here, the proposed method can help to
formalize atomic ¡condition, event¿ pairs already during
device integration which then can be used to enrich
shared knowledge bases utilized by MAPE-K control
loops.

Within the knowledge engineering community,
evolutionary extending knowledge-bases by using
incremental formalization techniques is not new [10].
As early as in 1994, it was described that it is
hard to transform informally described knowledge into
machine-readable knowledge. Here, the focus was to
transform the former into the latter one. In our example,
this would result in a tool where one can insert use-case
specific <condition, adaptation plans> with natural
language. However, their application case was not the
integration of IoT-devices.

IoT interfaces can conceptually be linked to
component-based software development [11]. Like
physical IoT devices, a software component does
provide functionality realized by software and hardware
through an interface. Hence, syntactic matching
approaches [12] can be used to determine whether
a required interface matches a provided interface.
Another approach would be to search for the specific
adapters needed to bridge between two endpoints [13].
Regarding our example, one can view the services and

information models as a search specification that can
be fed to a matching system. However, such systems
usually only provide a probabilistic result which may
result in undesired effects for IoT actors in the physical
world [12].

SOAP-based systems [14] and (semantic) web
service descriptions [8] do expose mechanism to
coupled services during runtime. These systems require
each service to be defined in an additional interface
description file which is attached to each device.
In our example, this would result in the definition
of additional interface descriptions (e.g. using the
SAWSDL language ). However, such approaches
need a special runtime environment and also inherit a
high formalization effort for IoT- device manufacturers.
As argued earlier, IoT device manufacturers do not
have a clear incentive to do so. In the case of
Web Services, annotating web services with tags
would be a minimalistic way of providing an interface
description unfortunately, such tags are only beneficial
for search engines optimized for humans and contain no
unambiguous semantics.

Last, the software architecture community has
recently come up with a reference architecture for fast
self-commissioning of for industrial IoT-systems in
process automation [15]. Although commissioning
times could be reduced to a few seconds across vendor
products, they rely on the assumption that all vendors
conform to standardized models such as PLCOpen on
every layer (c.f. Figure 1). However, this approach may
be feasible in the context of safety-critical systems such
as the AUTOSAR platform.

Overall, the dichotomy between machine-readable
formalization effort and the potential benefit of
automated integration and adaptation strategies for
self-adaptive systems must be tackled. As a potential
solution, we will now describe potential impacts of
using our method for self-adaptive service systems in
the next section.

3.3. Perspectives on Self-Adaptive Service
Systems

Nowadays, marketplaces for data and services
already exist for various domains [16]. By applying the
Knowledge-driven Architecture Composition approach
on self-adaptive systems conceptually, we took the first
technical step towards reusing integration knowledge
within the IoT domain. As a key result, the overhanging
incompleteness claim for formalizing integration
knowledge bases from bottom-up is technically feasible
for self-adaptive service systems.

Page 7479



Another perspective on self-adaptive IoT systems
deals with proprietary data and service semantics.
Regarding the integration of new devices, most platform
operators require system integrators to conform
with predefined platform adapters (e.g. redlink or
Hub-of-all-Things ). Unfortunately, these adapters
do not offer practical possibilities to document the
semantic relations between the proprietary service
provider and the service requester. This is due to
the circumstance that both, (sensor) data and (web)
services only contain weak semantics (i.e. ambiguous
and informal semantic descriptions). For example,
IoT data typically resides on a low abstraction level
meaning that the expressiveness of a single data point
itself is rather limited [9][17]. One central observation
from our case study was that information models and
services offered by IoT-devices are highly interlinked.
The assumption of stateless services, which does hold
for most web-services, does not hold in our use case.
Hence, the state of an IoT-device may be changed
by setting a value of a model element or by calling a
function. The former originates from embedded and
the latter one from software system design. Here, other
semantic relationships must be captured.

Shifting from a revolutionary way of defining
adaptation rules towards an evolutionary way seems
promising for self-adaptive service systems. Among
other reasons, the decentralized development and
availability of IoT-devices also challenges the way
how adaptation plans for control loops are formalized.
Regarding the sketched knowledge-base, such atomic
¡condition, event¿ rules can serve as a sound basis for
more abstract adaptation scenarios.

Another central observation when applying the
KDAC approach was that the SPARQL-query became
the bottleneck for runtime adaptations. If a new
structural element or relationship is inserted into the
OWL-DL ontology, which is not a subclass or a
formula conversion, the queries will not return all
individuals. This is mainly because the reasoner cannot
infer all individuals at runtime. Here, the system
integrator must adapt the SPARQL-Queries within the
Mapping-Assistant. This requires additional skills and
may result in code changes as new types are returned by
the query itself.

4. Next Steps and Future Challenges

Based on the presented architectural influences
on future self-adaptive IoT service systems by using
our incremental integration method, we are currently
planning future technical as well as conceptual
improvements towards enabling smart application

development in the context of Smart Cities. In this
section, we will elaborate on some of the next steps that
we plan to take.

Challenge 1 is an extended empirical evaluation
of our method within a self-adaptive service system.
Therefore, we plan to extend the DAiSI platform
[18] with the introduced architectural elements and
demonstrate that the KDAC approach efficiently helps
to build up a shared knowledge base without relying
on predefined integration standards. Another objective
of this evaluation will be the usage of formalized
integration knowledge to fulfill user goals dynamically
with control loops.

Challenge 2 will be to fan out the human within
the proposed integration method. Especially in the
beginning, the human must perform additional work
other than implementing software adapters. Hence,
as soon as enough integration cases are present, the
human must again fan out of the process and automated
integration should take over. It must be methodically
ensured that this turning point is reached as early as
possible.

Lastly, challenge 3 deals with the usability of our
method when integration knowledge is missing for
an integration case. Here, a suitable recommender
system must point out the integration mappings
needed between decentralized developed ontologies and
integrated IoT-devices. However, there already exist
promising approaches by the semantic web community
that can be utilized in order to calculate (c.f. Sudoku
metaphor) missing links between semantic models
efficiently [19].

5. Conclusion

In this work we have introduced a conceptual
self-adaptive system architecture for services and data
sources in the context of the Internet-of-Things.
Next, we discussed the applicability of an
incremental integration method called knowledge
driven-architecture composition (KDAC). In particular,
we showed that the KDAC method can be utilized
to fill knowledge-bases in an evolutionary instead of
revolutionary way. The formally gathered integration
knowledge explicitly allows for incomplete integration
knowledge without loosing the ability to be automated
in the long run. Therefore, we introduced two tools
and exemplified the proposed integration approach
in the context of a self-adaptive system and a case
study. We conclude that self-adaptive service systems
are a promising candidate for further research. A
more elaborate empirical evaluation will potentially

Page 7480



prove that the KDAC approach can efficiently fill
knowledge-bases utilized by feedback and control
algorithms.

Acknowledgement

This work was supported by the BMVI project
xDataToGo (http://www.bmvi.de/goto?id=359354)
under the support code 19F2048D.

References

[1] N. F. Noy, “Semantic Integration: A Survey of
Ontology-based Approaches,” SIGMOD Rec., vol. 33,
pp. 65–70, Dec. 2004.

[2] P. Arcaini, E. Riccobene, and P. Scandurra,
“Modeling and Analyzing MAPE-K Feedback Loops
for Self-adaptation,” in Proceedings of the 10th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’15,
(Piscataway, NJ, USA), pp. 13–23, IEEE Press, 2015.

[3] A. Meddeb, “Internet of things standards: who stands
out from the crowd?,” IEEE Communications Magazine,
vol. 54, pp. 40–47, July 2016.

[4] F. Burzlaff and C. Bartelt, “I4.0-Device Integration:
A Qualitative Analysis of Methods and Technologies
Utilized by System Integrators: Implications for
Enginering Future Industrial Internet of Things System,”
in 2018 IEEE International Conference on Software
Architecture Companion (ICSA-C), pp. 27–34, Apr.
2018.

[5] M. U. Iftikhar, G. S. Ramachandran, P. Bollanse,
D. Weyns, and D. Hughes, “DeltaIoT: A Self-adaptive
Internet of Things Exemplar,” in Proceedings of the
12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’17,
(Piscataway, NJ, USA), pp. 76–82, IEEE Press, 2017.

[6] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron, “A Classification Framework for Software
Component Models,” IEEE Transactions on Software
Engineering, vol. 37, pp. 593–615, Sept. 2011.

[7] F. Burzlaff, C. Bartelt, and u. L. Adler, “Towards
automating Service Matching for Manufacturing
Systems: Exemplifying Knowledge-Driven Architecture
Composition,” Procedia CIRP, vol. 72, pp. 707–713,
Jan. 2018.

[8] M. Klusch, P. Kapahnke, and I. Zinnikus,
“SAWSDL-MX2: A Machine-Learning Approach
for Integrating Semantic Web Service Matchmaking
Variants,” in 2009 IEEE International Conference on
Web Services, pp. 335–342, July 2009.

[9] P. Anantharam, P. Barnaghi, and A. Sheth, “Data
Processing and Semantics for Advanced Internet of
Things (IoT) Applications: Modeling, Annotation,
Integration, and Perception,” in Proceedings of the 3rd
International Conference on Web Intelligence, Mining
and Semantics, WIMS ’13, (New York, NY, USA),
pp. 5:1–5:5, ACM, 2013.

[10] F. M. Shipman, III and R. McCall, “Supporting
Knowledge-base Evolution with Incremental
Formalization,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’94, (New York, NY, USA), pp. 285–291, ACM,
1994.

[11] T. Vale, I. Crnkovic, E. S. de Almeida, P. A.
d. M. Silveira Neto, Y. C. Cavalcanti, and S. R.
d. L. Meira, “Twenty-eight years of component-based
software engineering,” Journal of Systems and Software,
vol. 111, pp. 128–148, Jan. 2016.

[12] M. C. Platenius, Fuzzy matching of comprehensive
service specifications. PhD thesis, Universittsbibliothek,
Paderborn, 2016.

[13] W. Janjic, O. Hummel, and C. Atkinson,
“Reuse-Oriented Code Recommendation Systems,”
in Recommendation Systems in Software Engineering
(M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann, eds.), pp. 359–386, Springer Berlin
Heidelberg, 2014.

[14] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer,
Simple object access protocol (SOAP) 1.1. Jan. 2000.

[15] H. Koziolek, A. Burger, and J. Doppelhamer,
“Self-Commissioning Industrial IoT-Systems in Process
Automation: A Reference Architecture,” in 2018 IEEE
International Conference on Software Architecture
(ICSA), pp. 196–19609, Apr. 2018.

[16] F. Stahl, F. Schomm, L. Vomfell, and G. Vossen,
“Marketplaces for digital data: Quo vadis?,” Working
Paper 24, Working Papers, ERCIS - European Research
Center for Information Systems, 2015.

[17] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-Based
Big Data Storage Systems in Cloud Computing:
Perspectives and Challenges,” IEEE Internet of Things
Journal, vol. 4, pp. 75–87, Feb. 2017.

[18] H. Klus, A. Rausch, and D. Herrling, “DAiSIDynamic
Adaptive System Infrastructure: Component Model and
Decentralized Configuration Mechanism,” tech. rep.,
IARIA, 2014.

[19] C. Meilicke, “Alignment Incoherence in Ontology
Matching,” 2011.

Page 7481


