
A Proxy Voting Scheme Ensuring Participation Privacy and
Receipt-Freeness

Oksana Kulyk
Karlsruhe Institute of Technology

oksana.kulyk@kit.edu

Melanie Volkamer
Karlsruhe Institute of Technology

melanie.volkamer@kit.edu

Abstract

Proxy voting is a form of voting meant to support
the voters who want to delegate their voting right to a
trusted entity, the so-called proxy. Depending on the
form of proxy voting, the proxy is either authorized to
cast a ballot for the voting option that the voter chooses,
or to vote according to her own wishes, if the voter is
not sure how to vote and wants to delegate the decision
making in the election. While the first form of proxy
voting has been applied to traditional elections in order
to support the voters who are unable to physically get
to a polling station, the second form has been a topic of
research in Internet voting. Recently, an Internet voting
scheme has been proposed, that extends the well-known
Helios scheme towards the functionality of proxy voting.
This scheme, however, also has the drawbacks of Helios
regarding participation privacy and receipt-freeness. As
such, the information whether any voter participated in
the election either by casting a direct vote or delegating
their vote can be deduced from the published information.
The scheme furthermore allows both the voters and the
proxies to create receipts that prove casting a ballot
for a specific candidate, as well as allows the voters
to create receipts that prove delegating to a specific
proxy. In this work we use the idea of dummy ballots,
proposed in another extension of Helios to extend the
proxy voting scheme towards participation privacy and
receipt-freeness.

1. Introduction

Well-established forms of voting, such as direct
democracy, rely upon the principle of “one voter – one
vote”. The voter is entrusted to make an informed
decision by choosing a candidate or a voting option
that she wants to support in the election, and to vote
via casting her ballot directly during the election. As
an alternative to such direct voting, the concept of proxy
voting has been introduced, where the voter can appoint a
trusted entity, the so-called proxy, to vote on this voter’s

behalf. Proxy voting can serve several purposes. As
such, in traditional elections in some of the countries
such as Belgium, the voters can vote via proxy if they
are physically unable to get to a polling station. The
proxy is then assumed to cast a ballot according to the
voter’s wishes. A further application of proxy voting
has been designed to support the voters who might feel
overwhelmed with making a decision on how to vote in
the election. Hence, by appointing a proxy (who might be
a friend, a relative or a trusted expert), the voter delegates
her voting right in the election to this proxy. The proxy
can then use this delegation to cast a ballot according to
her own wishes on behalf of the voter.

As Internet voting has been gaining attention in both
research and practical applications in real-world elections
[1], a number of Internet voting schemes have also been
designed to support the latter case for proxy voting [2,
3, 4, 5]. In particular, one of these schemes [5] extends
the well-established Internet voting scheme, Helios [6],
towards proxy voting functionality. The scheme in [5]
preserves the security properties and user experience of
Helios. At the same time, however, it also inherits the
privacy weaknesses of Helios. As such, it does not ensure
participation privacy, as the identities of the voters who
participated in the election, as well as of the voters who
delegated their vote1 are published. Furthermore, the
voters in [5], as well as in Helios, are capable of creating
receipts that prove to a third party how they voted. This
enables vote selling due to the lack of receipt-freeness.
The extension in [5] enables the voters to create similar
receipts that prove that they delegated to a specific proxy.

Our contribution is addressing these weaknesses and
proposing an Internet voting scheme for proxy voting
that ensures participation privacy and receipt-freeness. In
particular, we use the idea of dummy ballots introduced
in the Helios extension that has been proposed in [7]
and its security proven in [8, 9]. Our extension ensures

1Note that some versions of Helios ensure participation privacy
by using pseudonyms instead of voter identities. However, such an
approach comes with a cost of eligibility verifiability, since the entity
assigning the pseudonyms should be trusted to assign them only to
eligible voters.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59721
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 2842

participation privacy by hiding the information, whether
a given eligible voter participated in the election, cast her
ballot directly or delegated to some proxy. It furthermore
ensures receipt-freeness by preventing the voters and the
proxies from creating receipts that prove that they voted
for a specific voting option, and by preventing voters
from creating receipts that prove that they delegated to a
specific proxy.

2. Security Requirements

In this section we outline the security requirements
we aim to ensure in our work. We base this list on the
previous work in [5] with the addition of the requirements
of participation privacy and receipt-freeness.

We first provide the list of requirements that are not
specific to the delegation.

Vote privacy The voting system should not provide
any information to establish a link between the voter
and her vote, aside from what is available from the
election result. Furthermore, the voter should be unable
to create a receipt that proves that she voted for a specific
voting option (receipt-freeness). Note that we do not
consider cases of forced abstention, whereby the voter
is requested to provide proof to the adversary that she
did not participate in the election or cast an invalid ballot.
We only consider cases where voters are requested to
provide a proof for voting for a particular voting option.

Eligibility Only the ballots cast by eligible voters should
be included in the tally.

Vote integrity All the cast ballots should be correctly
processed and included in the tally result.

Availability It should be possible to compute the
election result, even if some of the components of the
voting system are faulty.

Participation privacy The voting system should not
reveal whether a given voter has abstained, cast a direct
ballot or delegated in the election.

Note that ’vote privacy’ and ’vote integrity’ should
also hold for proxies casting delegated ballots.

The next set of requirements concerns the security of
the delegation process.

Delegation eligibility The proxy should only be able to
cast delegated ballots on behalf of eligible voters.

Delegation integrity A proxy should only be able to
cast a delegated ballot on behalf of the voter, if this voter
has authorized the proxy to do so.

Delegation integrity for proxies The valid votes cast
by proxies are correctly included in the final tally.

Delegation privacy The voting system should not
provide any information to establish a link between
the delegating voter and the voter’s chosen proxy.
Furthermore, the proxy herself should not be able to
tell which voter has delegated to her. Furthermore, the
voter should not be able to create a receipt that proves
that she delegated to a specific proxy (receipt-freeness).2

Delegation power privacy The voting system should
not provide any information about the delegating power
of a proxy, i.e. the number of eligible voters who
delegated to this proxy.

3. Background

In this section we describe the background
information required for the understanding of our scheme.

3.1. Cryptographic primitives

We first describe the cryptographic primitives used in
our scheme. For encrypting the data in our scheme, the
ElGamal cryptosystem[10] is used, with Encpk(r,m)
denoting an encryption of the plaintext m given public
key pk and randomness value r. The ciphertexts
are decrypted via threshold verifiable distributed
decryption, as described by Pedersen [11].

We furthermore use a variety of zero-knowledge
proofs, such as the proof of discrete logarithm
knowledge [12]. We furthermore use the techniques as
described in [13] for constructing disjunctive proofs that
prove the validity of one out of several statements without
revealing the information on which statement is true, and
the generalized techniques in [14] for constructing proofs
of general statements about discrete logarithms. In the
paper, we use the following notation: given an example
for proving the knowledge of discrete logarithm x =
logg h for public parameters g, h and secret x, the proof
of knowledge π is denoted as π = PoK{x : gx = h}.
The non-interactive proofs are constructed with strong
Fiat-Shamir heuristic as described in [15].

For checking whether two ciphertexts encrypt the
same plaintext without revealing any further information
about them, plaintext equivalence tests (PETs) [16] are
used. The test PET(c1, c2) performed by several entities
in a distributed way and outputs 1 if c1 and c2 encrypt
the same plaintext, and a random value otherwise.

2Note that the relevance of this requirement might differ depending
on the election setting. We include it in our work, considering the
settings where it might be considered a breach of privacy if it becomes
known to a third party, which proxy the voter trusts. Furthermore, the
voter’s inability to create receipts that prove voting for a specific proxy
would prevent the forms of voter coercion, where the voter is forced
or persuaded to delegate to a malicious proxy, e.g. as a threat or in
exchange for a monetary reward.

Page 2843

In order to anonymize the list of ciphertexts before
decrypting, a mix net shuffle is used, ensuring that the
link between the ciphertexts in the input list c1, ..., cN
and the shuffled output list Mix(c1, ..., cN) = c′1, ..., c

′
N

remains secret. The same approach can be used for
mixing the tuples of ciphertexts c̄1, ..., c̄N with c̄i =
(ci,1, ..., ci,k). In order to prove that the ciphertexts have
not been manipulated during mixing, the proof of shuffle
validity (e.g. as proposed in [17]) is used.

3.2. Proxy Voting Scheme in [5]

We now describe the scheme that extends Helios [6]
towards proxy voting functionality as proposed in [5].

Setup The voters submit their public signing keys pki
that are published on the bulletin board. Futhermore,
each voter idi prepares a set of T delegation credentials
gxi , with the secret delegation keys xi known only to
the voter herself3. These delegation credentials are also
published on the bulletin board next to the voter identities.
The tabulation tellers generate an ElGamal election key,
the public part of which pk = (g, h) is also published on
the bulletin board. Futhermore, the list of valid voting
options {v1, ..., vL} is published.

Delegating In order to delegate her vote, the voter idi
computes a so-called delegation token by encrypting
her delegation credential gxi as cd = (ad, bd) =
Encpk(rd, g

xi). She furthermore computes σ =
gm of a randomly chosen value m ∈ Zq and a
non-interactive signature of secret key knowledge on
σ, πd = PoK{(rd, xi) : ad = grd ∧ bd =
gxihrd}(σ)4. The purpose of πd is to prevent a violation
of delegation integrity whereby a third-party delegates on
behalf of the voter by taking the published delegation
credential gxi without knowing xi. Note that while
a third-party can construct a delegation token for an
arbitrary value gx

′
with randomly chosen x′, such a

token will be discarded during tally unless gx
′

is in
the list of published delegation credentials gxi from
eligible voters. Incorporating σ into πd furthermore
prevents a non-authorized proxy from using the resulting
delegation token to cast a delegated vote for idi. The
values (σ,m, cd, πd) then serve as a delegation token,
with (σ, cd, πd) as public and m private. The delegation
token (σ,m, cd, πd) are sent to the voter’s chosen proxy
over a private anonymous channel.

3The scheme in [5] also allows the voter to delegate to multiple
proxies with different priorities by using several delegation credentials
gxi,j for each voter; however, for the sake of simplicity, we describe
the scheme where each voter has only one priority.

4The construction of πd is described in [5].

Voting For casting a direct ballot, the voter idi
encrypts her chosen voting option as (a, b) =
Enc(pk, vi)

5. For casting a delegated ballot, the proxy
encrypts her chosen voting option vi as cv = (av, bv) =
Encpk(r, vi) for some randomness r, and computes the
zero-knowledge proof πv = PoK{m ∈ Zq : σ = gm}.
The proof πv is meant to ensure that the proxy knows
the private part of the corresponding delegation token
m, hence, was authorized to delegate by the voter who
submitted the delegation token (σ, cd, πd). The tuple
(σ, cv, πv, cd, πd), which includes the public part of
the delegation token and the delegated ballot, is then
submitted by the proxy to the bulletin board over an
anonymous channel. If the voter changes her mind
after delegating, she cancels her delegation by casting
a direct ballot.

Tallying During the tallying, the delegated ballots cast
by the proxies are first processed by the tabulation
tellers. The ballots with non-valid proofs are removed,
and the ballots cast using the same delegation token
are processed according to vote updating policy6 and
the remaining tuples are processed through a mix net
with each tabulation teller acting as a mix node. The
delegation credentials cd attached to the anonymized
delegation ballots are jointly decrypted by the tabulation
tellers, and the ballots with either 1) invalid delegation
credentials (i.e. the ones not among the published
credentials gxi for an eligible voter idi), or 2) delegation
credentials from the voters who cast a direct vote, are
removed from further tally. The remaining delegated
ballots are being finally processed together with direct
ballots by anonymizing them, e.g. via applying a mix
net7, and the anonymized result is being jointly decrypted
by the tabulation tellers.

The scheme in [5] relies on the following assumptions
to ensure the security requirements described in
Section 2 with the exception of participation privacy and
receipt-freeness:

(A-PrivChannels) The channels between the voters and
the proxies are private and authenticated.

(A-AnonChannels) The channels between the voters
and the proxies, as well as between the proxies and the
bulletin board, are anonymous.

5As mentioned in [15], it is also advisable that the voter submits
a proof of plaintext knowledge, i.e. the knowledge of vi, in order to
prevent ballot-copying attacks.

6For example, given the “last vote counts” policy, all the ballots but
the latest one, cast using the same delegation token, are being removed
from further processing.

7Another variant of anonymizing the ballots, proposed in [5] as
well as in the later implementation of Helios [18] and in the original
protocol it was based upon [19], is the use of homomorphic tallying
approach, which, for the sake of simplicity, is not described in this
paper.

Page 2844

(A-ProxySemiHonest) The proxies are semi-honest,
meaning that they do not deviate from the protocol.

(A-TabTellerHonest) More than half of tabulation
tellers are honest and capable of communicating with
each other and the bulletin board.

(A-VotDeviceLeakage) The voting devices of the
voters as well as those of the proxies do not leak
information to an adversary.

(A-NoBBModification) The bulletin board does not
remove or modify the data that is published on it.

(A-BBConsistency) The bulletin board shows the same
contents to everyone.

(A-NoCoercion) Coercion or vote selling do not occur.

(A-CompRestricted) The adversary is computationally
restricted.

(A-Verify) The voters and the proxies perform the
verifications available to them within the system.

(A-VerDeviceTrusted) The verification devices of both
voters and proxies are trustworthy.

(A-VotRegister) The voting register with the eligible
voters public signing keys is trustworthy.

3.3. Privacy Improvements of Helios in [8, 7]

The idea of the extension in [8, 7] is to use the
so-called dummy ballots cast by the posting trustee
in order to obfuscate the presence of ballots cast by
voters, ensuring participation privacy or receipt-freeness
(by allowing voters to update their vote via casting an
additional ballot without the adversary noticing). These
dummy ballots are designed to be indistinguishable from
non-dummy ballots while having no effect on the tally
result. The scheme in [8, 7] runs as follows:

Setup The public signing keys of eligible voters are
published on the bulletin board. The tabulation tellers
jointly generate the election key, the public part pk =
(g, h) of which is published as well, together with the list
of valid voting options {v1, ..., vL}.

Voting In order to cast her ballot, the voter idi
encrypts her chosen voting option as (a, b) = Encpk(r, v)
for some randomness r. She further computes the
so-called eligibility proof: given s as a valid signature
on (a, b) with a corresponding public signing key pki,
the voter computes the proof of knowledge π as π =
PoK{s, r : VerifySign(pki, s, (a, b)) = 1 ∨ gr =

a ∧ hr = b}. Thereby, VerifySignpki, s, (a, b) signifies
the function of verification of a digital signature. The
proof is computed using the proof of discrete logarithm
equality [20] and proof of signature knowledge [21],
combined using the technique of disjunctive proofs
[13]. Hence, only given the possession of the valid
signature s, the proof for a non-dummy vote (i.e. for
a ciphertext encrypting v 6= 1) can be computed. The
values idi, (a, b), π are sent by the voter to the bulletin
board over an anonymous channel. The purpose of the
anonymous channel is to disguise, whether the ballot
comes from the voter idi herself or from a posting trustee
casting a dummy ballot on behalf of the voter.

For each eligible voter idi, the posting trustee casts
a random number of dummy ballots. Namely, the
posting trustee computes (a, b) = Encpk(r, 1) for some
randomness r and the eligibility proof π as described
above, using the public signing key pki. Note, as (a, b)
encrypts a dummy vote, the posting trustee no longer
requires the knowledge of s in order to compute π.

If the voter wants to update her vote from the voting
option vA to vB , she computes and submits a new ballot
encrypting vB/vA.

Tallying The ballots next to each voter id are being
multiplied, resulting in the list of final ballots c1, ..., cN .
Note that due to additively homomorphic property of
ElGamal, the final ballot for each voter encrypts the
product of all the votes submitted by the voter, and as the
dummy ballots encrypt a dummy vote (i.e. 1), they do
not affect the content of the final ballot. The final ballots
are being shuffled via mix net by the tabulation tellers.
Finally, for each anonymized ciphertext c, the plaintext
equivalence tests are being applied to check whether c
encrypts a valid voting option vi ∈ {v1, ..., vL}. In case
a match is found via PETs, the corresponding voting
option is output, otherwise c is counted as a dummy vote
and discarded from the tally.

The scheme in ensures the security requirements
outlined in Section 2 under the following assumptions8:

(A-TabTellerHonest) More than half of the tabulation
tellers are honest.

(A-PosTrusteeHonest) At least one posting trustee is
honest.

(A-VotDeviceLeakage) The voting devices used by the
voters do not leak information to an adversary.

(A-NoBBModification) The bulletin board does not
remove or modify the data published on it.

8A more detailed specification of the assumptions together with the
corresponding security proofs is provided in [8, 9].

Page 2845

(A-BBConsistency) The bulletin board shows the same
contents to everyone.

(A-CompRestricted) The adversary is computationally
restricted.

(A-Verify) The voters perform the verifications which
are available to them within the system.

(A-VerDeviceTrusted) The verification devices of
voters are trustworthy.

(A-VotRegister) The voting register with the list of
eligible voters public signing keys is trustworthy. If
the voters’ public keys are only available on the
bulletin board, the assumptions (A-NoBBModification,
A-BBConsistency) are further required.

(A-AnonChannels) The channels between the honest
voters and the bulletin board, as well as between the
posting trustees and the bulletin board, are anonymous.

(A-NoForcedAbstention) Coercion in form of forced
abstention does not occur.

(A-NoUnknownPlaintext) The adversary does not cast
ballots on behalf of the voter which plaintexts the voter
does not know.

(A-HiddenVote) The voters have the possibility to cast
a ballot without being observed by the adversary.

(A-Unpredictable) The number of dummy ballots cast
by the posting trustee on behalf of the posting trustee is
unpredictable to the adversary.

The assumption (A-NoUnknownPlaintext), in
particular, is crucial for the design of the scheme in
[8, 7] in order to ensure that the voter can still vote for
her preferred voting option in case of coercion or vote
buying. If the assumption is not fulfilled, the voter can
change the ballot cast by an adversary to an invalid vote
without being noticed, but not to a vote for a specific
voting option of voter’s choice. Note that the assumption
can be ensured as long as the adversary does not have
access to the voter’s credentials (e.g. the eID smartcard)
used for casting the vote and as long as there is no
two-way communication between the adversary and
the voter during vote casting, which is unlikely for
large-scale vote buying.

4. Our Scheme

In this section we describe our proposed extension of
the scheme in Section 3.2 with the privacy improvements
of participation privacy and receipt-freeness.

4.1. Modifications

We first provide an overview of the modifications
introduced into our extension.

Posting Trustee and Dummy Ballots As in the
scheme proposed in [8, 7], our extension relies on the
so-called dummy ballots cast during the voting by a
special kind of entity, the posting trustee. The dummy
ballots in [8, 7] are designed to be indistinguishable
from non-dummy ballots and have no effect on the tally
result. They are meant to obfuscate the presence of
ballots cast by voters, ensuring participation privacy or
receipt-freeness (by allowing voters to update their vote
via casting an additional ballot without the adversary
noticing). In the extension proposed in this paper, we
introduce dummy ballots both for direct ballots and for
the delegated ballots.

The dummy ballots for direct ballots are constructed
in the same way as described in Section 3.3. A similar
concept is applied to obfuscate the ballots cast by the
proxies. These dummy ballots are constructed in the
following way. We modify the proofs πd and πv that are
attached to the delegation token and the corresponding
delegated ballot. Namely, the proof πd should enable
the posting trustee to construct dummy delegation tokens
with the credentials gxi without knowing xi; however,
these dummy tokens should only enable casting dummy
votes. For this purpose, we require an independent
generator ĝ, so that logg ĝ is unknown. The delegation
token on behalf of the voter idi (computed either by
the voter herself or by the posting trustee) consists of
the following values: (1) a ciphertext cd = (ad, bd) =
Encpk(rd, g

xi), (2) a value σ = ĝm or σ = gm for
a random m, (3) a proof of knowledge πd as πd =
PoK{(rd, xi,m) : σ = ĝm ∨ ad = grd ∧ bd = gxihrd}.

Given that only the voter knows the value of xi, only
she can cast delegation tokens using σ = gm, while the
posting trustee has to set σ = ĝm in constructing her
tokens. The proof is provided in Algorithm 1.

For casting a delegated ballot cv = (av, bv)
corresponding to the delegation token (σ, (ad, bd), πd),
then, the proxy or the posting trustee computes a proof of
knowledge πv = PoK{(rv,m) : av = grv ∧ bv =
hrv ∨ σ = gm}. The construction of the proof is
described in Algorithm 2. Since g and ĝ are independent
generators, and for a given σ one can only know the
value of either logg σ or logĝ σ, it follows that the dummy
delegation tokens can be only used to cast dummy votes,
i.e. (av, bv) = Encpk(rv, 1) for some randomness rv .

Our scheme requires casting a random number of
dummy ballots for both direct and delegated ballots.
The choice of a random distribution for determining

Page 2846

Algorithm 1 Proof of knowledge for constructing the
delegation token for the voter i

Private input: m, rd, xi ∈ Zq

Public Input: (g, h), (ad, bd) ∈ G2
q , σ, ĝ ∈ Gq

Proof:
w1, w2, w3, e

′ ← Zq

if (ad, bd) = (grd , gxihrd) then
t1 ← gw1 , t2 ← gw2hw1 , t3 ← σe′ ĝw3

else
t1 ← ae

′
d g

w1 , t2 ← ae
′

d g
w2hw1 , t3 ← ĝw3

end if
e← H(σ||ĝ||g||h||ad||bd||t1||t2||t3)
if (ad, bd) = (grd , gxihrd) then

e1 ← e− e′, e2 ← e′

s1 ← w1 − rde1, s2 ← w2 − xie1, s3 ← w3

else
e1 = e′, e2 = e− e′
s1 ← w1, s2 ← w2, s3 ← w3 −me2

end if
πd ← (e1, e2, t1, t2, t3, s1, s2, s3)
Verification:
e← H(σ||ĝ||g||h||ad||bd||t1||t2||t3)
if ae1d g

s1 = t1∧be1d g
s2hs1 = t2∧σe2 ĝw3 = t3∧e1+e2 =

e then
Verify(πd) = 1

else
Verify(πd) = 0

end if

Algorithm 2 Proof of knowledge for constructing the
delegation token for the voter i

Private input: m, rv ∈ Zq

Public input: (g, h), (av, bv) ∈ G2
q , σ ∈ Gq

Proof:
w1, w2, e

′ ← Zq

if (av, bv) = (grv , hrv) then
t1 ← gw1 , t2 ← hw1 , t3 ← σe′gw2

else
t1 ← ae

′
v g

w1 , t2 ← be
′

v g
w2hw1 , t3 ← gw2

end if
e← H(σ||g||h||av||bv||t1||t2||t3)
if (av, bv) = (grv , hrv) then

e1 ← e− e′, e2 ← e′

s1 ← w1 − rve1, s2 ← w2

else
e1 = e′, e2 = e− e′
s1 ← w1, s2 ← w2 −me2

end if
πd ← (e1, e2, t1, t2, t3, s1, s2)
Verification:
e← H(σ||g||h||av||bv||t1||t2||t3)
if ae1v gs1 = t1∧be1v hs1 = t2∧σe2gw2 = t3∧e1+e2 = e
then

Verify(πv) = 1
else

Verify(πv) = 0
end if

this number influences the level of security the scheme
provides, as well as the efficiency of the scheme. We
refer to [8] for the analysis of how exactly the choice of
random distribution for the number of dummy ballots
influences the security of the scheme, as well as for some
of the numerical examples for particular distributions.

Note that the described constructions of the
zero-knowledge proofs do not require any credentials
from the posting trustee. Similar to the proposal in
[8, 7], this approach allows everyone, including the voters
themselves, to take over the role of the posting trustees,
thus extending the trust distribution of the scheme (recall
that the scheme in [8, 7] relies on the assumption that
at least one of the posting trustees is trustworthy). It,
however, has a downside, as allowing everyone to cast
dummy ballots could potentially lead to so-called board
flooding, thus hindering the efficiency of the election.
A possible alternative approach would be amending the
zero-knowledge proofs to include the proof of knowledge
for a secret credential of the posting trustee, if a dummy
ballot is cast. Choosing between the approaches would
require a careful consideration of an optimal trade-off
between efficiency and privacy, which is the topic of
future work. Hence, in this paper we consider the proofs
as described above, without requiring secret credentials
from the posting trustee.

Filtering Between Direct and Delegated Ballot We
consider a list of valid voting options V ⊂ Gq and a
predetermined value d ∈ Gq \ V ∪ {1} that indicates
that the voter chose to delegate her vote. We furthermore
require a function Filter : G4

q → Gq defined as follows:

Filter(c, c′) =

Dec(c) if Dec(c) ∈ V
Dec(c′) if Dec(c) = d

∧ Dec(c′) ∈ V
1 otherwise

This function can be implemented via PETs and mix
net shuffle and is performed by the tabulation tellers as
described in Algorithm 3. Its purpose is to filter the
ballots in the following way: given c as the encryption
of a voting option in a direct ballot c′ as the encryption
of a voting option in a delegated ballot from the same
voter, Filter outputs the plaintext of c if it is a valid vote,
the plaintext of c′ if the voter indicated that she delegates
by casting d and the corresponding proxy casts a ballot
for a valid voting option, and a dummy vote in all the
other cases. In case either c or c′ does not encrypt a valid
voting option, no further information is revealed about
the corresponding plaintext.

4.2. Description

The modified scheme can be described as follows.

Page 2847

Algorithm 3 Function Filter(c, c′)

Input: {v1, ..., vL}, d, c, c′

{c(v)1 , ..., c
(v)
L } ← Mix(Encpk(1, v1), ...,Encpk(1, vL))

for i = 1, ..., L do
if PET(c, c(v)i) = 1 then

return Dec(c)
end if

end for
if PET(c,Encpk(1, d)) = 1 then

for i = 1, ..., L do
if PET(c′, c(v)i) = 1 then

return Dec(c’)
end if

end for
end if
return 0

Setup The setup runs as described in Section 3.2.
The voters submit their public signing keys pki and
their delegation credentials gxi that are published on
the bulletin board. The tabulation tellers generate an
ElGamal election key, the public part of which pk =
(g, h) is also published on the bulletin board. Futhermore,
the list of valid voting options {v1, ..., vL}, the value
d 6∈ {v1, ..., vL} and a generator ĝ so that g, ĝ are
independent, are published.

Delegating The delegation occurs the same way as
in Section 3.2. The voter idi encrypts her delegation
credential gxi and computes σ = gm of a randomly
chosen value m ∈ Zq with the proof πd as described
in Section 4.1. She then sends the resulting delegation
token, i.e. the values (σ,m, (ad, bd), πd) to the voter’s
chosen proxy over a private anonymous channel. For the
sake of ensuring receipt-freeness for the proxies, the voter
is furthermore encouraged to submit a random number
of delegation tokens using the same gxi to her chosen
proxy9. In order to finalize her delegation, the voter casts
a direct ballot for d.

Voting Casting a direct ballot occurs as described
in [8, 7]. The voter idi encrypts her chosen voting
option as (a, b) = Encpk(r, vi) and a non-interactive
zero-knowledge proof π = PoK{s, r : a = gr ∧
b = hr ∨ VerifySign(pki, s, (a, b))}. The proof, also
described in [8, 7], is meant to show that either the cast
ballot encrypts a dummy vote, or the person who casts
it knows the valid signature of the voter idi. The voter
furthermore computes a proof of plaintext knowledge
πp = {r, v : a = gr ∧ b = vhr} as in [15].

Casting a delegated ballot occurs the same way
as in Section 3.2. The proxy encrypts her chosen
voting option as (av, bv) = Enc(pk, vi) and computes

9For the sake of better usability, this process can be automated by
the voting software.

the zero-knowledge proof πv = PoK{m ∈ Zq :
σ = gm} which serves as a proof of knowledge for
m and the proof of plaintext knowledge πp. The tuple
(σ, cv, πv, cd, πd, πp) is then submitted by the proxy to
the bulletin board over an anonymous channel.

As in [5], the delegation can be cancelled by the voter
via casting a direct vote for any voting option v 6= d.

In addition to the ballots cast by the voters and the
proxies, each posting trustee casts a random number of
dummy ballots10, both direct and delegated, on behalf
of each voter. The dummy ballot for a direct vote
is constructed the same way as in [8, 7]: the posting
trustee chooses an eligible voter idi, encrypts a dummy
vote as (a, b) = Encpk(r, 1) and computes the proof
π = PoK{s, r : a = gr ∧ b = hr ∨ Verify((a, b), ski)}
as well as the proof of plaintext knowledge πp. Note
that as (a, b) encrypts a dummy vote, the proof does not
require the knowledge of a valid signature by idi, and
due to its zero-knowledge property it is indistinguishable
from the proofs π submitted with the non-dummy ballots.
For delegated vote, the posting trustee computes the
proof as described in Section 4.1 by submitting a tuple
(σ, cv, πv, cd, πd) as a delegated ballot. Note, unless the
posting trustee knows the value of xi, she can only cast
delegated ballots with a dummy vote.

The voter can update her direct vote vA to vB by
casting an additional ballot for vB/vA, as in [8, 7]. The
proxy has two possibilities to update her delegated vote.
One possibility is to reuse one of her delegation tokens
and cast an additional ballot with the same token, so
that all but the last ballots with the same token will
be discarded. Alternatively, if the proxy wants to deny
updating her vote, she can use another delegation token
received from the voter during delegation. In the second
case, same as for updating a direct vote, the proxy
submits a delegated ballot for vB/vA if she wants to
change her vote from vA to vB .

Tallying During the tallying, the ciphertexts next to
each voter that represent her direct ballot are multiplied,
the same way as in [8, 7], forming a list of ciphertexts
c1, ..., cN that represent final direct ballots. The
delegated ballots are processed in the following way.
First, the ballots with non-valid proofs and all ballots
except latest one that was cast latest with the same
delegation tokens are removed. The remaining tuples
(cv, cd) are processed though a mix net. Afterwards,
the delegation credentials cd attached to the ballots are
decrypted. Then the delegated ballots cast using the same
delegation credential (which include dummy delegated
ballots) are multiplied, forming a list of tuples c′1, ..., c

′
N ,

10As mentioned in Section 4.1, we refer to [8, 9] for the ways to
decide how this random number is chosen.

Page 2848

representing the list of final delegated ballots. Thereby,
the ballots that are attached to an invalid delegation
credential, i.e. the ones that do not belong to any eligible
voter, are discarded similar to [5]. As a result, for
the voters id1, ..., idN a list of ciphertexts c′1, ..., c

′
N

is formed, whereby c′i denotes an encrypted voting
option cast in a delegated ballot for the voter idi, and
c′i = Encpk(r, 1) for some randomness r for the voters,
on which behalf no delegated ballots have been cast. The
tuples (ci, c

′
i) are further anonymized via mix net, and

afterwards the function f described in Section 4.1 is
applied in order to assign each tuple to either a valid
voting option or a dummy vote.

5. Security Evaluation

In this section we provide an informal security
evaluation of our extension11. We aim to show, that
our scheme relies on the same assumptions as in
Section 3.2 and Section 3.3, with the exception of
providing protection against vote or delegation selling
(i.e. receipt-freeness). We furthermore accept two
additional assumptions:

(A-DelBallotsUnpredicted) The number of dummy
ballots and of dummy delegated ballots on behalf of
each voter is unpredictable to the adversary. Note that
this assumption mirrors the assumption (A-Unpredicted)
in Section 4.1.

(A-DelTokensUnpredicted) The number of delegation
tokens sent by the voter with each delegation is
unpredictable to the adversary.

Vote privacy We first consider vote privacy for the
voters and the proxies who do not attempt to create
receipts to prove how they voted. The process of casting
a direct vote is the same as in the scheme in [8, 7], hence,
vote privacy is ensured under the same assumptions.
Similarly, the process of casting a delegated ballot is
the same as in [5], aside from the changes to the proof πd.
As the proof itself does not reveal any information on the
content of the ballot, vote privacy for delegated ballots is
preserved under the same assumptions as in Sections 3.2
and 3.3.

We now consider the receipt-freeness of our scheme.
As mentioned in Section 2, similar to [8], we consider
receipt-freeness as an inability for the voter to create a
receipt for voting for a specific valid voting option, hence,
excluding forced abstention. Both for voters and for
proxies, the receipt-freeness, similar to the approach in [8,

11Note that as we recognize the importance of formal security
evaluation of e-voting protocols, we consider providing such an
evaluation an important part of future work.

7], relies on the existence of a so-called counter-strategy,
that the voter (or, correspondingly, the proxy) should
apply in order to fake a receipt. Receipt-freeness implies,
that an adversary cannot tell whether a counter-strategy
has been applied, hence, distinguish between a real and a
fake receipt.

We first consider the receipt-freeness for direct
ballots. As in [8, 7], it relies on deniable vote updating:
when ordered to cast a ballot for the voting option v, the
voter casts an additional ballot for v′ − v, so that her
final ballot is included in the tally as a vote for v′. As
the process of casting a direct ballot is unchanged from
[8, 7], the inability of the adversary to guess, whether
there is an additional ballot updating her vote relies on
the same assumptions as in Section 4.1.

If the voter is requested to provide a receipt
for delegating to a specific proxy, the appropriate
counter-strategy would be to cancel her delegation
by casting a direct ballot. Given that the adversary
is unable to detect such a ballot (which is ensured
under the same assumptions as in Section 3.3 and
the assumption (A-DelBallotsUnpredicted)) and the
proper anonymization during tallying (ensured under
the assumption, that the majority of the tabulation
tellers is honest (A-TabTellersHonest) and the adversary
is computationally restricted (A-CompRestricted)),
receipt-freeness is ensured12.

We finally consider the receipt-freeness for the
proxies. Recall, that the proxy gets a random number
of delegation tokens from the voter. Hence, as long
as the adversary does not know the exact number
of delegation tokens (A-DelTokensUnpredicted), the
proxy can use one of them to deniably update her
vote, which would be undetected by the adversary
due to the presence of dummy delegation tokens
cast by the posting trustee during the voting
(A-DelBallotsUnpredicted). The proper anonymization
during tallying is furthermore ensured under the
assumptions (A-TabTellersHonest,A-CompRestricted).
Hence, receipt-freeness for proxies is ensured under
the same assumptions as in Sections 3.2 and 3.3
and the assumptions (A-DelTokensUnpredicted,
A-DelBallotsUnpredicted).

Eligibility The proof submitted with direct ballots
requires the knowledge of the voter’s private signature
key for submitting a non-dummy vote. Hence, given
public signature keys of eligible voters the soundness of
the proof ensures that the ballots that can influence the
tally result can only be send by the voters possessing the

12Note, while the voter would be able to cast her own direct vote
without the adversary knowing, she would be unable to delegate to a
different proxy. We consider removing this restriction a part of future
work.

Page 2849

corresponding private signature keys, which is ensured
under the same assumptions as in Section 3.3.

Vote integrity For direct ballots, the proofs ensure,
that the dummy ballots (i.e. the ballots not cast by the
voter herself) only contain a dummy vote that does not
influence the tally result. Following a similar argument,
the dummy delegated ballots only contain dummy votes
as well. The manipulation during tallying is furthermore
prevented by the validity proofs attached to the mix net
shuffle and to the PETs.

Availability As long as the contents of the bulletin
board are available after the voting has finished, a
threshold of tabulation tellers is required to conduct
the tally. Hence, availability is ensured under the same
assumptions as in Sections 3.2 and 3.3.

Participation privacy We first consider distinguishing
whether a given voter has participated in the election by
casting a direct ballot or abstained. For this, the adversary
needs to be able to tell whether there are non-dummy
ballots published next to the voter’s id, which is prevented
under assumptions in Section 3.3. Following a similar
argument, the presence of a delegated ballot from the
voter will be obscured by the dummy delegated ballots,
cast by posting trustees, so that the adversary would be
unable to tell whether a given voter has abstained or
participated in the election by delegating (assumptions
in Section 3.3 and (A-DelBallotsUnpredicted). Finally,
anonymizing the final ballots before selecting either a
direct or a delegated ballot for further tallying ensures,
that the adversary would be unable to tell whether a
voter cast a direct ballot or delegated to some proxy
(A-TabTellersHonest, A-CompRestricted).

Delegation eligibility As long as the generators g, ĝ
are independent, the proofs πd ensure that the knowledge
of xi is required to be able to cast a non-null delegated
ballot with a delegation credential gxi . The proofs of
validity used during tallying furthermore ensure, that the
decryption reveals the credentials gxi used for casting
the delegated ballot, either dummy or non-dummy.
Hence, delegation eligibility is preserved under the same
assumptions as in Section 3.2.

Delegation integrity In order to cast a delegated ballot
on behalf of an non-authorized voter, a proxy would
need to either find out the value of xi, to fake the proof
πd attached to the delegation ballot or to manipulate
the tally. As the delegation integrity of Section 3.2
relies on the same principles, delegation integrity in the

scheme presented in this paper is ensured under the same
assumptions.

Delegation privacy The delegation does not differ
from [5] aside from a modified proof πd, which, however,
does not leak additional information about the identity
of the voter. The tally procedure ensures proper
anonymization by applying a mix net and distributed
application of PETs, as long as the majority of the
tabulation tellers is trustworthy. Hence, delegation
privacy is ensured under the same assumptions as in
Section 3.2.

Delegation power privacy As with delegation privacy,
the modifications in the delegation and tally procedure
does not reveal additional information as compared to
the scheme in Section 3.2, hence, this requirement is
preserved under the same assumptions.

6. Related Work

A number of cryptographic voting schemes with
proxy voting functionality have been proposed [4, 2, 3,
22], which do not ensure any form of receipt-freeness
for either voters or proxies, or otherwise protection
against coercion. The scheme in [23] offers partial
receipt-freeness, preventing the voters from creating
receipts that show that they delegated to a specific
proxy. The scheme, however, still allows both the
voters and the proxies to prove how they voted. The
proposal in [24] ensures coercion resistance (which
includes receipt-freeness) in proxy voting by extending
the well-known JCJ scheme [25]. It, however, inherits
the complexity of JCJ, and therefore, its problems with
practical applications such as lack of efficiency and
usability for the voters [26].

7. Conclusion

We have presented an Internet voting scheme with
proxy voting functionality by enabling the voters to
delegate their vote to a trusted third entity, a proxy.
Our proposal extends on the proxy voting scheme in
[5] that modifies the well-established Helios scheme [6]
towards proxy voting functionality. We further improve
the privacy of [5] by introducing participation privacy
and receipt-freeness. In our privacy improvements,
we rely on the concept of dummy ballots introduced
in an extension of Helios described in [7, 8]. Our
proposal furthermore preserves the security requirements
on both the general election and the delegation process
specifically, as ensured in [5]. As we provided an
informal security evaluation in this paper, future work

Page 2850

will consider formally proving its security. For this
purpose, in particular, formal definitions of the security
requirements have to be developed. We will also consider
further efficiency improvements of our scheme, as well
as evaluating and improving its usability.

Acknowledgements

This work has been supported by the German
Federal Ministry of Education and Research within the
Competence Center for Applied Security Technology
(KASTEL).

References

[1] J. P. Gibson, R. Krimmer, V. Teague, and J. Pomares, “A
review of e-voting: the past, present and future,” Annals
of Telecommunications, vol. 71, no. 7-8, pp. 279–286,
2016.

[2] B. Zwattendorfer, C. Hillebold, and P. Teufl, “Secure
and privacy-preserving proxy voting system,” in ICEBE
2013: IEEE 10th International Conference on e-Business
Engineering, pp. 472–477, IEEE, Sept. 2013.

[3] A. Tchorbadjiiski, “Liquid democracy diploma thesis,”
RWTH AACHEN University, Germany, 2012.

[4] Y. Desmedt and P. Chaidos, “Applying divertibility
to blind ballot copying in the helios internet voting
system,” in ESORICS 2012: 17th European Symposium
on Research in Computer Security, pp. 433–450, Springer,
Sept. 2012.

[5] O. Kulyk, K. Marky, S. Neumann, and M. Volkamer,
“Introducing proxy voting to Helios,” in ARES 2016: 11th
International Conference on Availability, Reliability and
Security, pp. 98–106, IEEE, Sept. 2016.

[6] B. Adida, “Helios: Web-based open-audit voting,” in
SS 2008: 17th Conference on Security Symposium,
pp. 335–348, USENIX, July 2008.

[7] O. Kulyk, V. Teague, and M. Volkamer, “Extending
Helios towards private eligibility verifiability,” in VoteID
2015: 5th International Conference on E-Voting and
Identity, pp. 57–73, Springer, Sept. 2015.

[8] D. Bernhard, O. Kulyk, and M. Volkamer, “Security
proofs for participation privacy, receipt-freeness and
ballot privacy for the helios voting scheme,” in
Proceedings of the 12th International Conference on
Availability, Reliability and Security, p. 1, ACM, 2017.

[9] D. Bernhard, O. Kulyk, and M. Volkamer, “Security
proofs for participation privacy, receipt-freeness, ballot
privacy, and verifiability against malicious bulletin board
for the helios voting scheme.” Cryptology ePrint Archive,
Report 2016/431, May 2016. http://eprint.iacr.
org/2016/431.

[10] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE transactions
on information theory, vol. 31, no. 4, pp. 469–472, 1985.

[11] T. P. Pedersen, “A threshold cryptosystem without a
trusted party,” in EUROCRYPT 1991: 10th Workshop
on the Theory and Application of of Cryptographic
Techniques, pp. 522–526, Springer, Apr. 1991.

[12] C.-P. Schnorr, “Efficient signature generation by smart
cards,” Journal of cryptology, vol. 4, pp. 161–174, Aug.
1991.

[13] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs
of partial knowledge and simplified design of witness
hiding protocols,” in CRYPTO 1994: 14th Annual
International Cryptology Conference on Advances in
Cryptology, pp. 174–187, Springer, Aug. 1994.

[14] J. Camenisch and M. Stadler, “Proof systems for general
statements about discrete logarithms,” tech. rep., Citeseer,
1997.

[15] D. Bernhard, O. Pereira, and B. Warinschi, “How not
to prove yourself: Pitfalls of the fiat-shamir heuristic
and applications to Helios,” in ASIACRYPT 2012: 18th
International Conference on the Theory and Application
of Cryptology and Information Security, pp. 626–643,
Springer, Dec. 2012.

[16] M. Jakobsson and A. Juels, “Mix and match: Secure
function evaluation via ciphertexts,” in ASIACRYPT
2000: 6th International Conference on the Theory and
Application of Cryptology and Information Security
(T. Okamoto, ed.), pp. 162–177, Springer, Dec. 2000.

[17] B. Terelius and D. Wikström, “Proofs of restricted
shuffles,” in AFRICACRYPT 2010: 3rd International
Conference on Cryptology in Africa, pp. 100–113,
Springer, May 2010.

[18] B. Adida, O. De Marneffe, O. Pereira, J.-J. Quisquater,
and others, “Electing a university president using
open-audit voting: Analysis of real-world use of
Helios,” EVT/VOTE 2009: Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections, vol. 9,
pp. 10–10, 2009.

[19] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure
and optimally efficient multi-authority election scheme,”
European transactions on Telecommunications, vol. 8,
no. 5, pp. 481–490, 1997.

[20] D. Chaum and T. P. Pedersen, “Wallet databases with
observers,” in CRYPTO 1992: 11th Annual International
Cryptology Conference on Advances in Cryptology,
pp. 89–105, Springer, Aug. 1992.

[21] N. Asokan, V. Shoup, and M. Waidner, “Optimistic
fair exchange of digital signatures,” in EUROCRYPT
1998: 17th International Conference on the Theory and
Application of Cryptographic Techniques, pp. 591–606,
Springer, June 1998.

[22] B. Zhang and H.-S. Zhou, “Digital liquid democracy:
How to vote your delegation statement,” 2017.

[23] O. Kulyk, S. Neumann, K. Marky, and M. Volkamer,
“Enabling vote delegation in boardroom voting,” in
Workshop on Advances in Secure Electronic Voting
Associated with Financial Crypto 2017, pp. 419–433,
Springer, Apr. 2017. In press.

[24] O. Kulyk, S. Neumann, K. Marky, J. Budurushi, and
M. Volkamer, “Coercion-resistant proxy voting,” in IFIP
SEC 2016: 31st International Conference on ICT Systems
Security and Privacy Protection, pp. 3–16, Springer, June
2016.

[25] A. Juels, D. Catalano, and M. Jakobsson,
“Coercion-resistant electronic elections,” in WPES
2005: 4th ACM workshop on Privacy in the electronic
society, pp. 61–70, ACM, Nov. 2005.

[26] S. Neumann and M. Volkamer, “Civitas and the real world:
problems and solutions from a practical point of view,”
in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, pp. 180–185, IEEE,
2012.

Page 2851

