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Abstract 
 
The growing need for efficient and effective human 
decision-makers warrants a better understanding of 
how decision support systems (DSS) guide users to 
improved decisions. Decision support approaches 
utilize visual aids to assist decision-making, including 
trade-off diagrams. These visualizations help 
comprehension of key trade-offs among decision 
alternatives. However, little is known about the role of 
trade-off diagrams in human decision-making and the 
best way to present them. Here, we discuss an 
empirical study with two goals: 1) evaluating DSS 
interactivity and 2) identifying decision-making 
strategies with trade-off diagrams. We specifically 
investigate the value of interface interactivity and 
problem context as users make nine increasingly 
complex decisions. Our results suggest that problem 
context and interactivity separately influence ability to 
navigate trade-off diagrams. 
 
1. Introduction 
 

In many domains the performance of decision 
alternatives is evaluated on multiple objectives, which 
often include inherent trade-offs. For example, a 
policy maker may need to determine the optimal level 
of tax, encouraging industries to emit less carbon but 
curbing economic activity; a business manager may 
need to determine how much inventory to stock, which 
is costly to acquire but also provides an uncertain 
potential for revenue. An understanding and 
evaluation of these trade-offs is essential to make 
effective and efficient decisions. Decision support 
tools help to facilitate and assist these tasks. Typically, 
decision support tools portray trade-off information 
between multiple objectives in the form of trade-off 
diagrams. Trade-off diagrams show the impact of a 
change in each attribute on the overall performance of 
a system as well as on other attributes (Fig. 1).  

 
Figure 1. Example of a trade-off diagram 

showing alternative dominated (indigo) and 
non-dominated (orange) strategies. Star 
represents the theoretical ideal strategy. 

 
Despite wide use of trade-off diagrams in the 

environmental decision support design literature [1, 2, 
3, 4], little is known about when and to what extent 
they are effective. Specifically, the visual format of 
these diagrams is meant to improve decision makers' 
comprehension of the problem at hand. Nevertheless, 
the complexity of trade-off diagrams increases with 
the number of objectives. As a result, trade-offs 
become harder to comprehend, even for experts. 

Decision tools are typically contained in decision 
support systems (DSS), characterized as “interactive 
computer based systems, which help decision makers 
utilize data and models to solve unstructured 
problems” [5, p. 1]. The success of DSS is typically 
measured through effectiveness (decision outcomes) 
and efficiency (use of resources) [6]. While the design 
of DSS has received attention in the literature, there is 
scant information available for the net benefit of 
incorporating trade-off diagrams in DSS. Accordingly, 
this paper focuses on understanding the benefit of 
using trade-off diagrams in DSS as decision aids, 
when a decision maker faces a multi-attribute decision 
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problem and seeks to navigate to a Pareto dominant 
strategy (we define these terms shortly for clarity). 
Here, we focus on two specific aspects of decision 
support tools: interactivity and contextual details, 
reporting on three main points on the relationship 
between decision-making strategy and interactive DSS 
using trade-off diagrams. 
 
2. Literature Review 
 
2.1. Pareto front for multi-objective decisions 
 

In decision situations with multiple objectives, 
more than one alternative provides most-preferred 
performance, depending on preference among the 
multiple objectives. For example, policy makers are 
tasked with selecting energy policies to reduce carbon 
emissions while generating economic activity. Policy 
makers who value reducing carbon emissions will 
prefer policies reducing carbon emissions dramatically 
at the expense of economic activity, while policy 
makers valuing economic activity will favor policies 
that generate economic activity at the expense of 
reducing carbon emissions. Assuming policy makers 
have no motivations for selecting policies outside of 
reducing carbon emissions and maximizing economic 
productivity, no policy maker will prefer a policy with 
little carbon emissions reduction and little economic 
activity when alternatives exist with greater economic 
activity and higher levels of carbon emissions 
reduction.  

Policies that can be updated to improve 
performance in all objectives are said to be Pareto 
dominated, while policies that cannot be updated to 
improve performance with respect to one objective 
without degrading performance in another objective 
are said to be Pareto dominant (See Fig. 1 for an 
illustration). The set of policies meeting Pareto 
Dominance criteria are on a Pareto frontier or Pareto 
Front [7]. The purpose of multi-objective decision 
support tools is to help decision makers compare 
candidate policies for selection in terms of multiple 
objectives and identify the candidate that provides the 
best performance given the preferences of the decision 
maker. Specifically, an effective DSS enables decision 
makers to reach the Pareto frontier and select an 
alternative on this frontier that maximizes net utility 
over multiple attributes. As will be clear in Section 3.2, 
our experimental design focuses on measuring the 
extent trade-off diagrams help decision makers reach 
the Pareto frontier.  

 
2.2. Challenges in decision approaches 
 

Human decision-making faces a number of 
challenges including characterizing the problem, 
weighing alternatives, unfamiliarity of problem 
objectives [8],  trustworthiness of information [9], and 
overreliance on unrelated or inappropriate models for 
decision-making [10]. Such challenges couple with 
reliance on approaches based on intuition or individual 
values and beliefs [11].  

Decision-making approaches rely on decision 
makers to build mental models of the problem [11]. 
These mental models form from numerous sources 
from one’s beliefs and values to experiences and 
external stimuli [11]. Mental models present one of the 
key distinctions between experts and novices in 
decision-making, where experts draw on existing 
models or schema to navigate a decision while novices 
rely on other approaches such as intuition. The 
differing approaches influence the direct strategy used 
to make a decision. Trade-off diagrams explicitly 
provide relationships between various problem 
parameters and help decision makers develop clearer 
mental models, leading to better decisions.  

Choosing an approach to make a decision can be 
influenced by the modality, format, quantity, and 
complexity of information. As such, decision aids and 
the presentation mode of information can influence 
decisions [12]. Budescu et al. [2014], for example, 
reports that decision makers using decision aids select 
strategies that trade off imprecision and risk rather 
than playing it safe. To be successful, decision aids 
need to present information in ways that do not bias 
the decision makers’ understanding or choice. 
 
2.3. Characteristics of DSS 
 

Decision aids come in many forms with the 
general purpose of assisting with decision-making. 
Grouping decision aids together with other types of 
support forms a DSS. With a wide format of decision 
aids available, DSS vary in what they do and how they 
support decision makers [13]. Characteristics range 
from the user to the type of problem. Such 
characteristics lead to affording a user cognitively and 
behaviorally when making decisions.  

At the cognitive level, DSS reduce mental load 
primarily through visualization by building on human 
perceptual capabilities. In other words, it is easier for 
a human to interpret a picture or graph than numbers 
alone to make sense of information. Visualization 
offers a visual perspective that includes users’ ability 
to manipulate a visual representation and access a 
large extent of details or context about the information 
visualized [14]. Trade-off diagrams provide this visual 
representation succinctly, and are likely to improve 
decision makers’ performance.  
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The response to the visual stimulus is often 
behavioral. Where visual perspectives build on users’ 
inherent ability for visual sense-making, the response 
may be manipulating the representation, interacting 
with the system to improve the visual perspective. 
While DSS offer a number of ways to perform actions, 
extent of details or context information is highly 
relevant for decision-making [14]. Interactivity with a 
visualization system is inherently related to decision-
making as it affords exploration of multiple 
perspectives of problem data. 
 
2.3. Interactivity 
 

Trade-off diagrams are commonly presented as a 
series of separate images breaking down multi-
objective problems. DSS allow for interactive trade-
off diagrams where users manipulate not only input 
parameters of the diagram but also the viewing 
perspective. This ability to make changes to an aspect 
of a DSS, such as the trade-off diagram, is an 
affordance of the system. The affordance of 
interactivity enables systematic access to specific 
objectives in real-time, transforming, the degree of 
agency (direct user control) provided to a decision-
maker [15]. The effect of interactivity is behavioral, 
where users respond to feedback in real-time. In this 
study, interactivity is the ability to make changes to the 
trade-off diagram in real time through slider bars that 
manipulates the graphs, but not viewing perspective. 
The control for interactivity is a static trade-off 
diagram represented by a series of example images 
showing sample slider positions and the corresponding 
tradeoffs rather than an interactive DSS. To help 
isolate the effect of interactivity, we use a simplified 
interface to allow more control over specific 
affordances. 
 
2.4. Contextual details 
 

The depth and breadth of relatable information for 
a problem’s context is part of a DSS. From a decision-
making perspective, there is potential for one problem 
context to be easier to navigate than another by 
weighing pros and cons. Contextual details also 
provide more tangible situations for decisions to be 
made. However, this makes such systems less 
externally valid across disciplines. Additionally, 
contexts lead to preconceptions from existing mental 
models to influence the approach or a provided model 
can completely influence a decision [10]. A context-
neutral option provides a simple way to determine the 
role of context in understanding multiple objectives in 
a problem. Context-neutrality provides insights into 

how decision makers behave without any 
preconceptions about the problem [12]. When faced 
with a realistic problem, people often incorporate their 
past experience or domain knowledge, biasing the 
results in ways impossible to tell apart from the system 
or problem influence.  To sum, the net impact of the 
presence of contextual details on decision quality is 
not clearly established.   

 
3. Theory and methods 
 
3.1 Hypotheses 
 

When faced with complex decisions, human 
decision makers use heuristics. These heuristics are 
based on mental models that decision makers construct 
in response to information pertaining to the problem. 
This information partly comes from interactivity as an 
engaged process where a decision maker evaluates 
specific alternatives and extrapolates the performance 
of alternatives. It may also come from contextual 
details enabling the decision maker to determine 
attributes and their interrelationships. Therefore, a 
stronger interactivity and contextual content in a DSS 
leads to better performance. Accordingly, we propose: 
H1: Decision makers’ performance will be influenced 
by both interactivity and context. 

Here, we focus on the interaction effect of 
interactivity and context. Specifically, contextual 
details enable decision makers to identify relevant 
attributes and their directional relationships that feed 
their mental model. Interactivity in a DSS enables 
decision makers to ascertain the strength of 
relationships between attributes. These two aspects are 
complementary and accordingly, we propose both 
have a positive impact on decision quality.  
H2: A context and interactive interface will improve 
comprehension of system dynamics. 

In the absence of context, decision makers rely on 
a purely mathematical understanding of a system, 
restricting their ability to generate a potential solution. 
A lack of interactivity is likely to have a similar 
impact. Specifically, decision makers strongly anchor 
their searches on solutions most salient in their recent 
experience. In our study, when a DSS only provides 
problem details in the form of specific scenarios, 
decision makers exhibit restricted behavior in their 
search for a solution.        
H3: There will be a significant difference in number of 
common strategies based on whether the interactive or 
static interface is used. 
 
3.2 Experiment design 
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We designed the experiment to test the value of 
trade-off diagrams for helping decision makers 
navigate to a Pareto dominant strategy. In this section, 
we describe the factorial design. In Section 3.3 we 
describe the interface, and in Section 3.4 we describe 
the problem context.  

To test our hypotheses we use a 2 (interactivity) x 
2 (context) experimental study with 4 treatments. 
Interactivity splits into interactive and static. 
Participants in the interactive condition experience 
real time feedback from their manipulation of the 
interface. The static condition provides participants 
with a set of images portraying examples of what the 
interactive interface would look like with sliders set to 
a range of representative combinations. Context splits 
into two groups based on problem framing, either 
context or context-neutral. The rationale is to remove 
undue influence of context on participants’ 
comprehension. Differences in the context condition 
focus on labeling the problem: context presents an 
established natural resource management problem and 
the context-neutral condition presents the same 
problem without labels. 

In each treatment, participants face individual 
versions of the problem, scaling the degree of 
complexity by number of objectives and levers 
(number of time periods controllable) through our 
interface. The least complex problem has a single 
objective and one lever while the most complex 
problem has three objectives and three levers. Scaling 
the problem into separate decisions allows for 
examination of the interface and decision maker 
performance iteratively. Figure 4 presents these 9 
versions of the problem, which are also described in 
more detail in Section 3.4. 
  
3.3 Developing a decision support interface 
 

The support tool interface focuses primarily on 
trade-off diagrams. Developed through a combination 
of Flask© and Python©, the web-interface allows for 
user input through a set of sliders. Two main layouts 
are used depending on the interactivity condition. The 
interactive condition (Fig. 2 top), provides real-time 
feedback in the trade-off diagram as participants alter 
input values through the sliders. 

 
Figure 2. (Top) Screenshot of interactive interface for three objective trade-off diagram (bottom) 

Screenshot of static interface. 
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The static condition (Fig. 2 bottom) provides six 
different images of example strategies and 
corresponding tradeoff diagrams. Users in the static 
condition are not able to see the trade-off diagram 
change in response as they adjust sliders. Each 
example strategy specifies different slider positions 
that generate specific trade-offs displayed on the 
diagram in each image. These strategies are selected 
randomly. These design features of the static and 
dynamic conditions are consistent with the way policy 
makers typically interact with DSS by looking at 
vignettes or sample strategies and then making 
decisions. 

 
3.4. Context description 
 

The problem description comes from an 
established natural resources management problem 
consisting of a lake, factory and a town [16, 1]. The 
problem provides a context where decision-makers 
navigate multiple objectives related to the release of 
waste into the lake to generate economic benefits 
while attempting to sustain high water quality and 
minimize the chances of crossing an ecological tipping 
point into an alternate, less desirable regime (Fig. 3). 
The trade-off in this problem is that a high level of 
waste discharge increases the financial benefit, 
reduces water quality, and increases the chances of 
crossing an ecological tipping point.  

 

 
Figure. 3. The lake problem system dynamics 

adapted from [3] for the context condition. 
 

A context-neutral version uses the same problem 
and simulation model, removing contextual labels for 
better comparison. Objectives are translated to letter 
denominated variables (economic benefit turned into 
A, water quality into B, and reliability into C) (Fig. 4). 
Note that the normative Efficient Frontiers for these 9 
scenarios are available through the data and analysis 
in [16, 1]. The static and dynamic performances 
displayed to the participants are based on these 
normative data. The participants are tasked with 
reaching as close as possible to these Efficient 
Frontiers. We also note the problem descriptions in the 
treatments are consistent with cardinal objectives and 

levers. The interface used in the treatments also made 
this feature clear. 
 

 
Figure 4. Context-neutral problem system 

dynamics with simplified labels. 
 

Table 1. Problem format at each decision 
stage (context-neutral in parentheses). 

Decision Objectives Levers 

1 

Maximize 
economic 

benefits (A) 

Factory waste discharge in 
years 1-100 (Slider 1) 

2 
Factory waste discharge in 

years 1-49 (Slider 1) 
50-100 (Slider 2) 

3 

Factory waste discharge in 
years 1-33 (Slider 1) 

34-66 (Slider 2) 
67-100 (Slider 3) 

4 

Maximize 
economic 

benefits (A) 
and water 
quality (B) 

Factory waste discharge in 
years 1-100 (Slider 1) 

5 
Factory waste discharge in 

years 1-49 (Slider 1) 
50-100 (Slider 2) 

6 

Factory waste discharge in 
years 1-33 (Slider 1) 

34-66 (Slider 2) 
67-100 (Slider 3) 

7 
Maximize 
economic 

benefits (A), 
water quality 

(B), and 
reliability (C) 

Factory waste discharge in 
years 1-100 (Slider 1) 

8 
Factory waste discharge in 

years 1-49 (Slider 1) 
50-100 (Slider 2) 

9 

Factory waste discharge in 
years 1-33 (Slider 1) 

34-66 (Slider 2) 
67-100 (Slider 3) 

 
3.5. Experiment protocol 
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The experiment follows the protocol below. 
Participants enter a computer lab and occupy seats 
randomly. Each seat has an assigned identification 
number indicating which treatment a participant will 
complete. Entering the number into the interface opens 
an initial demographics survey followed by 
instructions about the assigned treatment through a 
short video tutorial.  

Next, each participant provides responses to nine 
decision-making scenarios (Table 1). The scenarios 
are based on the same underlying problem, but vary by 
number of decision objectives in increasing order (one 
objective series, two objective series, and three 
objective series). Within each series, the decisions 
vary by number of levers, also in the same order (one 
lever, two levers, then three levers). Users have five 
minutes to make each decision. In order to ensure 
participants do not rush through the experiment, they 
can provide a response only after one minute per 
scenario.   

After submitting the ninth decision, participants 
answer a series of questions designed to assess their 
decision-making process. Participants receive a cash 
reward based on their average set of decisions with a 
minimum of $7 and a maximum up to $17. The cash 
reward is based on the average percentage distance 
between each strategy selected by that participant and 
the Pareto front in the nine scenarios. A total of N = 
142 are in the study, with an average payment of $16.  

     
 

3.6. Measures 
 

To investigate both decision-making strategy and 
interactivity, we use several measures.  

We develop a metric called “Pareto score” to 
quantify participants’ skill in selecting a strategy near 
the Pareto frontier in a form comparable among 
different versions of the decision problem. Pareto 
score is calculated by comparing the Euclidean 
distance between a user’s selected strategy and the 
Pareto front relative to a group of randomly generated 
strategies (“reference strategies”). Pareto score is the 
fraction of randomly generated strategies further from 
the Pareto front than the strategy under consideration. 
A score of “1” represents a strategy that is closer to the 
Pareto front than all randomly generated reference 
strategies, and a score of “0” represents a strategy 
further from the Pareto front than all of the reference 
strategies. This score also diagnoses if a participant’s 
responses are likely to be randomly selected due to 
inattention or due to decision complexity. Because 
decisions made using only one lever are by definition 
on the Pareto front, Pareto scores are not reported for 
one-lever, multi-objective decisions (D4 and D7). 

To understand the relative importance assigned to 
objectives in reaching a decision, we determine a 
Preference Score. Like Pareto score, the preference 
score is a metric normalized relative to the preferences 
demonstrated by a set of randomly generated 
“reference” strategies ranging from 0 to 1 in value. 
Preference score is designed to compare strategies’ 
outcome in terms of the demonstrated values of 
objectives in tension in a format that is comparable 
among versions of the same decision problem 
formulated with different numbers of levers. In this 
problem, Economic benefits (“A”) is in tension with 
both Water Quality (“B”) and Reliability (“C”), which 
are aligned. Because the Water Quality metric and 
Reliability metric are aligned, there is very little 
difference between the Economic benefits-Water 
Quality preference score and the Economic benefits-
Reliability preference score of any given strategy. In 
this paper, an Economic Benefits versus Water Quality 
objective is reported.  

Lastly, six multiple-choice questions provide an 
assessment for whether participants understood the 
underlying dynamics of the lake/context-neutral 
problem. These questions inquire about the 
relationships between the levers and different 
objectives of the problem; correct or incorrect answers 
by a participant reveal understanding of the underlying 
relationship between each objective. These questions 
average into an overall comprehension score based on 
the number of correct responses across these 
questions. 
 
4. Analysis 
 
4.1. Participants 
 

Participants (N = 142) range in age from 22-44 (M 
= 21.63) with 54 males and 88 females. The sample 
consists of a number of different academic 
backgrounds. 
 
4.2. Testing the first hypothesis 
 

We ran a two-way MANOVA with our two 
conditions on the two and three lever Pareto Scores, a 
total of six independent scores. The results indicate 
interactivity (Wilks ƛ = 0.81, F (6,124) = 4.97, p = 
0.00, partial η2 = 0.19), and context (Wilks ƛ = 0.85, 
F (6,124) = 3.75, p = 0.00, partial η2 = 0.15) affect the 
set of Pareto Scores individually. We find no 
statistically significant interaction effect between 
interactivity and context: Wilks ƛ = 0.96, F (6,124) = 
0.77, p = 0.59, partial η2 = 0.04. These results suggest 
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we partially accept H1 as our conditions influence 
Pareto Scores independently, not together. 

Follow-up univariate analysis (Table 2) shows 
interactivity is statistically significantly correlated 
with Pareto Scores at a subset of decision scenarios 
(D2, D3, D5, and D8).  

 
Table 2. Follow-up summary of ANOVA 

analysis for interactivity. 

Decisions df MS F p partial 
η2 

D2 1 0.20 5.75 0.02* 0.04 

D3 1 0.13 4.22 0.04* 0.03 

D5 1 1.20 16.31 0.00** 0.11 

D8 1 0.68 11.57 0.00** 0.08 

Error 129     

Note. - * p < 0.05; ** p < 0.001 

 
Pareto scores within the interactive condition are 

statistically significantly higher than scores in the 
static condition except in the three-objective decision 
8 (D8) (Figure 4, p < 0.05). 
 
Table 3. Mean differences on Pareto Score by 

interactivity condition. 

Decisions Condition M Std. Error 

D2 
interactive 0.89 0.02 

static 0.81 0.02 

D3 
interactive 0.91 0.02 

static 0.84 0.02 

D5 
interactive 0.74 0.03 

static 0.55 0.03 

D8 
interactive 0.43 0.03 

static 0.57 0.04 

 
Follow-up univariate analysis (Table 4) reveals 

statistically significant relationships between context 
and Pareto Scores at a subset of decision scenarios 
(D2, D3). There is a near significance for D8. 
 

Table 4. Follow-up summary of ANOVA 
analysis for context. 

Decisions df MS F p partial 
η2 

D2 1 0.66 19.01 0.00** 0.13 

D3 1 0.37 12.07 0.00** 0.09 

D8 1 0.21 3.60 0.06 0.03 

Error 129     

Note. - * p < 0.05; ** p < 0.001 

 
In both significant cases, Pareto scores are 

generally higher in the context-neutral condition than 
the lake condition (Table 5). In the near significant 
case, strategies in the context-neutral condition (M = 
0.54, SE = 0.03) also outperformed the lake condition 
(M = 0.46, SE = 0.03). 
 
Table 5. Mean differences on Pareto Score by 

context condition. 
Decisions Condition M Std. Error 

D2 
interactive 0.78 0.02 

static 0.92 0.02 

D3 
interactive 0.82 0.02 

static 0.93 0.02 

 
4.3. Testing the second hypothesis 
 

We use a two-way ANOVA with the two 
conditions to assess variation in comprehension score 
between and among groups. There is no significant 
interaction effect between interaction and context on 
system dynamics comprehension: F (1,135) = 0.31, p 
= 0.58, partial η2 = 0.00. Context is the most important 
factor explaining comprehension of system dynamics: 
F (1, 135) = 120.80, p = 0.00, partial η2 = 047. The 
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lake context (M = 0.59 SE = 0.02) improves 
comprehension better than context-neutral (M = 0.28 
SE = 0.02). Based on this finding, we reject H2 as 
interactivity has no significant influence on 
comprehension of system dynamics. 
 
4.4 Testing the third hypothesis  
 

The type of strategy selected by each group is 
measured through preference score. Kolmogorov-
Smirnov tests compare the distributions of preference 
scores at each decision stage and each between-
subjects context group to the corresponding group in 
the other interactivity condition. For example, the 
preference score selected by the context-neutral 
interactive group is compared with the preference 
scores of strategies by the context-neutral static group. 
All pairwise comparisons between groups at the two-
objective decision stages (decisions 4, 5, and 6) 
indicate statistically significant distributions of 
preference score (p < 0.01) between interactive and 
static conditions (Fig. 5).  

Statistically significant preference score 
difference also exists in the context group at decision 
2 (p < 0.01), the context group at decision 3 (p < 0.05), 
and the context group at decisions 7 and 8 (p < 0.01). 
Two-objective strategies selected by the interactive 
groups favor the Water Quality/B objective more often 
than strategies selected by static groups (Fig. 5). Based 
on these findings, we partially accept H3s. 
 

 
Figure 5. Comparison of preference scores 

demonstrated through selection of two-

objective decisions. LP-I: lake problem, 
interactive condition. LP-S: lake problem, 

static condition. NP-I: neutral problem, 
interactive condition. NP-S: neutral problem, 

static condition. 
 

5. Discussion 
 

While it seems intuitive that users in the 
interactive condition would perform better, as they 
could more fully explore the dynamics of the system 
through the trade-off diagrams, this was not always the 
case. We speculate that participants in the static 
condition are forced to create a more complete mental 
model of the system in order to formulate an approach, 
since they could not employ a strategy of manipulating 
the levers more or less randomly until they found a 
satisfactory decision. Alternatively, participants in the 
static condition may have chosen to emulate one of the 
provided examples if they are able to recognize that a 
particular example strategy is high quality. This 
approach may have created a more straightforward 
pathway toward the Pareto front than interactive 
manipulation. 

Interestingly, decision effectiveness is not related 
to any joint influence from context or interactivity. 
This supports the notion that context pertains to the 
cognitive affordance of the visualized trade-off 
diagrams while interactivity is the behavioral 
component. This finding also suggests that underlying 
mental models of the trade-off diagrams are not 
strengthened through a combination of afforded 
interaction and relatable context. Rather, decision 
effectiveness is based on either interactivity or context 
individually, a departure from the idea that both 
aspects make up the visual perspective [14]. In the 
most complex scenario we found no statistically 
significant relationship between performance and 
either condition, suggesting there may a threshold in 
decision complexity beyond which trade-off diagrams 
alone are no longer sufficient to assist decision-
making. 

However, the hypothesis that having a context 
would enable a better understanding of the problem is 
supported, as participants in the context condition 
show a clearer understanding of system dynamics. 

Lastly, the hypothesis the number of common 
strategies will differ between interactive and static 
conditions is supported though the difference was not 
statistically significant at all decision stages. The 
difference is demonstrated most clearly by comparing 
preference scores at the two-objective decision 
scenarios, where most members of the interactive 
group chose similar strategies while the static 
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condition chose strategies that demonstrated more 
widely dispersed preferences. This may indicate that 
participants in the interactive condition are motivated 
by the threshold in the system dynamics, which they 
are able to identify by experimentally adjusting the 
levers. This threshold is not evident in the single-
objective version of the problem, and would have been 
evident but potentially more difficult to navigate in the 
three-objective version of the problem. Participants in 
the static conditions might not have recognized the 
threshold in the second-objective performance, or may 
have based their strategies on the examples given 
which span a range of preferences. This suggests the 
particular system dynamics native to a decision 
problem may influence users’ interactivity-driven 
decision-making strategy. 
 
6. Implications 
 

Our findings have implications for the design of 
efficient DSS using trade-off diagrams. First, 
contextual information in the trade-off diagrams 
significantly increases decision quality. In many 
situations contextual knowledge may be complex and 
or difficult to express. Our findings suggest the benefit 
of providing these details is likely to be worth the 
effort. Interactivity also improves decision quality, 
albeit to a lesser extent. Second, the lack of evidence 
for interactive influence of interactivity and context on 
decision quality implies these two features of a DSS 
are substitutes. In light of the first implication, this 
substitutability implies that in the presence of limited 
resources, it may be prudent to first add context to the 
decision-diagrams, and then, resources permitting, one 
should add other features such as interactivity. Finally, 
the benefit of trade-off diagrams decreases with 
problem complexity. As a result no one-catch-all 
approach can be used to guide the design of DSS. For 
complex and large scale decision problems, careful 
studies for the efficiency of specific support tools, 
either individually or simultaneously, are warranted.  
 
7. Conclusion and outlook 
 

In domains where decisions are based on a 
number of objectives, decision-makers need to be able 
to understand and address trade-offs. DSS assist 
decision-makers through various decision aids and 
formats of presenting information. These 
characteristics lead to affordances that can impact the 
mental models of decision makers. Specifically, these 
characteristics influence not only the approach to 
reach a decision but the actual strategy used to reach a 
specific outcome.   

To examine the effectiveness of DSS for assisting 
decision makers in multi-objective problems, we pose 
a larger question asking how affordances of DSS can 
help decision-makers navigate to a Pareto-dominant 
strategy. We focus our study on one common visual 
method, trade-off diagrams, to distill its role in 
assisting with decision-making. We identify a 
cognitive (context) and a behavioral (interactivity) 
aspect of visualization to identify the effectiveness of 
trade-off diagrams in a problem that become 
increasingly complex. We find that trade-off diagrams 
alone are sufficient for problems with fewer 
objectives. However, as problem complexity 
increases, trade-off diagrams no longer support 
decision-making effectively.  

This pilot study provides the opportunity to not 
only explore trade-off diagrams further, but also to 
examine the role of other visualization methods used 
in a DSS. Limitations of the study include the limited 
interaction capabilities of our DSS meant to provide a 
focused look at a specific aspect found in most DSS. 
Follow-ups to this study will further investigate the 
role of context and interactivity in the formation of 
mental models that lead to decision-maker approaches 
through more complex DSS interfaces. 
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