
Reinforcement learning for extended reality: designing self-play scenarios

Leonardo A. Espinosa Leal
Dept. of Business Management and Analytics

Arcada University of Applied Sciences and
Hanken School of Economics

Helsinki, Finland
leonardo.espinosaleal@arcada.fi

Anthony Chapman
Computing Department
University of Aberdeen

Aberdeen, UK
r01ac14@abdn.ac.uk

Magnus Westerlund
Dept. of Business Management and Analytics

Arcada University of Applied Sciences
Helsinki, Finland

magnus.westerlund@arcada.fi

Abstract

A common problem for deep reinforcement learning
networks is a lack of training data to learn specific
tasks through generalization. In this paper, we discuss
using extended reality to train reinforcement learning
agents to overcome this problem. We review popular
reinforcement learning and extended reality techniques
and then synthesize the information, this allowed us to
develop our proposed design for a self learning agent.
Meta learning offers an important way forward, but the
agents ability to perform self-play is considered crucial
for achieving successful AI. Therefore, we focus on
improving self-play scenarios for teaching self-learning
agents, by providing a supportive environment for
improved agent-environment interaction.

1. Introduction

In this article, we propose a method and
experimental study for a self-playing agent using
deep reinforcement learning in an extended reality
environment. Our aim is to address the opportunity to
design self-play scenarios for self-learning agents that
combine various sources for discovering and generating
training data. By reviewing the literature we noticed a
gap which could improve existing architectures used for
creating self-learning agents.

Since 2012, the world has seen a rapid improvement
in results from neural networks that use deep networks
[1]. Some argue that when software exceeds what a
human is capable of, artificial intelligence will make
a leap into the future. An example of this can be, a
deep network that can identify cancer from an image
more efficiently than a doctor can [2]. Without further
debating the philosophical definition of classical AI, as
represented by, for example Asimov [3], and the view of
deep learning aficionados, we consider that intelligence
is often referred to as including the ability to automate
tasks based on some type of reasoning. It may also
constitute the ability to autonomously and continuously

improve it’s reasoning as a result of internal or external
influences.

This type of reasoning is also gaining momentum in
AI research in the wake of the success of DeepMind
and their AlphaGo system that beat one of the best
human Go players [4]. As we will discuss later, the
ability of AlphaGo to perform probabilistic reasoning
within its parameters and to, perhaps most importantly,
continuously improve from both self-play and from
human interaction has set the base line for so-called
intelligent systems that can be considered achieving
at least an elementary version of AI [5]. These are
expert systems, they are very specialized and lack the
ability to reason beyond their narrow ability. Deep
reinforcement learning networks have improved the
ability for models to generalize on complex task, but
the exploration-vs-exploitation challenge is a difficult
one to overcome. In [6] they suggest that an agent
should focus on both guided meta learning, to improve
the agents ability to perform the given tasks, and a
self-play mechanism, which should improve the agents
reasoning ability by testing different actions to take
in a stochastic environment and giving preference to
actions which give better results than others in such
environments. Formulating an agents environment
and goals is strenuous enough without the added
complexities posed by also providing the agent with
AI. The ability to combine both supervised interaction
for meta learning and multi-agent self-play interaction
(competitive or collaboration) may offer better results
than using one without the other [5], [7].

For extended reality applications, we can envision
agents (objects) with diverse behavior, interaction, and
form that can make use of reinforcement learning
(RL) as to improve their AI ability. Examples can
be conjured in many domains, including education,
gaming, and healthcare. In the following section
we provide a review of various domains and relevant
literature applying reinforcement learning agents in
extended reality. Section 3 provides the conceptual
foundations of reinforcement learning agents. In section

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59456
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 156



4 we present a set of self-play scenarios that we will
consider in our experiment. Section 5 presents an
experimental design proposal. Finally, section 6 and 7
present the discussion and conclusion respectively .

2. Research methods and concepts

The paper can be divided into two discernible parts
using complementary research methods. The first part
is a literature review of the relevant state of important
concepts. Through the literature review we provide
a foundational understanding of root definitions for
the second part where we provide an analysis of our
findings. In this latter part we follow a soft systems
methodology (SSM) by framing a problem formulation
(model learning) and an action plan (conceptual model
for learning) aimed at future research. Sørensen et al. [8]
state that a SSM consists of an analysis of the current
status of the system, including inherent problems and
activities, a definition of said system deriving the actual
goal of the targeted system (root definition) in order to
propose a conceptual system model.

2.1. Extended reality

The term eXtended Reality (XR) has become known
as a common term for fields were digitally enhanced
environments and human-interaction are studied. This
includes Virtual Reality (VR), Mixed Reality (MR), and
Augmented Reality (AR). Compared to, for example,
autonomous driving, these environments offer AI
researchers an important and relatively low-cost setting
for implementing human-interacting algorithms, such
algorithms may contain reasoning that can be considered
an avenue towards AI. Perhaps most importantly, these
digital environments allow us to study an agents
decision making, and thereby, offering a feed-back loop
between the agent-environment-user.

Still, the need for training new abilities often require
that agents are presented with big data. The traditional
approach was often to gather that data from users, e.g.
playing a game, and then train on this data. Today,
the deep networks’ need for massive data and relatively
complex training scenarios for reinforcement learning
presents researchers with a problem that is often better
solved by augmenting additional data for training
networks, than using real data. Data augmentation
methods depend on the problem at hand, an agent may
for example have to learn how to deal with object
recognition, spatial actions to take in relation to detected
objects, or temporal differences in scenarios, to name
a few. The following sub-section reviews some of the
relevant literature on how to perform data augmentation
for training agents.

2.2. Data augmentation

In recent years, data augmentation has gained
prominence as a studied method for extending available
datasets [1]. The ability to train deep networks often
depend on the availability of big data. The fields of
both image recognition and voice recognition has been
strongly influenced by deep learning methods, and this
has motivated a focus on data augmentation. For RL
many of the same concepts can be utilized, but there
is also a need for methods that work particularly in the
temporal dimension.

Traditional, naı̈ve, approaches tend to manipulate
the investigated environment or dataset in various ways.
For visual tasks these have included scaling of objects,
translating i.e. moving objects spatially to various
positions, rotation of objects at various angles, flipping
objects as to remove bias from any direction, adding
noise, changing lightning conditions, and transforming
perspective of a known object by changing the angle of
view [1], [9].

For audio tasks, data augmentation often includes
deformations into a temporal dimension. Approaches
include time stretching by changing audio speed, pitch
shifting by raising or lowering the tone frequency
by various degrees, dynamic range compression, and
introducing background noise both/either gaussian or
natural noise [10].

The naı̈ve data augmentation approaches tend to
produce limited alternative data for RL agents to learn
from in an extended reality setting. For an RL agent to
learn new abilities, data augmentation must support the
agents scenario learning process. As suggested by [11],
we shift from learning to generalize on spatial data to
reacting to continuous-time dynamical systems without
a priori discretization of time, state, and action.

Several approaches exist for the creation of these
scenarios. An important method is adversarial learning,
as it can produce new and complex augmented datasets
by pitting a generative model against an adversary [12].
A generative model in combination with XR, can also
address the exploration problem, as exploring some
states in the physical reality could be very costly and
dangerous. This combination also allows the system
developer to understand which state spaces in the virtual
environment has been visited and trained upon, and
the model’s ability to generalize in the extended reality
environment. These generative techniques for extending
the learning environment are further explored in the
following section.

Page 157



3. Reinforcement learning

Although XR is slowly receiving more recognition,
AI and machine learning’s use of XR to enhance
learning is lagging behind. XR could help improve
an AI’s behavior by providing information from either
pure virtual or semi-real environments. Reinforcement
learning is one machine learning technique which,
when combined with XR, could produce interesting
and beneficial results for many applications, such as
driverless cars, autonomous factories, smart cities,
gaming and more.

RL’s primary purpose is to calculate the best action
an agent should take when an environment is provided.
With RL, we could be able to calculate what best action
to take by maximizing the cumulative reward from
previous actions, thus learning a policy. Although RL
is still relatively young, it has received a lot of attention
for its potential to advance and improve applications
in gaming, robotics, natural language processing
(including dialogue systems, machine translation, and
text generation), computer vision, neural architecture
design, business management, finance, healthcare,
intelligent transportation systems, and other computer
systems [13].

Attention and memory are two parts from RL
which, if done impetuously, could negatively affect
performance. Attention is the mechanism which focuses
on the salient parts. Whereas, memory provides long
term data storage, and attention is an approach for
memory addressing [13]. Using XR and self-play,
agents may be able to learn desired behavior before
an action an agent makes become crucial to their
performance. As an example, autonomous helicopter
software could learn fundamental mechanisms for flight
using virtual data in simulations in order to achieve high
level of attention using the memory required, without
the risks posed by real world applications. Once the
attention has reached a desired level, it can be applied
to real agents in the physical world.

General value functions can be used to represent
knowledge. RL, arguably, mimics knowledge in the
sense that it (generally) learns from the results of
actions taken. Thus, one may be able to represent
knowledge with general value functions using policies,
termination functions, reward functions, and terminal
reward functions as parameters [14]. Doing so, an agent
may be able to predict the values of sensors, and policies
to maximize those sensor values, and answer predictive
or goal-oriented questions.

Generative Adversarial Networks (GANs) [12]
estimate generative models via an adversarial process by
training two models simultaneously, a generative model

G to capture the data distribution, and a discriminative
model D to estimate the probability that a sample comes
from the training data but not the generative model G.
Such an approach could be extended to XR by training
a generative model G on virtual / simulated test data and
then a discriminative model D to estimate the probability
that a sample comes from the real world. This could
help tackle some of the issues with RL within virtual
environments and extended to the real world. RL and
XR could be used before the agent is applied to a real
environment, this could save on resources and make
autonomous systems a more viable option for general
use.

GANs together with transfer learning could advance
self-play using virtual environments for real world
agents [15]. By combining virtual data generative
models and transferring the learning model to a
discriminative model, we may be able to accurately
express what was learned from the virtual learning
environment to the real agent. Again, unforeseen
problem will inevitably arise due to the nature of
modeling. By using RL both in the virtual learning
phase and embedded into the real agent, we may
drastically improve a real agent’s learning time.

Vezhnevets et al. [16] proposed strategic attentive
writer (STRAW), a deep recurrent neural network
architecture, for learning high-level temporally
abstracted macro-actions in an end-to-end manner based
on observations from the environment. Macro-actions
are sequences of actions commonly occurring. STRAW
builds a multi-step action plan, updated periodically
based on observing rewards, and learns for how long to
commit to the plan by following it without replanning.
Similar to GANs, STRAW could be used after the
simulation learning stage so the agent copes with any
discrepancies between the simulation and the real
world.

Adaptive learning is a core characteristic to
achieving strong AI [17]. Several adaptive learning
methods have been proposed which utilize prior
knowledge [13,18,19]. [18] by representing a particular
optimization algorithm as a policy, and convergence rate
as reward. [13, 19] proposed to learn a flexible recurrent
neural network (RNN) model to handle a family of RL
tasks, to improve sample efficiency, learn new tasks in a
few samples, and benefit from prior knowledge.

The notion of self-play is one of the biggest
advancements of modern AI. AlphaGo AI is
Deepmind’s newest Go playing AI [20], that learns,
tabula rasa, superhuman proficiency in challenging
domains. Starting with the basic rules, they used
self-play for the AI to learn strategies by playing against
itself and storing efficient / rewarding moves.

Page 158



Fictitious Self-Play, is a machine learning
framework that implements fictitious play in a
sample-based fashion [21].

The three strategies that are compared are: Learning
by self-play, learning from playing against a fixed
opponent, and learning from playing against a fixed
opponent while learning from the opponents moves as
well [5].

4. Self-play scenarios and architectures

It is very hard for an AI self-learning agent to
generalize upon training into real scenarios. This
problem is known as the reality gap [22]. In the initial
stages of AI research, the training of self-learning agents
included rules or limited scenarios where it learns and
improves upon competition against other introduced
players. Interestingly, videogames have emerged as
one the main source of benchmark environments for
the training and testing of such agents, mostly due to
its realistic, yet controlled approach to the real world,
and the easy access to large amounts of data. For
instance, in a recent development, an AI agent is trained
by playing with a perfect copy of itself without any
supervision [23]. In this scenario, a set of basic rules
of the game have been introduced at the beginning and
the agent improves much faster using a vector of rewards
instead of the classical scalar quantity [24].

Initially, self-play agents were trained to
play boardgames (such as chess and go, among
others) [20] but it has now been successfully extended
from the classic and simpler Atari 2600 video
games [25] to more complex first-person shooters
(Doom [26], Battlefield [27], Quake [28]), Role Playing
games1(Warcraft [29]), Real-Time Strategic Games
(Starcraft [30–32]) and more recently Multiplayer
Online Battle Arena (Dota 2 [33]). For a more
comprehensive review see the work by Justesen et
al [34].

The motivation has increased in the recent years
mainly due to the advances in neural network
architectures suitable to the reinforcement learning
paradigm: DQN [25], AC3 [35], DSR [36], Dueling
networks [37] among others as well as the development
of powerful and accessible GPU computing frameworks.
This exciting area of research is broadly known as Deep
Reinforcement Learning [13, 38, 39].

The challenge of training self-playing agents in order
to develop more complex policies inside realistic and
highly specific or general environments remain as an
open problem. Most of the recent developments tend to
focus on very particular properties of the learning agent

1Including the Massively Multiplayer Online type of games.

Figure 1. Proposed general architecture for a

self-learning agent interacting with its environment.

or the way that they interact with their surroundings. To
address this issue, we identify two general mechanism
that can be improved in order to design a better
self-learning agent: self-play scenarios and self-learning
architectures.

4.1. Improving self-play scenarios and
self-learning agents: closing the reality
gap

Constructing realistic self-play scenarios plays a
fundamental role in training self-learning agents. Once
an agent is immersed in a specific environment, we
expect (independently of the self-learning architecture)
that it will learn a set of policies accordingly to the
received experiences 2. A problem which is widely
understood, is that when agents learn from strict
simulated scenarios, they may not be prepared for
unexpected situations when the environment changes,
such as a pigeon flying towards the sensor of a
driverless car. Here, we propose a general scheme
that uses the versatility of the videogames or simulators
as a source of synthetic data and the wide array of
capabilities of modern extended reality technologies, to
enrich the properties of the real environment during the
training of self-learning agents. The agent may learn
independently, but the environment can be controlled to
persuade the agent to learn a set of additional policies
for unexpected scenarios. In addition to the enriched
data, the self-learning agent may be trained using purely
synthetic data. But the limitations of this method rely in

2A learning agent can learn a set of policies, or will optimize the
parameters of a given set of policy. New policies can emerge even
without previous knowledge. The sum of the whole policies is called
general policy.

Page 159



the accuracy of the representation of the real scenarios.
For the self-learning mechanism, we have identified

three key steps which could improve the design of
architectures for self-learning agents, this may improve
policies both in terms of effectiveness and robustness.
The three areas are: Data collection, task generalization
and emergent behavior (see Fig. 1). For a given agent,
in the first stage the agent will need to interact with the
environment, possibly by accessing a data collection,
then the agent should be able to generalize a set of given
tasks and, simultaneously, new skills should emerge
(independently or due to the task generalization). In the
final stage, the emergent and the generalization skills
interact with the environment to create a continuous
self-learning agent.

To illustrate the steps, we present a set of
representative developments in the area of (deep)
reinforcement learning, shown in Figure 2. Each can
be used as a building block inside a complete self-play
scenario, for example, Figure 2a is a low-fidelity
rendered images with random camera positions, lighting
conditions, object positions, and non-realistic textures
use to train a self-learning agent (from Ref [40]),
Figure 2b is an agent which uses a compressed
representation of a real scenario to learn a set of
policies which are successfully use back to the real
environment. (from Ref [41]) Figure 2c shows an image
of a robot used as a one-demonstration example during
the training stage. (from [42]), Figure 2d shows another
image of a robot used during a training stage to teach
a robot to place an object in a target position.(from
[43]), Figure 2e depicts an agent stacking two blocks,
behavior learn from sparse rewards (from [7]), Figure 2f
illustrates one competitive environment where one the
agents develops a new set skills (from Ref [44]).

which can be used as building blocks inside a
complete self-play scenario (see Fig 2).

1. Data collection:
Domain randomization (DR): in a recent
communication by one of the DeepMind research
teams, it was showed that an agent can be
trained on artificially generated scenarios. In
this paper, the authors successfully transfer
the knowledge from a neural network purely
trained on low resolution rendered RGB images:
domain randomization [40]. This method can
be extensively use for training agents in the case
that the amount of data available is low or when
the separation between the real and the train
environment is immense.

World models (WM): a recent communication by
Ha et al. [41] showed that self-learning agents can

Figure 2. Illustration of how different components

from Figure 1 can be used on complete self-learning

systems.

be trained in a compressed spatial and temporal
representation of the environment. This method
is highly powerful because the agent can learn
in a more compact or hallucinated universe
and then go back to the original environment
exporting the set of learned abilities. One of the
main advantages of this method is the possibility
to perform a much faster and accurate in situ
training of the agents by using less demanding
computational resources.

2. Task generalization:

One-shot imitation learning (OSIL): the authors
present an improved method that uses a
meta-learning framework built upon the soft
attention model [45] named one-shot imitation
learning [42]. Here, the agents are able to learn a
new policy and solve a task after being exposed
to a few demonstrations during the training stage.

One-shot visual imitation learning (OSVIL):
Meta-imitation learning algorithm that teaches an
agent to learn how to learn efficiently [43]. In this
work, a robot reuses past experiences and then
upon a single demonstrations, it develops new
skills.

3. Emergent behavior:

Scheduled auxiliary control (SAC): another
research team from DeepMind introduced a new
framework that allows agents to learn new and

Page 160



Figure 3. Two module design of a general

architecture for a self-learner agent interacting with

its enriched or altered environment.

complex behaviors in presence of a stream of
sparse rewards [7].

Multi-agent competition (MAC): a paper by
one research team from OpenAI, the authors
showed that multi-agents self-play on complex
environments can produce behaviors which can be
more complex than the environment itself [44].
The emergent skills can improve the capabilities
of the agents upon unexpected changes in the real
environment.

To summarize, Figure 1 illustrates how an agent can
retrieves data from an environment and then generalizes
to a specific task and simultaneously develops new
abilities. The new skills can emerge independently or
due to the task generalization process. In the final stage,
the environment gets modified by the agent itself. A
combination of such methods could be used to create
more effective architectures for teaching self-learning
agents. In the next section we present a general design
and then we discuss the possible applications concerning
to specific cases.

5. Proposed Design

As already discussed, our goal of designing general
self-play scenarios for teaching self-learning agents can
be tackled by separating the data retrieved from the
environment and the agent’s self-learning architecture.

In the spirit of the SMM (see Section 2) we present
a general scheme in which we divide the general
architecture into two modules, in Module 1, the agent
retrieves the data from its surroundings as a combination
of information from the real world and synthetic data (or
pure synthetic data), and in Module 2 (equivalent to the
structure of the Fig 2), the agent creates its final policies.
The general scheme is depicted in the Fig 3,

For a self-learning agent inside a specific
self-learning scenario, there is not a difference between
the synthetic or the real data. Here we call real data
the information extracted from physical world without
any previous or further digital modifications. The agent
uses exclusively the information, in terms of raw bytes,
independently of the sensors that connect it with the
environment. The use of synthetic data arises as a
need to expose the self-learning agent to unexpected
situations or conditions that allow it to create a set of
related policies. It can be also necessary to increase the
amount of available training data (data augmentation).

5.1. Applications

The aforementioned improvements can be employed
in specific applications using specific designs. In
particular, by using the new and open simulation
frameworks such as OpenAI Gym3 or Dopamine4

among others. Here we discuss two particular cases,
however the ideas can be exported to other possible
applications as well.

• Self-driving machines: One of the most important
applications of self-learning agents is the
self-driving machines, in particular self-driving
cars [46, 47]. The available datasets for
training are increasing and recently, the research
community is exploring the use of a combination
of synthetic and real data [48]. The particular
design of the self-learning module, in this
case, must encourage the creation of emergent
behavior policies, however the discussion about
the imposition of the security of the passengers
above the pedestrians is still a open philosophical
question. One important characteristic is that
the architecture should carefully avoid the
modification of the environment, even upon
emergent behaviors. The use of simulated data
similar to modern video games engines can be of
paramount importance for the creation of optimal
policies.

• Robotic surgery: One of the most discussed

3https://github.com/openai/gym
4https://github.com/google/dopamine

Page 161



applications, in particular due to the ethical
implications [49]. In this case the modifications
of the environment is unavoidable. However, the
architecture must to control the submodule for
emergent behaviors, in particular in the case of
highly sensitive interventions. The agent should
be trained to accomplish a large set of general
tasks.

6. Discussion & Limitations

The design of self-learning and self-play scenarios is
still an area of fruitful developments and research. Many
critics have pointed out that AI research is limited by its
own ideas [50]. The creation and discussion of general
architectures can open the door to new proposals, in
particular, for the final emergence of the expected
Artificial General Intelligence (AGI) agent. Despite a
boom in the field during the last years, there are many
open questions about how to enable self-learning agents
to achieve specific tasks without any supervision. We
propose to tackle this question by using our general
architecture, which can be, in principle, limited by the
modular developments and the availability of specific
dataset or sensors.

7. Conclusion & Future Work

In this work we presented a general review and we
designed a general architecture for self-learning agents.
Our design included two separate modules, one for the
creation of the data and the second for the independent
self-learning stage. We conclude, that the second
module is, in general, divided into three stages where in
principle, each one only is in charge of accomplishing
an independent task: data collection, task generalization
and emergent behavior. In very particular designs,
generalization can influence emergent behaviors, but
only in one direction. We are currently working on
implementing our proposed designed and plan to publish
our findings in the near future.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in neural information processing systems,
pp. 1097–1105, 2012.

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M.
Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level
classification of skin cancer with deep neural networks,”
Nature, vol. 542, no. 7639, p. 115, 2017.

[3] I. Asimov, “Runaround. I, Robot,” New York: Bantam
Dell, 1950.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,

T. Graepel, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[5] M. Van Der Ree and M. Wiering, “Reinforcement
learning in the game of othello: learning against a
fixed opponent and learning from self-play,” in Adaptive
Dynamic Programming And Reinforcement Learning
(ADPRL), 2013 IEEE Symposium on, pp. 108–115,
IEEE, 2013.

[6] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar,
B. Yang, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, et al., “Never-ending
learning,” Communications of the ACM, vol. 61,
no. 5, pp. 103–115, 2018.

[7] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert,
J. Degrave, T. Van de Wiele, V. Mnih, N. Heess,
and J. T. Springenberg, “Learning by playing-solving
sparse reward tasks from scratch,” arXiv preprint
arXiv:1802.10567, 2018.

[8] C. Sørensen, S. Fountas, E. Nash, L. Pesonen,
D. Bochtis, S. M. Pedersen, B. Basso, and S. Blackmore,
“Conceptual model of a future farm management
information system,” Computers and electronics in
agriculture, vol. 72, no. 1, pp. 37–47, 2010.

[9] P. Pai, “Data augmentation techniques in CNN using
Tensorflow.” https://bit.ly/2KLm8K6, 2017.
Accessed: 2018-06-12.

[10] J. Salamon and J. P. Bello, “Deep convolutional neural
networks and data augmentation for environmental
sound classification,” IEEE Signal Processing Letters,
vol. 24, no. 3, pp. 279–283, 2017.

[11] K. Doya, “Reinforcement learning in continuous time
and space,” Neural computation, vol. 12, no. 1,
pp. 219–245, 2000.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672–2680, 2014.

[13] Y. Li, “Deep reinforcement learning: An overview,”
arXiv preprint arXiv:1701.07274, 2017.

[14] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M.
Pilarski, A. White, and D. Precup, “Horde: A
scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction,” in The
10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, pp. 761–768,
International Foundation for Autonomous Agents and
Multiagent Systems, 2011.

[15] S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transactions on knowledge and data engineering,
vol. 22, no. 10, pp. 1345–1359, 2010.

[16] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves,
O. Vinyals, J. Agapiou, et al., “Strategic attentive
writer for learning macro-actions,” in Advances in neural
information processing systems, pp. 3486–3494, 2016.

[17] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J.
Gershman, “Building machines that learn and think like
people,” Behavioral and Brain Sciences, vol. 40, 2017.

[18] S. Levine, C. Finn, T. Darrell, and P. Abbeel,
“End-to-end training of deep visuomotor policies,” The
Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, 2016.

Page 162



[19] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil,
T. P. Lillicrap, M. Botvinick, and N. de Freitas,
“Learning to learn without gradient descent by gradient
descent,” arXiv preprint arXiv:1611.03824, 2016.

[20] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[21] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious
self-play in extensive-form games,” in International
Conference on Machine Learning, pp. 805–813, 2015.

[22] N. Jakobi, P. Husbands, and I. Harvey, “Noise and
the reality gap: The use of simulation in evolutionary
robotics,” in European Conference on Artificial Life,
pp. 704–720, Springer, 1995.

[23] A. Dosovitskiy and V. Koltun, “Learning to act by
predicting the future,” arXiv preprint arXiv:1611.01779,
2016.

[24] R. S. Sutton and A. G. Barto, “Reinforcement learning:
An introduction,” 2011.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[26] M. Kempka, M. Wydmuch, G. Runc, J. Toczek,
and W. Jaśkowski, “Vizdoom: A doom-based ai
research platform for visual reinforcement learning,”
in Computational Intelligence and Games (CIG), 2016
IEEE Conference on, pp. 1–8, IEEE, 2016.

[27] J. Harmer, L. Gisslén, H. Holst, J. Bergdahl, T. Olsson,
K. Sjöö, and M. Nordin, “Imitation learning with
concurrent actions in 3d games,” arXiv preprint
arXiv:1803.05402, 2018.

[28] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward,
M. Wainwright, H. Küttler, A. Lefrancq, S. Green,
V. Valdés, A. Sadik, et al., “Deepmind lab,” arXiv
preprint arXiv:1612.03801, 2016.

[29] P.-A. Andersen, M. Goodwin, and O.-C. Granmo,
“Towards a deep reinforcement learning approach for
tower line wars,” in International Conference on
Innovative Techniques and Applications of Artificial
Intelligence, pp. 101–114, Springer, 2017.

[30] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev,
A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler,
J. Agapiou, J. Schrittwieser, et al., “Starcraft ii: a new
challenge for reinforcement learning,” arXiv preprint
arXiv:1708.04782, 2017.

[31] G. Synnaeve, N. Nardelli, A. Auvolat, S. Chintala,
T. Lacroix, Z. Lin, F. Richoux, and N. Usunier,
“Torchcraft: a library for machine learning research
on real-time strategy games,” arXiv preprint
arXiv:1611.00625, 2016.

[32] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick,
“Elf: An extensive, lightweight and flexible research
platform for real-time strategy games,” in Advances in
Neural Information Processing Systems, pp. 2656–2666,
2017.

[33] “Dota 2.” https://blog.openai.com/
dota-2/. Accessed: 2018-06-12.

[34] N. Justesen, P. Bontrager, J. Togelius, and S. Risi,
“Deep learning for video game playing,” arXiv preprint
arXiv:1708.07902, 2017.

[35] V. Mnih, A. P. Badia, M. Mirza, A. Graves,
T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous methods for deep reinforcement
learning,” in International Conference on Machine
Learning, pp. 1928–1937, 2016.

[36] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J.
Gershman, “Deep successor reinforcement learning,”
arXiv preprint arXiv:1606.02396, 2016.

[37] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt,
M. Lanctot, and N. De Freitas, “Dueling network
architectures for deep reinforcement learning,” arXiv
preprint arXiv:1511.06581, 2015.

[38] S. S. Mousavi, M. Schukat, and E. Howley, “Deep
reinforcement learning: an overview,” in Proceedings
of SAI Intelligent Systems Conference, pp. 426–440,
Springer, 2016.

[39] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and
A. A. Bharath, “A brief survey of deep reinforcement
learning,” arXiv preprint arXiv:1708.05866, 2017.

[40] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain randomization for transferring deep
neural networks from simulation to the real world,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pp. 23–30, IEEE, 2017.

[41] D. Ha and J. Schmidhuber, “World models,” CoRR,
vol. abs/1803.10122, 2018.

[42] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho,
J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba,
“One-shot imitation learning,” in Advances in neural
information processing systems, pp. 1087–1098, 2017.

[43] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine,
“One-shot visual imitation learning via meta-learning,”
arXiv preprint arXiv:1709.04905, 2017.

[44] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and
I. Mordatch, “Emergent complexity via multi-agent
competition,” arXiv preprint arXiv:1710.03748, 2017.

[45] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[46] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[47] N. J. Goodall, “Machine ethics and automated vehicles,”
in Road vehicle automation, pp. 93–102, Springer, 2014.

[48] H. A. Alhaija, S. K. Mustikovela, L. Mescheder,
A. Geiger, and C. Rother, “Augmented reality meets
computer vision: Efficient data generation for urban
driving scenes,” arXiv preprint arXiv:1708.01566, 2017.

[49] A. Wedmid, E. Llukani, and D. I. Lee, “Future
perspectives in robotic surgery,” BJU international,
vol. 108, no. 6b, pp. 1028–1036, 2011.

[50] J. Pearl and D. Mackenzie, The Book of Why: The New
Science of Cause and Effect. Basic Books, 2018.

Page 163


