Music Theory SI

Welcome to the Music Theory SI Resource Site! Please watch the video below for a site overview, or click the icons at the bottom of the page to access the content you want to see.

Introduction Video
Presentations

Please watch these videos to gain a better understanding of how to provide Supplemental Instruction to Music Theory students. It is best to watch these videos in order.

What is Multimodal Learning?
Setting Smart Goals Using Bloom's Taxonomy
How to Lesson Plan Using Multimodal Strategies
This is Your Brain On Music - Knowing Neurons
Adapted SI Strategies for Music Theory

Team and Scribe
Send a Problem
The Matrix
Musical Timelines/Flowcharts
Concept Mapping
Speed Vocabulary
Musical Jeopardy
Key Signatures

- [Music Theory Pro - Sharp Keys](#) (video)
- [Music Theory Pro - Flat Keys](#) (video)
- [Music Theory Pro - Circle of Fifths](#) (video)
- [Everything Adds Up to Seven](#)
- [Caveman Key Signatures](#)
- [Key Signature Memory](#)
Scales

Music Theory Pro Video - Major Scales
Music Theory Pro Video - Minor Scales
Music Theory Pro Video - Parallel Minor
Music Theory Pro Video - Relative Minor
Remembering Major and Minor Scales (Hear and Play)
Minor Scales Made Easy for Musicians
The Speedy Scale Game
Scale Stops (timtopham.com)
Intervals

Learning how to read and sing intervals can give students major headaches, minor panic, diminish their sight-singing confidence, and augment their stress levels. Click on the strategies below to learn ways to help them get unstuck.

Music Theory Pro - Intervals, Part I (video)

Music Theory Pro - Intervals, Part II (video)

Two Minute Music Theory - How to Remember the Interval (video)

Step Counting Strategies

Be the Interval

What Note Comes Next?

Name that Interval

Interval Recognition Game (timtopham.com)
Chords

Music Theory Pro - Chords, Part I - Triads (Video)
Music Theory Pro - Chords, Part II - Seventh Chords (video)
Be the Chord
Chord Bungees
Circle of Thirds (Open Theory.net)
Circle of Fifths Made Clear - Mobile Studio - (video)
Rhythm Strategies

Two Minute Music Theory - Notes and Rests, Part I (video)
Two Minute Music Theory - Notes and Rests, Part II (video)
Speaking Rhythms
Note Value Trees
Site Directory

All of the strategies in this website are listed here in alphabetical order for quick and easy access. Just click on a link below to access the strategy you desire.

- Be the Chord
- Be the Interval
- Caveman Key Signatures
- Concept Mapping
- Chord Bungees
- Circle of Thirds (Open Theory.net)
- Circle of Fifths Made Clear - Mobile Studio - (video)
- Everything Adds Up to Seven
- How to Lesson Plan Using Multimodal Strategies
- Key Signature Memory
- Matrix, The
- Musical Timelines and Flowcharts
- Name that Interval
- Note Value Trees
- Send a Problem
- Setting Smart Goals Using Bloom's Taxonomy
- Song Mnemonics
Contact Us

Thank you for visiting the Music Theory SI Resource Site. We hope you find these strategies to be helpful and informative. Please use the contact form below to share your comments, concerns, or suggestions!

Email *
Name *
Subject
Message

Send
Presentations

Please watch these videos to gain a better understanding of how to provide Supplemental Instruction to Music Theory students. It is best to watch these videos in order.

What is Multimodal Learning?

Setting Smart Goals Using Bloom's Taxonomy

How to Lesson Plan Using Multimodal Strategies

This is Your Brain On Music - Knowing Neurons
Multimodal Learning for Music

Azusa Pacific University Learning Enrichment Center
Uploaded on Oct 31, 2017

This video explains the nature of multimodal learning and why it's so important for Music Theory students to learn multimodally in SI sessions.
Creating Definable Goals Using Bloom’s Taxonomy

Mary Mercurio Santos

This video will show Supplemental Instruction leaders how to create measurable, definable goals using Bloom's Taxonomy. This video is specifically focused for Music Theory SI Leaders.
This instructional video shows Supplemental Instruction Leaders how to plan Supplemental Instruction strategies using the multimodal strategies on a website.
Adapted SI Strategies for Music Theory

Team and Scribe
Send a Problem
The Matrix
Musical Timelines/Flowcharts
Concept Mapping
Speed Vocabulary
Musical Jeopardy
Team and Scribe

Have you ever noticed some music students don't like to show what they don't know, or show they need a bit more time to process information?

Have you ever worked with a student who was so eager to show what they knew that they dominated an lecture or an SI session; answering all of the questions and volunteering for all of the activities as the other students passively watched them...or flipped through their social media feeds?

The "Team and Scribe" strategy can be used to equalize the personality dynamics in a group so all students have a chance to learn what they need to know, and excited, eager students have an opportunity to extend their learning by helping other students learn.

To use this strategy:
- Break students into groups, and have ALL students from the group gather around the task they need to complete (at the whiteboard, or at a table, depending on the task).
- Choose one student to be the Scribe. Ideally, this should be a student who knows less about the topic than the other students in the group. HOWEVER, you do not need to point that fact out...that's why the SI Leader chooses the Scribe in this exercise.
- The rest of the group functions as the Team, explaining to the Scribe what they need to write down. Ideally, your highly engaged and excited students should be carefully explaining to the Scribe what needs to be written down.
- The Team is not allowed to write, and the Scribe is only allowed to write what the team tells them to write.
- Watch for moments where members of the team start to withdraw or disconnect from the activity. This is a great time to engage with the group, asking them questions related to the exercise to get them back on task.
- Be sure to choose a different scribe for each activity, so as not to single out any one student.
Send a Problem

Send a Problem is a strategy originally developed for use in Math SI sessions. Send a problem works beautifully for part-writing exercises because students have to work together to write musical passages, and rely on their knowledge of tendency tones and resolution strategies to both respond to what's been given to them, and create a chord for the next student to work with.

To use this strategy:

- Create some parameters for a four-part writing exercise. (example: 4 bars, key of E Major, 4 non-chord tones and a Perfect Authentic cadence.
- Write the first chord in the exercise, labelling it the way you want your students to label their chords (pop symbols, chord functions, etc...)
- Have a student create the next chord in the exercise. Have them write it, sing it, and explain why its resolution strategies work.
- Have the next student create the next chord in the same fashion.
- Repeat this exercise until the part-writing is completed.
- Have the students play or sing through the exercise slowly, working as a group to identify parts that need to be modified.
- Have the students continue to make adjustments to the exercise as a team until they are happy with the results.

Adapted from the Leaders’ Guide to Supplemental Instruction (c) 2014 The Curators of the University of Missouri
The Matrix

A matrix is a grid, or connected series of squares that can be used to hold information on items that have similar features or characteristics. As stated in the Leader’s Guide to Supplemental Instruction, matrices (plural form of matrix) help students organize, compare, and contrast information about similar items. For emerging musicians, matrices are helpful because they can be used to connect the symbols used in music (such as pop symbols, notes, clefs) to written words and phrases they are more familiar with.

There are many ways to use matrices in Supplemental Instruction sessions. The example matrix below was constructed to show the difference between major, minor, augmented, and diminished chords.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interval from tonic to 3rd</th>
<th>Interval from 3rd to 5th</th>
<th>Notes (In C)</th>
<th>Pop Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>No Symbol</td>
<td>Major 3rd</td>
<td>Minor 3rd</td>
<td>C-E-G</td>
</tr>
<tr>
<td>Minor</td>
<td>m</td>
<td>Minor 3rd</td>
<td>Major 3rd</td>
<td>C-Eb-G</td>
</tr>
<tr>
<td>Augmented</td>
<td>+</td>
<td>Major 3rd</td>
<td>Major 3rd</td>
<td>C-E-G#</td>
</tr>
<tr>
<td>Diminished</td>
<td>*</td>
<td>Minor 3rd</td>
<td>Minor 3rd</td>
<td>C-Eb-Gb</td>
</tr>
</tbody>
</table>

How to use a matrix in 3 steps:
- Create a completed matrix on paper. Attach it to your lesson plan, and use it as a reference in the SI session (in case you forget what information goes in each column).
- Draw an empty matrix on the board.
- Add the column and row headings
- Have your students come to the board to fill in the information and complete the matrix.
- Once the matrix is completed and correct, have students take a picture of it to add to their notes later.

Suggestions for musical matrices:
- Major and Minor Scale types
- Modes
- Note names
- Note values
- Chords

Adapted from the Leaders' Guide to Supplemental Instruction (c) 2014 The Curators of the University of Missouri at Kansas City
Musical Timelines and Flowcharts

Becoming a successful reader and writer of the language of music has everything to do with getting the details right. Students learning the skill of writing musical notation often forget one or more of the multitude of notations (pop symbols, key signatures, ties, accidentals) that need to be correctly labeled, with disastrous (or at least humorous consequences).

Timelines and flowcharts help students to organize the multiple sets of information they need to know to be able to reconstruct and event or, in our case, write a musical passage or analyze a passage completely.

To use this strategy:
- Draw a horizontal line on the board.
- Add the basic steps of the process your students are learning to complete.
- Have students write in the additional, smaller steps needed to complete the process above and below the timeline you’ve created.
- Have students check each other’s work for completeness.
- Have the students complete the process they’re learning, using the timeline created in the SI session to ensure they complete all steps of the process.

Here is a sample of what a timeline for four-part writing could look like:

The most essential part of the creation of the timeline takes ownership of
A concept map is a type of diagramming that allows students to organize information according to relationships. The central idea is placed in a bubble in the middle of the map. Related ideas and pieces of information are placed in smaller bubbles around the central bubble. Lines are used to connect the bubbles together.

Concept mapping is commonly used to connect information from many types of subjects, so the students in your SI sessions are most likely familiar with the strategy. It is, therefore, helpful to adapt the strategy for use in Music Theory SI sessions, as it allows students to use information they already know (a familiar strategy) to organize information they don’t know yet.

Here's what a concept map could look like for the different types of 7th chords. It’s been left uncompleted, so students can finish it on their own, using the information given.

To use this strategy:
- Put students in small groups or pairs.
- Have them identify the central word, concept, or question around which to build the map.
- List the concepts, items, or questions associated with the central word or concept.
- Work from the general to the specific.
- Write in the linking words on the lines connecting the bubbles.
- Have students tell you how all of the concepts are related.

Adapted from the Supplemental Instruction Leader Resource Manual (c) 2004 by the Curators of the University of Missouri.
Speed Vocabulary

Speed vocabulary is a fun, faced-paced game where students are encouraged to compete with each other in their recall of vocabulary items.

Speed vocabulary can be a very helpful SI strategy for music theory students, as they are required to be able to quickly recall a myriad of musical items such as:

- Accidental in a Key Signature
- Notes in a chord
- Notes in a major or minor scale
- Intervals
- Musical terms
- Conducting patterns for time signatures
- Music conducting terminology

To use this strategy:

- Break students into groups
- Have ALL members of each team come to the board.
- Present both groups with a term (ex. "allegro", "C Major 7", "Conduct in 5").
- Ask them to write the information on the board, or demonstrate the skill to you. Do not have them verbally tell you the answer.
- The first group to successfully complete the task gets a point.

Note: It is better to work in teams than to have students compete directly against each other.
Musical Jeopardy

Jeopardy games are a tried and true way for students to review large amounts of information they have learned. Musical jeopardy works particularly well because concepts students have been learning using musical notation can be rephrased into concepts in their native language.

The internet offers a myriad of free Jeopardy templates, that allow you to customize the questions (answers), using text or images.

Be sure to phrase your Jeopardy answers correctly. Review the Rules of Jeopardy if you're not sure how the game works.

Jeopardy games are particularly well suited to marathon sessions.
Note Learning

Are your students struggling to learn or remember note names and qualities? Please click on the links below for innovative strategies designed to get those note names to stick.

- How to Read Music - Tim Hansen (TedED Video)
- The Overtone Series
- Online Frequency Generator
- Music Theory Pro - Overview of Note Names, Clefs, and Accidentals
- Whack A Note
- Note Recognition Game: Music Theory.net
- 30+ Fun Ways to Teach the Notes of the Staff Using Technology
The Overtone Series

Simply put, the overtone series is the series of fainter, harmonic tones you hear each time a fundamental note is played. On most instruments (except electronic “pure tone” generators), as many as sixteen additional tones can be heard. Students may not initially recognize the pitches in the overtone series as additional notes, but may hear them as the "color" or timbre (pronounced "tam-bé") of the instrument they play.

<table>
<thead>
<tr>
<th># of Harmonic</th>
<th>Frequency (Hz)</th>
<th>Pitch</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4096</td>
<td>C</td>
<td>Octave</td>
</tr>
<tr>
<td>15</td>
<td>3840</td>
<td>B</td>
<td>Major Seventh</td>
</tr>
<tr>
<td>14</td>
<td>3584</td>
<td>Bb</td>
<td>Minor Seventh</td>
</tr>
<tr>
<td>13</td>
<td>3328</td>
<td>A</td>
<td>Minor Sixth</td>
</tr>
<tr>
<td>12</td>
<td>3072</td>
<td>G</td>
<td>Perfect Fifth</td>
</tr>
<tr>
<td>11</td>
<td>2816</td>
<td>F#</td>
<td>Augmented Fourth</td>
</tr>
<tr>
<td>10</td>
<td>2560</td>
<td>E</td>
<td>Major Third</td>
</tr>
<tr>
<td>9</td>
<td>2304</td>
<td>D</td>
<td>Major Second</td>
</tr>
<tr>
<td>8</td>
<td>2048</td>
<td>C</td>
<td>Octave</td>
</tr>
<tr>
<td>7</td>
<td>1792</td>
<td>Bb</td>
<td>Minor Seventh</td>
</tr>
<tr>
<td>6</td>
<td>1536</td>
<td>G</td>
<td>Perfect Fifth</td>
</tr>
<tr>
<td>5</td>
<td>1280</td>
<td>E</td>
<td>Major Third</td>
</tr>
<tr>
<td>4</td>
<td>1024</td>
<td>C</td>
<td>Octave</td>
</tr>
<tr>
<td>3</td>
<td>768</td>
<td>G</td>
<td>Perfect Fifth</td>
</tr>
<tr>
<td>2</td>
<td>512</td>
<td>C</td>
<td>Octave</td>
</tr>
<tr>
<td>1</td>
<td>256</td>
<td>C</td>
<td>Fundamental or Unison</td>
</tr>
</tbody>
</table>

Why is it important for students to work on the overtone series in SI? Three reasons:

1. Look at the 2nd, 3rd, and 5th overtones. Look familiar? What we call a major chord is built upon these naturally occurring harmonics. Add the 7th overtone and you have a dominant seventh chord, the most commonly occurring seventh chord in music.
2. The overtone series helps familiarize students with the idea of frequencies (the number of wave cycles that occur in one second), while relating those frequencies (new scienc-y concept) to pitches, note names, and intervals (things students are more familiar with). Over time, all student musicians should know how frequencies work so they can use that knowledge to work within different sound environments (i.e. amplified sound, audio recording, music performed in cavernous spaces vs. carpeted spaces, etc...).

3. Music students frequently misspell notes by forgetting to include accidentals. This is because they do not completely understand the difference between a note without an accidental and a note with an accidental. If students can learn that "Middle C" is a pitch that vibrates at 261.63 MHz, while C# vibrates at 277.18 MHz, they may understand these two notes as two fundamentally different things.

To learn about the overtone series in SI:
• Have students construct the overtone series chart above on the whiteboard.
• Give students a starting note and a frequency chart, and have them construct major and minor chords based on the overtone series.
• Have students watch this video on timbre and discuss its implications in applied music (orchestra and choir), and its implications on Western harmony.
Note Learning
Are your students struggling to learn or remember note names and qualities? Please click on the links below for innovate strategies designed to get those note names to stick.

How to Read Music - Tim Hansen (TedED Video)

The Overtone Series

Online Frequency Generator

Music Theory Pro - Overview of Note Names, Clefs, and Accidentals

Whack A Note

Note Recognition Game: Music Theory.net

30+ Fun Ways to Teach the Notes of the Staff Using Technology
How to read music - Tim Hansen

Let’s Begin...

Like an actor’s script, a sheet of music instructs a musician on what to play (the pitch) and when to play it (the rhythm). Sheet music may look complicated, but once you’ve gotten the hang of a few simple elements like notes, bars and clefs, you’re ready to rock. Tim Hansen hits the instrumental basics you need to read music.
Online Tone Generator

Instructions

To play a constant tone, click PLAY or press Space.

To change the frequency, drag the slider or press [←] [→] (arrow keys). To adjust the frequency by 1 Hz, use the [←] [→] buttons or press [Shift + ←] and [Shift + →]. To adjust the frequency by 0.01 Hz, press [Ctrl + ←] and [Ctrl + →]; to adjust it by 0.001 Hz, press [Ctrl + Shift + ←] and [Ctrl + Shift + →]. To halve/double the frequency (go down/up one octave), click [×2] and [×2].

To change the wave type from a sine wave (pure tone) to a square/triangle/sawtooth wave, click the button.

You can mix tones by opening the Online Tone Generator in several browser tabs.

What can I use this tone generator for?

Tuning instruments, science experiments (what's the resonant frequency of this wineglass?), testing audio equipment (how low does my subwoofer go?), testing your hearing (what's the highest frequency you can hear? are there frequencies you can hear in only one ear?).

Tinnitus frequency matching. If you have pure-tone tinnitus, this online frequency generator can help you determine its frequency.

Remove ad and don't show it again.
Can you identify the right note? Learn which note lands where on the staff, and click it as fast as you can!
If this exercise helps you, please purchase our apps to support our site.
30+ FUN WAYS TO TEACH THE NOTES OF THE STAFF USING TECHNOLOGY
Key Signatures

Music Theory Pro - Sharp Keys (video)
Music Theory Pro - Flat Keys (video)
Music Theory Pro - Circle of Fifths (video)
Everything Adds Up to Seven
Caveman Key Signatures
Key Signature Memory
Everything Adds Up to Seven

Students often have difficulty remembering the number of accidentals needed in a given key signature, and often confuse the types of accidentals needed (sharps and flats). This adapted matrix is designed to help students remember the number of accidentals in a given key signature by recalling the number of accidentals needed in a similar key signature.

Start by having students draw a matrix that is 3 columns wide by seven columns 8 columns high. Label the first three cells across with the words "Letter", "Sharps", and Flats. Have them write the letters A to G in the remaining cells of the first column, as follows:

<table>
<thead>
<tr>
<th>Letters</th>
<th>Sharps</th>
<th>Flats</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next, have students enter all of the key signatures they remember.

For example, in the cells to the right of "A", students would enter "3" in the "Sharps" column, and "4" in the "Flats" column.

The key of A Major has 3 sharps, and the key of Ab Major has 4 flats.

At the end of the exercise, point out to the students that for any given letter, the number of sharps in the sharp key signature, and the number of flats in the flat key signature almost always add up to seven (the exception is that C# has 7 sharps, Cb has 7 flats, and C Major has no accidentals).

This will allow students to construct the number of accidentals needed for a key signature by recalling its partner key signature.
Caveman Key Signatures is a fun dual-mode strategy to help students remember the number of sharps in a given key signature. This strategy works for all letters except C (C Major has no accidentals), and F (F Major has no sharps).

Have students draw an uppercase letter "G" on their paper or the whiteboard. Ask them how many lines they had to draw to make the G. The answer to this question is (usually) 1, and the key of G Major has one sharp.

Next, have students draw an uppercase letter "D". Students normally draw two lines to make an uppercase D, and D Major has two sharps.

Have students continue until they reach B Major. This exercise is called "Caveman Key Signatures" because of the way an uppercase B looks when they've used 5 lines to draw it.
Key Signature Memory

Memory is a game where cards are all laid face-down in a grid. Each card has on its face a symbol, and players can only flip two cards at a time before they have to reset them face down and try again. It can be played alone, or competitively with the players taking turns in flipping two cards.

If a player flips two cards with the same symbol, the cards are removed from the grid and stacked on the side in their pair. When played competitively, the pair of matched cards is counted as a point. Whoever has the most points after all cards are removed wins. In Key Signature Memory, players match pictures of specific key signatures with their corresponding key signature names.

To play Key Signature Memory, create three sets of flashcards; one with the number of accidentals (shown on a staff), one with major key signature names, and one with minor key signature names from 7 sharps to 7 flats. Have students play in either Major or Minor key mode, randomly arranging the grid with the key signature cards and the key signature name cards.

For the first few sessions, have students use key signature pictures and the major key signature names. Once those are mastered, have the students play again a few sessions later with the minor key signature names.

This game may seem simple and a bit mundane, but the students this has been tried with were really into it.

- S. Goode
Key Signatures, Part II Flat Keys

5,601 views

Joel Clifft
Published on Aug 24, 2011

MUSIC THEORY PRO IPHONE APP AVAILABLE NOW

This video explains how to identify key signatures in flat keys

SHOW MORE
Key Signatures, Part III Circle of Fifths

2,661 views

Joel Clifft
Published on Aug 24, 2011

MUSIC THEORY PRO, AVAILABLE ON YOUR IPHONE
www.musictheorypro.com
Step Counting

Beginning Music Theory students often have difficulty connecting and relating the note names they have learned, to their symbolic notation on the musical staff, to the distinct sounds the notes and their relative spaces make when played in sequence (intervals). Eventually, students learn to identify specific sounds with the names of specific intervals, but still may have difficulty coming up with the right note names to describe the beginning and ending points of the intervals.

Professors tend to help students resolve this issue in one of two ways:
- Providing the first note of the interval and having students identify the interval and the correct name of the second note as it relates to the key signature the students are in.
- Providing the first note of the interval, and having students identify the interval and the name of the second note by counting the number of half-steps needed to reach the second note.

There are two significant benefits to using the step-counting strategy:
1. It works in any key, or in the absence of keys.
2. It works for students whose musical knowledge is not rooted within key signatures (i.e. students whose musical education has not covered a lot of keys or scales).

A significant drawback to the step counting strategy is that it does not reinforce students’ knowledge of keys or the idea of diatonicism.

To use this strategy:
- Have students create, replicate, and memorize the chart below:

<table>
<thead>
<tr>
<th>Intervals (Augmented+ or Diminished°)</th>
<th>Steps</th>
<th>Intervals (M, m, or Perfect)</th>
</tr>
</thead>
</table>
| Perfect Unison | 0 | Minor 2
| Augmented Unison | 1 | Major 2
| Diminished 3rd | 2 | Minor 3
| Augmented 2nd | 3 | Major 3
| Augmented 3rd | 5 | Perfect 4

On a piano or a keyboard app, have students play their first note (example: D)
- Have students identify the second note they want to find by its interval (example: "I need to find the note that is a minor 6th up from D")
- Beginning on the note next to the starting note (the D#), have the students count each key on the keyboard they have to press to achieve the interval (example: students would start at D#, and count up 8 steps, ending on Bb).

Wait...why are we calling the end note Bb and not A#?
Remember that intervals have both quantity and quality. The student
identified the interval they were trying to find as a minor 6th. The sixth note up from any sort of D has to be a type of B; in this case a Bb. If the student had identified the interval they wanted to find as any sort of 5th interval (like an augmented 5th), the ending note would have been labeled as some sort of A.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented 4th, Diminished 5th</td>
<td>6</td>
<td>Tri-Tone</td>
</tr>
<tr>
<td>Augmented 5th</td>
<td>7</td>
<td>Perfect 5th</td>
</tr>
<tr>
<td>Diminished 6th</td>
<td>8</td>
<td>Minor 6th</td>
</tr>
<tr>
<td>Diminished 7th</td>
<td>9</td>
<td>Major 6th</td>
</tr>
</tbody>
</table>
Be the Interval

Interval spelling and naming can become a primarily visual exercise for students, detached from the sounds the note in an interval and their respective spaces make. This kinesthetic exercise places students directly "in" an interval, helping them internalize the interval's sound, function, and feeling. This exercise is great for students who have difficulty with visual exercises and internal audition, and students who need to move around.

1. With painter's tape or other tape that won't leave a mark on the floor, create a staff on the floor of the classroom.
2. Use note cards, pieces of paper, or some other visual aid to indicate clef(s).
3. Gather enough students to create the chords you're working on:
 - Intervals (2 students)
4. Have the students stand on the lines or spaces of the notes in the interval. (example: Perfect 5th interval beginning on E would have one standing on the first line of the treble clef, and another student standing on the third line of the treble clef.
4b. Students who represent sharp notes stand with their thumbs up. Students who represent flat notes stand with their thumbs down.
5. Have the students sing and solfege their notes, first separately, then together. Use a tuning device to make sure their pitch(es) are correct.
6. Move the notes (students) around, and have them explore the changing harmonics.

*Make the notes major, minor, augmented, or diminished.

Level Up: Have one student stand on the first note of the interval. Call out the quality and quantity of the interval (example: Major third), and see how fast students can stand on and name the second note correctly.
What Note Comes Next? (The Melody Chain Game)

This game builds on interval recognition, and can be modified to utilize solfege syllables or scale degrees.

This game can be played in pairs, in teams, or in a group, and serves as a great session opener, as well as a great break when switching from one activity to the next.

To Use This Strategy:
- Play a note. Tell the student(s) what note you're starting on, then play another note.
- Have your student(s) listen carefully to the sequence and echo both the first note and the new note. One guess – no poking around for the second note!
- If the student(s) guess(es) wrong, repeat the same notes until they answer correctly.
- Then have students play the last note played, and play another – now it's your turn to guess!
- Even though the one player repeats the notes until the other can play them correctly, the one guess at a time rule is very important: it raises the stakes, serves to keenly focus attention, and builds aural memory.

Level Up! Chain of Command
Students love to stump each other by using huge intervals. With 88 keys to choose from, this game can quickly get out of control – and become severely reduced in its usefulness. I highly recommend that you set some rules and limits to enhance and concentrate the learning. Feel free to combine these and/or change these up depending on what your student most needs to learn in the session:
- Stay within the span of an octave
- Use selected intervals (e.g. only minor and major seconds, or intervals of less than a fifth)
- Adding two notes or more rather than just one
- Remembering and playing all the notes from the beginning
- Naming the interval while or before playing
- One or both players answer with solfege rather than an instrument
- Add more players
- Use different instruments (great with multi-instrument ensembles, families, etc.)
In the classic game "Name that Tune", contestants identify a popular song by listening only to the first few notes of the song (the first intervals). This SI adaptation of the game requires students to identify ascending and descending intervals by listening to the first few notes of a song they know. This game can be scaled to the number of students you have in your session, having students participate either as individuals, or in groups.

1. Create teams of students, or individual contestants.

2. Play a brief section of a familiar song.

3. Have teams identify the intervals in the selection. Points can be assessed in many different ways:
 - the first team to identify intervals gets a point.
 - the team to identify the most intervals gets a point.

Expansion Pack! In addition to identifying the intervals in the selection, have students list out as many songs as they can remember that contain the identified intervals.
Interval Recognition Game

Intervals are the most basic building blocks of ear training. Yet endless interval drills can be quite boring and difficult. One of the advantages to Scale Stomp is that the intervals are placed firmly within the context of the diatonic scale, giving them much more meaning and significance.

However, being able to identify intervals in and of themselves can help your ear navigate through intervals within the scale, modulations, and less tonally-centered music.

As a creative piano teacher, your sensitivity to your student’s learning curves can exponentially increase your student’s learning efficiency and fun factor.

The key is to start with success and build on it slowly.

To use this strategy:

• Play two notes for your students, and have them guess the interval. Major seconds and major thirds are a good place to start, since most piano methods introduce ‘steps and skips’ early on. As you play them for your student, you’ll be able to see where the stumbling places are and reinforce the learning in subtle ways with nonverbal cues – mirroring the emotional contrast between the intervals with exaggerated facial expressions, etc.
• Tritones and minor seconds offer wonderful opportunities for exercising your comical facial contractions.
• Break your students into pairs and have them quiz each other.
• Keep it light, keep it fun, and keep it short. This is a great opening activity, but don’t do it for more than 5-10 minutes at a time.

Intervals, Part I

1,498 views

Joel Cliff
Published on Aug 25, 2011

Music Theory Pro iPhone app available now
www.musictheorypro.com

SHOW MORE
Intervals, Part II

989 views

Joel Cliff
Published on Aug 25, 2011

iPhone app available now
www.musictheorypro.com

SHOW MORE
Today I give a mnemonic device on How To Remember the Interval.

Don't forget to Subscribe: https://www.youtube.com/twominutemusi...
Scales

Music Theory Pro Video - Major Scales
Music Theory Pro Video - Minor Scales
Music Theory Pro Video - Parallel Minor
Music Theory Pro Video - Relative Minor
Remembering Major and Minor Scales (Hear and Play)
Minor Scales Made Easy for Musicians
The Speedy Scale Game
Scale Stops (timtopham.com)
This simple game for beginners will have a surprisingly profound effect on your own tonal perception.

Once you have taught your first major scale, simply play up the scale and stop on a note. At first, the student will count up the scale, and tell you (or, even better, sing to you) what number you stopped on.

Begin with one scale, but then transpose the exercise around to different scales.

But that number isn’t just a number. It’s a scale degree. And learning to hear scale degrees does wonders for your perception of the movement of melodic phrases and later chords.

That number also indicates the interval from the tonic.

Once your student has mastered ascending scale degrees by number, repeat the same exercise with the solfa (aka solfege) syllables: do, re, mi, fa, so, la, ti, do. These solfa syllables are easy to sing and foster profoundly intuitive connections with the inner structures of music.

Now repeat the same game, but play your scale descending from the tonic. Remember that, once your student has mastered one scale, it’s important to change around to different scales.

The Next Step

... Literally! Rather than asking your student to sing the note you stopped on, have them sing and name the next note (ascending or descending, depending on your direction).

Remove the training wheels... slowly

Gradually introduce pitches at different intervals from the tonic without the other scale steps. At first, have the student sing up the scale to the goal note. Before long, both of you will be recognizing scale degrees, solfege syllables, and intervals without playing the in-between notes.

The easiest way to remember minor scales!
Minor Scales Made Easy for Musicians

A lot of people find minor scales to be confusing because when most people start learning music, they start with mainly major scales and end up getting a stronger foundation with those and not minors. Also there are several types of minors which sometimes get confused and run together.

But just because they are different, doesn't mean they are harder, we just might have to spend more time with them because we aren't used to them yet.

I'm now offering Private Lessons in Fiddle (violin), Guitar, Mandolin, Bass, and General Music Theory! Click here to find out more.

Natural Minor

1. A natural minor is essentially its relative major that has been inverted or moved around.

C Major -> A Minor:
C D E F G A B C -> A B C D E F G A

Eb Major -> C Minor:
Eb F G Ab Bb C D Eb -> C D Eb F G Ab Bb C

2. Now lets compare the natural minor to its parallel major. (In music, parallel means same letter name.)

C Major -> C Minor
C D E F G A B C -> C D Eb F G Ab Bb C

R 2 3 4 5 6 7 R -> R 2 b3 4 5 b6 b7 R

So we see that one way of looking at this is to say that the natural minor scale has a flat 3, 6, and 7.

THIS IS THE MOST COMMON WAY. It is the way that we'll use for other articles in this site.

3. Another way is to count whole steps and half steps. (This is slightly more time consuming but makes more sense to some people.) In this example the lower case (w) and (h) indicate Whole and Half steps between the notes.

Notice the italicized notes are the ones that change.

C Major:
C w D E h F w G w A w B h C

C Minor:
C w D h Eb w F w G h Ab w Bb w C
So there are 3 different ways of looking at natural minor scales: comparing them to relative majors, comparing them to parallel majors, and counting whole steps and half steps. Now let’s check out the other types of minors.

Natural Minor: C D Eb F G Ab Bb C
Melodic Minor: C D Eb F G A B C + C Bb Ab G F Eb D C
Harmonic Minor: C D Eb F G Ab B C Minor Pentatonic: C Eb F G Bb

Melodic Minor

The *melodic minor* seems confusing at first but you just have to remember one thing: It’s the only minor scale that is different going up than it is coming down.

Ascending:
C D Eb F G A B C
R 2 b3 4 5 6 7 R

Descending:
C Bb Ab G F Eb D C
R b7 b6 5 4 b3 2 R
Scales, Part III Chromatic Scale, Whole Tone Scale

817 views

Joel Cliff
Published on Aug 27, 2011

iPod app available now

www.musictheorypro.com

MTP teaches a musical foundation... and it's fun too!
Key Signatures, Part V Relative Minor

2,716 views

Joel Clifft
Published on Aug 27, 2011

Music Theory Pro iPhone app www.musictheorypro

MTP for your iPhone - teaches everything from Note Names on the piano to advanced ear training -
SHOW MORE
Levi Demonstrates a Sight Reading Pattern

279 views

musicmattersblog
Published on Feb 4, 2016

Using the Sight Reading & Rhythm Cards from Piano Safari (http://pianosafari.com).

More videos and piano teaching tips at Music Matters Blog (http://musicmattersblog.com)!
Chords

Music Theory Pro - Chords, Part I - Triads (Video)
Music Theory Pro - Chords, Part II - Seventh Chords (video)
Be the Chord
Chord Bungees
Circle of Thirds (Open Theory.net)
Circle of Fifths Made Clear - Mobile Studio - (video)
Chord writing, resolution, and four-part writing can become a primarily visual exercise for students, detached from the harmonic sound the combined notes create, or the resolution tendencies each note in the chord has. This kinesthetic exercise places students directly "in" a chord or series of chords, helping them internalize the sound, function, and feeling of the chord. This exercise is great for students who have difficulty with visual exercises and internal audition.

1. With painter's tape or other tape that won't leave a mark on the floor, create a staff on the floor of the classroom.
2. Use note cards, pieces of paper, or some other visual aid to indicate clef(s).
3. Gather enough students to create the chords you're working on.

Triads and seventh chords

A chord is any combination of three or more pitch classes that sound simultaneously.

A three-note chord whose pitch classes can be arranged as thirds is called a *triad*.

To quickly determine whether a three-note chord is a triad, arrange the three notes on the “circle of thirds” below. The pitch classes of a triad will always sit next to each other.
Identifying and labeling triads

Triads are identified according to their root and quality.

Triad roots

To find a triad’s root, arrange the pitch classes on a circle of thirds (mentally or on paper). The root is the lowest in the three-pitch-class clump. Expressed another way, if the circle ascends by thirds as it moves clockwise, the root is the “earliest” note (thinking like a literal clock), and the other pitch classes come “later.”
Once you know the root, you can identify the remaining notes as the *third* of the chord (a third above the root) and the *fifth* of the chord (a fifth above the root).

Triad qualities

To find a triad’s quality, identify the interval between the root and the other members of the chord. There are four qualities of triads that appear in major and minor scales, each with their own characteristic intervals.

- major triad: M3 and P5 above the root (as in *do–mi–sol*)
- minor triad: m3 and P5 above the root (as in *do–me–sol* or *la–do–mi*)
- diminished triad: m3 and d5 above the root (as in *ti–re–fa*)
- augmented triad: M3 and A5 above the root (as in *me–sol–ti*)

Lead-sheet symbols

A triad can be summed up by a single symbol, such as a lead-sheet chord symbol. A lead
A lead-sheet symbol begins with a capital letter (and, if necessary, an accidental) denoting the root of the chord. That letter is followed by information about a chord’s quality:

- major triad: no quality symbol is added
- minor triad: lower-case “m”
- diminished triad: lower-case “dim” or a degree sign “°”
- augmented triad: lower-case “aug” or a plus sign “+”

Finally, if a pitch class other than the chord root is the lowest note in the chord, a slash is added, followed by a capital letter denoting the pitch class in the bass (lowest) voice.

A C-major triad’s lead-sheet symbol is simply C. A C-minor triad is Cm. A D-sharp-diminished triad with an F-sharp in the bass is D#dim/F#. And so on.

![Musical notation](image)

Roman numerals

Chords are often labeled according to their function within a key. One system for doing so uses Roman numerals to designate the scale degree of the chord’s root. Some musicians also use Roman numerals to describe the quality of the chord. Capital Roman numerals (I, II, III, etc.) are used for major triads. Lower-case Roman numerals (i, ii, iii, etc.) are used for minor triads. Lower-case Roman numerals followed by a ° sign (ii°, vii°, etc.) are used for diminished triads. Capital Roman numerals followed by a + sign (V+, for example) are used for augmented triads. In general, Roman numerals are generally labeled below the score.
(Some musicians prefer to use Roman numerals *only* to reflect the scale-degree of the chord root. In such cases, all Roman numerals are capital. In this textbook, we use all-capital Roman numerals to refer to chords generally, when quality does not matter. When notating specific chords with specific qualities, we will differentiate those qualities in the Roman numerals.)

In major keys, chords with the same Roman numeral are made up of the same scale-degrees (using the same solfège syllables), and they have the same quality. In other words, triads labeled 'I' in any major key will be major triads containing *do, mi,* and *sol*. iii triads will be minor triads containing *mi, sol,* and *ti,* etc. The same is true for minor keys (though I in minor is different from I in major).

Following are the qualities and scale-degrees belonging to each triad in every major key:

- I: major – *do, mi, sol*
- ii: minor – *re, fa, la*
- iii: minor – *mi, sol, ti*
- IV: major – *fa, la, do*
- V: major – *sol, ti, re*
- vi: minor – *la, do, mi*
- vii°: diminished – *ti, re, fa*

Following are the qualities and scale-degrees belonging to each triad in every minor key:

- i: minor – *do, me, sol*
- ii°: diminished – *re, fa, le*
- III: major – *me, sol, te*
- iv: minor – *fa, le, do*
- V: major – *sol, ti, re*
Building a triad

To build a triad on the staff, identify the root, quality, and bass note from the lead-sheet symbol. The root and quality will tell you what three pitch classes belong to the triad. For example, C\(^+\) tells you the root is C, and the quality is augmented. Since the quality is augmented, there is a major third above the root (E) and an augmented fifth above the root (G-sharp). Since there is no bass note appended to the lead-sheet symbol, the bass note is the same as the root: C. Write a C on the staff (in any comfortable register), then write the other chord tones (E and G-sharp) above the C (see the Caug triad in the above figure).

For Cm/E\(_\flat\), the root is C, and the quality is minor. Since the quality is minor, there is a minor third above the root (E-flat) and a perfect fifth above the root (G). The slash identifies E-flat as the bass note. Write the E-flat on the staff. Then write a C and a G above it to complete the chord (again, see above).

When all the members of the triad are as close to the bass note as they can be, the chord is in what is called close position (C, Cm/E\(_\flat\), and Cdim/G\(_\flat\) above). When there are spaces between chord tones, the chord is in open position (Caug above). (In certain musical situations, only one of those positions will be useful or desirable.)

Listening to triads

Each triad quality has its own distinct sound, and to an extent that sound is preserved even when the chord is inverted (when the pitch classes are arranged so that a pitch class other than the root is in the lowest voice). As you practice identifying and writing triads, be sure to play the triads, both to check your analysis/writing and to develop the ability to identify chord qualities quickly by ear.

Seventh chords
Seventh chords

A four-note chord whose pitch classes can be arranged as thirds is called a *seventh chord*.

Like with a triad, the pitch classes belonging to a seventh chord occupy adjacent positions (a four-pitch-class clump) on the circle of thirds. The four members of a seventh chord are the *root*, *third*, *fifth*, and *seventh*.

There are five qualities of seventh chords that appear in diatonic music: major seventh, dominant seventh, minor seventh, diminished seventh (also called fully-diminished), and half-diminished seventh. They are comprised of the following intervals above their roots:

- major seventh: M3, P5, and M7 above the root (or major triad with a major seventh)
• dominant seventh: M3, P5, and m7 above the root (or major triad with a minor seventh)
• minor seventh: m3, P5, and m7 above the root (or minor triad with a minor seventh)
• diminished seventh: m3, d5, and d7 above the root (or diminished triad with a diminished seventh)
• half-diminished seventh: m3, d5, and m7 above the root (or diminished triad with a minor seventh)

Following are the lead-sheet abbreviations for seventh-chord qualities:

• major seventh: maj7 or △7 (G\text{maj}7 or G△7)
• dominant seventh: 7 (B7)
• minor seventh: m7 (F#m7)
• diminished seventh: dim7 or °7 (D\text{dim}7 or D°7)
• half-diminished seventh: ⦰7 (A⦰7)

Roman numerals

Following are the qualities and scale-degrees belonging to each seventh chord in every major key, along with the corresponding Roman numeral reflecting those qualities:

• I7: major seventh – do, mi, sol, ti
• ii7: minor seventh – re, fa, la, do
• iii7: minor seventh – mi, sol, ti, re
• IV7: major seventh – fa, la, do, mi
• V7: dominant seventh – sol, ti, re, fa
• vi7: minor seventh – la, do, mi, sol
• vii7: minor seventh – la, do, mi, sol
Following are the qualities and scale-degrees belonging to each seventh chord in every minor key, along with the corresponding Roman numeral reflecting those qualities:

- i\(^7\): minor seventh – do, me, sol, te
- ii\(^7\): half-diminished seventh – re, fa, le, do
- III\(^7\): major seventh – me, sol, te, re
- iv\(^7\): minor seventh – fa, le, do, me
- V\(^7\): dominant seventh – sol, ti, re, fa
- VI\(^7\): major seventh – le, do, me, sol
- VII\(^7\): dominant seventh – te, re, fa, le
- vii\(^7\): diminished seventh – ti, re, fa, le

Note that major-seventh and dominant-seventh chords have the same Roman numeral nomenclature. The difference is discerned from the context of the key.
Chords, Part I Triads

1,224 views

Joel Clifft
Published on Aug 25, 2011

iPhone app available now www.musictheorypro.com

MTP makes learning music fun! It drills everything from Note Names for beginners to advanced

SHOW MORE
Chords, Part II 7th Chords

4,506 views

Joel Cliff
Published on Aug 25, 2011

Music Theory Pro iPhone app

Music Theory Pro: 7th Chords - Triads

MTP for your iPhone - teaches everything from Note Names on the piano to advanced ear training -
Triads in Solfege

365 views

Category: Education

License: Standard YouTube License
The Circle of Fifths made clear

380,985 views

Mark Newman
Published on Jun 27, 2015

http://www.themobilestudio.net
In this video I explain Circle of Fifths and demonstrate some of its many uses in music composition. This video is part of a larger Podcast about Chords and Harmonies which is available...
Rhythm Strategies

Two Minute Music Theory - Notes and Rests, Part I (video)

Two Minute Music Theory - Notes and Rests, Part II (video)

Speaking Rhythms

Note Value Trees
Students who are developing internal audition sometimes struggle with correlating the notation of a rhythmic pattern to the way that rhythmic pattern sounds. Students speak those same rhythmic patterns all the time, but don't think of the rhythmic notation correlated with the sounds they're making.

Using demonstration charts like the one shown here lets students connect a word pattern they are familiar with (like "barbecue chicken") with its associated rhythmic notation.

Remember to have your students speak through every note or rhythmic pattern they see in SI, and in their homework. If they cannot recall the sound a particular notation pattern makes, refer them back to charts like these to make those necessary connections.
Note Value Trees

Tree mapping is a form of concept mapping used to show proportional relationships between items. A good illustration of this idea is a family tree, where the tree is upside down, so that the primary ancestor is at the top of the tree, and the most recently born descendants are at the bottom.

Tree mapping is a great strategy for showing the temporal (time) relationships between the symbols we use to identify different types of notes and rests.

As with other mapping strategies, it's important to have your students work together to figure out the hierarchical relationships between the symbols, creating the map and correcting each others' work when errors occur.
Today we look at the values of notes and rests...well, part 1.

Don't forget to Subscribe: https://www.youtube.com/twominutemusi...
dotted half note (150% of half note)

Notes and Rests, Part 2 - TWO MINUTE MUSIC THEORY #5

Today we discuss changes that can be made to note and rest values. (Part 2)

Don't forget to Subscribe: https://www.youtube.com/twominutemusi...