FOUNDATION INVESTIGATION

PROPOSED LAKESIDE CONDOMINIUM, "MOANAWAI"
MOANALUA, OAHU, HAWAII

FOR REFERENCE
not to be taken from this room

LOYALTY ENTERPRISES LTD.
May 4, 1973

Loyalty Enterprises Ltd.
233 Merchant Street
Honolulu, Hawaii 96813

Attention: Mr. Clarence Ching

Gentlemen:

Submitted herewith are four copies of our report entitled "Foundation Investigation, Proposed Lakeside Condominium, Moanalua, Oahu, Hawaii, For Loyalty Enterprises Ltd."

The scope of work was described in our proposal dated March 23, 1973. Our investigation essentially conformed to the proposed scope of work.

Preliminary design information was transmitted verbally to your structural engineer to facilitate his design.

Soil samples not used for laboratory testing and rock core samples will be retained for a six-month period for possible inspection by your contractor. Unless directed otherwise, they will be discarded six months following the date of this report.

It has been a pleasure participating on this project with you. Should you have any questions regarding our work or the contents of our report, please contact us for clarification.

Yours very truly,

DAMES & MOORE

W. E. Estes

cc: Milton Sher & Associates
Attention: Mr. Milton Sher
FOUNDATION INVESTIGATION
PROPOSED LAKESIDE CONDOMINIUM
MOANALUA, OAHU, HAWAII
FOR
LOYALTY ENTERPRISES LTD.

SUMMARY

The site is considered satisfactory for the proposed condominium building and related facilities. The structure can be founded in volcanic tuff rock or granular soil. For footings placed in the natural cinder materials, a bearing pressure of 6000 pounds per square foot may be used. For footings placed directly over tuff rock, at least four feet thick, a bearing pressure of 8000 pounds per square foot may be used.

The proposed development will not have significant effect on the tunnel which extends beneath the site, and conversely, the existence of the tunnel will not affect the proposed construction.

INTRODUCTION

This report contains the results of our foundation investigation for a proposed condominium building in Moanalua, Oahu, Hawaii. The proposed site is located in the Salt Lake area, the general location of which is illustrated by the Map of Area, Plate 1. Specifically, the
building site is to be situated on the southwest corner of Likini Street and Ala Napunani Street (TMK 1-1-62:24, 25, 26, 27, and 28) as shown by the Plot Plan, Plate 2.

The scope of our work was to develop subsurface information which would be applicable to project design and construction. To accomplish this scope, two borings were drilled and samples of subsurface materials obtained for evaluation of their engineering properties. An analysis was made of work previously performed by others in the site area. Our work also included consideration of possible effects of the proposed construction upon a drainage tunnel situated beneath the site.

PROJECT CONSIDERATIONS

It is our understanding that the proposed condominium facilities will include a tower 16 stories in height, and a 2-level parking structure separated from the tower. A portion of the tower is to be located over an existing drainage tunnel easement. The structure will be supported by bearing walls which will impose loads of about 45 kips per linear foot of wall, except for the outside stair shaft wall which will be designed for a wind load of 500 kips per linear foot. A swimming pool will be located along the northern edge of the site.
SITE CONDITIONS

SURFACE

The site is situated on the side of a northwest-facing interior slope of Salt Lake crater. Two benches have been constructed at the site; one, which is to contain the tower, slopes northwestward from elevation +61 feet to +50 feet, the other also slopes northwestward from elevation +49 feet to +36 feet and is to contain parking and recreation facilities. Portions of each bench are cut into rock, and the remainder consists of overlying sand and gravel or fill material which was removed from the cuts.

At present, the site is occupied by a one-story wood-frame office building. The adjoining lot immediately west of the site contains a four-story concrete structure.

SUBSURFACE

The site is situated on the rim of Salt Lake Crater, a secondary eruption in the later volcanic stages of Oahu's development. Volcanic ash and ejecta have been cemented in place to form hard volcanic tuff and tuff breccia rock. Generally, the tuff is massive, and is sometimes overlain by a few feet of gravel or sand fill and/or a dense brown silty gravelly sand. This rock was
penetrated by both of our borings, and may be seen in road cuts and trenches near the site. The tuff is of variable thickness, and in places overlies a fine to coarse dense cinder sand and clayey cinder sand. The sand, if present, overlies a silt complex consisting of light brown stiff to hard silty clay and sandy or clayey silt. Where the sand is not present, the tuff lies directly upon clay or silt. The base of the silt complex was not encountered by our borings.

A drainage tunnel has been constructed by tunnelling through the silt complex. The tunnel passes beneath the northeast corner of the proposed structure at an approximate depth of 44 to 48 feet. It is our understanding that the tunnel is of arch roof design, lined with reinforced gunite, and is 11 feet in height and 10 feet in width. The tunnel was constructed to carry drainage from Salt Lake to a storm sewer near Puuolua Road.

To explore the subsurface conditions beneath the site, two borings were drilled at the locations shown on the Plot Plan. The borings were drilled by a subcontractor under our constant field inspection. Cores were obtained of rock encountered in the borings to evaluate the competency of the rock underlying the site. Soils were sampled with our Type U sampler, and the recovered materials returned to our laboratory for test-
ing. A detailed description of the field exploration, including boring logs and the results of laboratory testing, are contained within the Appendix attached to this report.

Ground water was not encountered in the borings. The actual ground water surface is near the tunnel floor at about sea level.

CONCLUSIONS AND RECOMMENDATIONS

TUNNEL STABILITY

A review of our files was made to gather existing information regarding the drainage tunnel beneath the site. This information was summarized in a preceding paragraph, SITE CONDITIONS, SUBSURFACE.

We are of the opinion that the proposed structure would have negligible effects on the tunnel; conversely, the presence of the tunnel would have negligible effects on the proposed construction.

FOUNDATIONS

The 16-story structure can be satisfactorily supported on spread footings placed in a competent rock or soil. We recommend the use of a bearing pressure of 8000 pounds per square foot for footings placed directly over tuff formation that is at least four feet thick. Other-
wise, footings placed on natural sand or gravelly sand should be designed to a bearing pressure of 6000 pounds per square foot. Thus, to ascertain the thickness of tuff under the wall footing, the bottom of the footing should be sounded by test pits or drilling to at least four feet deep. The bottom of all footings should be at least two feet below the lowest adjacent grade.

The same criteria should be used for footings for the garage structure.

Excavation in tuff rock should be thoroughly cleaned of loose debris or loosened rock pieces prior to placing of steel.

All foundation excavations should be inspected by a qualified soils engineer to verify that the exposed materials are capable of satisfactorily supporting the imposed loads.

SLABS-ON-GRADE

It is our opinion that building slabs and pool decking can be satisfactorily supported at grade. A minimum four-inch thick open graded gravel should be used beneath any concrete slabs in habitable areas. A vapor barrier or membrane should be placed under the slabs and the base-course gradation should be sufficient to provide a capillary break.
Concrete pool decking can be constructed immediately over on-site materials or compacted granular fill. No base course should be required provided the ground surface is free of clayey or silty materials.

RETAINING WALL

It is our understanding that a basement wall will also be designed to retain earth fill below ground level. Generally, the wall should be designed for a lateral earth pressure of 65 pounds per square foot per foot of depth on the vertical face of the wall. It is imperative that there be no lateral deflection of the wall during the backfilling operation of the wall. Thus it appears that buttress type lateral supports would be preferable to provide adequate rigidity during construction. It is suggested that, in reviewing the proposed construction schedules by the contractor, the state of the wall during the backfilling should be carefully evaluated in regards to potential lateral deflection.

SITE GRADING

It is our understanding that some fill and possibly some additional cut operations will be required at the site. In general, on-site materials will be suitable for use in compacted fills provided that the material is
free of adobe, debris, and rock pieces in excess of six inches in their maximum dimension. The site should be stripped prior to any fill placement, and to remove all vegetation and scattered debris.

Fills should be constructed in six-inch maximum lifts and compacted to 95 percent of the respective maximum dry densities as determined in accordance with ASTM compaction test designation D-1557. Fill beneath pavements should be compacted to 95 percent compaction in the upper 12 inches of subgrade. The construction of fill should be inspected to ascertain that the materials and compacted densities are satisfactory.

EXCAVATIONS

Excavations will be required during foundation construction for the multi-story structure including the elevator shaft and for the swimming pool. Based on our prior experience in the Salt Lake volcanic tuff formation, excavation can be accomplished by tractor equipment with ripper attachment.

PAVEMENT DESIGN

Based on test results on compacted volcanic tuff fill within Salt Lake, the CBR value can be expected to range from 30 to 40 on samples compacted to 95 percent.
percent of the maximum dry density. We believe that the site is suitable for a minimum pavement section composed of either 2 inches of asphaltic concrete over 4 inches of base course, or 3 1/2 inches of full depth asphalt placed directly on properly compacted volcanic tuff fill. The base course should have a minimum CBR rating of 85.
The following Plates and Appendix are attached and complete this report:

Plate 1 - Map of Area
Plate 2 - Plot Plan
Appendix - Field Exploration and Laboratory Testing

Respectfully submitted,

DAMES & MOORE

W. E. Estes

[Signature]

W. E. Estes

[Seal]

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION

[Signature]
MAP OF AREA

SCALE 1:24000

REFERENCE:
U.S.G.S. QUADRANGLE MAP
PUUOAO, HAWAIJ
DATED 1968
APPENDIX

FIELD EXPLORATION AND LABORATORY TESTING

Field exploration was conducted at the project site during March 30 through April 2, 1973. This work was performed in two phases by one of our engineering geologists: a preliminary site reconnaissance and exploratory drilling.

The reconnaissance phase was completed on March 30, 1973. At that time, our engineering geologist examined the land features, soil conditions, and existing structures at and near the site. Exposures of volcanic tuff and the underlying silt complex were examined with respect to the proposed structure and drilling locations. Preferred drilling locations were checked for accessibility and possible damage to existing structures. The field reconnaissance phase revealed that the overlying tuff had an undulating nature and varied in thickness. Slight jointing at low angles were observed. The silt appeared very stiff to hard, and immediately followed the base of the tuff in the exposures observed. The reconnaissance facilitated the development of the drilling and sampling program which followed.
The exploratory drilling phase of our work was conducted on April 2, 1973. The Log of Borings are provided on Plates A-1A and A-1B of this Appendix.

The drilling was accomplished by a subcontractor using a Mobile Drill, Model B-61. This is a truck-mounted rotary drill with hydraulic wash that also has augering capabilities. Our engineering geologist located the boring positions, provided constant supervision during the drilling phase, selected the most efficient drilling and sampling techniques for the materials encountered, and obtained relatively undisturbed soil samples. NY type cores were obtained of rock materials encountered.

A series of two borings were drilled during the last phase of the field exploratory work. The borings were positioned to provide detailed information about the subsurface materials found at the site. The soils encountered in the borings were classified in accordance with the Unified Soil Classification System; a description of this system is included as Plate A-2.

Soil samples were obtained with a Dames & Moore Type U sampler. An illustration of this sampler is provided on Plate A-3. Selected samples were utilized for laboratory testing which included Atterberg limits,
triaxial compression, and moisture-density tests and determinations. Test data are presented on the Log of Borings.

The following Plates are attached and complete this Appendix:

Plate A-IA - Log of Borings, Boring 1
Plate A-1B - Log of Borings, Boring 2
Plate A-2 - Unified Soil Classification System
Plate A-3 - Soil Sampler Type U
Boring 2

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Boring Complet at 19.8 feet on 4-2-73</td>
</tr>
<tr>
<td>10.0</td>
<td>Light Brown Silty Clay, Very Stiff</td>
</tr>
<tr>
<td>15.0</td>
<td>Light Brown Fine Sandy Silt, Hard</td>
</tr>
</tbody>
</table>

Surface Elevation

- Boring 2
 - **MOISTURE CONTENT IN %**
 - 29.0
 - **DRY DENSITY IN PCF**
 - 94.9
 - **BLOWS/FT. ON SAMPLER**
 - 100/4" (25/2"
 - **CORE AND % RECOVERY**
 - Samples and/or cores
 - **DEPTH IN FEET**
 - 5.0
 - **GRAPH SYMBOL**
 - SM
 - **LETTER SYMBOL**
 - MH
 - **DESCRIPTION**
 - Brown Silty Gravely Sand Fill with Occasional Cobbles.
 - Brown Silty Gravely Fine to Medium Sand.
 - Dense
 - Brown Sandy Clayey Silt.
 - Very Stiff
 - Brown Tuff Rock.
 - Hard
 - Light Brown Silty Clay.
 - Some Fine Sand Content
 - Very Stiff
 - Light Brown Fine Sandy Silt.
 - Hard

Notes:

- Depth at which undisturbed sample was taken
- Depth at which disturbed sample was taken
- Depth at which sample was lost during extraction
- Depth and length of core run

Driving energy - 300-lb. weight dropping 30 inches
BORING 1

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Core and % Recovery</th>
<th>Moisture Content in %</th>
<th>Dry Density in Pcf</th>
<th>Blow/ft. on Sampler</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8</td>
<td>45.6</td>
<td>6%</td>
<td>15.3</td>
<td>1.5</td>
<td>BROWN SILTY SANDY GRAVEL, FILL. DENSE.</td>
</tr>
<tr>
<td>20</td>
<td>45.6</td>
<td>6%</td>
<td>15.3</td>
<td>1.5</td>
<td>GRAY TO BROWN TUFO ROCK CONTAINING SOME CLAY AND SILT SEAMS. HARD.</td>
</tr>
<tr>
<td>25</td>
<td>45.6</td>
<td>6%</td>
<td>15.3</td>
<td>1.5</td>
<td>DARK BROWN FINE TO COARSE CLAYEY CINDER SAND. DENSE.</td>
</tr>
</tbody>
</table>

Surface Elevation

LOG OF BORINGS

- **NOTES:**
 - () DEPTH AT WHICH UNDISTURBED SAMPLE WAS TAKEN
 - (x) DEPTH AT WHICH DISTURBED SAMPLE WAS TAKEN
 - [] DEPTH AT WHICH SAMPLE WAS LOST DURING EXTRACTION
 - () DEPTH AND LENGTH OF CORE RUN
 - DRIVING ENERGY: 300-LB WEIGHT DROPPING 30 INCHES

Boring completed at 41.5 feet on 4-2-73
Soil Classification Chart

Major Divisions

<table>
<thead>
<tr>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel and Gravelly Soils</td>
</tr>
<tr>
<td>Sand and Sandy Soils</td>
</tr>
<tr>
<td>Clay and Clayey Soils</td>
</tr>
</tbody>
</table>

Typical Descriptions

<table>
<thead>
<tr>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel and Gravelly Soils</td>
</tr>
<tr>
<td>Sand and Sandy Soils</td>
</tr>
<tr>
<td>Clay and Clayey Soils</td>
</tr>
</tbody>
</table>

Grading Chart

Material Size

<table>
<thead>
<tr>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Size</td>
<td>Upper Size</td>
</tr>
<tr>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>Sand</td>
<td>Fine</td>
</tr>
<tr>
<td>Granule</td>
<td>dirt</td>
</tr>
<tr>
<td>Coarse</td>
<td>Very Coarse</td>
</tr>
</tbody>
</table>

Plasticity Chart

Liquid Limit

<table>
<thead>
<tr>
<th>Plasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity</td>
</tr>
<tr>
<td>Plasticity</td>
</tr>
<tr>
<td>Plasticity</td>
</tr>
</tbody>
</table>

Samples

<table>
<thead>
<tr>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
</tr>
<tr>
<td>Sample Type</td>
</tr>
<tr>
<td>Sample Type</td>
</tr>
</tbody>
</table>

Unified Soil Classification System

Note: References to additional data regarding samples are entered on the first log on which the data appears.
Plate A-3

SOIL SAMPLER TYPE U
FOR SOILS DIFFICULT TO RETAIN IN SAMPLER

NOTE:
"HEAD EXTENSION" CAN BE INTRODUCED BETWEEN "HEAD" AND "SPLIT BARREL."

ALTERNATE ATTACHMENTS