ADDENDUM SOILS INVESTIGATION
KUIKAHI GARDENS, KALIHI STREET
KALIHI-UKA, HONOLULU, HAWAII
W. O. 344-10 AUGUST 13, 1973

FOR

MID-PAC DEVELOPMENT, LTD.

MUNICIPAL REFERENCE RECORDS CENTER
City & County of Honolulu
City Hall Annex 614 S. King Street
Honolulu, Hawaii 96813

GEOLABS-HAWAII, INC.
1553 COLBURN STREET, SUITE 203
HONOLULU, HAWAII 96817
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>REVISED DEVELOPMENT</td>
<td>2</td>
</tr>
<tr>
<td>FIELD EXPLORATION</td>
<td>2</td>
</tr>
<tr>
<td>SOILS</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY OF SLIDING</td>
<td>4</td>
</tr>
<tr>
<td>DISCUSSION AND RECOMMENDATIONS</td>
<td>5</td>
</tr>
<tr>
<td>GRADING PLAN</td>
<td>Plate 1</td>
</tr>
<tr>
<td>CROSS SECTIONS</td>
<td>Plates 2 & 3</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>No.'s B-1A thru B-8A</td>
</tr>
<tr>
<td>Boring Logs</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>1 thru 3</td>
</tr>
<tr>
<td>Laboratory Testing</td>
<td>Plates B-1 thru B-11</td>
</tr>
<tr>
<td>Laboratory Data</td>
<td></td>
</tr>
</tbody>
</table>
Mid-Pac Development, Ltd.
P. O. Box 1719
Honolulu, Hawaii 96806

Attention: Mr. Terrance Wong

Subject: Addendum Soils Investigation
Kuikahi Gardens, Kalihi Street
Kalihi-Uka, Honolulu, Hawaii
Tax Map Key: 1-4-15:50

Reference: Geolabs Report:
Soils & Foundation Investigation
Kuikahi Gardens, Kalihi Street
Kalihi-Uka, Honolulu, Hawaii
Dated June 16, 1972

Gentlemen:

Submitted herewith are the results of the additional exploration performed on the subject property at your request.

The purpose of the additional investigation were (1) to determine the stability of the natural descending ridge above the latest proposed development area, as requested by the Department of Public Works, and (2) to determine subsurface conditions in an area that was added on to the project after the issuance of the referenced soils report.
REVISED DEVELOPMENT

The development, as presently proposed, will consist of a total of 40 two-story 3 and 4 bedroom units, to be constructed within the larger area. Parking for some of the units will be under the structures, incorporating a semi-basement type design by the construction of retaining walls below grade. Considerable grading and retaining wall construction will be required to provide building sites.

FIELD EXPLORATION

Nine additional borings were drilled with a B-40 truck mounted drill rig, utilizing a 4-inch diameter solid stem soil auger. The location of the borings are shown on Plate 1 and the boring logs are contained in Appendix A of this report.

In all borings, Standard Penetration Tests were taken at selected depth intervals. The Standard Penetration Test consists of driving a 2-inch O. D. split spoon sampler 18 inches with a 140-lb. hammer free-falling a distance of 30 inches. The number of blows required to drive the sampler the last 12 inches is termed the "Standard Penetration Resistance" (N) and is an approximate measure of the relative density or consistency of a soil. These resistance values are plotted on the boring logs. Samples obtained were visually classified in the field and
representative material was placed in air-tight containers and returned to our laboratory for testing.

The previous test pit and borehole information was supplemented by additional geologic reconnaissance and the new boring program. All geologic data has been plotted on the "grading plan", Plate 1 and the cross sections, Plates 2 and 3.

SOILS

General descriptions of soil types encountered were detailed in the referenced report. However, additional soils data has been obtained from the latest investigation.

The black expansive boulder clay (fill), reported in our earlier report has been outlined in greater detail on Plate 1. The upper portions of the makai side of the property contains a deposit of dumped fill. A considerable amount of fill containing excessive moisture is also present on the lower portion of the makai side of the property. These fill deposits were apparently dumped on the site during the Likelike Highway construction. Ponded water approximately 2 feet deep was observed in one area near boring B-5A. This is apparently caused by runoff accumulating in a surface depression. Boundaries of all encountered fill are outlined on Plate 1.
A thin (1 ft. to 4 ft.) layer of black, expansive, boulder clay overlies a considerable portion of the makai side of the site.

Areas of trash fill, have again been noted on Plate 1.

HISTORY OF SLIDING

Geologic reconnaissance and test pit and boring inspection on the property by our geologist did not disclose any evidence of slides.

A discussion between Mr. Brooks Anderson, our geologist, and Mr. Terry Aratani of the Testing Division, Highway Department, Department of Transportation on August 2, 1973 revealed the following information:

Slides along the mountain side of the Likelike Highway occurred in cuts originally sloped at 3/4:1. When the cuts were trimmed back to approximately 2:1 or less, the sliding was generally stabilized.

Mr. Aratani suggested that there might be a formal report covering the slides on the Likelike Highway at the District Office of the Highway Division. However, Mr. Sasaki at the District Office indicated that his department did have some highway cross sections but, that he did not know of any report.
Based upon examining the site, road sections, road cuts and fills and upon discussions with personnel of the Highway Division involved in the construction of the Likelike Highway, the following conclusions have been drawn by our geologist:

1. The well known highway slides appear to be related to the over steepening of the Likelike Highway cuts during construction. Hence, the slides were a construction problem and not directly related to the inherent geologic stability of the site.

2. A slight lateral movement of the toe of the high (60 to 70 feet) fills on the Likelike Highway approximately 500 to 1000 feet makai and above the subject site, is apparently due to the steepness (approximately 1:1) and height of the unbenched fills. This movement was apparently not caused by any inherent instability of the highway site. No visual evidence of instability or sliding directly above the subject development site was noticed, either from visual reconnaissance, boring data, or laboratory inspection of samples.

DISCUSSION AND RECOMMENDATIONS

Based upon the subsurface investigation, laboratory testing, and engineering analyses; the following recommendations pertain to
the stability of the natural ridge above the project and to the general development of the site:

1) The conclusions and recommendations of the referenced report dated June 16, 1972 remain applicable unless specifically superseded by this report.

2) Our geologic reconnaissance, subsurface exploration and laboratory inspection and testing did not reveal any evidence of landsliding or geologic instability on the site.

3) Stability analyses were performed on Cross Section B-B', which represents the steepest natural slope configuration as shown on Plate 2. The analyses indicate that the natural slope possesses a safety factor of at least 1.5 and is therefore considered to be stable.

4) The makai portion of the site, as shown by the boundary on Plate 1, was moist to very wet depending on location. Removal of up to 10 feet of the soft wet material and replacement with compacted fill will be necessary prior to construction of buildings in this area. Also in this general area, verification of the existence of a dumped fill from highway construction was obtained. This fill will basically affect the four unit building complex shown on Plate 1 where it overlaps these building sites. Foundation loads for
these structures should either be transferred to competent bearing soil below the fill or be founded on recompacted structural fill in accordance with our original recommendations.

5) Where encountered, structural footings should also be founded below the surficial "adobe" layer. The "adobe" (highly expansive black clay) is also not recommended for slab support. Therefore, where applicable, removal of all the black clay beneath slabs and replacement with material of lesser expensive qualities should be planned. The depth of this black clay will generally be less than 4 feet in thickness.

6) The onsite brownish silty clay to clayey silt has been found to be moderately expansive (5 to 6% under a surcharge of 60 psf). Foundations should reflect this condition and be designed in accordance with recommendations presented in the original report.

7) The vegetation on the site is extremely thick in certain areas. As a result, the topography, as shown on Plates 1 through 3, is only very approximate. It is believed that in various areas, the topography may be considerably steeper than shown on the present topography map. This
could affect the overall stability, if structures are situated in close proximity to a relatively steep descending slope. It is therefore recommended that the site be inspected by the soil engineer, after clearing operations have been completed, to compare the actual topography with that used for stability analyses. If a substantial steepening is evident, the stability analyses should be rechecked, based upon actual topographic data.

8) Generally, where buildings are proposed in close proximity to relatively steep descending slopes, the footings should either be deepened as necessary to be founded below a 1-1/2:1 plane drawn upward from the toe of the slope, or the specific slopes should be analyzed for stability when the actual configuration is known. If found to be satisfactory, the footings may then be founded in accordance with normal setback criteria. The soil engineer should inspect these areas, as mentioned above, and determine the best course of action.
We appreciate the opportunity to be of continued service. If you need any clarification of the recommendations of this report, please call.

Respectfully submitted,

GEOLABS-HAWAII, INC.

Robert S. Levinson
Chief Engineer

John J. Heneghan, P. E.

RSL/JJH:hlg

xc: (3) Addressee
(1) Frank Slavsky & Associates, Inc.
(2) Fukunaga & Associates, Inc.
APPENDIX A

Boring Logs
SOIL DESCRIPTION

<table>
<thead>
<tr>
<th>USC</th>
<th>Surface Elevation Approx +518 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>FILL, stiff, gray-brown, mottled, moist, gravelly CLAY</td>
</tr>
<tr>
<td>CH</td>
<td>Stiff to very stiff, gray-brown, mottled, boulder CLAY</td>
</tr>
<tr>
<td>CH</td>
<td>Hard? (many rocks in samples), gray, boulder (highly weathered) CLAY</td>
</tr>
</tbody>
</table>

STANDARD PENETRATION RESISTANCE

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>64.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>73.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>75.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>68.9</td>
</tr>
</tbody>
</table>

LEGEND

- I: 2.0" O.D. split-spoon sample
- II: 2.5" O.D. ring sample
- *: Core sample
- *: Sample not recovered
- USC: Impervious seal
- Water level
- Piezometer tip
- Sampler pushed
- Refusal of Sampler
- % Water Content
- Mid-Pac Development
- Kukahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 1A

W. O. 544-10 AUGUST 1973

GEOLABS-HAWAII, INC

SOIL MECHANICS & FOUNDATION ENGINEERS
<table>
<thead>
<tr>
<th>USC</th>
<th>SOIL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface Elevation Approx. +518 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>12</td>
<td>68.6</td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>52.2</td>
</tr>
<tr>
<td>50</td>
<td>14</td>
<td>73.5</td>
</tr>
<tr>
<td>55</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Boring Completed 6-27-73

No Subsurface Water Encountered

LEGEND

- 2.0" O.D. split-spoon sample
- 2.5" O.D. ring sample
- Core sample
- Sample not recovered
- Liquid limit
- Natural water content
- Plastic limit
- USC
- Impervious seal
- Water level
- Water content
- Piezometer tip
- Sampler pushed
- Unified Soil Classification

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 1A (continued)

W. O. 344-10 AUGUST 1973

GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
<table>
<thead>
<tr>
<th>USC</th>
<th>SOIL DESCRIPTION</th>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-MH</td>
<td>Stiff to very stiff, red-brown, mottled, moist, boulder (highly weathered), silty CLAY to clayey SILT</td>
<td>1</td>
<td>1</td>
<td>69.8</td>
</tr>
<tr>
<td>CH-MH</td>
<td>Stiff, dark gray, moist, boulder CLAY</td>
<td>2</td>
<td>2</td>
<td>63.9</td>
</tr>
<tr>
<td>CH-MH</td>
<td>Stiff to very stiff, red-brown, mottled, moist, boulder (highly weathered), silty CLAY to clayey SILT</td>
<td>3</td>
<td>3</td>
<td>77.1</td>
</tr>
<tr>
<td>CH-MH</td>
<td>Stiff, dark gray, moist, boulder CLAY</td>
<td>4</td>
<td>4</td>
<td>62.1</td>
</tr>
</tbody>
</table>

Legend:
- I: 2.0"O.D. split-spoon sample
- II: 2.5"O.D. ring sample
- III: Core sample
- *: Sample not recovered
- Liquid limit
- Natural water content
- Plastic limit
- USC
- Unified Soil Classification
- Impervious seal
- Water level
- Piezometer tip
- Sampler pushed

STANDARD PENETRATION RESISTANCE

(140 lb weight, 30" drop)
Blows per foot

10 30 50

LOG OF BORING NO. 2A
W. O. 544-10 AUGUST 1973

Mid-Pac Development
Kuikahi Gardens, Kaliihi, Oahu, Hawaii

GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

<p>| Surface Elevation Approx. 405 FEET |</p>
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring Completed 7-24-73

LEGEND

<table>
<thead>
<tr>
<th>2.0"O.D. split-spoon sample</th>
<th>Impervious seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5"O.D. ring sample</td>
<td>Water level</td>
</tr>
<tr>
<td>Core sample</td>
<td>Piezometer tip</td>
</tr>
<tr>
<td>* Sample not recovered</td>
<td>Sampler pushed</td>
</tr>
<tr>
<td>Liquid limit</td>
<td>USC</td>
</tr>
<tr>
<td>Natural water content</td>
<td>Unified Soil</td>
</tr>
<tr>
<td>Plastic limit</td>
<td>Classification</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STANDARD PENETRATION RESISTANCE

(140 lb weight, 30" drop)

<table>
<thead>
<tr>
<th>Blows per foot</th>
<th>10</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii
LOG OF BORING NO. 2A (continued)
W. O. 344-10 AUGUST 1973
GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

Surface Elevation Approx. +447 feet

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
<th>Standard Penetration Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(140 lb. weight, 30" drop) Blows per foot</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

CH-MH Stiff, red-brown with black mottles, boulder, silty CLAY to clayey SILT

BASALT BOULDER

Boring Completed 7-25-73

NO SUBSURFACE WATER ENCOUNTERED

LEGEND

- 2.0"O.D. split-spoon sample
- 2.5"O.D. ring sample
- Core sample
- * Sample not recovered
- Liquid limit
- Natural water content
- Plastic limit
- USC
- Refusal of Sampler
- Impervious seal
- Water level
- Piezometer tip
- Sampler pushed
- Unified Soil Classification

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 3A
W. O. 344-10 AUGUST 1973

GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

Surface Elevation: Approx. +502 feet

CH-MH
Very stiff, red-brown to multi-colored, mottled BOULDER (highly weathered), silty CLAY to clayey SILT

Boring Completed 7-31-73

NO SUBSURFACE WATER ENCOUNTERED

LEGEND

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.0" O.D. split-spoon sample</td>
</tr>
<tr>
<td>II</td>
<td>2.5" O.D. ring sample</td>
</tr>
<tr>
<td>III</td>
<td>Core sample</td>
</tr>
<tr>
<td>*</td>
<td>Sample not recovered</td>
</tr>
</tbody>
</table>

LEGEND (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious seal</td>
<td></td>
</tr>
<tr>
<td>Water level</td>
<td></td>
</tr>
<tr>
<td>Piezometer tip</td>
<td></td>
</tr>
<tr>
<td>Sampler pushed</td>
<td></td>
</tr>
<tr>
<td>USC Unified Soil Classification</td>
<td></td>
</tr>
</tbody>
</table>

STANDARD PENETRATION RESISTANCE
(140 lb. weight, 30" drop)

Blows per foot

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

62.7

% Water Content

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 4A
W. O. 344-10 AUGUST 1973
GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS

LOG OF BORING NO. 4A
W. O. 344-10 AUGUST 1973
GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

Surface Elevation Approx. +426 feet

<table>
<thead>
<tr>
<th>USC</th>
<th>SOIL DESCRIPTION</th>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Density (pcf)</th>
<th>Standard Penetration Resistance (140 lb. weight, 30" drop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-CH</td>
<td>Soft to medium, black, boulder, organic CLAY ('ADOBE')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-MH</td>
<td>Stiff, red-brown, multi-colored, mottled, very moist, silty CLAY to clayey SILT</td>
<td>5</td>
<td>2</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stiff, dark brown, very moist, silty CLAY to clayey SILT</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring Completed 7-31-73

NO SUBSURFACE WATER ENCOUNTERED

LEGEND

- **I**: 2.0"O.D. split-spoon sample
- **II**: 2.5"O.D. ring sample
- **H**: Core sample
- **Χ**: Sample not recovered
- **Liquid limit**
- **Natural water content**
- **Plastic limit**
- **USC**
- **Unified Soil Classification**
- **Impervious seal**
- **Water level**
- **Piezometer tip**
- **Sampler pushed**

Mid-Pac Development

Kuikahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 5A

W. O. 344-10 AUGUST 1973

GEOLABS-HAWAII, INC

SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

Surface Elevation Approx. + 426 feet

<table>
<thead>
<tr>
<th>USC</th>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
<th>Standard Penetration Resistance (40 lb weight, 30" drop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH- OH</td>
<td>Soft to medium, black, boulder, organic CLAY ("ADOBE")</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>Very stiff, brown, mottled, moist cobbled, gravel, silty CLAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH- MH</td>
<td>Very stiff, brown, speckled, silty CLAY to clayey SILT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring Completed 8-01-73
NO SUBSURFACE WATER ENCOUNTERED

LEGEND

I 2.0"O.D. split-spoon sample
II 2.5"O.D. ring sample
III Core sample
* Sample not recovered
Liquid limit
Natural water content
Plastic limit

Impervious seal
Water level
Piezometer tip
Sampler pushed
Unified Soil Classification

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii
LOG OF BORING NO. 5A'
W. O. 344-10 AUGUST 1973
GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

<table>
<thead>
<tr>
<th>Surface Elevation Approx. + 460 feet</th>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-MH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very stiff, red-brown, boulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(highly weathered) silty CLAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to clayey SILT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring Completed 8-01-73

NO SUBSURFACE WATER ENCOUNTERED

LEGEND

- I: 2.0" O.D. split-spoon sample
- II: 2.5" O.D. ring sample
- III: Core sample
- *: Sample not recovered
- Liquid limit
- Natural water content
- Unified Soil Classification
- Plastic limit
- Impervious seal
- Water level
- Piezometer tip
- Sampler pushed
- Blows per foot

STANDARD PENETRATION RESISTANCE

(140 lb. weight, 30" drop)

LOG OF BORING NO. 6A

Mid-Pac Development

Kuikahi Gardens, Kalahihi, Oahu, Hawaii

August 1973

GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
SOIL DESCRIPTION

Surface Elevation: Approx. +452 feet

| CH-MH | Very stiff, red-brown, silty CLAY to clayey SILT |

Boring Completed 8-01-73

NO SUBSURFACE WATER ENCOUNTERED

LOG OF BORING NO. 7A

Mid-Pac Development
Kuikahi Gardens, Kalihi, Oahu, Hawaii

GEOLABS-HAWAII, INC

SOIL MECHANICS & FOUNDATION ENGINEERS

LEGEND

- 1. 2.0" O.D. split-spoon sample
- 2. 2.5" O.D. ring sample
- 3. Core sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impervious seal</td>
</tr>
<tr>
<td>2</td>
<td>Water level</td>
</tr>
<tr>
<td>3</td>
<td>Piezometer tip</td>
</tr>
<tr>
<td>4</td>
<td>Sampler pushed</td>
</tr>
</tbody>
</table>

Standard Penetration Resistance

140 lb weight, 30° drop

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Dry Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOIL DESCRIPTION

Surface Elevation Approx. +413 feet

CH-MH

Very stiff, red-brown, BOULDER
(partly weathered), silty CLAY
to clayey SILT

STopped on Boulder

Boring Completed 8-01-73

NO SUBSURFACE WATER ENCOUNTERED

LEGEND

<table>
<thead>
<tr>
<th></th>
<th>2.0"O.D. split-spoon sample</th>
<th>Impervious seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.5"O.D. ring sample</td>
<td>Water level</td>
</tr>
<tr>
<td>II</td>
<td>Core sample</td>
<td>Piezometer tip</td>
</tr>
<tr>
<td>M</td>
<td>Sample not recovered</td>
<td>Sampler pushed</td>
</tr>
<tr>
<td></td>
<td>Natural water content</td>
<td>Unified Soil</td>
</tr>
<tr>
<td></td>
<td>Plastic limit</td>
<td>Classification</td>
</tr>
</tbody>
</table>

Mid-Pac Development
Kuilahi Gardens, Kalihi, Oahu, Hawaii

LOG OF BORING NO. 8A
W. O. 344-10 AUGUST 1973

GEOLABS-HAWAII, INC
SOIL MECHANICS & FOUNDATION ENGINEERS
APPENDIX B

Laboratory Testing
LABORATORY TESTING

A laboratory testing program was developed to establish the engineering properties of the soils and rocks encountered at the project site. The tests, where applicable to the subject project, are included in this Appendix.

1. Classification Tests

a) Visual Classification. All soil samples obtained from the borings were brought to our laboratory where they were visually reclassified to confirm or modify the field classification prior to finalizing the Logs of Borings.

b) Water Content Determinations. In addition to visual classification, typical samples were tested for natural water content as an aid in soil classification and in evaluating soil properties. The water content values are based upon the dry weight of the soil.

c) Atterberg Limits. Atterberg limit tests were performed on selected clay and silt samples obtained from the borings for the purposes of identification and correlation of soils. Standard procedures (ASTM D 424 for the plastic limit and ASTM D 423 for the liquid limit) were used in the performance of these tests.
d) **Grain Size Analysis.** Sieve analysis were performed on granular soils. For fine-grained soils, the hydrometer test was performed to determine the distribution of the grain sizes beyond the No. 200 sieve.

2. **Shear Strength Tests**

a) **Unconfined Compression Tests.** Intact core and split-spoon soil samples which apparently exhibited high plasticity were tested for unconfined strength. Length to diameter ratio of 2 was maintained throughout the tests to avoid scatter of test results and to facilitate evaluation of shear strength values for design purposes.

b) **Direct Shear Test.** In general, soil samples were tested for shear strength using a 2.41 I.D. direct shear box. Each set consisted of at least two tests, each test run under different normal loads. The results are plotted as Normal Stress vs Shear Strength with a failure envelope drawn to determine values of cohesion (c) and angle of frictional resistance (φ).

3. **Consolidation Test.** Consolidation tests were performed on selected "undisturbed" ring samples of the compressible soils to provide basic data for making settlement calculations. Porous stones were placed on the top and bottom of the samples to allow drainage. Vertical loads were applied in increments with each load increment being allowed to consolidate prior
to adding the next increment. Measurements of the time
and consolidation were obtained during each load increment
and rebound was measured during the unloading portion.
Consolidation test results are plotted in terms of percent
settlement versus applied loads.

4) Swell Test. The ring sample was placed between porous
stones and a 60 psf load was applied to the sample for a
24-hour period. The difference between the initial and
final sample heights is the amount of swell which is expressed
as a percentage of the initial height of the sample.

5) Maximum Density Test. Samples of soils are compacted in a
mold of given size with a 10-pound rammer dropped 18 inches
to determine the relationship between moisture content and
density of the soil. At least three trial points at different moisture content are run to determine the maximum
density and optimum moisture content. The test is run in
accordance with ASTM D-1557-70.
Boring No. 1A
Sample No. 3
Depth @ 10'-12'
$\phi = 23.5^\circ$
c = 500 psf

NORMAL PRESSURE (KSF)

DIRECT SHEAR TEST

GEOLABS-HAWAII, INC.
Foundation & Soil Engineering - Geology

DATE
August 1973

PLATE B-1
Boring No. 1A
Sample No. 5
Depth @ 15'-16.1'
$\phi = 32^\circ$
c = 0 psf

DIRECT SHEAR TEST
GEOLABS-HAWAII, INC.
Foundation & Soil Engineering - Geology
DATE: August 1973
W.O. 344-10

PLATE B-2
Boring No. 1A
Sample No. 7
Depth @ 20'-21.5'
$\phi = 30^\circ$
$c = 70$ psf
Boring No. 1A
Sample No. 13
Depth @ 45'-48'
\(\phi = 22^\circ \)
\(c = 1360 \) psf

NORMAL PRESSURE (KSF)

DIRECT SHEAR TEST
GEOLABS-HAWAII, INC.
Foundation & Soil Engineering - Geology

DATE:
August 1973

PLATE B-4
Boring No. 2A
Sample No. 4
Depth @ 15'
\(\phi = 10^\circ \)
c = 390 psf.
Boring No. 3A
Sample No. 3
Depth @ 10'
$\phi = 21^\circ$
c = 300 psf
Boring No. 3A
Sample No. 5
Depth @ 15'
\(\phi = 28^\circ \)
c = 110 psf
<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Dry Unit Wt.</th>
<th>% Liquid Limit</th>
<th>% Plastic Limit</th>
<th>% Plastic Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Pressure, kips per sq. ft</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>% Swell</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Diagram: Consolidation - Pressure Curve

- Water added

Plate B-9