MOMILANI SUBURB UNIT XIII - PRELIMINARY SOIL REPORT
(for residential development)

MANANA-UKA & WAIMANO, EWA, OAHU, HAWAII

TAX MAP KEY: 9-7-24:1

To:
PARK ENGINEERING, INCORPORATED

By:
WALTER LUM ASSOCIATES, INCORPORATED
CIVIL, STRUCTURAL, SOILS ENGINEERS
April 17, 1968
April 17, 1968

PARK ENGINEERING, INC.
1149 Bethel Street, Room 710
Honolulu, Hawaii 96813

Gentlemen:

Subject: Momilani Suburb Unit XIII
Preliminary Soil Report
(for residential development)
Chapter 23, Revised Ordinances of Honolulu,
1961 As Amended

In accordance with your request, a preliminary soil exploration was made at the proposed residential development site for the Momilani Suburb Unit XIII at Manana-Uka & Waimano, Ewa, Oahu, Hawaii, Tax Map Key: 9-7-24:1.

From the field exploration and laboratory test results, it is our opinion that the site may be developed for residential housing. Houses can be supported either directly on stiff existing ground or on properly compacted fills constructed from suitable on-site soils.

Unforeseen or undetected conditions such as soft spots or seepage water may occur in localized areas and will have to be adjusted and corrected in the field as they are detected.

All earthwork should be done in accordance with the requirements of Chapter 23, Revised Ordinances of Honolulu, 1961 As Amended and the recommendations contained herein.

The report includes a Boring Location Plan, boring logs, laboratory test results and recommendations.

Respectfully submitted,

WALTER LUM ASSOCIATES, INC.

Ezra Koike
Professional Engineer
Hawaii No. 1450
CONTENTS

SCOPE OF EXPLORATION ... 1
PRELIMINARY FIELD EXPLORATION 1
LABORATORY TESTS .. 2
GENERAL SITE AND SOIL CONDITIONS 2
DISCUSSION AND RECOMMENDATIONS 3

PROPOSED SPECIFICATION FOR EARTHWORK

APPENDICES:
A. BORING LOCATION PLAN - Figure 1
B. LOGS OF BORINGS - Boring Nos. 1 thru 15
C. SUMMARY OF LABORATORY TEST RESULTS - Tables IA and IB
D. PLASTICITY CHART
E. MOISTURE-DENSITY CURVES
F. LOGS OF BORINGS FROM MOMILANI SUBURB UNITS XI AND XII
G. GENERAL TESTING METHODS
H. LIMITATIONS
SCOPE OF EXPLORATION

The purpose of this exploration was to determine general soil conditions of the proposed site, Momilani Suburb Unit XIII at Manana-Uka & Waimano, Ewa, Oahu, Hawaii, for residential development.

This report includes preliminary field exploration, laboratory tests and recommendations regarding the soils at the site.

PRELIMINARY FIELD EXPLORATION

Fifteen borings were made at the site. The locations of these borings and eight nearby borings made previously for Momilani Suburb Units XI and XII are shown on Figure 1, Boring Location Plan. Descriptions of the underlying soils are shown on Boring Logs Nos. 1 thru 15. Also attached are the logs of five borings made for the Unit XI soil report and three borings made for the Unit XII soil report.

Borings were made with a 3-in. diameter auger using clay and rock-type bits. Soil samples were recovered with a standard split spoon sampler and 2-in. thin-wall tube sampler driven with a 140-lb hammer falling 30 inches.
Soil samples were visually identified and tentatively classified in the
field. In the laboratory, they were subjected to appropriate tests. The
field identifications and classifications were then reviewed and modified
to conform with the results of the laboratory tests in accordance with the
"Unified Soil Classification System."

LABORATORY TESTS

Laboratory tests included: natural density, moisture content and unconfined
compression; Atterberg limits; specific gravity; gradation; AASHO T-180-57
density; expansion and CBR.

A list of the standard field and laboratory test methods used for this
project is given in the Appendix.

A summary of the laboratory test results is given in Tables IA and IB.

GENERAL SITE AND SOIL CONDITIONS

The project site is located about 1500 ft northeast of the intersection
of Waimano Home Road and Komo Mai Drive. The site is generally bordered
on the north by Waimano Home Road, on the southeast by Molii Suburb
Unit XI and on the southwest by Molii Suburb Unit XII.

The site is an abandoned cane field covered with grass and scattered
sugar cane. The existing ground generally slopes down southwesterly
at about 5 to 15 percent grades with steeper sections in localized areas.
A natural drainageway crosses the central portion of the site and generally slopes downward from north to south.

From the field exploration and laboratory test results, the soils at the site may be generally described as follows:

A surface layer about 1 to 10 ft of medium to stiff, reddish-brown silty clays underlain by stiff to very stiff, reddish-brown and mottled brown, silty clays with decomposed rock to about 10 to 16 ft, the depths drilled.

Water was not noticed within the depths drilled during the field explorations.

For more detailed descriptions of soils encountered, refer to the boring logs.

DISCUSSION AND RECOMMENDATIONS

In general, the proposed grading at this time is to use cut or fill slopes of less than about 15 to 20 ft in height.

In the opinion of the Soil Engineer, the on-site soils, in general, have sufficient strength to support the fills and the light residential structures proposed, provided the site is cleared and grubbed, drained and soft spots are removed.

Unforeseen or undetected conditions such as soft spots or seepage water may occur in localized areas and will have to be adjusted and corrected in the field as they are detected.
Fills

In general, the on-site soils are suitable for the construction of the proposed fills. The construction of the proposed fills should be done as required by the F.H.A. Data Sheet 79-G; Revised Ordinances of Honolulu, 1961 As Amended; and as recommended below:

1. Topsoil and stockpiled soils should be either (a) stripped to stiff natural ground or (b) scarified and recompacted before the placement of fills.

2. All hard surfaces along existing access roads should be scarified down to stiff soils and recompacted to match the density of the surrounding soil.

3. Where fills are proposed, the bottom and the sides of natural drainageways should be stripped down to stiff natural ground or scarified and recompacted before the placement of fills.

4. Subdrains and laterals should be placed along drainageways before the placement of fills. The final locations of subdrains should be determined in the field after clearing and grubbing.

5. All fills should be constructed in approximately level layers starting at the lower end and working upward.

6. All fills should be laid in 6-in. compacted layers with a relative density of at least 90% of AASHO T-180-57 density.
Slopes

Cut and fill slopes of 2 horizontal to 1 vertical or flatter should be used.

Slope adjustments or other precautions may be necessary if seepage zones or soft spots are encountered in localized areas.

For protection against erosion during construction, it is recommended that runoff water from rainstorms be controlled by berms or other approved methods.

The surface of fill slopes should be compacted with a sheepfoot roller or by cat-tracking.

Slope planting is recommended on cut and fill slopes to minimize erosion.

Foundations

If earthwork is carried out as specified, the stiff natural ground and properly constructed fills should develop adequate bearing values to support the proposed light residential structures. Recommendations for foundation construction are as follows:

1. For light residential structures, conventional types of house foundations such as slab-on-ground construction or post-and-beam construction may be used.

2. Bearing values for a given soil usually vary with the size and depth of the footings. For light residential structures,
bearing values of 1500 p.s.f. on compacted fills and 2000 p.s.f. on stiff natural ground may be used.

3. Because of the downhill creep effect of soils on a slope, some settlement may occur near the tops of slopes. Therefore, for slopes of about 15 ft or higher, buildings should be placed about 15 ft from the tops of slopes. This distance may be reduced for lower slope heights, e.g., 10 ft for 10-ft-high slopes, but in no case closer than 5 ft from the top of a slope.

4. Construction of retaining walls on side slopes should be avoided unless the underlying materials are very stiff or hard.

5. Good surface drainage away from the foundations of the proposed structures should be maintained.

Roadways

In general, a rough estimate of the roadway pavement thickness for the light residential traffic anticipated is as follows:

1. Wearing course - 2 in. asphaltic concrete.
2. Base course - 6 in. base course over a prepared subgrade.

Local adjustments regarding subbase requirements can be made in the field in accordance with the design standards of the City and County of Honolulu as the various soil conditions are encountered at subgrade levels.
It is recommended that subgrades be compacted and shaped to drain.
To avoid the ponding of water and softening of the subgrade at low
points, weep holes should be placed at subgrade levels thru the
walls of the catch basins which are placed in these low areas.
PROPOSED SPECIFICATION FOR EARTHWORK

MOMILANI SUBURB UNIT XIII

General Description

This item shall consist of all clearing and grubbing, removing of existing structures, preparing of land to be filled, excavating and filling of the land, spreading, compacting and testing of the fill, and all subsidiary work necessary to complete the grading.

Clearing, Grubbing and Preparing Areas to be Filled

All vegetation and rubbish shall be removed and disposed of, leaving the disturbed area with a neat, debris-free appearance.

All vegetable matter shall be removed from the surface upon which fill is to be placed. All topsoil and stockpiled soils shall be (1) stripped to stiff natural ground or (2) scarified and recompacted before the placement of fills. All topsoil encountered at finish grade shall be scarified and recompacted.

All hard surfaces along the existing access roads shall be scarified down to stiff soils and recompacted to match the density of the surrounding soil before the placement of fills.

Where fills are proposed, all loose material along the bottom and the sides of natural drainageways shall be stripped down to stiff natural ground and recompacted to match the density of the surrounding soils before the placement of fills.

Subdrains and laterals shall be placed along natural drainageways before the construction of fills. The final locations of subdrains should be determined in the field after clearing and grubbing.
Where fills are made on sloping areas steeper than 5 horizontal to 1 vertical, the ground at the toe of the slope shall be benched to a generally level condition. As the fill is brought up, it shall be continually keyed into the stiff natural ground by the cutting of steps into the hillside and compacting the fill into these steps. Ground slopes which are flatter than 5 horizontal to 1 vertical shall be benched when considered necessary by the Soil Engineer.

Materials

Fill materials shall consist of on-site soils approved by the Soil Engineer and identified in the soil report accepted by the F.H.A. The soils shall contain no more than a trace of organic matter and no particles larger than 6 in. in diameter. Also, it shall contain no more than 40% gravel (#4 sieve to 3 in. sieve sizes) and no more than 10% cobbles larger than gravel and smaller than 6 in. in diameter. Fill material placed in the top 2 ft of fills shall contain no more than 30% gravel and any material larger than gravel.

Placing, Spreading and Compacting Fill Material

The selected fill material shall be placed in level layers which, when compacted, shall not exceed 6 inches. Each layer shall be spread evenly and thoroughly blade-mixed during the spreading to insure uniformity of material and moisture content within each layer.

No rocks or cobbles shall be allowed to nest and all voids between rocks must be carefully filled and compacted with small stones or earth.
When the moisture content of the fill material is below that specified by the Soil Engineer, water shall be added until the moisture content is as specified and assures a thorough bonding during the compacting process.

When the moisture content of the material is above that specified by the Soil Engineer, the fill material shall be aerated by blading or by other satisfactory methods until the moisture content is as specified.

After each layer has been placed, mixed and spread evenly, it shall be thoroughly compacted to not less than 90% of maximum density in accordance with AASHO Test No. T-180-57 or other comparable density tests. Compaction shall be with sheepsfoot rollers, multiple-wheel pneumatic-tired rollers or other acceptable rollers which shall be able to compact the fill to the specified density. Rolling shall be accomplished while the fill material is at the specified moisture content. The rolling of each layer shall be continuous over its entire area and the roller shall make sufficient passes to insure the obtainment of the desired density.

Field density tests shall be made by the Soil Engineer of the compaction of each layer of fill. Where sheepsfoot rollers are used, the soil may be disturbed to a depth of several inches. Density readings shall be taken as often as necessary if the compacted material below the disturbed surface as determined by the Soil Engineer. When these readings indicate that the density of any layer of fill or portion thereof is below the required 90% density, that layer or portion shall be reworked until the required density has been obtained.

The fill operation shall be continued in 6-in. compacted layers, as specified above, until the fill has been brought to the finished slopes and grades as shown on the accepted plans.
Excavation

Suitable material from excavation shall be used in the fill and all unsuitable material from excavation shall be disposed of.

Unforeseen Conditions

If unforeseen or undetected soil conditions such as soft spots or seepage water are encountered during the field operations, corrective measures shall be made in the field as they are detected.

Soil Engineering Services

The Soil Engineer shall observe the filling and compacting operations and make necessary tests in accordance with the specifications.

Rainy Weather

No fill material shall be placed, spread or rolled during unfavorable weather conditions. When the work is interrupted by heavy rain, fill operations shall not be resumed until field tests by the Soil Engineer indicate that the moisture content and density are as previously specified.
Boring Log

Project: Momilani Suburb Unit XIII
Location: Manana-Uka & Waimano, Ewa, Oahu, Hawaii

Hammer: TMK: 9 - 7 - 24:1
Weight: 140#
Drop: 30".

Sampler: 2" O.D. Thin Wall Tube

Penetration Data:

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Sample No.</th>
<th>Penetration</th>
<th>Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-A</td>
<td>114</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>1-B</td>
<td>116</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>1-C</td>
<td>121</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>1-D</td>
<td>113</td>
<td>51</td>
</tr>
</tbody>
</table>

* Elevation estimated from contour plan.
Boring Log

PROJECT: Momilani Suburb Unit XIII
LOCATION: Manana-Uka & Waimano, Ewa, Oahu, Hawaii
HAMMER: TMK: 9-7-241
Weight: 140*
Drop: 30"
SAMPLER: 2" O.D. Thin Wall Tube

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-A</td>
<td>103</td>
<td>65</td>
<td>72</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-B</td>
<td>121</td>
<td>37</td>
<td>88</td>
<td>19,020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-C</td>
<td>125</td>
<td>34</td>
<td>93</td>
<td>7,280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-D</td>
<td>112</td>
<td>45</td>
<td>78</td>
<td>6,740</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Medium, dark reddish brown, silty clay
- Stiff, dark brown silty clay
- Stiff to very stiff, reddish gray, silty clay
- End of boring @ 16'

- Elevation estimated from contour plan

Penetration Data
- 7" O.D. Thin Wall Tube Sampler

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII
LOCATION: MANANA - UKA & WAIMANO
EWA, OAHU, HAWAII

HAMMER: TMK: 5-7-24:1
Weight: 140#
Drop: 30°
SAMPLER: 2" O.D. THIN WALL TUBE

Driller: WALTER LUM ASSOCIATES
Date: MARCH 14, 1968

PENETRATION DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STIFF, REDDISH BROWN SILTY CLAY</td>
<td>3-A</td>
<td>115</td>
<td>31</td>
<td>87</td>
<td>5920</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STIFF TO VERY STIFF REDDISH BROWN CLAYEY SILT</td>
<td>3-B</td>
<td>118</td>
<td>38</td>
<td>85</td>
<td>1180</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERY STIFF, BROWN CLAYEY SILT</td>
<td>3-C</td>
<td>114</td>
<td>34</td>
<td>85</td>
<td>6760</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERY STIFF, TANNISH RED CLAYEY SILT W/ DECOMPOSED ROCK END OF BORING @ 16'</td>
<td>3-D</td>
<td>112</td>
<td>31</td>
<td>85</td>
<td>11440</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII
LOCATION: MANANA-UKA & WAIMANO

HAMMER: TMK: 9-7-24:1
Weight: 140#
Drop: 30°

SAMPLER: 2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-A</td>
<td>115</td>
<td>32</td>
<td>87</td>
<td>4160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-B</td>
<td>122</td>
<td>36</td>
<td>89</td>
<td>11480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-C</td>
<td>118</td>
<td>37</td>
<td>86</td>
<td>5980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-D</td>
<td>115</td>
<td>36</td>
<td>85</td>
<td>9880</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEV. = 413' ± 2

MEDIUM TO STIFF, REDDISH BROWN, SILTY CLAY

STIFF TO VERY STIFF, BROWN, SILTY CLAY

STIFF, BROWN, SILTY CLAY

STIFF TO VERY STIFF, REDDISH BROWN, SILTY CLAY

END OF BORING @ 16'

* ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

Project: Momilani Suburb Unit XIII
Location: Manana-Uka & Waimano
Hammer: TMK: 9-7-24:1
Weight: 140 lbs
Drop: 30"
Sampler: 2" O.D. Thin Wall Tube

Penetration Data

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Medium to Stiff Reddish Brown Silty Clay</th>
<th>Depth (ft)</th>
<th>Sample No.</th>
<th>Wet Density (p/c)</th>
<th>Moist. Cont.</th>
<th>Dry Density (p/c)</th>
<th>Unit Weight (p/sf)</th>
<th>B.P.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>12.0</td>
<td>B-A</td>
<td>35</td>
<td>90</td>
<td>11.440</td>
<td>8.5</td>
<td>18.5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>12.1</td>
<td>B-B</td>
<td>35</td>
<td>90</td>
<td>11.440</td>
<td>8.5</td>
<td>18.5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>12.4</td>
<td>B-C</td>
<td>29</td>
<td>10.400</td>
<td>8.5</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>12.3</td>
<td>B-D</td>
<td>29</td>
<td>10.400</td>
<td>8.5</td>
<td>18.5</td>
<td></td>
</tr>
</tbody>
</table>

Elevation Estimated from Contour Plan

- **Bores No.:** 5
- **Sheet No.:** 1
- **Date:** March 15, 1948
- **Driller:** Walter Lum Associates
- **Field Party:** Nelson Bond, Glory
- **Type of Boring:** Auger (Mobile)
- **Drill Bit:** Clay Bit
- **Datum:** 415'
- **Water Level:** Not Noticed
- **Time:** ___
- **Date:** ___

Notes:
- Medium to Stiff Reddish Brown Silty Clay
- Stiff to Very Stiff Reddish Brown Silty Clay
- Stiff to Very Stiff Brown Silty Clay

End of Boring @ 16'
Boring Log

PROJECT
MOMILANI SUBURB UNIT XIII

LOCATION
MĀNAKA-UKA & WAIMANO
EWA, OAHU, HAWAII

HAMMER:
TMK: 9-7-24:1

SAMPLER:
2" O.D. THIN WALL TUBE

ELEV.
372 ± 2'

Penetration Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>113</td>
<td>34</td>
<td>84</td>
<td>2580</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>29</td>
<td>87</td>
<td>18,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>124</td>
<td>27</td>
<td>98</td>
<td>28,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MEDIUM**
- **DARK RED SILTY CLAY**

- **MEDIUM TO STIFF**
- **DARK RED SILTY CLAY**

- **STIFF TO VERY STIFF**
- **DARK RED SILTY CLAY**

END OF BORING @ 16'

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII

LOCATION: MANANA - UKA & WAIMANO

HAMMER: TMK: 97 - 24:1

Weight: 140#

Drop: 30°

SAMPLER: 2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7-A</td>
<td>104</td>
<td>31</td>
<td>79</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>7-B</td>
<td>107</td>
<td>32</td>
<td>81</td>
<td>11,180</td>
<td></td>
</tr>
<tr>
<td>7-C</td>
<td>122</td>
<td>34</td>
<td>91</td>
<td>11,180</td>
<td></td>
</tr>
<tr>
<td>7-D</td>
<td>114</td>
<td>42</td>
<td>80</td>
<td>640</td>
<td></td>
</tr>
</tbody>
</table>

ELEVATION: 401’

PEENETRATION DATA

<table>
<thead>
<tr>
<th>Blows Per Foot</th>
<th>0 10 20 30 40 BLOWS/O.6'</th>
</tr>
</thead>
</table>
| *Elevation Estimated from Contour Plan*
Boring Log

PROJECT
MOMILANI SUBURB UNIT XIII

LOCATION
MANANA-UKA & WAIMANO

- EWA, OAHU, HAWAI'I

HAMMER:
TMK: 9-7-14:1

Weight
140*

Drop
30"

SAMPLER:
2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th>Depth</th>
<th>Sample</th>
<th>Wet Density</th>
<th>Moist. %</th>
<th>Dry Density</th>
<th>Unit Weight</th>
<th>Penetration Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEV. = 395' ±</td>
<td>20'</td>
<td>B-A 122 32 92 6760</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFF TO VERY STIFF REDDISH BROWN SILTY CLAY</td>
<td>30'</td>
<td>B-B 125 32 95 6240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFF TO VERY STIFF BROWN SILTY CLAY</td>
<td>40'</td>
<td>B-C 124 36 91 9360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFF TO VERY STIFF REDDISH BROWN & GRAY SILTY CLAY</td>
<td>50'</td>
<td>B-D 115 37 84 4680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFF TO VERY STIFF TANNISH BROWN SILTY CLAY</td>
<td>60'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF BORING @ 60'

* ELEVATION ESTIMATED FROM CONTOUR PLAN

BORING NO.: 8

Driller: WALTER LUM ASSOCIATES

Sheet No. of:

Date: MARCH 15, 1968
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII
LOCATION: MANANA-LIKA & WAIMANO

HAMMER: TMK: 9-7-24:1
Weight: 140#
Drop: 30"

SAMPLER: 2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEDIUM TO STIFF REDDISH BROWN SILTY CLAY</td>
<td>9-A</td>
<td>120</td>
<td>32</td>
<td>91</td>
<td>8840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-B</td>
<td>1</td>
<td>26</td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERY STIFF TANNISH BROWN SILTY CLAY</td>
<td>9-C</td>
<td>-</td>
<td>32</td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STIFF TO VERY STIFF TANNISH BROWN & REDDISH BROWN SILTY CLAY</td>
<td>9-D</td>
<td>112</td>
<td>37</td>
<td>82</td>
<td>7490</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF BORING @ 16'

* ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT
MOMILANI SUBURB UNIT XIII

LOCATION
WAIMANO - WAIKAU & WAIMANO
EWA, OAHU, HAWAII

HAMIL
THK: 9-7-24.7

HAMMER:
Weight: 140 lbs
Drop: 30 ft

SAMPLER:
2" O.D. THIN WALL TUBE

BORING NO. 10 Data

BORING NO. 10
Sheet No. [Blank]
Date MARCH 16, 1968

Field Party
NELSON, BOND, GLORY

Type of Boring
AUGER (SCHOPMAN Diam. 3"

Elev. 435' ± 0.2

Drill Bit
CLAY BIT

Water Level
NOT NOTICED

Time [Blank]

Date 3-16-68

Penetration Data
2" O.D. THIN WALL TUBE SAMPLER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>435</td>
<td>10-A</td>
<td>118</td>
<td>33</td>
<td>89</td>
<td>4750</td>
</tr>
<tr>
<td>10</td>
<td>435</td>
<td>10-B</td>
<td>112</td>
<td>32</td>
<td>84</td>
<td>13,000</td>
</tr>
<tr>
<td>10</td>
<td>435</td>
<td>10-C</td>
<td>118</td>
<td>34</td>
<td>88</td>
<td>7280</td>
</tr>
<tr>
<td>10</td>
<td>435</td>
<td>10-D</td>
<td>110</td>
<td>38</td>
<td>80</td>
<td>8480</td>
</tr>
</tbody>
</table>

Elevation Estimated from Contour Plan

DESCRIPTION
STIFF DARK REDDISH-BROWN, CLAY
STIFF REDDISH BROWN CLAYEY SILT
STIFF TO VERY STIFF, DARK BROWN CLAYEY SILT
VERY STIFF, BROWN CLAYEY SILT

END OF BORING @ 16'
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII
LOCATION: MANANA-UKA & WAIMANO, EWA, OAHU, HAWAII
HAMMER: TMK 9-7-241
Weight: 140#
Drop: 30"
SAMPLER: 2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIUM</td>
<td></td>
<td></td>
<td>0</td>
<td>11-A</td>
<td>113</td>
<td>38</td>
<td>82</td>
<td>13.020</td>
<td></td>
<td>3/8" 1/8"</td>
</tr>
<tr>
<td>REDDISH BROWN</td>
<td></td>
</tr>
<tr>
<td>SILTY CLAY</td>
<td></td>
</tr>
<tr>
<td>STIFF</td>
<td></td>
<td></td>
<td></td>
<td>11-B</td>
<td>117</td>
<td>99</td>
<td>86</td>
<td>5100</td>
<td></td>
<td>5/8" 15/8"</td>
</tr>
<tr>
<td>REDDISH BROWN</td>
<td></td>
</tr>
<tr>
<td>& GRAY</td>
<td></td>
</tr>
<tr>
<td>SILTY CLAY</td>
<td></td>
</tr>
<tr>
<td>STIFF TO VERY STIFF</td>
<td></td>
<td></td>
<td></td>
<td>11-C</td>
<td>115</td>
<td>98</td>
<td>84</td>
<td>11.700</td>
<td></td>
<td>10/8" 26/8"</td>
</tr>
<tr>
<td>GRAY</td>
<td></td>
</tr>
<tr>
<td>REDDISH BROWN</td>
<td></td>
</tr>
<tr>
<td>& GRAY</td>
<td></td>
</tr>
<tr>
<td>SILTY CLAY</td>
<td></td>
</tr>
<tr>
<td>(DECOMPOSED ROCK)</td>
<td></td>
</tr>
</tbody>
</table>

END OF BORING @ 16.5"

* ELEVATION ESTIMATED FROM CONTOUR PLAN...
Boring Log

Project: MOMILANI SUBURB UNIT XIII
Location: MANANA - UKA & WAIMANO
Hammer: TMK: O'AHU, HAWAII
Driller: WALTER LUM ASSOC.
Date: FEB. 26, 1968
Type of Boring: AUGER(MINIMUM)
Diam.: 3"
Elev.: 368'±
Datum:
Drill Bit: CLAY BIT
Water Level: NOT NOTICED
Time:
Date: 2-26-68

Penetration Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIUM REDDISH BROWN & GRAY SILTY CLAY</td>
<td>12-A</td>
<td>124</td>
<td>35</td>
<td>92</td>
<td>6710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFF REDDISH BROWN & GRAY SILTY CLAY</td>
<td>12-B</td>
<td>118</td>
<td>35</td>
<td>87</td>
<td>6710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIUM DENSITY TO DENSE REDDISH BROWN & GRAY DECOMPOSED ROCK</td>
<td>12-C</td>
<td>126</td>
<td>32</td>
<td>96</td>
<td>13,022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>END OF BORING @ 16.5'</td>
<td>12-D</td>
<td>94</td>
<td>49</td>
<td>63</td>
<td>4420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevation Estimated from Contour Plan
Boring Log

PROJECT: MOMILANI SUBURB UNIT XIII
LOCATION: MANANA-UKA & WAIMANO

Driller: WALTER LUM ASSOC. Date: MARCH 16, 1968
Field Party: NELSON, WONG, GLORY
Type of Boring: AUGER

HAMMER:
- TMK: OAHU, HAWAII
- Weight: 140 lbs
- Drop: 30"

SAMPLER:
- 2" O.D. THIN WALL TUBE

Penetration Data

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ELEV.</th>
<th>Sample No.</th>
<th>West Dens.</th>
<th>Light-Comp.</th>
<th>Dry. Comp.</th>
<th>usual. Comp.</th>
<th>Vane Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td></td>
<td>13-A</td>
<td>111</td>
<td>37</td>
<td>81</td>
<td>4060</td>
<td></td>
</tr>
<tr>
<td>11-15</td>
<td></td>
<td>13-B</td>
<td>35</td>
<td>10,920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td></td>
<td>13-C</td>
<td>38</td>
<td>86</td>
<td>10,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-25</td>
<td></td>
<td>13-D</td>
<td>41</td>
<td>3850</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEVATION ESTIMATED FROM CONTOUR PLAN.
Boring Log

PROJECT
MOMILANI SUBURB UNIT XIII

LOCATION
MANANA-UKA & WAIMANO
EW. OAHU, HAWAII

HAMMER:
TMK: 9 - 7 - 24:1

Weight
140#

Drop
30"

SAMPLER:
2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEDIUM TO STIFF REDDISH BROWN SILTY CLAY</td>
<td>10</td>
<td>40'</td>
<td>14-A</td>
<td>121</td>
<td>33</td>
<td>90</td>
<td>5720</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STIFF TO VERY STIFF REDDISH BROWN & GRAY SILTY CLAY</td>
<td>15</td>
<td>40'</td>
<td>14-C</td>
<td>122</td>
<td>33</td>
<td>91</td>
<td>11,920</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>END OF BORING @ 16'</td>
<td>16</td>
<td>40'</td>
<td>14-D</td>
<td>126</td>
<td>34</td>
<td>94</td>
<td>12,020</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Elevation Estimated From Contour Plan

Penetration Data

<table>
<thead>
<tr>
<th>Blows Per Foot</th>
<th>Blows/0.5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4/5, 5/6</td>
</tr>
<tr>
<td>10</td>
<td>7/5, 22/5</td>
</tr>
<tr>
<td>20</td>
<td>8/5, 14/5</td>
</tr>
<tr>
<td>30</td>
<td>1/5, 22/5</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Boring No: 14

Field Party: BOND, GLORY

Type of Boring: AUGER (MINUTEMAN)

Driller: WALTER LUM ASSOCIATES

Date: FEB. 26, 1968

Phone: 777-931
Boring Log

PROJECT
MOMILANI SUBURB UNIT XIII

LOCATION
EWA, OAHU, HAWAII

HAMMER:
IM1: 5-7-24:1

Weight:
140 lbs

Drop:
30'

SAMPLER:
2" 5/8 - 2" O.D. THIN WALL TUBE
2" 56. 2" STANDARD SPLIT SPOON

MEDIUM

- DARK REDDISH BROWN
- SILTY CLAY

STIFF

- DARK BROWN
- SILTY CLAY

STIFF TO VERY STIFF

- MOTTLED BROWN
- SILTY CLAY
- W/DECOM. ROCK & TRACES OF SAND

END OF BORING @ 16'

ELEVATION ESTIMATED FROM CONTOUR PLAN
<table>
<thead>
<tr>
<th>BORING NO.</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DEPTH BELOW SURFACE</td>
<td>SURFACE</td>
<td>0' TO 1'</td>
<td>5' TO 6'</td>
<td>10' TO 11'</td>
<td>15' TO 16'</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>DARK</td>
<td>REDDISH-BROWN</td>
<td>REDDISH-BROWN</td>
<td>BROWN</td>
<td>CLAYEY SILT</td>
<td>DECOMP. ROCK</td>
</tr>
<tr>
<td>GRADING ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(% Passing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.9</td>
<td>99.6</td>
<td>99.3</td>
</tr>
<tr>
<td>1/2"</td>
<td>99</td>
<td>99</td>
<td>99.6</td>
<td>99.3</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>99</td>
<td>99</td>
<td>99.6</td>
<td>99.3</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td></td>
</tr>
<tr>
<td>ATTERBERG LIMITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Dried or Natural</td>
<td>NATURAL</td>
<td>NATURAL</td>
<td>NATURAL</td>
<td>NATURAL</td>
<td>NATURAL</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>50</td>
<td>64</td>
<td>54</td>
<td>65</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>43</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>25</td>
<td>30</td>
<td>18</td>
<td>22</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Dilatancy</td>
<td>SLOW-MED</td>
<td>VERY SLOW</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td></td>
</tr>
<tr>
<td>Toughness</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>SLIGHT-MED</td>
<td>SLIGHT-MED</td>
<td>SLIGHT</td>
<td></td>
</tr>
<tr>
<td>Dry Strength</td>
<td>SLIGHT-MED</td>
<td>SLIGHT-MED</td>
<td>SLIGHT-MED</td>
<td>SLIGHT-MED</td>
<td>SLIGHT</td>
<td></td>
</tr>
<tr>
<td>UNIFIED SOIL CLASSIFICATION</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
<td></td>
</tr>
<tr>
<td>SPECIFIC GRAVITY</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPANSION AND CBR TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Surcharge-51 P.S.F.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molding Moisture Content, %</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molding Dry Density, P.C.F.</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swell upon saturation, %</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBR at 0.1" Penetration</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPACTION TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AASHO T-180-57 Method)</td>
<td>A</td>
<td>DRY TO WET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry to Wet or Wet to Dry</td>
<td>DRY TO WET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Dry Density (P.C.F.)</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum Moisture (%)</td>
<td>30.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WALTER LUM ASSOCIATES
CIVIL, STRUCTURAL, SOILS ENGINEERS
TABLE I - SUMMARY OF LABORATORY TEST RESULTS

<table>
<thead>
<tr>
<th>BORING NO.</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>DEPTH BELOW SURFACE</td>
<td>SURFACE</td>
<td>0.5' TO 1.5'</td>
<td>5' TO 6'</td>
<td>10' TO 11'</td>
<td>15' TO 16'</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>DARK</td>
<td>DARK</td>
<td>REDDISH-BROWN</td>
<td>REDDISH-BROWN</td>
<td>BROWN</td>
<td>BROWN</td>
</tr>
</tbody>
</table>

GRADING ANALYSIS (% Passing)

<table>
<thead>
<tr>
<th>Sieve</th>
<th>1"</th>
<th>1"</th>
<th>#10</th>
<th>#20</th>
<th>#40</th>
<th>#100</th>
<th>#200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.9</td>
<td>99.7</td>
<td>99.6</td>
<td>99.2</td>
</tr>
</tbody>
</table>

ATTERBERG LIMITS

<table>
<thead>
<tr>
<th>Natural</th>
<th>Natural</th>
<th>Natural</th>
<th>Natural</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Dried or Natural</td>
<td>57</td>
<td>65</td>
<td>56</td>
<td>49</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>29</td>
<td>31</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>20</td>
<td>24</td>
<td>19</td>
<td>11</td>
</tr>
</tbody>
</table>

UNIFIED SOIL CLASSIFICATION

| CH | CH | MH | ML | MH |

SPECIFIC GRAVITY

| 2.82 |

EXPANSION AND CBR TESTS

(Surcharge-51 P.S.F.)

<table>
<thead>
<tr>
<th>Molding Moisture Content, %</th>
<th>37.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molding Dry Density, P.C.F.</td>
<td>91.3</td>
</tr>
<tr>
<td>Swell upon saturation, %</td>
<td>0.4</td>
</tr>
<tr>
<td>CBR at 0.1" Penetration</td>
<td>8.9</td>
</tr>
</tbody>
</table>

COMPACTION TEST

(AASHO T-180-57 Method)

<table>
<thead>
<tr>
<th>Dry to Wet or Wet to Dry</th>
<th>Dry to Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Dry Density (P.C.F.)</td>
<td>93.9</td>
</tr>
<tr>
<td>Optimum Moisture (%)</td>
<td>30.4</td>
</tr>
</tbody>
</table>

WALTER LUM ASSOCIATES
CIVIL, STRUCTURAL, SOILS ENGINEERS
JOB: MOMILANI SUBURB - UNIT XIII

LOCATION: MANANA-UKA & WAIMANO, EWA, OAHU, HAWAII

PLASTICITY CHART

* INDICATES SAMPLE TAKEN ADJACENT TO BORING NO.
MOISTURE-DENSITY CURVE (AASHO T-180-57, METHOD A)

PROJECT: MÔMILANI SUBURB - UNIT XIII
LOCATION: WAIKIKI & WAIMANA, EWA, OAHU, HAWAII
SAMPLE NO: 3-A SURFACE
SAMPLE DESCRIPTION: REDDISH-BROWN SILTY CLAY

ZERO AIR VOIDS CURVE
SPECIFIC GRAVITY - 2.90

MAX. DRY DENSITY - 95.0 PCF

OPTIMUM MOISTURE CONTENT - 20.0%
MOISTURE- DENSITY CURVE (AASHTO T-180-57, METHOD A)

PROJECT: MOLMILANI SUBURB - UNIT XIII
LOCATION: MANANA-UKA & WAINANAN, EWA, OAHU, HAWAII
SAMPLE NO: O-A SURFACE
SAMPLE DESCRIPTION: DARK REDDISH-BROWN CLAY

DRIED DENSITY (P.C.F.)

0 10 20 30 40 50 60 70 80 90 100 110 120 130

WATER CONTENT (%)

MAX. DRY DENSITY - 93.2 P.C.F.

ZERO AIR VOLUME CURVE
SPECIFIC GRAVITY - 2.82

OPTIMUM MOISTURE CONTENT - 9.4 %
LOGS OF BORINGS

FROM

MOMILANI SUBURB UNITS XI AND XII
Boring Log

PROJECT
MOMILANI SUBURB UNIT XII

LOCATION
MANANA-UKA & WAIMANO
EWA, OAHU, HAWAII

HAMMER:
TMT: 9-7-24:1

Weight: 140*

Drop: 30°

SAMPLER: 2" O.D. THIN WALL TUBE

BORING NO. 8
Sheet No. 1 of 1

Driller: WALTER LUM ASSOC.
Date: FEB. 17, 1968

Field Party: HASHIDA, GLORY
Datum:

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>We. Dens.</th>
<th>P.C.F.</th>
<th>Moist. Cont.</th>
<th>% Blows Per Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8-A</td>
<td>113</td>
<td>34</td>
<td>85</td>
<td>5220</td>
</tr>
<tr>
<td>5</td>
<td>8-B</td>
<td>121</td>
<td>33</td>
<td>92</td>
<td>9100</td>
</tr>
<tr>
<td>10</td>
<td>8-C</td>
<td>123</td>
<td>30</td>
<td>95</td>
<td>6760</td>
</tr>
<tr>
<td>15</td>
<td>8-D</td>
<td>123</td>
<td>37</td>
<td>90</td>
<td>7800</td>
</tr>
</tbody>
</table>

END OF BORING @ 15'

ELEVATION ESTIMATED FROM CONTOUR MAP
Boring Log

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>MOKILANI SUBURB UNIT XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>MANANA-UKA & WAIMANO</td>
</tr>
<tr>
<td>HAMMER</td>
<td>TK: 9-7-24:1</td>
</tr>
<tr>
<td>Weight</td>
<td>140*</td>
</tr>
<tr>
<td>Drop</td>
<td>30"</td>
</tr>
<tr>
<td>SAMPLER</td>
<td>2" O.D. THIN WALL TUBE</td>
</tr>
</tbody>
</table>

HARD CLAY

ELEV. = 396' ± 0.5

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>WET DENSITY</th>
<th>MOIST. CONTENT</th>
<th>DRY DENSITY</th>
<th>LUMPED COMPR.</th>
<th>VANE SHEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-A</td>
<td>33</td>
<td>11,700</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9-B</td>
<td>33</td>
<td>83</td>
<td>830</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

PENETRATION DATA

<table>
<thead>
<tr>
<th>BORE LOCATION</th>
<th>PENETRATION</th>
<th>2" O.D. THIN WALL TUBE SAMPLER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blows/0.5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/6 12/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/6 10/5</td>
<td></td>
</tr>
</tbody>
</table>

* ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT: MOMILANI SUBURB UNIT XI
LOCATION: MANANA-UKA & WAIMANO
HAMILTON: TMK: 9-7-24:1
HAMMER: TML: 9-7-24:1
SAMPLER: 2" D.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th>Penetration Data</th>
<th>2" D.D. THIN WALL TUBE SAMPLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blows Per Foot</td>
<td>6/5 17/5</td>
</tr>
</tbody>
</table>

ELEVATION ESTIMATED FROM CONTOUR MAP
Boring Log

PROJECT: MOMILANI SUBURB UNIT XI
LOCATION: MANANA - UKA 4 WAIMANO

Elev. 355' above

Hammer: TMK 5 - 7 - 24 - 1
Weight: 140 lbs
Drop: 30'
Sampler: 2" O.P. THIN WALL TUBE

Penetration Data

MH

STIFF, REDDISH BROWN SILT CLAY

Elev. 355'

MH

STIFF TO VERY STIFF, MOTTLED REDDISH BROWN CLAYEY SILT

MH

VERY STIFF, MOTTLED GRAYISH BROWN CLAYEY SILT

END OF BORING @ 16'

* ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

Project: Momilani Suburb Unit XI
Location: Manana-Uka & Waimano
Hammer: TMK: 9 - 7 - 2A : 1
Weight: 160*
Drop: 30°
Sampler: 2" O.D. Thin Wall Tube

Penetration Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12-A</td>
<td>121</td>
<td>31</td>
<td>92</td>
<td>8060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-B</td>
<td>111</td>
<td>99</td>
<td>80</td>
<td>5200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-C</td>
<td>30</td>
<td>39</td>
<td>3900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

CH-MH: Stiff Reddish Brown Silty Clay w/ Clay Streaks

MH: Very Stiff Reddish Brown & Gray Silty Clay

End of Boring @ 16'

Note: Elevation estimated from contour plan.
Boring Log

PROJECT: MOMILANI SUBURB UNIT XII
LOCATION: MANANA-UKA & WAIMANO, EWA, OAHU, HAWAII
HAMMER:
Weight: 140#
Drop: 30'
SAMPLER: 2" O.D. THIN WALL TUBE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-A</td>
<td>108</td>
<td>26</td>
<td>86</td>
<td></td>
<td>4990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-B</td>
<td>107</td>
<td>34</td>
<td>80</td>
<td></td>
<td>7020</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-C</td>
<td>109</td>
<td>40</td>
<td>78</td>
<td></td>
<td>12,200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-D</td>
<td>107</td>
<td>37</td>
<td>77</td>
<td></td>
<td>7590</td>
<td></td>
</tr>
</tbody>
</table>

Penetration Data

<table>
<thead>
<tr>
<th>Blows/0.5'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3/6</td>
</tr>
<tr>
<td>5/6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4/6</td>
</tr>
<tr>
<td>11/6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8/6</td>
</tr>
<tr>
<td>17/6</td>
</tr>
</tbody>
</table>

Elevation Estimated From Topo Map
Boring Log

PROJECT: MOMILANI SUBURB UNIT XII
LOCATION: MANANA-IKA & WAIMANO
 EWA, OAHU, HAWAII
HAMMER: T.M.K. 7-7-24

Weight: 140#
Drop: 30'

SAMPLER: 2" O.D. THIN WALL TUBE

ELEVATION ESTIMATED FROM TOPO MAP
Boring Log

PROJECT: MOMILANI SUBURB UNIT XII
LOCATION: MANANA-UKA & WAIMANO
HAMILTON: T.M.K.
DATE: FEB. 13, 1968
ADIT: 3"
WATER LEVEL: NOT NOTICED
DROPPED: 30"

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DEPTH (Ft.)</th>
<th>ELEV.</th>
<th>2.5</th>
<th>2.55</th>
<th>3.55</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIFF REDDISH BROWN SILTY CLAY</td>
<td>5</td>
<td>2.5</td>
<td>EB</td>
<td>119</td>
<td>28</td>
<td>92</td>
</tr>
<tr>
<td>STIFF MOTTLED BROWN & GRAY SILTY CLAY (DECOMPOSED ROCK)</td>
<td>10</td>
<td>2.55</td>
<td>LC</td>
<td>41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>END OF BORING @ 10' DEPTH</td>
<td>15</td>
<td>3.05</td>
<td>LD</td>
<td>34</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ELEVATION ESTIMATED FROM TOPO MAP
GENERAL TESTING METHODS

EXPLORATORY BORINGS AND SAMPLING

Method for soil investigation and sampling by auger borings (Tentative)

Method for thin wall tube sampling of soils (Tentative)

Method for penetration test and split barrel sampling of soils (Tentative)

LABORATORY TESTING

Grading Analysis

Sieve analysis of fine and coarse aggregates

Amount of material finer than No. 200 sieve in aggregate

Atterberg Limits

Determining the liquid limit of soils
Modified as follows: Substitute Casagrande grooving tool. Tests conducted from natural moisture content unless noted otherwise.

Determining the plastic limit of soils

Calculating the plasticity index of soils

Specific Gravity

Specific gravity of soils
Modified as follows: 500 ML Pycnometer

Expansion and CBR Tests

Expansion test and California Bearing Ratio (CBR)

Compaction Test

Moisture-Density relations of soils using a 10# rammer and an 18" drop

Unified Soil Classification

ASTM Designation: D 1452-63T

ASTM Designation: D 1587-63T

ASTM Designation: D 1586-64T

AASHO Designation: T 27-60

AASHO Designation: T 11-60

AASHO Designation: T 89-60

AASHO Designation: T 90-56

AASHO Designation: T 91-54

AASHO Designation: T 100-60

Section VIII - TM 5-530 "Materials Testing" by Headquarters, Dept. of the Army

AASHO Designation: T 180-57

Designation E-3 from "Earth Manual" by the United States Department of the Interior Bureau of Reclamation
LIMITATIONS

In general, soil formations are commonly erratic and rarely uniform or regular. The borings indicate the subsurface soil conditions encountered only at the drill holes where the borings were made. During construction, should subsurface conditions much different from those in the borings be observed, encountered, or otherwise indicated, we would be advised immediately to review or reconsider our recommendations in light of the new developments. The owner, architect, or engineer should make certain that the recommendations are incorporated into the plans and are properly carried out during construction.