WAIPAHU ESTATES UNIT 3-1 - PRELIMINARY SOIL REPORT

WAIPIO, EWA, OAHU, HAWAII
TAX MAP KEY: 9-4-07: 11 & 24

FOR REFERENCE
not to be taken from this room

To:
COMMUNITY PLANNING, INCORPORATED

WALTER LUM ASSOCIATES, INC.
CIVIL, STRUCTURAL, SOILS ENGINEERS

OCTOBER 11, 1971
October 11, 1971

MR. GEORGE HOUGHTAILING
Community Planning, Inc.
Suite 608, 700 Bishop Street
Honolulu, Hawaii 96813

Dear Mr. Houghtailing:

Subject: Waipahu Estates Unit 3-1
Preliminary Soil Report
(for residential development)
Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

In accordance with your request, soil explorations were made to determine general soil conditions at the proposed residential development site for Waipahu Estates Unit 3-1 at Waipio, Ewa, Oahu, Hawaii.

The surface soils at the site may be generally described as stiff reddish-brown clayey silts and silty clays to about 6 to 10-ft depths underlain by decomposed rocks and boulders to about 15 to 20 ft, the depths drilled. Borings along the east side of the site generally indicated decomposed rock at about 15-ft depths.

The proposed light residential houses may be supported either directly on stiff existing ground or on compacted fills constructed from on-site soils.

Some grading of the site involving low cuts and fills is contemplated. The earthwork should be done in accordance with the requirements of Chapter 23, Revised Ordinances of Honolulu, 1961 As Amended and the recommendations contained herein.

The report includes a Boring Location Plan, boring logs, laboratory test results, recommendations and limitations.

Respectfully submitted,

WALTER LUM ASSOCIATES, INC.

Ezra Koike
Professional Engineer
Hawaii No. 1450

EK:rmf
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPE OF EXPLORATION</td>
<td>1</td>
</tr>
<tr>
<td>FIELD EXPLORATION</td>
<td>1</td>
</tr>
<tr>
<td>LABORATORY TESTS</td>
<td>1</td>
</tr>
<tr>
<td>SOIL CLASSIFICATION SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL SITE CONDITIONS</td>
<td>2</td>
</tr>
<tr>
<td>INTERPRETATION OF SOIL CONDITIONS</td>
<td>2</td>
</tr>
<tr>
<td>DISCUSSION AND RECOMMENDATIONS</td>
<td>3</td>
</tr>
</tbody>
</table>

PROPOSED SPECIFICATION FOR EARTHWORK

APPENDICES:

A. LOGS OF BORINGS - Boring Nos. 1 thru 13

B. SUMMARY OF LABORATORY TEST RESULTS - Tables IA and IB

C. PLASTICITY CHART

D. MOISTURE-DENSITY CURVES

E. CBR TESTS

F. GENERAL TESTING METHODS

G. LIMITATIONS

H. BORING LOCATION PLAN

I. PROPOSED BOULDER FILL - Figure 1
SCOPE OF EXPLORATION

The purpose of this exploration was to determine general soil conditions for residential development for the proposed Waipahu Estates Unit 3-1.

This report includes field explorations, laboratory tests and general recommendations for site grading and residential foundation design.

FIELD EXPLORATION

Thirteen exploratory borings were made at the site. The approximate locations of these borings are shown on the Boring Location Plan. Descriptions of the underlying soils encountered are shown on Boring Logs Nos. 1 thru 13.

Borings were made with 4-in. diameter augers using a carbide drag bit. Soil samples were recovered with 2-in. thin-wall tube samplers and a standard split spoon sampler driven with a 140-lb hammer falling 30 inches.

LABORATORY TESTS

Laboratory tests included: natural water content and density, unconfined compression, Atterberg limit, sieve analysis, AASHO T-180-57 density, expansion and CBR.
A list of the standard field and laboratory test methods used for this project is given in the Appendix.

A summary of the laboratory test results is given in Tables IA and IB.

SOIL CLASSIFICATION SYSTEM

Soil samples were visually observed and subjected to appropriate tests in the laboratory. Based on visual observations and laboratory tests, the soil descriptions given on the boring logs are generally made in accordance with the "Unified Soil Classification System."

GENERAL SITE CONDITIONS

The proposed site is located along the south edge of the H-1 freeway and 3/4 mile north of the Oahu Sugar Mill at Waipahu, Oahu, Hawaii.

The site is a sugar cane field crossed with haul roads. A lined irrigation ditch cuts across the northern 1/3 of the site and an existing pump house is located near Boring No. 8. There were several plantation homes on the southwest section of the site at the time of the explorations.

The existing ground is relatively flat with gentle slopes at about a 5% grade sloping downward to the south with localized variations.

INTERPRETATION OF SOIL CONDITIONS

From the field exploration and laboratory test results, the soils may be generally described as follows:
Stiff reddish-brown clayey silts and silty clays to about 6 to 10-ft depths underlain by decomposed rocks and boulders to about 15 to 20 ft, the depths drilled.

Borings along the east side of the site generally indicated decomposed rock at about 15-ft depths.

Water was not noted in the borings during the field explorations.

For more detailed descriptions of soils encountered in the borings, refer to the boring logs.

DISCUSSION AND RECOMMENDATIONS

In general, the present plan is to clear and grade the site for residential development. The proposed grading is to use cut and fill slopes of generally less than 10 to 15 ft in height.

In the opinion of the Soil Engineer, the on-site soils, in general, have sufficient strength to support the fills and proposed light residential structures, provided the site is cleared and grubbed, drained and localized soft spots are removed.

Cesspools may be encountered near the existing plantation homes. They should be located on the Grading Plan prior to grading operations, if practicable. Sludge should be removed and the cesspool backfilled with granular material.

Decomposed rocks were encountered at about 6 to 10-ft depths in some borings. Because of the shallow depths to decomposed rocks, boulders will probably be found interspersed over the site. The closer an excavation approaches decomposed rocks, the greater will be the quantity of boulders. Boulders may be used to construct fill slopes outside of house lots. See Figure 1.
Site Grading

Surface vegetation, ditch linings and miscellaneous debris should be cleared and removed prior to site filling. Localized soft pockets encountered during the site preparations should be excavated and backfilled with compacted select material. Provisions to drain the site should be included during and after the completion of filling operations.

In general, the on-site soils may be used for the construction of the proposed fills. Grading work should be done as required by the F.H.A. Data Sheet 79-G; Revised Ordinances of Honolulu, 1961 As Amended; and as recommended below:

1. The area should be cleared and grubbed.

2. Topsoil and stockpiled soils should be either (a) stripped to stiff natural ground or (b) scarified and recompacted before the placement of fills.

3. The bottom and sides of irrigation ditches should be stripped down to stiff natural ground or scarified and recompacted before the placement of fills.

4. Hard surfaces along existing haul roads should be scarified down to stiff soils and
recompacted to match the density of the surrounding soil.

4. Fills should be constructed in approximately level layers starting at the lower end and working upward. Where fills are made on sloping areas steeper than about 5 horizontal to 1 vertical, the ground at the toe of the fill should be benched to a generally level condition. As the fill is brought up, it should be keyed continually into the stiff natural ground by cutting steps into the slopes and compacting the fill into these steps.

5. Fills should be laid in 6-in. compacted layers to 90% of the maximum density determined by the AASHO T-180-57 test method.

Existing Cesspools

Cesspools possibly may be encountered during the site preparation work where the plantation homes are located. When encountered, they should be flagged and located on the plans. Sludge should be removed from the bottom and the cesspool backfilled with fairly well-graded granular
materials. The materials should be placed in thin layers and rammed into place or compacted with vibratory equipment. The top 5 ft of fill should be compacted in 6-in. compacted layers.

Building foundations should be designed to bridge over the cesspool.

Slopes
In general, cut and fill slopes of 2 horizontal to 1 vertical or flatter should be used.

If slope heights (top to toe) of greater than 15 ft are considered, 8-ft-wide benches should be placed at about 15 to 20-ft height intervals.

To minimize erosion, the runoff from rainstorms should be diverted by berms or ditches away from slopes whenever practicable.

The surface of fill slopes should be compacted by cat-tracking or with a sheepsfoot roller.

Slope planting is recommended on cut and fill slopes to minimize erosion.
Slope adjustments or other precautions may be necessary if seepage zones or soft spots are encountered in localized areas.

Foundations
If earthwork is carried out as specified, the stiff natural ground and compacted fills should develop adequate bearing values to support the proposed light residential structures.

For light one and 2-story houses, differential settlements will probably be negligible and within the settlement tolerances of residential structures.

General recommendations for foundation construction are as follows:

1. For the proposed light one-story residential structures, conventional house foundations such as slab-on-ground construction or post-and-beam construction may be used.

2. Bearing values for a given soil usually vary with the size and depth of footings. For light, one and 2-story structures, bearing values of about 2000 p.s.f. may be used.
3. Soft spots or pockets of loose material encountered in footing excavations or below the building area should be excavated and backfilled with well-graded granular material such as S4C or other approved material.

4. Concrete slabs on ground should be placed over a base course of 4 in. of well-graded gravel less than 3/4-in. and greater than 1/4-in. in size. The subgrade should be compacted and shaped to a level surface or to drain, if practicable, and generally should be kept slightly higher than the finish grade outside the building.

5. Because of the downhill creep effect of soils on a slope, some settlements may occur near the tops of slopes. Buildings should generally be placed about 15 ft from the tops of slopes. This distance may be reduced for lower slope heights, e.g., 10 ft for 10-ft-high slopes, but generally not closer than 5 ft from the top of any slope.
6. Construction of retaining walls on slopes should generally be avoided.

7. Good surface drainage away from the foundation of structures should be maintained and the site should be graded at all times to prevent the ponding of water.

Roadway
In general, a rough estimate of the roadway pavement thickness for the light residential traffic anticipated is as follows:

2. Base course - 6-in. base course over a prepared subgrade.

Provisions should be made in the contract documents to allow for local adjustments regarding subbase requirements in the field in accordance with the design standards of the City and County of Honolulu. In fill areas, the use of select soils within the top 2 to 3 ft of the subgrade may reduce the thickness or eliminate the need for the subbase course.

The subgrade should be compacted and shaped to drain. To avoid the ponding of water and softening of the subgrade at low points, weep holes should be placed at subgrade levels thru the walls of the catch basins which are placed in these low areas.
Utilities

Utilities should be placed after the fills are constructed. Utility lines should be designed with flexible joints, particularly where lines are connected to structures.

Unforeseen Conditions

Unforeseen or undetected conditions such as soft spots and abandoned utilities may occur in localized areas and will have to be adjusted and corrected in the field as they are detected.
PROPOSED SPECIFICATION FOR EARTHWORK
WAIPAHU ESTATES - UNIT 3-1

General Description

This item shall consist of clearing and grubbing, preparing of land to be filled, excavating and filling of the land, spreading, compacting and testing of the fill, and subsidiary work necessary for grading the site.

Clearing, Grubbing and Preparing Areas to be Filled

Vegetation and rubbish shall be removed and disposed of, leaving the disturbed area with a neat, debris-free appearance.

Vegetable matter shall be removed from the surface upon which fill is to be placed. Topsoil and stockpiled soils shall be (1) stripped to stiff natural ground or (2) scarified and recompressed before the placement of fills. Loose surface soils encountered at finish grade shall be scarified and recompressed.

The bottom and sides of irrigation ditches shall be stripped down to stiff natural ground or scarified and recompressed before the placement of fills.

Cane haul roads shall be scarified and recompressed to match the density of the surrounding soil.

Materials

Fill material shall consist of selected on-site soils or approved borrow soils. The soils shall contain no more than a trace of organic and deleterious matter.

Borrow soils shall be select soils generally less than 3-in. maximum size, with more than 30% fines and a plasticity index generally less than 20.
Fill material placed in the top 2 ft of fills shall contain less than 30% gravel.

Placing, Spreading and Compacting Fill Material

The selected fill material shall be placed in level layers which, when compacted, shall not exceed 6 inches. Each layer shall be spread evenly and thoroughly blade-mixed during the spreading to insure uniformity of material and water content within each layer.

Rocks or cobbles shall not be allowed to nest and voids between rocks shall be carefully filled and compacted with small stones or earth.

When the water content of the fill material is well below the optimum for compacting purposes, water shall be added until the water content assures a thorough bonding during the compacting process.

When the water content of the material is well above the optimum for compacting purposes, the fill material shall be aerated by blading or by other satisfactory methods until the water content is near the optimum.

After each layer has been placed, mixed and spread evenly, it shall be compacted to 90% of maximum density in accordance with AASHO Test No. T-180-57 or other comparable density tests. Compaction shall be with sheepsfoot rollers, multiple-wheel pneumatic-tired rollers or other acceptable rollers which shall be able to compact the fill to the specified density. Rolling shall be accomplished while the fill material is at the specified water content. The rolling of each layer shall be continuous over its entire area and the roller shall make sufficient passes to obtain the desired density.
Field density tests shall be made to get an indication of the compaction of the fill. Where sheepsfoot rollers are used, the soil may be disturbed to a depth of several inches. Density readings shall be taken as often as necessary in the compacted material below the disturbed surface. When these readings indicate that the density of any layer of fill or portion thereof is below the required 90% density, that layer or portion shall be reworked until the required density has been obtained.

The fill operation shall be continued in 6-in. compacted layers, as specified above, until the fill has been brought to the finished slopes and grades as shown on the accepted plans.

Backfilling of Old Cesspools

The following procedures shall be followed for backfilling:

1. **Sludge Removal**

 Remove the sludge from the bottom of the old cesspool by (a) pumping or (b) by clamshell or any other suitable way. The material shall be disposed of away from the site. The completeness of removal shall be verified by probing and the sludge shall be less than 12 in. at the bottom.

2. **Granular Fill (below 3 ft from finish grade)**

 Use granular material, graded from 6 to 0 inches. The fines passing the No. 200 sieve shall be less than 10%.
The materials shall be placed in thin layers (12 in. maximum) and compacted with vibratory equipment to 90% of AASHO T-180-57 density. Ramming each layer into place with a clamshell bucket will be allowed. The granular fill shall be wetted before placement into the cesspools. Sufficient compaction tests shall be conducted to verify that 90% compaction is obtained by the construction method selected.

(3) Top 3 Ft of Fill

Linings encountered in the cesspools within the top 3 ft from finish grade shall be removed. The fill within the top 3 ft from finish grade shall be constructed from on-site soil in thin layers (6-in. compacted thickness) to 90% of AASHO T-180-57 density. The material at finish grade shall blend with the surrounding soil.

Excavation

Suitable material from excavation shall be used in the fill and unsuitable material from excavation shall be disposed of.

Unforeseen Conditions

If unforeseen or undetected critical soil conditions such as soft spots or seepage water are encountered during the field operations, corrective measures shall be made in the field as they are detected.
Rainy Weather

Fill material shall not be placed, spread or rolled during unfavorable weather conditions. When the work is interrupted by heavy rain, fill operations shall not be resumed until field tests indicate that the water content and density are as previously specified.
BORING LOGS

The stratification lines shown on each of the boring logs represent the approximate boundary between soil types and the transition may be gradual.

Symbols

Symbols used generally are in accordance with the Unified Soil Classification System.

Where a parenthesis "(MH)" is used, the soil sample was classified by visual observation of the sample recovered.

Where no parenthesis "MH" is used, the soil sample was classified from either the Atterberg limit or sieve analysis test results.
Boring Log

PROJECT
WAIPAHU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:

- **Weight:** 140 lb
- **Drop:** 30"
- **Weighted Drop:** 2.55 - 2.5 TON STANDARD SPLIT SPOON

SAMPLER: 2.5" - 2" O.D. THIN WALL TUBE

Drill Progress: 155' +

PENETRATION DATA

<table>
<thead>
<tr>
<th>Unified Soil Classification</th>
<th>Description</th>
<th>Depth (ft)</th>
<th>Sample No.</th>
<th>Sample Type</th>
<th>Wet Density</th>
<th>Dry Density</th>
<th>Unconfined Comp.</th>
<th>Triaxial Comp.</th>
<th>Unit Shear</th>
<th>Penetration</th>
<th>Borehole Dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>STIFF REDDISH BROWN Silty- Clay</td>
<td>2.55</td>
<td>1-A</td>
<td>T</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(ML)</td>
<td>BROWN TO REDDISH BROWN Silty- Clay (Cuttings)</td>
<td>2.55</td>
<td>1-B</td>
<td>C</td>
<td>222</td>
<td>91.9</td>
<td>7700</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF REDDISH BROWN CLAYEY Silt with BLACK Matter</td>
<td>2.95</td>
<td>1-C</td>
<td>C</td>
<td>27</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF BROWN CLAYEY Silt with traces of decomposed rock</td>
<td>2.95</td>
<td>1-D</td>
<td>C</td>
<td>104</td>
<td>41</td>
<td>7100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(MH)</td>
<td>STIFF, MOTTLED BROWN & GRAY CLAYEY Silt with traces of decomposed rock</td>
<td>2.95</td>
<td>1-E</td>
<td>C</td>
<td>26</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

END OF BORING @ 16.0

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT: Waipahu Estates Unit 3-1
LOCATION: Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- Weight: 40 lbs
- Drop: 30"
SAMPLER: 2" 5/8 - 2" Standard Split Spoon
2" 5/8 - 2" O.D. Thin Wall Tubing

Penetration Data

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dry Comp.</th>
<th>P.S.F.</th>
<th>Wet Comp.</th>
<th>P.S.F.</th>
<th>N Blows</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td>30</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
<td>40</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Type of Boring: Auger (B-20)
Diam.: 4"

Elevation: 156'2"
Date: 8-17-71

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dry Comp.</th>
<th>P.S.F.</th>
<th>Wet Comp.</th>
<th>P.S.F.</th>
<th>N Blows</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td></td>
<td>35</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td></td>
<td>45</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td></td>
<td>55</td>
<td></td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Hit Rock at 10'
- Moved Hole 5' Away

End of Boring @ 16'0"

Notes:
- Drill Time: 30 Min.
- Depth: 14.5' - 18'

Elevation Estimated from Contour Plan
Boring Log

PROJECT
WAIPOHOU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii

Tax Map Key
9-4-07: 11 & 24

Boring Log Details

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>MEDIUM, REDDISH BROWN, CLAYEY SILT W. ROOTS</td>
<td>157'10"*</td>
<td>25'5"</td>
<td>3.B</td>
<td>116</td>
<td>26</td>
<td>91</td>
<td>11700</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(ML)</td>
<td>MEDIUM, REDDISH BROWN CLAYEY SILT</td>
<td>157'10"*</td>
<td>30'5"</td>
<td>3.C</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7 1/3"</td>
<td>2010</td>
<td>HAMMER BOUNCES</td>
</tr>
<tr>
<td></td>
<td>DECOMPOSED ROCK (PUKA PUKA)</td>
<td>157'10"*</td>
<td>35'5"</td>
<td>3.D</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30 1/5"</td>
<td>2010</td>
<td>HAMMER BOUNCES</td>
</tr>
<tr>
<td></td>
<td>MOTTLED GRAY & BROWN DECOMPOSED ROCK</td>
<td>157'10"*</td>
<td>40'</td>
<td>-</td>
</tr>
</tbody>
</table>

END OF BORING @ 40'

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT
WAIPAHU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii

Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight:** 140 lb
- **Drop:** 30" 2" STANDARD SPLIT SPOON
- **SAMPLER:** 2" D.P. THIN WALL TUBE

PENETRATION DATA

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.35</td>
<td>STIFF REDDISH BROWN CLAYEY Silt</td>
</tr>
<tr>
<td>2.25</td>
<td>STIFF BROWN CLAYEY Silt</td>
</tr>
<tr>
<td>2.25</td>
<td>MOTTLED REDDISH BROWN CLAYEY SILT W/ DEG. ROCK</td>
</tr>
<tr>
<td>1.9</td>
<td>STIFF BROWN CLAYEY Silt</td>
</tr>
<tr>
<td>1.9</td>
<td>MOTTLED BROWN & GRAY DECOMPOSED ROCK</td>
</tr>
<tr>
<td>1.6</td>
<td>ROCK & DECOMPOSED ROCK</td>
</tr>
<tr>
<td>1.5</td>
<td>ROCK OR BOLUPLER</td>
</tr>
<tr>
<td>2.35</td>
<td>MOTTLED GRAY & BROWN DECOMPOSED ROCK</td>
</tr>
</tbody>
</table>

END OF BORING @ 20.5'

NOTE: DRILL TIME: 10 MIN.
- **DEPTH:** 16.8' 11
- **DRILL TIME:** 15 MIN.
- **DEPTH:** 18' 195

ELEVATION ESTIMATED FROM CONTOUR PLAN
Boring Log

PROJECT
WAIPAHU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii

Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight:** 140 lbs
- **Drop:** 30'
- **Sampler:** 2" 5.2" STANDARD SPLIT SPOON

Data

Type of Boring: AUGER (P-30)
Diam.: 4'

Elev.: 120' + 0

Field Party: KAKU, GLORY

Drill Bit: T.C. DRAG

Data

Water Level: NOT NOTICED

Time: --

Date: 8-18-71

Penetration Data

<table>
<thead>
<tr>
<th>Unit</th>
<th>Soil Classification</th>
<th>Description</th>
<th>Depth (ft)</th>
<th>Sampler</th>
<th>Sample No.</th>
<th>Wet Dens. (p.c.f.)</th>
<th>Water Cont.</th>
<th>Dry Dens. (p.c.f.)</th>
<th>Uplift Cont.</th>
<th>Vane Shear</th>
<th>Standard Penetration Test</th>
<th>8.0 D. Thin Wall Tube Sampler</th>
<th>B.O.D. Thin Wall Tube Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN CLAYEY SILT</td>
<td>NOTE: USED WATER TO AID DRILLING</td>
<td>2.85</td>
<td>5-A</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN & TAN CLAYEY SILT</td>
<td></td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, MOTTLED REDDISH BROWN, CLAYEY SILT W. DECOMPOSED ROCK</td>
<td></td>
<td>4.0</td>
<td>9-B</td>
<td>160</td>
<td>25</td>
<td>1.03</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Boring Log

Project: Waipahu Estates Unit 3-1
Location: Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24
Hammer:
- **Weight:** 140 lb
- **Drop:** 30"
Sampler: 5" S/S Standard Split Spoon
- **Sampler:** 5" - 2" O/D Thin Wall Tube

Penetration Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(MLC)</td>
<td>Stiff, reddish brown silty clay w/ roots</td>
<td>ELEV: 140'</td>
<td>2'95</td>
<td>G-A</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8/5, 15/5</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>Stiff, brown clayey silt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobble</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>Stiff, reddish brown silty clay w/traces of decomposed rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gray, lava (puka puka) rock cuttings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gray wired</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decomposed rock</td>
<td></td>
</tr>
</tbody>
</table>

Elevation estimated from contour plan
Boring Log

PROJECT
WAIPAHU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii

Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight:** 40 #
- **Drop:** 20"

SAMPLER: 2" STANDARD SPLIT SPOON

UNIFIED SOIL CLASSIFICATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN BILTY CLAY W/COBBLES, ROOTS + TRACES OF CORAL (FILL?)</td>
<td>138'</td>
<td>7-A</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>COBBLES OR BOULDER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN CLAYEY SILT</td>
<td>137'</td>
<td>7-B</td>
<td>NO</td>
<td>NO RECOVERY</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, BROWN CLAYEY SILT</td>
<td>136'</td>
<td>7-C</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, DARK BROWN CLAYEY SILT W/ DECOMPOSED ROCK</td>
<td>135'</td>
<td>7-D</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

END OF BORING: 10.5'

ELEVATION ESTIMATED FROM CONTOUR PLAN

PENETRATION DATA

<table>
<thead>
<tr>
<th>Standard Penetration Test</th>
<th>Diameter</th>
<th>2" D.O.</th>
<th>PENETRATION</th>
<th>PENETRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Blows per foot)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>122.5</td>
<td>15/5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING NO.: 7
Driller: WALTER LUM
Date: AUG. 12, 1971
Field Party: MAEBISHI, TSUKAZAKI

PHONE NUMBER: 737-7931

ASSOCIATES, INC.

PROJECT: WAIHAI ESTATES

LOCATION: Waipio, Ewa, Oahu, Hawaii

Date: 8-18-71
Boring Log

PROJECT: WAIPAHU ESTATES UNIT 3-1
LOCATION: Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- Weight: 140#
- Drop: 30'

SAMPLER:
- 2" S.S. - 2" STANDARD SPLIT SPOON
- 2" O.D. THIN WALL TUBE

Penetration Data

<table>
<thead>
<tr>
<th>Soil Classification</th>
<th>Description</th>
<th>Depth (ft)</th>
<th>Sampler</th>
<th>Sample No.</th>
<th>Water Cont.</th>
<th>Pre. Cons.</th>
<th>Penetration Test</th>
<th>Water Cont.</th>
<th>Penetration Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>MEDIUM REDDISH BROWN CLAYEY SILT w/ROOTS</td>
<td>3'55</td>
<td>6</td>
<td>8-A</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF REDDISH BROWN CLAYEY SILT</td>
<td>2'10</td>
<td>6-B</td>
<td>117</td>
<td>30</td>
<td>70</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROWN CLAYEY SILT (CUTTINGS)</td>
<td>10</td>
<td>2'65</td>
<td>0-C</td>
<td>NO RECOVERY</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COBBLE OR BOULDER</td>
<td>10</td>
<td>2'65</td>
<td>0-C</td>
<td>NO RECOVERY</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAY & REDDISH BROWN DECOMPOSED ROCK</td>
<td>15</td>
<td>2'55</td>
<td>6-D</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>END OF BORING @ 16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevation Estimated From Contour Plan
Boring Log

PROJECT: WAIAPAHI ESTATES UNIT 3-1

LOCATION: Waipio, Ewa, Oahu, Hawaii

Tax Map Key: 9-4-07: 11 & 24

Hammer:
- Weight: 140 lbs
- Drop: 20 ft

Sampler: 2 1/2" STANDARD SPLIT SPON

Type of Boring: AUGER (1/2-3/4) Diam. 4"

Datum: 120' + 2

<table>
<thead>
<tr>
<th>Soil Classification</th>
<th>Description</th>
<th>Depth (ft)</th>
<th>Sampler</th>
<th>Sample No</th>
<th>Wet Dens.</th>
<th>Water Cont.</th>
<th>Dry Dens.</th>
<th>P.C.F.</th>
<th>Unconfined Comp.</th>
<th>Penetration Test (N) (Blows per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML) Stiff, reddish brown clayey silt</td>
<td>BROWN CLAYEY SILT (cuttings)</td>
<td>23.5</td>
<td>O-A</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10/1.5</td>
</tr>
<tr>
<td>(ML) Stiff, reddish brown clayey silt</td>
<td></td>
<td>23.5</td>
<td>O-B</td>
<td>10</td>
<td>25</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(MH) Stiff, mottled reddish brown clayey silt</td>
<td></td>
<td>23.5</td>
<td>O-C</td>
<td>93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock or boulder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mottled, brown decomposed rock (some crushed to silty sand)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 8/19/71

Penetration Data

- 2" O.D. thin wall tube sampler

Elevation, estimated from contour plan.
Boring Log

PROJECT: WAIPAHU ESTATES UNIT 3-1
LOCATION: Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight:** 140 lb
- **Drop:** 30"
- **Type of Sampler:** 2.0 OD THIN WALL TYPE

SAMPLER:
- **Type:** 2.0 STANDARD SPLIT SPOON

Hole Data
- **ELEV. = 122' + 2"**
- **Water Level:** NOT NOTICED

Penetration Data
- **Penetration Test:** 2' O.D. THIN WALL TUBE SAMPLER

<table>
<thead>
<tr>
<th>Unified Soil Classification</th>
<th>Depth (ft)</th>
<th>Sample No.</th>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
</tr>
</thead>
</table>
| **ML**
STIFF REDDISH BROWN
Silty-Clay w/ Roots | 2.56 | 10-4 | 20 | - | - | - | - | 8/5, 10/5 |
| **MH**
STIFF, RED-BROWN
Silty-Clay | 2.5 | 10-P | 110 | 26 | 87 | 4840 | - | - |
| DECOMPOSED GRAY
Lava Rock (Puka-Puka) | | | | | | | | |
| GRAY w/ RED
DECOMPOSED ROCK
(some crushes to Silty Sand) | 2.0 | 10-2 | 37 | - | - | - | - | - |
| GRAY w/BROWN
DECOMPOSED ROCK | | | | | | | | |
| **END OF BORING @ 16.5** | | | | | | | | |

ELEVATION ESTIMATED FROM CONTOUR PLAN

BORING NO. 10
Sheet No.
Driller: W. LUM & ASSOCIATES, INC.
Date: AUG. 10, 1971
Field Party: TSUZUZAKI
Type of Boring: AUGER (ASHER)
Diam: 4"
Elev. DRILL: T.C. PRAK
Datum:
Date: 8-19-71
Boring Log

PROJECT WAIPAHU ESTATES UNIT 3-1
LOCATION Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight:** 140 lb
- **Drop:** 20"
- **Type of Boring:** STANDARD SPLIT SPOON
- **Sampler:** 2" OD THIN WALL TUBE

ELEVATION ESTIMATED FROM CONTOUR PLAN

<table>
<thead>
<tr>
<th>Soil Classification</th>
<th>Description</th>
<th>Penetration Test</th>
<th>Sample No.</th>
<th>Water Cont.</th>
<th>Penetration (Blows per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN CLAYEY SILT w/ ROOTS & TRACES OF CORAL (FILL)</td>
<td>2" & 2"</td>
<td>11-D</td>
<td>17</td>
<td>5/5, 5 1/2</td>
</tr>
<tr>
<td>(ML)</td>
<td>STIFF, REDDISH BROWN CLAYEY SILT</td>
<td>2" & 2"</td>
<td>11-B</td>
<td>109</td>
<td>28, 64</td>
</tr>
<tr>
<td></td>
<td>MOTTLED BROWN, RED DECOMPOSED ROCK w/ CLAYEY SILT</td>
<td>2" & 2"</td>
<td>11-C</td>
<td>38</td>
<td>10 1/8</td>
</tr>
<tr>
<td></td>
<td>GREENISH GRAY LAVA (PUKA-PUKA) ROCK</td>
<td>2" & 2"</td>
<td>NO RECOVERY</td>
<td>40/1</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: DRILL TIME - 30 MIN
DEPTH: - 106.15'
END OF BORING @ 191'

PENETRATION DATA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sampler</th>
<th>Sample No.</th>
<th>Water Cont.</th>
<th>Penetration Test</th>
<th>Penetration (Blows per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" & 2"</td>
<td>11-D</td>
<td>17</td>
<td></td>
<td></td>
<td>5/5, 5 1/2</td>
</tr>
<tr>
<td>2" & 2"</td>
<td>11-B</td>
<td>109</td>
<td>28, 64</td>
<td>4840</td>
<td></td>
</tr>
<tr>
<td>2" & 2"</td>
<td>11-C</td>
<td>38</td>
<td></td>
<td></td>
<td>10 1/8</td>
</tr>
<tr>
<td>2" & 2"</td>
<td>NO RECOVERY</td>
<td></td>
<td></td>
<td></td>
<td>40/1</td>
</tr>
</tbody>
</table>

ELEVATION: 120'

PENETRATION TESTING: 2" O.D. TUBE SAMPLER
Boring Log

PROJECT
WAIPAHU ESTATES UNIT 3-1

LOCATION
Waipio, Ewa, Oahu, Hawaii

Tax Map Key: 9-4-07: 11 & 24

HAMMER:

- **Weight:** 40 lbs
- **Drop:** 2′ 00″

SAMPLER:
2′ 00″ - 2′ O.D. THIN WALL TUBE

PENETRATION DATA

<table>
<thead>
<tr>
<th>ELEV.</th>
<th>113′ 7′</th>
</tr>
</thead>
</table>

PENETRATION DATA

- **Sample No.** 12
- **Water Content:** 22
- **P.C.F.:** 10

ELEV. 113′ 7″

- **UNITED STATES GEOL. CLASSIFICATION**
 - **DESCRIPTION:** STIFF, REDDISH BROWN CLAY/SILT
- **Depth (Ft):** 2′ 50″
- **Penetration:** 34
- **Core:** 34

ELEV. 113′ 8″

- **UNITED STATES GEOL. CLASSIFICATION**
 - **DESCRIPTION:** STIFF, REDDISH BROWN CLAY/SILT
- **Depth (Ft):** 3′ 00″
- **Penetration:** 34
- **Core:** 34

ELEV. 113′ 9″

- **UNITED STATES GEOL. CLASSIFICATION**
 - **DESCRIPTION:** STIFF, REDDISH BROWN CLAY/SILT
- **Depth (Ft):** 3′ 50″
- **Penetration:** 34
- **Core:** 34

ELEV. 113′ 10″

- **UNITED STATES GEOL. CLASSIFICATION**
 - **DESCRIPTION:** STIFF, REDDISH BROWN CLAY/SILT
- **Depth (Ft):** 4′ 00″
- **Penetration:** 34
- **Core:** 34

ELEV. 113′ 11″

- **UNITED STATES GEOL. CLASSIFICATION**
 - **DESCRIPTION:** STIFF, REDDISH BROWN CLAY/SILT
- **Depth (Ft):** 4′ 50″
- **Penetration:** 34
- **Core:** 34

PENETRATION DATA

- **2′ O.D. THIN WALL TUBE SAMPLES**

PENETRATION DATA

- **Standard Penetration Test:**
 - **N (Blows per foot):**
 - 0: 51.5
 - 10: 3.1
 - 20: 16.1
 - 30: 4.5
 - 40: 5.5

END OF BORING @ 16′ 0″

ELEVATION ESTIMATED FROM CONTOUR PLAN

BORE HOLE DATA

- **Boring No.:** 12
- **Date:** AUG. 16, 1971
- **Driller:** W. LUM ASSOCIATES, Inc.
- **Field Party:** KAKU, GLORY
- **Type of Boring:** AUGER (4′-30′) Diam. 4″
- **Elev.:** 113′ 7″
- **Drill Bit:** T.C. DRAG
- **Description:** ELEV. 113′ 7″

ASSOCIATES, INC.

3000 WAIALAE AVENUE • HONOLULU, HAWAII 96816 • PHONE 737-7931
Boring Log

PROJECT: WAIPAHU ESTATES UNIT 3-1
LOCATION: Waipio, Ewa, Oahu, Hawaii
Tax Map Key: 9-4-07: 11 & 24

HAMMER:
- **Weight**: 40 lb
- **Drop**: 50"
SAgger
- **Type of Boring**: AUGER (9.30) Diam. 4"
- **Elev.**: 118' 4"
- **Date**: 8-19-71

<table>
<thead>
<tr>
<th>Unified Soil Classification</th>
<th>Description</th>
<th>ELEV. 118' 4"</th>
<th>Depth (ft)</th>
<th>N Blows/0.5'</th>
<th>Standard Penetration Test</th>
<th>2" OD. THIN WALL TUBE SAMPLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ML)</td>
<td>STIFF REDDISH BROWN CLAYEY SILT w/ROOTS</td>
<td>2' 4"</td>
<td>19-A</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(MH)</td>
<td>STIFF REDDISH BROWN SILTY CLAY</td>
<td>2' 9"</td>
<td>19-B</td>
<td>30</td>
<td>87</td>
<td>7680</td>
</tr>
<tr>
<td></td>
<td>STIFF REDDISH BROWN CLAYEY SILT w/ROOTS</td>
<td>1' 5"</td>
<td>19-C</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TAN CLAYEY SILT</td>
<td>2' 6"</td>
<td>19-D</td>
<td>33</td>
<td>83</td>
<td>9760</td>
</tr>
</tbody>
</table>

BLUE-GRAY & REDDISH BROWN, DECOMPOSED ROCK (SOME CRUSHED TO CLAYEY SILT).

END OF BORING @ 106' 0"

ELEVATION ESTIMATED FROM CONTOUR PLAN

Notes:
- **Driller**: N. LUM ASSOCIATES
- **Date**: AUG 19, 1971
- **Field Party**: KAKU, GLORY
- **Sample No.**:
- **Wet Dem.**: P.C.F.
- **Dry Dem.**: P.C.F.
- **Uncorr. Comp.**: P.S.F.
- **Notes**: USED WATER TO AID DRILLING

Penetration Data

- 8/5
- 4/5, 7/5
Table 1A - Summary of Laboratory Test Results

<table>
<thead>
<tr>
<th>BORING NO.</th>
<th>4</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPTH BELOW SURFACE</td>
<td>SURFACE</td>
<td>5'-5.5</td>
<td>SURFACE</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>REDDISH BROWN CLAYEY SILT</td>
<td>BROWN CLAYEY SILT</td>
<td>REDDISH BROWN SILTY CLAY</td>
</tr>
<tr>
<td>GRAIN-SIZE ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(% Passing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve 1"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTERBERG LIMITS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Dried or Natural</td>
<td>NATURAL</td>
<td>NATURAL</td>
<td>NATURAL</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>32</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>27</td>
<td>38</td>
<td>15</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Dilatancy</td>
<td>QUICK</td>
<td>QUICK</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Toughness</td>
<td>MEDIUM</td>
<td>SLIGHT</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Dry Strength</td>
<td>SLIGHT-MED</td>
<td>SLIGHT-MED</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>UNIFIED SOIL CLASSIFICATION</td>
<td>ML</td>
<td>MH</td>
<td>ML-CL</td>
</tr>
<tr>
<td>APPARENT SPECIFIC GRAVITY</td>
<td></td>
<td></td>
<td>2.92</td>
</tr>
<tr>
<td>EXPANSION AND CBR TESTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Surcharge-51 P.S.F.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molding Moisture, %</td>
<td>72.5</td>
<td>77.0</td>
<td>23.3</td>
</tr>
<tr>
<td>Molding Dry Density, P.C.F.</td>
<td>100.8</td>
<td>103.8</td>
<td>25.0</td>
</tr>
<tr>
<td>Swell upon saturation, %</td>
<td>1.0</td>
<td>0.3</td>
<td>13.3</td>
</tr>
<tr>
<td>CBR at 0.1" Penetration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOISTURE-DENSITY RELATIONS OF SOILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AASHO T-180-57 Method)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry to Wet or Wet to Dry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Dry Density (P.C.F.)</td>
<td>101.8</td>
<td>105.2</td>
<td>25.0</td>
</tr>
<tr>
<td>Optimum Moisture (%)</td>
<td>23.0</td>
<td>23.9</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Table I.B - Summary of Laboratory Test Results

<table>
<thead>
<tr>
<th>BORING NO.</th>
<th>SAMPLE NO.</th>
<th>DEPTH BELOW SURFACE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-6</td>
<td>REDDISH-BROWN SILITY CLAY WTRES OF RECOMP. ROCK</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>10'-11.5</td>
<td>BROWN CLAYEY SILT</td>
</tr>
</tbody>
</table>

Grain-Size Analysis

<table>
<thead>
<tr>
<th>(% Passing)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atterberg Limits

<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Natural</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Dried or Natural</td>
<td>47</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>35</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>12</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SLOW-MED</th>
<th>MEDIUM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilatancy</td>
<td>SLOW-MED</td>
<td>MEDIUM</td>
<td></td>
</tr>
<tr>
<td>Toughness</td>
<td>SLIGHT-MED</td>
<td>MEDIUM</td>
<td></td>
</tr>
<tr>
<td>Dry Strength</td>
<td>SLIGHT-MED</td>
<td>MEDIUM</td>
<td></td>
</tr>
</tbody>
</table>

Unified Soil Classification

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>ML</th>
<th></th>
</tr>
</thead>
</table>

Apparent Specific Gravity

Expansion and CBR Tests

(Surcharge-51 P.S.F.)

- Molding Moisture, %
- Molding Dry Density, P.C.F.
- Swell upon saturation, %
- CBR at 0.1" Penetration

Moisture-Density Relations of Soils

(AASHO T-180-57 Method)

- Dry to Wet or Wet to Dry
- Max. Dry Density (P.C.F.)
- Optimum Moisture (%)

Remarks:

Date: __________ By: __________

WALTER LUM ASSOCIATES, INC.
CIVIL, STRUCTURAL, SOILS ENGINEERS
PLASTICITY CHART

PROJECT: WAIPAHU ESTATES UNIT 3-1
LOCATION: WAIPIO, EWA, OAHU, HAWAII

PLASTICITY INDEX

LIQUID LIMIT

"A" LINE

CL

CH

CL-ML

ML

G-C

SURFACE 4-B

MH & OH

DATE ________ BY _________
MOISTURE-DENSITY CURVE (AASHO T-180-57, METHOD A)

PROJECT: WAIPAHU ESTATES - UNIT 3-1
LOCATION: WAIPIO, EWA, OAHU, HAWAII
SAMPLE NO.: A SURFACE
SAMPLE DESCRIPTION: REDDISH-BROWN CLAYEY SILT

AGGREGATE: 3/4' MINUS
MOLD SIZE: 4' x 4' x 8''
HAMMER: 10 LBS. 18'' DROP
LAYERS: 5
BLOWS: 25/LAYER

MAX. DRY DENSITY: 101.5 P.C.F.
OPTIMUM DRY DENSITY: 101.5 P.C.F.
OPTIMUM MOISTURE CONTENT: 22.6%

WATER CONTENT (%)

0 10 20 30 40 50 60

WATER CONTENT (%)

DWARF DENSITY (P.C.F.)

0 10 20 30 40 50 60 70 80 90 100 110 120 130

WALTER LUM ASSOCIATES, INC.
CIVIL, STRUCTURAL, SOILS ENGINEERS

DATE 9-14-71 BY SK
MOISTURE–DENSITY CURVE (AASHO T-180-57, METHOD A)

PROJECT: WAIPAHU ESTATES - UNIT 3-1
LOCATION: WAIPIO, EWA, OAHU, HAWAII
SAMPLE NO.: 6 SURFACE
SAMPLE DESCRIPTION: REDDISH-BROWN SILTY CLAY

AGGREGATE: ¾" MINUS
MOLD SIZE: 4" x 4.5" HIGH
HAMMER: 10 LBS., 18" DROP
LAYERS: 5
BLOWS: 25/LAYER

MAXIMUM DRY DENSITY: 103.2 P.C.F.
OPTIMUM MOISTURE CONTENT: 23.9 %
ZERO AIR VOIDS CURVE
SPECIFIC GRAVITY: 2.92

DATE: 4-27-71 BY: FLK
CBR TEST

PROJECT: WAIPAHU ESTATES - UNIT B-1

LOCATION: WAIPIO, EWA, OAHU, HAWAII

SAMPLE NO: 4 SURFACE

SAMPLE DESCRIPTION: REDDISH-BROWN CLAYEY SILT

CBR PENETRATION DATA

<table>
<thead>
<tr>
<th>PENETRATION (INCHES)</th>
<th>LOAD (LBS)</th>
<th>LOAD (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>280</td>
<td>11</td>
</tr>
<tr>
<td>0.050</td>
<td>680</td>
<td>227</td>
</tr>
<tr>
<td>0.100</td>
<td>700</td>
<td>259</td>
</tr>
<tr>
<td>0.25</td>
<td>810</td>
<td>328</td>
</tr>
<tr>
<td>0.150</td>
<td>890</td>
<td>299</td>
</tr>
<tr>
<td>0.200</td>
<td>890</td>
<td>320</td>
</tr>
<tr>
<td>0.500</td>
<td>1100</td>
<td>310</td>
</tr>
<tr>
<td>0.400</td>
<td>1200</td>
<td>390</td>
</tr>
<tr>
<td>0.500</td>
<td>1290</td>
<td>490</td>
</tr>
</tbody>
</table>

AGGREGATE _1/6" MINUS_
HAMMER WEIGHT __10LBS_
HAMMER DROP __18"
No. OF BLOWS _5_ LAYER
No. OF LAYERS _5_

TEST RESULTS:

MOLDING MOISTURE, % ______ 22.5
MOLDING DRY DENSITY, P.C.F. _100.5_
CBR @ 0.1" PENETRATION _25.0_
DAYS SOAKED _4_

DATE 9-11-71 By FM
DATE 9-16-71 By SK
CBR TEST

PROJECT: WAIPAHU ESTATES - UNIT 3-1

LOCATION: WAIPIO, EWA, OAHU, HAWAII

SAMPLE NO: 60 SURFACE

SAMPLE DESCRIPTION: REDDISH, BROWN SILTY CLAY

TEST RESULTS:

MOLDING MOISTURE, %: 22.9

MOLDING DRY DENSITY, P.C.F.: 103.8

CBR @ 0.1" PENETRATION: 13.2

DAYS SOAKED: 4

DATE: 9-14-71 BY: AF

DATE: 9-20-71 BY: SK

WALTER LUM ASSOCIATES, INC.
CIVIL, STRUCTURAL, SOILS ENGINEERS
GENERAL TESTING METHODS

EXPLORATORY BORINGS AND SAMPLING

Method for soil investigation and sampling by auger borings (Tentative)

Method for thin wall tube sampling of soils (Tentative)

Method for penetration test and split barrel sampling of soils (Tentative)

LABORATORY TESTING

Grading Analysis

Sieve analysis of fine and coarse aggregates

Amount of material finer than No. 200 sieve in aggregate

Atterberg Limits

Determining the liquid limit of soils Modified as follows: Substitute Casagrande grooving tool. Tests conducted from natural moisture content unless noted otherwise.

Determining the plastic limit of soils

Calculating the plasticity index of soils

Specific Gravity

Specific gravity of soils Modified as follows: 500 ML Pycnometer

Expansion and CBR Tests

Expansion test and California Bearing Ratio (CBR)

Compaction Test

Moisture-Density relations of soils using a 10# rammer and an 18" drop

Unified Soil Classification

ASTM Designation: D 1452-63T

ASTM Designation: D 1587-63T

ASTM Designation: D 1586-64T

AASHO Designation: T 27-60

AASHO Designation: T 11-60

AASHO Designation: T 89-60

AASHO Designation: T 90-56

AASHO Designation: T 91-54

AASHO Designation: T 100-60

Section VIII - TM 5-530
"Materials Testing" by Headquarters, Dept. of the Army

AASHO Designation: T 180-57

Designation E-3 from "Earth Manual" by the United States Department of the Interior Bureau of Reclamation
GENERAL TESTING METHODS

Consolidation Test

Laboratory Shear Test

Laboratory shear test using the Torvane

Chapter IX
"Soil Testing for Engineers"
by T. William Lambe
The Massachusetts Institute of Technology

Brochure by Soiltest, Inc.
LIMITATIONS

In general, soil formations are commonly erratic and rarely uniform or regular. The boring logs indicate the approximate subsurface soil conditions encountered only at the drill holes where the borings were made at the times designated on the logs and may not represent conditions at other locations or at other dates. Soil conditions and water levels may change with the passage of time and construction methods or improvements at the site.

During construction, should subsurface conditions much different from those in the borings be observed, encountered, or otherwise indicated, we should be advised immediately to review or reconsider our recommendations in light of the new developments.

Our professional services were performed, findings obtained and recommendations prepared in accordance with generally accepted engineering practices. This warranty is in lieu of all other warranties expressed or implied.
SECTION
NOT TO SCALE

FIGURE 1
PROPOSED BOULDER FILL
WAIPAHU ESTATES, UNIT 3-1
WAIPIO, EWAN, OAHU, HAWAII

WALTER LUM ASSOCIATES, INC.
CIVIL, STRUCTURAL, SOILS ENGINEERS