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Abstract 
 

Mobile health systems in recent times, have notably 

improved the healthcare sector by empowering patients 

to actively participate in their health, and by facilitating 

access to healthcare professionals. Effective operation 

of these mobile systems nonetheless, requires high level 

of intelligence and expertise implemented in the form of 

decision support systems (DSS). However, common 

challenges in the implementation include generalization 

and reliability, due to the dynamics and incompleteness 

of information presented to the inference models. In this 

paper, we advance the use of ad hoc mobile decision 

support system to monitor and detect triggers and early 

symptoms of respiratory distress provoked by strenuous 

physical exertion. The focus is on the application of 

certainty theory to model inexact reasoning by the 

mobile monitoring system. The aim is to develop a 

mobile tool to assist patients in managing their 

conditions, and to provide objective clinical data to aid 

physicians in the screening, diagnosis, and treatment of 

the respiratory ailments. We present the proposed 

model architecture and then describe an application 

scenario in a clinical setting. We also show 

implementation of an aspect of the system that enables 

patients in the self-management of their conditions.  

 

 

1. Introduction  

 
There is no doubt that advanced technologies have 

helped reduce problems associated with managing long-

term illnesses, and shortages of health professionals. 

Respiratory disorders such as exercise-induced asthma 

(EIA) or exercise-induced bronchospasm (EIB), 

exercise-induced rhinitis (EIR), exertional vocal cord 

dysfunction (VCD), as well as chronic obstructive 

pulmonary disease (COPD), are among the long-term 

health conditions whose management and treatment can 

benefit from real-time and continuous monitoring; given 

their social, emotional and economic impact on active 

and competitive individuals as well as the general 

populace [1, 2, 3, 4]. Several studies however, have 

reported that exacerbation of respiratory conditions due 

to strenuous activities are not well characterized during 

diagnosis [5]; the main reason being the high similarity 

and overlap in the triggers and symptoms particularly 

between EIB/EIA and VCD. Comorbidity cases in an 

individual also contributes to the under-diagnosis and 

under-treatment of these conditions [5, 6, 7]. 

Though there is no standard for the management and 

control of respiratory disorders, each ailment has an 

acceptable measure of wellness [8, 9]. Many researchers 

have focused on the use of advanced information and 

communications technologies to improve overall 

management and control of respiratory health 

conditions [10, 11]. Mobile health monitoring based on 

pervasive data capturing, presents patients the 

opportunity to personally monitor and manage their 

conditions as it enables real-time and continuous 

monitoring, and management of the conditions.  

 Mobile phones are not only capable of recording 

breath sounds [7, 11, 12], but also, able to perform 

analysis on the recorded signal. Wheezes, stridor, cough 

are frequent symptoms experienced by patients with 

exercise-induced respiratory conditions (EIRC); and 

doctors have identified these sounds as principal signals 

of respiratory distress [7]. However, lung or breath 

sound detection is not sufficient to provide absolute 

functional solution to pulmonary exacerbation. There is 

need to measure and analyze other vital signs including 

environmental effects as well as patient’s level of 

activity, to provide accurate and reliable information in 

controlling the respiratory conditions [8,13].  

Our study objective centers on developing a simple 

and portable respiratory monitoring system that can 

detect vital signs, perform signal analysis and context 

recognition; and also, send alerts and feedback to the 

user in real-time scenarios. The design architecture is 

based on machine learning for classification of 

respiratory sounds [7], and DSS for context recognition 
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using expert system frameworks [14]. The inferencing 

mechanism of the embedded expert system is built on 

inexact reasoning- a concept of certainty theory that 

allows inferencing based on the level of belief in the 

presented evidences or in available contextual 

information. We deem this approach appropriate for the 

envisaged monitoring system given the overlap in the 

triggers and symptoms of exercise-induced respiratory 

conditions which of course, introduces some degree of 

uncertainty in their assessment. Uncertainty or 

approximate reasoning becomes necessary when the 

system is presented with situational evidences that 

require further probing. 

Studies on modeling of uncertainty based on 

combined evidences have been published in [15-16]. 

Whereas the models in these studies strictly focus on 

diagnostic procedures, our modeling approach dwells 

on a monitoring tool that can automatically generate 

informative clinical data to assist health professionals in 

the screening of suspected respiratory conditions. We 

consider this as a major contribution from the study. 

In what follows, we throw more light on the rationale 

for adopting certainty model for the DSS inferencing on 

the contextual data, as elucidated in the next section. A 

brief description of the monitoring system design is 

provided in section 3. Section 4 focuses on the approach 

for the certainty model while we describe an application 

scenario of the model in section 5.  The last section 

draws a summary on the discussion and further work.  

 

 

2. Background  

 
2.1. Context Recognition 

 
Context recognition in mHealth setting is an active 

research area that have generated varying interests given 

the diversity in the components and procedures of 

capturing contextual data. Multi-modal sensing from 

embedded sensors in smartphones provides a good 

platform for high quality context recognition [17]. 

In the context of exercised-induced respiratory 

conditions, the principal event being monitored is the 

audio symptoms extracted from the recordings by the 

built-in microphone; and the immediate context 

provided by the mobile system are the activity level 

from the embedded accelerometer sensor and ambient 

conditions from temperature and humidity sensors. The 

mappings of the contextual information polled from 

various sensors to real-time situations, are often 

performed using information and probability theories 

[14, 17]. However, in scenarios where the required 

information or data to make an inference is not fully 

available, then alternative techniques are considered. In 

such cases, the certainty theory becomes handy as 

alternative approach for inexact reasoning based on 

available evidences [18].  

Certainty theory originates from complexities 

involved in the development of MYCIN in dealing with 

inexact information and inexact inference [18]. It is 

considered a well-known alternative to probability 

theory for handling inexact reasoning in practical 

situations as it relates to many expert system 

applications. It focuses on the heuristics (what) of a task 

to be accomplished rather than the procedures (how) to 

accomplish it. In other words, it relies on the judgmental 

measures of belief on the available evidence and sets 

aside the more rigorous constraints of probability 

estimates [18]. 

 

2.2. Certainty Theory vs. Probability Theory 

 
Probability theory has been described as an ideal 

technique for dealing with inexact information. And it is 

most suitable in such areas as weather forecasting and 

financial planning [18]. However, its consideration as an 

effective technique in expert systems requires meeting 

certain constraints which include: 

(i) Prior probabilities must be known – requires 

availability and reliability of statistical information 

(lack of past or background data limits the use of 

classical probability approach in medicine). 

(ii) Total probability must equal unity – strict 

probability of Bayesian theorem, i.e.  P (H/E) + P 

(~H/E) = 1, where H is the hypothesis or 

proposition and E is the evidence. This is 

impracticable where there is no relationship 

between E and ~H. 

(iii) Probabilities must be updated - requires 

recalculating all probabilities in the case of new 

evidence. 

(iv) Conditional Independence is required – This is also 

not realistic in medical or clinical situations where 

evidences or symptoms are not mutually exclusive. 

(E.g. coughing/wheezing due to breathing cold/dry 

air because of low temperature/humidity; 

while/after exercising vigorously).  

 

Certainty theory on the other hand, though stems 

from the probability theory, does not strictly follow the 

formalities of probability concepts. Comparing both 

theories, we can establish the following relationship: 

The certainty theory in its construct, “suggests that 

the prior probability of hypothesis H given as P(H) 

represents expert’s critical view of H”. Thus, the 

expert’s disbelief in H given as P(~H) is then surmised 

in line with the conventional probability constraint that 

the probability ‘for’ and ‘against’ a hypothesis sums up 

to 1 (i.e.  P (H/E) + P (~H/E) = 1) [18]. 
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The theory further postulates that “if the expert 

observes an evidence E, such that the probability given 

the evidence (conditional probability) – P(H/E), is 

greater than the prior probability P(H), then the expert’s 

belief in the hypothesis increases” by the factor: P(H/E) 

– P(H)/1 - P(H). “On the other hand, if E produces a 

probability in the hypothesis that is less than P(H), then 

the expert’s belief in the hypothesis will decrease” by: 

P(H) – P(H/E)/P(H) [18]. 

Summarily, certainty theory asserts “that a given 

piece of evidence can either increase or decrease an 

expert’s belief or disbelief in a hypothesis”; and this 

variability can be expressed as a “measure of belief 

(MB)” or “measure of disbelief (MD)” [18]. 

 

Let h denotes P(H), he denotes P(H/E), b denotes 

MB, and d denote MD; 0 ≤ b ≤ 1, and 0 ≤ d ≤ 1 

 

Thus, b and d can be expressed as: 

 

𝑏 = {

1,
 

max[ℎ𝑒, ℎ] − ℎ

1 − ℎ
,
 

𝑖𝑓  ℎ = 1 

 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

(1) 

   

𝑑 = {

1,
 

min[ℎ𝑒, ℎ] − ℎ

−ℎ
,
 

𝑖𝑓  ℎ = 0 

 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(2) 

 

Certainty theory also accommodates scenarios 

where contextual data relating to the hypothesis may be 

observed. In this case, the theory considers the effect of 

multiple evidences on the belief and disbelief in the 

proposition; and hence, introduces a new variable 

known as certainty factor (CF) – ‘a net number’ that 

reflects the overall belief in the proposition [18]. Thus, 

CF is given as:  

 

CF = b - d. 
 

The CF value -1 connotes a ‘definitely false’ 

hypothesis, 0 means ‘unknown hypothesis, while the CF 

value 1, is interpreted as a ‘definitely true’ hypothesis 

[17] as illustrated in Figure1. 

 

 

 

 

Figure 1. Range of certainty factor value [18] 
 

 

Though the CF equation originally derives from 

probability estimates, its concept however, does not 

conform to the analysis and rigidity of probability 

measure. For instance, the CF values for and against a 

hypothesis with a given evidence, do not sum to unity 

compared to the probability for and against a probability 

that must be equal to 1; i.e. CF(he) + CF(~he) ≠ 1. There 

also exists conditional certainty factor but its evaluation 

contradicts the principle of normal conditional 

probability in cases where evidences are not 

independent. 

 From the on-going arguments, we can conclude that 

while certainty theory may have some elements of 

probability in its development, the equations defining 

the associated variables namely – MB, MD, and CF are 

unstructured (ad hoc), and do not strictly adhere to the 

formalities of probability theory. Thus, these variables 

particularly the CFs, are not to be treated as probabilities 

given that the idea behind the concept is to model or 

factor in the dynamics of human reasoning, when 

presented with different scenarios of limited evidences. 

In other words, CF models are “designed to mimic 

inexact reasoning of humans” [18]. 

 

 

3. The Monitoring System Design 

 
Figure 2 shows the functional components of the 

proposed monitoring system with emphasis on the 

certainty model of the inference mechanism. A detailed 

description of the system design is provided in [19]. 

The built-in sensors in android phone (Galaxy S4) – 

microphone, thermometer, hygrometer and 

accelerometer, automatically collect raw physiological, 

ambient, and activity data which are then processed and 

transformed into clinical data using standard signal 

processing and machine learning techniques [7, 19]. The 

most common indicators of exercise-induced 

respiratory conditions as identified by experts are breath 

sound symptoms – cough, wheeze, stridor, etc. (see 

Figure 3a).  

 

 

False        Unknown              True 

 

-1    possibly false            0          possibly true    1 

 

    Disbelief   Belief 
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Figure 2. A schema of the Mobile Monitoring System

However, these symptoms are not enough evidence to 

conclude on a suspected respiratory ailment. There is the 

need to factor in other variables namely the triggers – 

physical activity level (Figure 3b) and the ambient 

conditions – temperature and humidity. Whereas sound 

symptoms are the principal events being monitored, the 

triggers provide contextual information on detected 

abnormal respiratory sound which adds to the degree of 

belief in the suspected illness. The principal events and 

the contextual evidences constitute the Concrete 

Knowledge for the reasoner. This knowledge is captured 

in an embedded database (SQLite) as shown in Figure 

3c. 

The medical knowledge used in modeling the reasoner 

were elicited from interaction with experts in 

pulmonology and sports medicine. Other sources of 

knowledge include literature and interviews with 

persons affected by the respiratory conditions under 

consideration. These altogether form the Domain or 

Abstract Knowledge fed into the certainty model. The 

model provides the monitoring system the intelligence 

to reason on the evidences based on the domain 

knowledge; in order to alert the user or generate 

feedback on the user’s health status. The generated 

information or report can be stored on the mobile device 

or shared with healthcare providers and physicians for 

subsequent actions. 

 

 

 

 

 
 

 (a) 

 (b) 
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(c) 

Figures 3 (a) – (c). Concrete knowledge automatically 
captured by the mobile monitoring system 

 

 

4. The Certainty Model  

 
The goal of the automated mobile decision support 

system is to alert patients and their caregivers on 

detection of abnormality in the measured variables that 

could predispose respiratory distress. But the overlap in 

the symptoms and triggers of the respiratory conditions 

complicates the reasoning process in discriminating the 

evidence for each of the suspected conditions; and thus, 

would require obtaining more detailed knowledge from 

experts to confirm or exclude a suspected respiratory 

condition.   

In view of the above constraints, we adopt certain 

theory to model the inference mechanism of the 

monitoring system based on the available evidences. 

Our approach deviates from the conventional rule-based 

models that assume a ‘single-fault’ (cause) i.e. only one 

disorder is suspected from the given evidences. We 

rather consider a ‘multi-fault’ assumption where more 

than one disorder or respiratory conditions is suspected 

based on the analysis of observed variables, and the 

certainty weight of the suspected conditions [15,16]. 

The concepts of certainty theory are applied to both 

knowledge representation and the reasoning process. 

 

4.1. Knowledge Representation 
 

To formalize the knowledge extracted from the 

problem domain, we consider mathematical expressions 

in the form of Set notations to represent the respiratory 

conditions, their symptoms and triggers in the problem 

space, as well as the participation ratio of the afore-

mentioned variables. Other forms of knowledge 

representation exist as described in [20,21]. However, 

we adopt an event-driven approach [21] for the 

development of the certainty model since we are 

considering an automated decision support system. 

First, we start with the definitions of measurable or 

observable factors within a range of variation.  

Let C denotes a set of respiratory conditions a patient 

may have: 

 

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} (3) 

 

Let S(c) represents a set of possible symptoms of 

condition c: 

 

𝑆(𝑐) =  {𝑠: 𝑠 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑜𝑓 𝑐, 𝑐 ∈  𝐶} (4) 

 

Let T(c) also denotes a set of known triggers of the 

respiratory conditions: 

 

𝑇(𝑐) =  {𝑡: 𝑡 𝑖𝑠 𝑎 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑜𝑓 𝑐, 𝑐 ∈ 𝐶} (5) 

 

Let P be a universal set of all observable symptoms and 

context (triggers) signaling a respiratory condition: 

 

𝑃 = ⋃(𝑆(𝑐), 𝑇(𝑐) )

𝑐∈𝐶

 (6) 

 

Let Q be a set of symptoms and triggers detected or 

observed by the monitoring system: 

 

𝑄 =  {𝑞: 𝑞 𝑖𝑠 𝑎𝑛  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑞 ∈ 𝑃} (7) 

 

β represents a set of suspected conditions characterized 

by the detected events or observed evidences: 

 

𝛽 =  {𝑐: 𝑐 ∈ 𝐶, (𝑄 ∩ P) ≠ Ø} (8) 

 

The certainty of a suspected condition is then 

determined by the presence of its symptoms and 

triggers. It is calculated by the participation ratio of each 

of the symptoms and triggers - Rs and Rt respectively.  

 Let Rs(c) be the participation rate of symptom s in 

condition c, and Rt(c) be the participation rate of trigger 

t in condition c, then:  

(c) = Max {Rs(c) : s  S}  and   

(c) = Max {Rt(c) : t  T} 
 

Thus, the certainty weight 𝑊(𝑐), for each of the 

suspected condition is computed based on the 

participation ratios of the combined evidences and the 

asymptotic property of ‘Incremental Acquired 

Evidence’ in the certainty theory/model [18]. 

 

W(c) =
𝛾(𝑐) + 𝜃(𝑐)

max [(𝛾(𝑐) + 𝜃(𝑐)), (1 − 𝛾(𝑐) ∗ 𝜃(𝑐))]
 (9) 

 

Then Φ being the condition with the largest certainty 

weight 𝑊(𝑐) is selected from the list of suspected 

conditions β.  
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The parameters γ and θ are determined based on the 

disjunctive rule of “Certainty Propagation for Multiple 

Premise Rules” in the Certainty Theory construct [18]. 

Equation 9 stems from “Certainty Propagation for 

Similarly Concluded Rules” of the same theory. 

However, the normalization factor max [(𝛾(𝑐) +
𝜃(𝑐)), (1 − 𝛾(𝑐) ∗ 𝜃(𝑐))] in our model was introduced 

for two reasons: First, in cases where the evidences are 

not totally independent or mutually exclusive as noted 

in section 2.2, which we addressed here by using the 

expression 1 − 𝛾(𝑐) ∗ 𝜃(𝑐). Second, to mitigate the 

effect of 𝛾(𝑐) ∗ 𝜃(𝑐) ≥ 1. The essence is to maintain 

positive values for the certainty weights as highlighted 

in the CF scale (Figure 1), and to satisfy the asymptotic 

property of the certainty model; since the proposed 

monitoring system is primarily concerned with positive 

evidences to support the belief in the suspected 

conditions.  

 

4.2. The Reasoning Process 

 
From the knowledge representations expressed 

above, we can imbue the monitoring system with some 

level of intelligence through ad hoc imprecise 

reasoning, using the following light-weight inference 

algorithm as described thus: 

First, the system accepts as input all the static 

variables compiled from the domain knowledge and 

stored as xml file. The model then initializes all the 

required variables. All respiratory conditions C in the 

domain space are initially suspected. Likewise, all 

symptoms and triggers P in the domain space are 

initially expected. Q is also initialized to an empty set 

and then populated by reading periodically (daily), 

observed evidences from the SQLite database as 

captured by the monitoring system. The system then 

determines β based on Q by checking if Q intersects with 

P. If so, the system prunes β by removing respiratory 

conditions whose evidences were not captured in Q.  Rs 

and Rt of each element in (𝑄 ∩ P) is calculated. The 

parameters γ and θ (representing the maximum of Rs and 

Rt for each suspected condition in β) are then 

determined. Using these two parameters, the system 

computes the certainty weight W(c) of each suspected 

condition by applying equation 9, and finds Φ being the 

suspected condition(s) with the largest certainty weight; 

It then displays Q, Φ, and W(c) on the monitoring 

device’s screen and also provides feedback and/or alert 

to the user that can be shared with care givers and 

concerned health professionals. Figure 4 illustrates the 

flow diagram of the reasoning process. 

 

 

 
Figures 4. Flow Diagram of the Reasoning Process 

 

 

5. Domain Scenario  

 
5.1. Clinical Application 

 
Here, we describe an application case of the 

certainty model. Consider a scenario where a patient has 

earlier been diagnosed with a certain respiratory 

condition– with symptoms and triggers well 

documented and made known to him. Assume the 

patient is a high school student that loves athletics and 

as such, trains with his peers from time to time. Based 

on his condition, he has been advised on the type of 

physical activity to engage in, and certain weather 

conditions to avoid. However, due to peer pressure or 

concerns about inadequacy or incompetence, he does 

not adhere to instructions by his physicians, and 

continues to engage in high-risk exercises under adverse 

ambient conditions that could flare up or trigger 

symptoms of the respiratory condition. Suppose he 
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wears the monitoring device on him, and the system is 

furnished with the following domain and concrete 

knowledge as defined in the equations and the 

algorithms in section 4. Assume the evidences observed 

by the monitoring device were wheezes, cough, low 

temperature, low humidity, and vigorous exercise 

abbreviated as whz, cgh, lt, lh, and vgr respectively; then 

the set Q is populated as: 

 

𝑄 =  {𝑤ℎ𝑧, 𝑐𝑔ℎ, 𝑙𝑡, 𝑙ℎ, 𝑣𝑔𝑟}  

 

From the domain knowledge, the following set of 

respiratory conditions which are associated with the 

observed evidences (triggers and symptoms) can be 

identified as shown in Table 1. 

 

Table 1. Suspected Conditions based on observed 
evidences 

 

Resp. 

Conditions 

Evidences 

EIA Wheeze, Cough, Low 

temperature, Low humidity, 

Vigorous exercise 

 

EIB Wheeze, Cough, Low 

temperature, Low humidity, 

Vigorous exercise 

 

VCD Cough, Low temperature, 

Low humidity, Vigorous 

exercise 

 

EIR Low temperature, Low 

humidity, Vigorous exercise 

 

COPD Cough, Low temperature 

 
With the information in Table 1 we can calculate the 

participation ratios of the observed evidences (w.r.t 

number of suspected conditions associated with each 

symptom and trigger) as follows: 

 

Table 2. Participation Ratios of Observed Evidences 
 

Evidences (Q) Participation Ratios 
Wheeze 0.5 

Cough 0.25 

Low temperature 0.2 

Low humidity 0.25  

Vigorous exercise 0.25  

 

Thus, using Equation 9, the certainty weights for the 

suspected respiratory conditions are computed as: 

 

EIB = 0.85 

EIA = 0.85 

VCD = 0.53 

EIR = 0.25 

COPD = 0.47 

 

 

The implications of the results obtained from the 

computations can be viewed or interpreted based on the 

case being analyzed and the evidences captured by the 

monitoring device. First we observe that EIR has the 

least suspicion index of 0.25, though its triggers were 

among the evidences, the sound symptoms (sneeze and 

sniffle) were not captured; and as such, it is 

automatically excluded from the list of suspected 

conditions. COPD is not triggered by vigorous exercise 

but the sound symptoms were among the evidences and 

the exacerbation is characterized by low physical 

activity due to low temperature [22-23]. However, it 

also qualifies as a candidate for exclusion based on its 

certainty weight which is 0.47.  VCD ranks second in 

the list with certainty weight of 0.53, the reason being 

the resemblance of its triggers and symptoms to those of 

asthma [24]. The imprecision in the evidences however, 

calls for further probe.  EIB and EIA have the same and 

highest suspicion index – 0.85, which intuitively is no 

surprise, given that both terms are often used 

interchangeably in the problem domain; as there are no 

differences in the symptoms manifested by the 

conditions when provoked by physical activity. 

However, to create a distinction in the terminologies, 

health experts define EIA as respiratory distress in 

persons diagnosed with asthma condition predisposed 

by physical exertion; while EIB refers to the 

manifestation of asthma-like symptoms in non-

asthmatics only during rigorous exercise like sporting 

activities [6, 25].  

In addition to the measurable evidences, the system 

may adopt a status of medical history/diagnosis of any 

of the conditions for a patient, which is provided by the 

user at the profile setup of the monitoring application. 

This information being part of the concrete knowledge 

as shown in Fig. 2, can be used for discrimination 

between EIA and EIB. Also, based on the knowledge 

extracted from domain experts, the timing of the 

occurrences of the symptoms with respect to the 

duration of vigorous exercise is considered important in 

the differential diagnosis of EIB and VCD. EIB wheezes 

are known to occur after the first 5 minutes of vigorous 

exercise and may persist up to 10 minutes after physical 

exertion [6]. VCD stridor on the other hand, is observed 

with intense or vigorous exercise [24].  This information 

can be deduced from the event time as captured in the 
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database table in Fig. 3c. Inclusion of the additional 

knowledge in the certainty model (implemented by 

rules), will consequently raise or lower the suspicion 

indices of the respiratory conditions.  

We would like to point out here that both symptoms 

and triggers are not so sufficient for a comprehensive 

respiratory diagnosis in clinical settings. Lung function 

test is considered important in the differential diagnosis 

of the respiratory conditions [6]. Dyspnea or shortness 

of breath is another critical sign of respiratory distress 

which can be modeled from the respiratory rate of a 

patient. We hope to include these two measurements as 

special modules in the monitoring system as our study 

progresses. However, the usefulness of the proposed 

system is in generating objective data that can provide 

decision support to health professionals in the pre-

clinical screening and diagnosis of a patient during 

office visits. 

 

5.2. Clinical Evaluation  
 

For the clinical validation of the proposed system, 

we have submitted a proposal for approval by the 

institutional ethics committee which is still under 

consideration at the time of submitting this paper. 

However, we intend to carry out a pilot study that will 

involve both the experts and patients in the study 

domain. We have been in consultation with 

pulmonologists and experts in sports medicine; and with 

the ethics approval, the experts will be on ground to 

provide assessment of patients and their eligibility to 

participate in the study. 

At first, we will consider asymptomatic patients 

(individuals who have been diagnosed with respiratory 

conditions but do not show symptoms or signs of 

respiratory distress at the time of conducting the study); 

where smartphones will be used to capture their breath 

sounds while they voluntarily and with the approval of 

a physician, engage in different types of activities 

(climbing stair case, jogging, walking, sitting, etc.). The 

study will require subjects wearing the monitoring 

device while performing short burst of activities within 

a specific period (2 to 10 minutes). The system takes 

measurements of individual’s breath sound and activity 

patterns concurrently at specified time intervals. The 

recording may be performed both indoors and outdoors 

in order to measure environmental data such as 

temperature and relative humidity.  The study 

population will be exclusively adults within the age 

range of 20-48 years with a sample size of about 10-20. 

Since the main purpose of the field study is to 

validate the functional components of the proposed 

system, subjects will be asked to fill a form to indicate 

their experiences with their respiratory conditions, and 

the health personnel in charge will be asked to confirm 

the status of the participant’s respiratory conditions to 

help correlate and corroborate the data being collected 

by the monitoring system. 

 

5.3. Patient’s Self-management 
 

We have partially implemented an aspect of 

proposed monitoring system that will enable patients 

keep track of the symptoms and triggers of their 

respiratory conditions. This module of the system shows 

the user a visualized summary of the captured events on 

daily basis using column charts for measuring the 

frequency of symptom occurrence at specific periods of 

the day, a line chart to measure variations in the ambient 

temperature and relative humidity, and the bubble chart 

to display the intensity aggregate of each activity level 

at given hours of the day. This essentially provides the 

user with basic information to correlate the measured 

events. For example, knowing the specific period of the 

day when a symptom gets worse and the triggers that 

aggravate the symptoms, would help the patient to 

personally manage and control his/her condition. 

 

 

       (a) 
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       (b) 

 

      (c) 

 
Figures 5 (a-c). Daily events summary by charts 

 

Figures 5 (a - c) demonstrate preliminary tests of the 

daily events summary. The monitoring system is 

designed and developed to run as a real-time standalone 

system on an android device with no recourse to any 

backend system. So far, we have had an appreciable 

response time and low power usage in the execution of 

both individual and integrated modules (sensors’ data 

capturing and processing, machine learning for 

detection of sound symptoms, storing and retrieving 

data from the embedded SQLite database) of the 

monitoring system. We hope to provide more details on 

device resource usage when we fully implement the 

system. 

6. Conclusions  

 
The proposed certainty model for the monitoring 

system is patterned after Clinical Decision Support 

Systems. However, it is not necessarily considered a 

diagnostic tool but an assistive tool. While its major goal 

is to alert users on detection of any anomaly and to 

provide immediate feedback on their health status; it is 

also aimed at assisting health professionals with 

objective data in patient’s screening of a suspected 

respiratory ailment.  The multi-level observations from 

various components of the system form the basis for a 

follow–up on the reported patient’s status. The model 

implements a light-weight inference algorithm intended 

for ad hoc mobile monitoring. We adopted this approach 

in our modeling since the ‘frame of discernment’ in the 

study domain does not preclude comorbidity cases 

among suspected respiratory conditions. Thus, 

evidences captured can be pointers to more than one 

ailment which can be confirmed or refuted by 

conducting further clinical tests and observations on the 

patient. We are aware of other decision-making 

approaches for modeling inexact reasoning such as 

Dempster–Shafer theory (DST) and the transferable 

belief model (TBM). In our future study, we will 

evaluate the proposed model alongside these other 

alternative frameworks of reasoning, and compare their 

performances in a decision-making setting. 
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