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Abstract 
 

   Current frameworks to monitor, control, and 
optimize large-scale energy systems are becoming 
increasingly inadequate because of significantly high 
penetration levels of variable generation and 
distributed energy resources being integrated into 
electric power systems; the deluge of data from 
pervasive metering of energy grids; and a variety of 
new market mechanisms, including multilevel ancillary 
services. This paper outlines the concept of 
autonomous energy grids (AEGs). These systems are 
supported by a scalable, reconfigurable, and self-
organizing information and control infrastructure, are 
extremely secure and resilient (self-healing), and can 
self-optimize in real time to ensure economic and 
reliable performance while systematically integrating 
energy in all forms. AEGs rely on cellular building 
blocks that can self-optimize when isolated from a 
larger grid and participate in optimal operation when 
interconnected to a larger grid. This paper describes 
the key concepts and research necessary in the broad 
domains of optimization theory, control theory, big 
data analytics, and complex system theory and 
modeling to realize the AEG vision. 

  
 

1. Introduction  
 

Energy systems generate, transport, convert, and 
consume energy. They encompass a wide range of 
domains, including electric power systems, thermal 
systems used for heating and cooling, and fuel systems 
such as natural gas or hydrogen networks. In addition, 
a large number of interrelated domains influence the 
operation of these energy systems, including 
communications, water, and transportation networks. 
Energy systems can function at a variety of physical 
scales, from a small individual consumer, to 
communities and cities, to larger regions that 
encompass transmission networks. Figure 1 shows 
these interrelationships at a variety of physical scales 
[1].  

Current power systems deliver electricity primarily 
in one direction: flowing from large central plants to 
customer loads; however, increasing amounts of 
variable generation (wind and solar), distributed energy 
resources (DERs) (solar, fuel cells, microturbines, 
gensets), distributed energy storage (batteries, ice 
storage), and new loads (electric vehicles, light-
emitting diode lighting) are being added to electric 
grids and causing bidirectional power flows and 
voltage fluctuations that impact optimal control and 
system operation. In addition, because of increased 
numbers and types of sensors, massive amounts of new 
data are being collected on energy grid conditions.  

 
 

 
 

Figure 1. Energy systems integration occurs at a 
variety of physical scales. 

 
The use of natural gas-fired generation has also 

increased significantly, both at the bulk level and 
locally through combined heat-and-power applications. 
Finally, new ideas such as islanded microgrids [2] are 
being used locally to disconnect parts of an energy 
system from a larger system for economic reasons and 
to improve customer reliability and resilience. The 
formation of microgrids can be seamless when there is 
no interruption to customer loads or they can isolate 
from the grid with a discontinuity of service.  

Current grid control systems that operate at the bulk-
system level typically control about 10,000 points even 
on the largest systems. As additional smart, 
controllable devices are integrated into the grid, the 
number of control points could easily reach hundreds 
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of millions, significantly increasing the complexity of 
how to control and optimize the system. All these new 
technologies (Figure 2) are increasing the complexity 
of energy systems to a point at which existing 
techniques to monitor, control, and optimize them will 
be inadequate. For example, existing techniques might 
not offer decision-making capabilities that are 
consistent with the form and function of future large-
scale systems, which will be governed by faster 
dynamics, include heterogeneous energy assets that are 
controllable at different temporal resolutions, and 
accommodate a variety of deregulated energy markets 
[3]. This paper proposes the concept of autonomous 
energy grids (AEGs) and describes the research needed 
to fully exploit new techniques that enable their secure, 
resilient, and economic operation. Similar to 
autonomous vehicles—which do not require a physical 
driver and can make decisions on how to most 
effectively transport a person from one place to 
another—AEGs do not require physical operators, can 
be extremely secure and resilient (self-healing), and 
can self-optimize in real time to ensure economic and 
reliable performance while integrating energy in all 
forms. To achieve these goals, AEGs rely on scalable 
cellular blocks that can self-optimize when isolated 
from a larger grid and participate in optimal operation 
when interconnected to a larger grid. These scalable 
cells (Figure 2) can be areas of the grid that can run 
independently as microgrids or be parts of the grid that 
are segregated from a control perspective, but they do 
not have enough local generation to carry the full load 
of the cell. The AEG concept allows for the use of 
optimization and control across cells in cases when the 
cells can form independent microgrids and when they 
can control assets but not intentionally island. 

 
Figure 2. Energy systems incorporate a variety of 

energy sources and can form cells. 

A critical factor that makes the operation of energy 
grids challenging is that underlying problems 
associated with control, optimization, and monitoring 
tasks need to be solved in real time and in a distributed 
fashion. Energy is constantly being produced and used, 
and this balance requires fast decision-making 
capabilities along with comprehensive situational 
awareness. Currently, energy systems of significant 
size make a large number of simplifications and rely on 
the underlying physics of the systems to operate 
properly. A further challenge is associated with the 
range of timescales that are important to the real-time 
operation of energy grids. In power systems, this can 
range from ultrafast protection schemes, through 
transient and dynamic stability in the seconds range, to 
power flow and unit commitment, which can be hours 
and days.  

As more flexibility [4], [5] is added to energy 
systems, the complexity of controlling and optimizing 
these systems will increase to a point at which they 
will be too difficult to manage using conventional 
techniques. Future energy systems will need techniques 
that fully use big data analytics and advances in 
optimization, control, and complex system theories. As 
the grid evolves, there will also be challenges to 
operation caused by the ownership of various 
controllable assets. Because distributed generation, 
storage, and local loads might be under the ownership 
of customers instead of power system operators, how 
these devices participate in real-time operations will 
need to be further defined to ensure grid stability and 
reliability.   
 
2. Real-Time Optimization  
 

This section focuses on real-time optimization 
methods for AEGs. The term real time refers to an 
operational setting in which the power set points of the 
DERs within each cell are updated on a second or 
subsecond timescale to maximize the operational and 
economic objectives while coping with the variability 
of ambient conditions and noncontrollable energy 
assets [4] and achieving intercell coordination to 
ensure reliable system-wide operation. The main 
challenge in this context is related to the solution of 
pertinent optimization problems at a timescale that 
matches the dynamics of the prevailing ambient 
conditions, noncontrollable assets, and changes in the 
AEGs’ configurations. In fact, solving optimization 
problems to convergence (i.e., in a batch setting) every 
second or every few seconds is currently impractical 
because of the following challenges:  
 
(c1) Complexity and convergence rate. For large-scale 
grids, computational complexity might prevent the 
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solution of optimization problems at the required 
timescales [3], [6]. When an optimization problem is 
solved in a distributed fashion (e.g., with cell-to-cell 
communications as well as intracellular message 
passing), multiple communication rounds are necessary 
to converge to (possibly optimal) solutions. 
 
(c2) Model inaccuracy. Approximate linear models or 
convex relaxation methods might be leveraged to 
derive convex problems that facilitate the design of 
computationally affordable solutions; however, 
approximate/relaxed convex problems might involve 
only an approximate representation of a system’s 
physics and constraints, and therefore the optimal 
solutions of the convex problem might not be feasible 
for the original problem.  
 
(c3) Pervasive metering. Solving optimization 
problems such as relaxations/linearizations of the AC 
optimal power flow (OPF) requires pervasive metering 
to collect measurements of the noncontrollable loads at 
all locations in real time, which might be impractical. 
 

Regarding (c1), note that the optimization tasks 
related to AEGs are markedly different from traditional 
settings wherein energy systems are optimized at the 
wholesale level using economic- and market-based 
objectives. The modus operandi in bulk systems—
wherein a few large-scale generators need to be 
dispatched and the noncontrollable net load varies 
slowly—is not compatible with the form and function 
of AEGs with massive integrations of DERs or when 
optimization models require accurate representations of 
the AC power flows as well as the controllability 
region of the DERs. In these cases, optimization 
problems are nonconvex, nondeterministic polynomial-
time hard (NP-hard), and therefore they are infeasible 
to solve at the envisioned timescale [3], [6]. 
Nonconvexity often implies that distributed solution 
methods might not be provably convergent to Karush–
Kuhn–Tucker points. To address (c1), and to facilitate 
the development of provably stable and optimal 
distributed solution methods for AEGs, a first step is to 
develop convex relaxations and linear approximations 
of pertinent nonconvex problems [17], [18]. Section 
2.1 explains how to appropriately modify existing 
relaxation/approximation methods to ensure the 
feasibility of the produced solutions. The next steps 
propose developing real-time optimization algorithms 
that resolve the challenges in (c1)–(c3); these are 
described in the ensuing subsections.  
 
 
 
 

2.1 Feedback-Based Online Optimization 
 

To capture time-varying operation and economic 
objectives and constraints, the time-varying 
optimization formalism [9], [10] is leveraged. 
Specifically, pertinent time-varying convex 
optimization problems can model well-defined 
objectives and constraints of DERs located within each 
cell as well as consistency constraints for electrical 
quantities that pertain to the cell-to-cell connections.  

Capitalizing on this powerful mathematical model, 
first-order (gradient-descent based) methods can be 
used to design online algorithms to track optimal 
solution trajectories of the formulated time-varying 
problems; however, existing online optimization 
methods implicitly operate in an open-loop 
configuration and might still suffer the challenges 
noted above in (c2)–(c3). A powerful way to address 
(c2)–(c3) is to suitably modify the first-order methods 
to accommodate appropriate measurements from the 
energy grids and DERs [10], [11], [14], [16]. The 
resultant feedback-based online optimization methods 
can cope with inaccuracies in the representation of the 
AC power flow and avoid pervasive metering to gather 
the state of noncontrollable resources. These 
optimization algorithms also naturally afford a 
distributed implementation by leveraging the 
decomposition of the Lagrangian function associated 
with the optimization problems. Particularly, the 
decomposition of the Lagrangian function can lead to a 
distributed message passing that entails:  
 
(i) Communications between a cell-level control 
platform and individual customers, which are 
necessary to optimize customer-level objectives while 
respecting electrical limits within a cell; and 
 
(ii) Message passing among cells to optimize the flow 
of power based on economic and reliability targets.  

P (i)
i!j = �P (j)

j!i

= cell coordinator

= controllable DER

= communication link  
Figure 3. Communications architecture for 

distributed and real-time optimization of AEGs 
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Figure 3 illustrates this architecture, wherein 
communications among cells occurs because of 
consistency constraints for electrical quantities that 
pertain to the cell-to-cell connections—for example, 
adjacent cells agree on the real and reactive power 
exchanges at the points of interconnection. Intracellular 
communication is used to ensure that the set points of 
the DERs are computed to maximize the given 
operational objectives while ensuring that electrical 
limits are satisfied. See, e.g., [10] for intracellular 
communication and [19] for an example of cell-to-cell 
consensus-based message passing. As shown in, e.g., 
[10], optimality and stability results for these online 
algorithms can be established to track the solution of 
the formulated time-varying optimization problems. 

The idea of accommodating measurements into 
optimization methods goes back to, e.g., [7], [8]; and it 
was applied to the real-time optimization of power 
systems in [11], wherein a centralized controller was 
developed based on measurement-based projected-
gradient methods. Online algorithms were developed in 
[10], [12], [13], and [14] to find solutions to AC OPF 
problems; the authors of [10] established results to 
track solutions of a time-varying linearized AC OPF, 
and the authors of [14] tracked solutions of a time-
varying relaxed AC OPF. Recently, a projected-
gradient method on the power flow manifold was 
proposed in [15], [16]. Although [11], [14], [15], [16] 
can be implemented in a centralized controller, [10] 
affords “star” communications between cell-level 
controllers and DERs.  

 
2.2 Enabling Real-Time Optimization of AEGs 
 

To enable real-time optimization of AEGs, the 
approaches in [10]–[16] should be broadened to 
accommodate a communication architecture that 
includes cell-to-cell and cell-to-customer message 
passing. This can be obtained by dualizing the 
consensus constraints in the optimization problem that 
are used to ensure that adjacent cells agree on the 
power flows from one cell to another. Overall, the 
resultant feedback-based online optimization methods 
need to provably track the solution of the convex 
optimization problems by modeling well-defined 
objectives and constraints of each cell as well as the 
consistency constraints for electrical quantities that 
pertain to the cell-to-cell connections. It is worth 
emphasizing that the design of the distributed 
algorithm as well as the overall communications 
strategy will depend on the type of actors participating 
in the real-time optimization process—i.e., end 
customers, cell controllers, or aggregators that 
participate in the overall optimization process while 
retaining controllability of their own assets.  

The algorithm operates in an asynchronous way to 
account for different communications latencies and for 
devices that can be controlled at different timescales 
(for example, inverter-interfaced devices are controlled 
at fast timescales, whereas thermostatically controlled 
loads are controlled every few minutes). Resilience to 
communications drops and asynchronous operation 
should be analytically established through pertinent 
input-to-state stability and tracking results. To this end, 
the theory for iterative methods that involve gradients 
with errors can be leveraged. In fact, it can be shown 
that a packet loss leads to the computation of primal or 
dual gradient steps with outdated information [30]. A 
plug-and-play operation wherein cells can switch from 
an islanded mode to a larger grid-connected mode 
should be ensured; this can be modeled as a time-
varying constraint in the underlying optimization 
problem. Similarly, flexible operation, wherein a cell 
(or a portion of an cell) switches to an autonomous 
control setting during a prolonged communications 
outage, should be enabled.  

Last, distributed optimization will cross-fertilize 
with the design of (albeit futuristic) market 
mechanisms to systematically account for 
payment/rewards to exchange energy exchange and 
provision ancillary services among autonomous cells. 
This is in the spirit of transactive energy frameworks 
[25], which will need to be considerably broadened to 
accommodate the proposed architecture and to enable a 
rigorous mathematical analysis of system stability and 
optimality. For example, the stability analysis in [31] 
will be extended to account for cell-to-cell interactions.  
 
3. Control Theory to Ensure Cell Stability 
and Synchronization 
 

AEGs pose significant challenges in terms of 
optimal operation and the analysis of their stability. 
This is particularly the case when distributed or 
decentralized control algorithms are used to operate the 
system (as discussed in Section 2) because these 
algorithms are inherently asynchronous as a result of 
communications delays, losses, and distributed 
(asynchronous) control actions. The typical approach 
to stability analysis involves analyzing a continuous-
time system of differential equations; however, for 
networked systems with digital controllers, this 
standard analysis naturally disregards computational 
and communications latencies as well as asynchronous 
actions. Another challenge arises because cells must 
operate autonomously when they are isolated and 
cannot rely on the frequency and voltage signals from 
the larger grid.  
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To overcome these difficulties, a multi-timescale 
stability analysis is used. We illustrate the idea using 
the following multi-timescale control architecture: 
• On a slow timescale (e.g., every 5–15 minutes), 

optimal droop coefficients are computed by a 
central entity in the cell (using, e.g., the 
methodology of [20]). 

• On a faster timescale (e.g., every second or tens of 
seconds), optimal power set points are computed 
using the methods discussed in Section 2. 

• On a fast timescale (e.g., every 50–100 msec), the 
power set points of the controllable assets in the 
cell are adjusted using the proportional droop 
controller. 

• In real time, the inverters track the given power set 
point as closely as possible, and they ensure phase 
and voltage synchronization in case of islanded 
operation. 

 
The idea is that the stability of the system needs to 

be ensured by design. To this end, the following 
considerations need to be made: 

 
(i) The computation of the optimal droop coefficients 
on the slow timescale must ensure stability of the 
resulting dynamic system on the fast timescale. 
Because the time step of the fast-timescale operation is 
more than 20 milliseconds, a quasi-static 
approximation can be used—in between the set point 
update, it is assumed that the system is in its steady 
state and phasor-based power-flow analysis is 
applicable. This yields a discrete-time dynamic system 
that can be analyzed using, e.g., standard bounded-
input/bounded-state notions [20].  
 
(ii) To design and analyze real-time controllers, a 
continuous-time methodology can be used to ensure 
the stability and synchronization of the cell. The 
current state of the art provides several alternatives in 
this context, such as [21], [22], and [23]. The control 
framework in [23] is a promising approach to enable 
low-inertia AEGs to operate in a plug-and-play mode 
while stabilizing cells around set points produced by 
the real-time optimization algorithms described in 
Section 2. 
 

Note that these timescales are typically analyzed 
separately in the literature. This results in suboptimal 
strategies that do not use the interrelationships between 
the timescales; hence, a new multi-timescale control 
framework is needed to design optimal and stable 
controllers for cellular energy grids. 

 
 
 

4. Big Data Analytics for Energy Systems 
 

Increasing amounts of heterogeneous sensor data 
and information are becoming available in energy grids 
from sources such as smart meters, distributed 
generation, and smart home energy management 
systems. Being able to collect, curate, and create 
actionable information with these data will be critical 
to creating AEGs. AEGs will need to be able to digest 
data, evaluate data, and make decisions faster than in 
real time in both centralized and distributed settings.  

The big data analytics that are needed for the 
envisioned AEG involve three critical steps: i) spatial 
and temporal characterizing; ii) state estimation and 
forecasting; iii) autonomous decision-making.  

Effectively characterizing the system operation 
status in both the spatial and temporal domains using 
big data analytics [26] is the critical first step toward 
knowledge discovery. Big data analytics in this sense 
includes advanced concepts such as artificial 
intelligence and machine learning techniques to help 
understand the data and make critical decisions in real 
time. Although the high-volume and high-velocity 
nature of big data means that many dimensions of 
information can be extracted, it also brings challenge to 
processing these data because of possible overfitting. 
Therefore, in the spatial domain, clustering the system 
and using optimal sensor selection is critical. The 
ultimate goal of is to be able to fully observe the 
system under any conditions using interrelated 
information to enhance the accuracy and speed of 
knowledge discovery.  

It is understandable that in a networked energy 
system, there are close correlations among cells. Only 
a limited number of sensors within each tightly 
correlated cell are needed to fully monitor the entire 
cell. As an example, secondary voltage control (SVC) 
[27] is one way to group such information in each cell. 
If a power system is represented by a linearized model 
of the power flow equations, the voltage coupling of 
the two buses can be used to define the relative electric 
distance between any two buses. If the reactive power 
variance at two buses causes coupled voltage variance 
at those buses, the relative electric distance given this 
definition is small. Therefore, the buses that have small 
relative electric distances can be clustered in one SVC 
cell using a method such as the κ-means clustering 
algorithm. Within each SVC cell, the minimum 
number of sensors can be determined for full 
observability in state estimation and forecasting. Figure 
4 shows an example of SVC clustering and optimal 
sensor selection. The IEEE 39-bus system is clustered 
into 7 areas (divided by blue lines), and each area has a 
limited numbers of sensors (red dots) to ensure full 
observability.  
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In the temporal domain, although many variables 
can be useful to extract the features of any given 
system, the time-frequency information is most critical 
for many energy system applications. Methods such as 
matching pursuit decomposition (MPD) [28] are very 
effective for signal time-frequency analysis. 
Implemented with the Gaussian atom dictionary [29], it 
can be used to characterize big data represented by the 
amplitude, time shift, frequency shift, and variance of 
Gaussian atoms. The basic premises of using MPD for 
big data analytics in energy systems are as follows: 

 
(i) Any signal can be represented using decomposition 
with finite iterations and a limited residual.  
 
(ii) The group of parameters that are identified by 
MPD for any signal can be used for correlation 
analysis and can therefore overcome data overfitting. 

 

 
Figure 4. Secondary voltage control clustering and 
optimal sensor selection using IEEE 39-bus system 

 
Being able to estimate and forecast the system’s true 

states under different aspects of grid operation 
(including steady states, dynamic and transient 
conditions) in an online setting (real time) are also 
essential elements toward automatic decision-making. 

To handle nonlinear model analysis, a variety of 
machine learning-based approaches are used to analyze 
and forecast system information (e.g., electrical price, 
load, voltage deviation, congestion). When forecasting 
a relatively small number of signals, standard statistical 
methods and human-driven variable selection are 
sufficient for many applications (for example, 
relatively simple forecasting models can predict 
upcoming electrical demand at the level of an entire 
region); however, if a large amount of data from 
heterogeneous sources is considered, then even 
determining the proper correlations and features to use 
becomes a challenging problem. Also, the scalability 
and adoptability of a single location’s forecast can 
achieve good results in certain scenarios or a certain 

time period, but it is not conveniently applied or 
generalized to other scenarios or different time periods. 
Therefore, new techniques in machine learning—
including deep neural networks, multikernel learning, 
Monte Carlo tree searches, dimensionality 
reduction/data reconstruction, matrix completion, and 
reinforcement learning—are needed to help estimate 
and forecast system variables that can decide true 
operation states.   

Innovations in probabilistic decision networks and 
conditional data analytic structures for energy grids are 
the keys to enabling autonomous decision-making.  
Relevant machine learning and signal processing 
problems for AEGs should be implemented by using 
distributed algorithms. Similar to Section 2, once the 
problem is modeled via a well-defined optimization 
problem, primal-dual-gradient-type methods can be 
used to design distributed and online algorithms to 
track optimal solution trajectories of inferential 
problems and machine learning problems.  
 
5. Complex Systems Theory and Modeling  
 

Energy systems include all energy domains 
(electricity, fuels, thermal) as well as other domains 
(communications, water, transportation) that influence 
how energy is generated, distributed, converted, and 
used. The connections among these domains create 
interdependencies that challenge overall system design, 
planning, control, and optimization. Historically, little 
attention has been paid to the overlap among these 
areas, but AEGs will need to be able to account for 
these interdependencies because of the increasing 
impacts that each energy and infrastructure domain has 
on another. Similarly, most energy system modeling 
methods are not conducted on a full time spectrum, 
wherein changes in transient and dynamic behavior 
influence steady-state performance. New techniques 
are needed to address the uncertain and stochastic 
nature of variable resources and consumer choices 
across the full time spectrum of operation, from 
milliseconds to years. 

To accurately model the interactions among such 
disparate energy systems, new modeling approaches 
are needed that move beyond the single modeling 
formalism techniques that are most prevalent when 
representing single energy domains. Multi-paradigm 
modeling allows for a domain-independent framework 
that aids in more accurate multisystem representations 
through multiple formalisms, multiple levels of 
abstraction, and meta-modeling [24].  

The choice of formalism is an important issue in 
modeling and simulation. Often a certain formalism is 
used for a particular problem because it seems the most 
natural or because of historical precedence. For 
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example, in power systems the unit commitment and 
economic dispatch problem is naturally solved through 
mathematical programming (optimization) techniques; 
however, mathematical programming would not be a 
natural fit to solve the dynamic flow of natural gas 
through a pipeline because this involves solving the 
partial differential equations of the Navier-Stokes 
equations. Thus, if the goal is to model the interactions 
between these two systems, a multi-formalism 
approach that allows each subsystem to be represented 
in its most natural form is needed. 

Using multiple levels of abstraction is another 
important concept in modeling and simulating complex 
systems. This is often performed without prior 
planning because of data or computational time 
limitations. For example, a power system planning 
generation expansion model would not include details 
of the electromagnetic transients in a generator because 
(among other reasons) simulating these subsecond 
phenomena make the simulation of the yearly or 
decadal time steps of the generation planning decisions 
computationally infeasible. Therefore, these processes 
are currently modeled separately. However, there are 
times, such as planning for contingency events, when 
considering both of these aspects in an integrated 
fashion would lead to more optimal decisions or a 
better understanding of the trade-offs involved in 
system design and operation.  

Therefore, to answer some of the more complex 
questions about how AEGs would be designed and 
operated requires the ability to model different levels 
of abstraction in the same model. Often, this is to be 
able to answer different questions about the same 
system under varying scenarios, and thus dynamically 
changing the level of model abstraction is a significant 
modeling capability. Figure 5 provides an example of 
how multi-timescale models of the electricity system 
could be linked together to make the computation 
tractable. 

 

 
 

Figure 5. Diagram of how multiple models would 
interact at different timescales and fidelities 
 

The concept of meta-modeling [32] is very useful for 
integrating the different levels of model abstraction and 

modeling formalisms together when considering 
complex multi-energy systems. Meta-modeling is the 
process of defining the rules and constructs necessary 
for creating models. This allows for creating tools that 
can automatically convert models from one formalism 
to another or automatically create a model at another 
level of abstraction. This allows using the same basic 
simulation data at various levels of aggregation and in 
multiple simulation formalisms, depending on the 
current required level of modeling fidelity and the 
questions under study. Meta-modeling is critical for 
integrating the different types of models that are 
necessary to simulate AEGs. The design and operation 
of AEGs will require further advancements in 
modeling complex systems because the systems are too 
large, complex, and costly to create physical 
representations. Because much of the design will occur 
through computational simulations, further 
advancements in modeling and simulating these 
systems will be necessary to ensure that they are safe, 
economically efficient, reliable, and robust.  

When considering coupled energy infrastructures, 
the coupling factors among energy carriers are 
oftentimes assumed constant. This is the case for the 
fuel-to-power and fuel-to-heat conversion efficiencies 
for combined-heat-and-power units, for example. 
However, a number of coupling factors are, in fact, 
nonlinear: examples include the efficiency and power 
consumed by a variable-speed water pump, which are 
nonlinear functions of the pump frequency. Further, the 
operational region of some type of cogeneration units 
or absorption and compression chillers might be 
nonconvex. Multisystem modeling might introduce 
sources of nonconvexity via bilinear or trilinear terms 
appearing in equality constraints, which might render 
the optimization tasks outlined in Section 2 hard to 
solve. It is thus apparent that trade-offs between the 
complexity of the modeling approach and achieving 
flexibility must be taken into account in the system 
design and operational processes.  
 
6. Integration to Solve the Challenges of 
AEGs  
 

To develop AEGs that are scalable, reconfigurable, 
and self-organizing, four research areas (Figure 6) have 
been discussed that, when properly integrated, will 
play a key role in how future energy systems operate. 
AEGs rely on scalable, self-configuring cellular 
building blocks that ensure that each “cell” can self-
optimize when isolated from a larger grid as well as 
partake in the optimal operation of a larger grid when 
interconnected.  
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A fundamental underpinning of this system is the 
ability to accurately model the cellular building blocks 
and their interactions with the rest of the systems so 
that control, optimization, and forecasting methods 
might be applied in operation. Complex system theory 
therefore serves as a means for modeling and 
simulating the different energy domains and their 
interactions. These models can then be used for real-
time optimization and control of the systems and 
subsystems, using information gained from big data 
analytics to provide forecasts that serve as parameters 
in the control and optimization algorithms as well the 
algorithmic computational awareness to apply regime-
switching approaches.  

 
 

 
 

Figure 6. Integration of four technical areas needed 
to solve the challenges of AEGs 

 
 

 In addition to these four areas of basic research, 
other important aspects will need further refinement to 
achieve the full vision of AEGs. New smart grid 
devices such as the power electronic interfaces of DER 
inverters will need some embedded autonomous 
functionality to ensure rapid response to grid anomalies 
without communications. This would ensure that the 
devices can respond to voltage and frequency 
fluctuations quickly enough to damp grid disturbances. 
To ensure that all these smart devices work together in 
a reliable and resilient fashion, interoperability and 
cybersecurity must be embedded into the devices and 
used across the power system. Finally, because the 
power system operates using both reliability and 
economics as mechanisms to ensure stable supply of 
power at equitable costs, the ownership of devices used 
in future grid operations and how compensation will 
flow to devices that provide a range of grid services 
will need to be further defined. Addressing all of these 
concerns will be a multiyear effort, but it could provide 
a power system that will operate in an autonomous 
fashion that can self-optimize for both reliability and 

economics while improving resilience, security, and 
the ability to integrate energy in all forms. 
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