
 XLab: Early Indications & Warning from Open Source Data with

Application to Biological Threat

Olga Simek, Curtis Davis, Andrew Heier, Sanjeev Mohindra, Kyle O’Brien, John Passarelli, Frederick Waugh

MIT Lincoln Laboratory, Lexington, MA

{osimek, cdavis, andrew.heier, smohindra, kyle.obrien, john.passarelli, fwaugh}@ll.mit.edu

Abstract

XLab is an early warning system that addresses a

broad range of national security threats using a

flexible, rapidly reconfigurable architecture. XLab

enables intelligence analysts to visualize, explore,

and query a knowledge base constructed from

multiple data sources, guided by subject matter

expertise codified in threat model graphs.

This paper describes a novel system prototype

that addresses threats arising from biological

weapons of mass destruction. The prototype applies

knowledge extraction analytics—including link

estimation, entity disambiguation, and event

detection—to build a knowledge base of 40 million

entities and 140 million relationships from open

sources.

Exact and inexact subgraph matching analytics

enable analysts to search the knowledge base for

instances of modeled threats. The paper introduces

new methods for inexact matching that accommodate

threat models with temporal and geospatial patterns.

System performance is demonstrated using several

simplified threat models and an embedded scenario.

1. Introduction
*

As a result of diverse trends in globalization,

communications, and advanced technology diffusion,

many nations today face a variety of security

challenges from peer nations, rogue or failed states,

and criminal and terrorist organizations. Many of

these same trends have also vastly increased the

*
This material is based upon work supported by the Office of the

Secretary of Defense under Air Force Contract No. FA8721-05-C-

0002 and/or FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the Office of the Secretary of Defense.

volume of heterogeneous data that intelligence

analysts must search to detect these threats. The

volume of open source data in particular is expected

to continue to grow exponentially, with estimates that

the digital universe will grow by a factor of 10—from

4.4 trillion gigabytes to 44 trillion gigabytes—

between 2013 and 2020 [1]. The broad range of

possible threats, combined with the vast quantities of

data that must be searched to detect them, present

intelligence analysts with significant challenges.

XLab is a prototype software system that

addresses these challenges by providing analysts with

advanced analytics for extracting early warning

signals from large volumes of heterogeneous data,

built on a flexible, rapidly reconfigurable

architecture. The goal of XLab is to provide analysts

with the ability to visualize, explore, and query a

knowledge base constructed from multiple data

sources and expressed as a graph.

A key component of XLab is the ability to search

this graph for instances of threat models, small

graphs that describe anticipated threatening activity.

This activity is often of interest not because of the

characteristics of a single actor or event, but because

of relationships or activity patterns among a group of

actors and events. If these relationships are also

expressed as graphs, then searching the knowledge

base for threatening activity becomes a graph

matching problem. One approach is to apply

subgraph isomorphism algorithms to search the

knowledge base for data that matches the threat

models exactly. However, being able to find inexact

matches is critical as well, because the knowledge

base may be incomplete due to limited observability

of threatening activity, because threat models may be

incomplete due to limited analyst knowledge of threat

operations, and because it enables discovery of novel

threats analysts may not have even considered [2].

An initial XLab system prototype has been

constructed that addresses threats associated with

biological weapons of mass destruction (bio-WMDs).

The prototype uses open sources to build a

knowledge base of 40 million entities and 140

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50005
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 944

million relationships that can be visualized and

queried using open source tools. Knowledge

extraction analytics implemented in the prototype

include entity disambiguation, link estimation, and

event detection. Both exact and inexact subgraph

matching have been implemented for detecting threat

model instances in the knowledge base. For inexact

matching, a state-of-the-art algorithm was extended

to ensure timely response and to accommodate threat

models with temporal and geospatial patterns. The

system prototype performance is demonstrated using

several simplified threat models and an embedded

scenario.

The paper is organized as follows: Section 2

discusses related work; Section 3 describes

knowledge base construction; threat models are

explained in Section 4; Sections 5 and 6 deal with

exact and inexact matching, respectively; Section 7

reports on system-testing efforts; Section 8

concludes.

2. Related work

The rapidly growing amount of information

available on the internet and in other digital

repositories poses a serious challenge for intelligence

analysts. Many questions that analysts face can be

naturally formulated as graph problems [3], yet many

challenges remain, ranging from graph construction,

where relevant data needs to be targeted and

relationships of interest inferred, to efficient ontology

and threat model generation, to effective search of the

knowledge graph for information of interest. In

addition, these capabilities need to be implemented

on a flexible architecture that can adapt to rapidly

evolving threats.

A number of authors focus on detection of

biological WMD attacks that have already occurred.

For example, Paul et al. use hospital data to discover

anthrax attacks [4], focusing on detection of

spreading symptoms after the attack. They use an

inexact graph matching algorithm, Truncated Search

Tree (TruST) [5], to search a knowledge base for

instances of a template describing anthrax inhalation

symptoms. To enable TruST to scale to large data

sets, various problem-specific heuristics are

employed. Hu et al. create an agent-based model of a

bioterrorist attack on connected cities [6] that aims to

detect a bioterrorism attack before a sizeable

proportion of the population is infected.

A related and challenging area is risk

assessment, which typically relies on probability

estimates provided by subject matter experts (SMEs).

Steinberg [7] provides a general Bayesian framework

and discusses in detail a threat model paradigm that

takes into consideration the means, motive, and

opportunity of threat actors. XLab threat models,

discussed in Section 4, make extensive use of this

paradigm. Koblentz [8] discusses biases inherent to

risk estimation of chemical, biological, radiological

or nuclear (CBRN) weapons use.

A number of authors address the graph

isomorphism problem; for example, Carletti et al. [9]

focus on large, dense graphs, while Babai [10] shows

that graph isomorphism problem can be solved in

quasi-polynomial time. By contrast, inexact graph

matching is a much newer research area and the

approaches can be basically broken down into two

categories: index-based and index-free. NeMa [11] is

an index-based algorithm that indexes the

neighborhood of every node and uses an iterative

inference algorithm similar to loopy belief

propagation. Index-based algorithms tend to not scale

to large data sets because of the enormous amount of

storage space required for the index.

For our work we have selected an algorithm by

Tong et al. [12] and its extension to highly attributed

graphs [13] (the authors have also recently modified

their approach to address iterative subgraph matching

as query graph gets refined [14]). Tong’s index-free

algorithm allows for only the essential entities in the

threat model—the ones that are required to match—

to be specified. Nodes are inserted as needed for best-

effort matches. This approach is attractive because, in

contrast to indexed approaches, its run time scales

linearly with graph size (i.e., number of nodes and

edges). As described in Section 6, we extended the

approach to incorporate both temporal and geospatial

properties of threat models.

3. Knowledge base construction

Knowledge base construction is the process of

data acquisition, information extraction, and

persistence that results in a database of structured

information. For XLab, the knowledge base provides

the inputs to subsequent analysis such as threat

detection and decision support aids. This section

describes the knowledge base construction process.

In the data acquisition phase, we gather

information from a variety of open sources whose

subject matter is relevant to the bio-WMD threat

model. Three data sources were chosen: an academic

article database that provides information about

individuals with bio-WMD technical expertise; an

online social media platform that contributes

evidence of terror group intent, recruiting, and attack

planning and execution; and a commercial open-

source service that provides a wide variety of

documents—as well as entities, relationships, and

Page 945

events extracted from them—that can be mapped to

many elements of the threat model.

As part of the data acquisition phase, filters are

applied to ensure that data inserted into the

knowledge base is relevant to the threat model while

minimizing irrelevant information that can increase

false alarms, hinder the discovery process, and lead

to unmanageable knowledge base growth. These

filters include lists of pathogens, technologies,

equipment, facilities, individuals, and social media

accounts known to be associated with either terror

groups or bio-WMD development. For example, the

Australia Group Control List of Dual-use Biological

Equipment provides a list of specialized technical

equipment; academic articles and textbooks [15]

provide lists of government and commercial facilities

associated with dual-use biotechnologies; and several

websites provide lists of online accounts affiliated

with terror groups.

Figure 1. XLab Objective System Architecture

In the knowledge extraction phase, references to

entities of interest—such as people, organizations,

pathogens, locations, facilities, and social media

accounts—are detected in the data and inserted into

the knowledge base. A variety of extraction methods

are used depending on the degree of available

structure in the underlying data.

For structured datasets we derive high-

confidence, exact graph representations. For

example, formatted records in the academic article

database can be directly parsed to yield authors,

documents, and associated author/document

relationships. For unstructured data sources, we use a

variety of statistically trained named entity

recognition (NER) models—such as the Stanford

Named Entity Recognizer [16] and the MIT

Information Extraction (MITIE) library [17] —

which detect and label entities in text. Confidence

scores produced by these methods are stored along

with data object metadata to enable computation of

compounded estimates of fact veracity.

Other forms of knowledge extraction

implemented include entity disambiguation, link

estimation, and event detection. Entity

disambiguation refers to the inference either that a

single text string refers to several different entities or

that different strings refer to the same entity. A

simple token-based string matching approach using a

Jaro-Winkler distance metric [18] was implemented

to resolve entities. Link estimation refers to the

discovery of hidden relationships in the knowledge

base. For the prototype, a simple link estimation

algorithm based on n-gram matching was used to link

real names with online account handles. For both

entity disambiguation and link estimation, more

sophisticated analytics incorporating social, textual,

or spatiotemporal patterns of life and other features

can be implemented to achieve better performance.

Finally, event detection refers to the extraction of

particular types of activities from their textual

description. The prototype leveraged third party

analytics to detect events, for example travel events

of the form “person P traveled to location L” in news

reports, social media posts, and other text documents.

The extracted knowledge is represented as a

multi-directed property graph whose vertices

represent extracted entities and whose edges

represent relationships between entities. A property

graph is a graph in which vertices and edges may

have associated attributes; for example, a vertex

representing a person may have first name, last name,

and date of birth attributes. A multi-directed graph is

a graph in which vertices may be connected by

multiple edges, each of which may have an

associated semantic direction. For instance, if a

Person entity is the author of a Document entity, an

edge of type “Wrote” points from the Person to the

Document. Once the data is processed into this

representation, it becomes possible to perform

powerful queries both for single entities and for

graph template patterns. Such queries are discussed

further in Sections 5 and 6. A key element of the

knowledge extraction process is a schema of entity

and relationship types that enables data to be

logically organized in a database.

In addition to the data described above, the

knowledge base also incorporates data provenance

information, so that derived data products and alerts

have a traceable history to their original records. To

accomplish this, unprocessed data is indexed

separately from subsequent derived data, and each

derived record has a reference to its original record.

This separation also facilitates reprocessing of the

Page 946

original source data as information extraction

algorithms improve.

From a software architecture point of view, we

have incorporated a number of distributed computing

technologies to enable processing and storage of

large volumes of data. Figure 2 depicts the

knowledge base software architecture, showing the

primary elements of data processing and persistence.

The architecture is built on a distributed messaging

bus that accepts parsed raw data and serves as the

interface for subsequent processing such as

information extraction and indexing. The sensing and

knowledge extraction steps described above,

combined with the software architecture, yielded a

prototype knowledge base containing approximately

40 million entities with 140 million relationships

between them.

Figure 2. Graph Construction and Persistence

Architecture

The volume and complexity of this data lead to

visualization, exploration, and query construction and

execution challenges. The XLab objective

architecture of Figure 1 envisions providing

intelligence analysts with tools for visualizing small

regions of the knowledge base; navigating easily

between regions; adding, deleting, and correcting

information; constructing graph-based queries using

an intuitive interface; and automatically generating

prioritized lists of knowledge base entities or

subgraphs that correlate with threat models. For the

prototype, visualization was implemented using the

open-source Gephi graph visualization tool [19],

while simple query capability was achieved using

ElasticSearch [20], an open-source data indexing and

search tool. The next section describes how threat

models are designed to enable advanced knowledge

discovery and threat detection.

4. Threat models

Threat models encode the knowledge of a subject

matter expert (SME) about a particular threat into a

model that can be used to search the knowledge base.

For the XLab bio-WMD prototype, SME threat

understanding is conceptualized as a network of

activity between individuals, groups, locations, and

critical equipment or resources. This network is

encoded as a graph that may incorporate any entity or

link type defined in the knowledge base schema.

Additionally, temporal and spatial constraints can be

imposed across a series of entities or links to capture

a sequence of related activities. Such constraints are

particularly useful to reduce the number of search

results for threat models with commonly occurring

entities.

When constructing a threat model, SMEs can

elect to model either a small element of a threat or

their full threat understanding based on the

means/motive/opportunity paradigm [7].

Figure 3. Bio-WMD Threat Model

Figure 3 depicts an example of a full threat

model for the bio-WMD threat. In this model, a

technical expert with relevant knowledge and access

to a biotechnology facility (means layer) is recruited

and financed by a terror group (motive layer).

Together the expert and group plan an attack, develop

a bio-WMD, travel to an attack site, and deploy the

weapon (opportunity layer). Once a threat model is

constructed, it can be used to search the knowledge

base for matches that may indicate real-world

threatening activity. Techniques for conducting such

searches are described in the next two sections.

5. Exact graph matching

Once a knowledge base and threat model have

been constructed, tools are needed for finding

matches to the threat model and supporting ad hoc

exploratory queries. Matches to a particular threat

Page 947

model are considered a form of the subgraph

isomorphism problem [21], which is the task of

finding a subgraph H of the data graph G that is

isomorphic to the threat model graph or “query

graph” Q. Isomorphism between graphs H and Q

means that there is a one-to-one mapping or bijection

between the two vertex sets 𝑓: 𝑉(𝐻) → 𝑉(𝑄) and that

any two vertices (𝑢, 𝑣) in H are adjacent if and only

if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in Q. Isomorphism

preserves structure. Also, H is a subgraph of G if the

vertices and edges in H form a subset of the vertices

and edges in G. Exact graph matching implies strict

subgraph structure and attribute matches, as opposed

to inexact graph matching, for which small deviations

from the query structure and attributes are allowed.

Section 6 is devoted to inexact graph matching.

The advantage of constructing a graph of

interrelated records is that it supports more complex

queries than a traditional search engine that finds

keyword matches to single records stored in isolation.

For example, suppose an analyst is interested in using

academic citation data to uncover collaborations or

expertise transfer between laboratories. With

traditional search engines, the process would be

laborious and many searches would be required. On

the other hand, when this information is encoded as a

graph of Author, Facility, and Article nodes as shown

in Figure 4, the desired relationships are also encoded

implicitly, and the same query is represented simply

as a small graph of relationships among the entities in

question, shown in Figure 5. Searching the

knowledge base for isomorphic matches to this graph

enables the analyst to find results quickly and

automatically, as shown in the example of Figure 6.

In addition to finding the pattern of interest, the

analyst can also easily access rich contextual

information, such as the co-authors that are related to

the author in question.

Isomorphic graph matching is implemented in

the XLab system using iterative graph traversals

guided by a backtracking algorithm on a search tree.

For a given threat model, an analyst inputs the graph

as a set of directed vertex-edge-vertex triples with

constraints on the vertex and edge properties. The

algorithm starts by iterating over each triple and

querying the database for entities matching the set of

properties specified for the first vertex. These results

become candidates for graph matches. Then the

algorithm iterates over each candidate and traverses

over the edges, filtering edges that do not meet edge

property constraints, and gathers the terminal node

for the triple. Each result node becomes another

candidate for a complete match in a tree-like

structure. The algorithm exhaustively iterates over

every candidate and returns complete matches if

found, or until all candidates have been searched.

We chose to persist our graph in Elasticsearch, a

NoSQL document-oriented distributed database. Both

graph vertices and edges are treated as atomic records

in the database, where structure is encoded by storing

vertex IDs in each edge record. Thus, to traverse the

graph, a series of joins must be done to match

vertices to their associated edges and then to their

terminal vertices. This storage approach also allows

us to perform powerful single-record queries with

support for geographic, temporal, keyword, and field

matching queries.

Figure 4. Relationships Extracted from Academic

Article Data

Figure 5. Example Academic Article Query

To scale the graph matching capability, the

system incorporates Apache Spark, an in-memory

cluster computing framework. Spark integrates with

Elasticsearch through Hadoop, which allows fast

ingest, and GraphFrames allows parallelized graph

search through an intuitive graph pattern language

[22]. Without optimization, a full-graph query

consisting of two nodes (one of type Person and the

other of type Organization) and an edge connecting

them takes about 5 minutes to complete on an 8-core

machine with 12 GB of memory.

Page 948

Figure 6. Exact Matching Result for Example Query

Figure 8 shows some performance metrics for

various resource configurations. These results were

computed on a graph of 40 million nodes and 140

million edges.

Figure 7. Large-Scale Graph Analytics

In order to compare our computing framework to

existing graph databases, we ran graph matching tests

between GraphFrames and Titan, the graph database

management system with Apache Cassandra as the

storage backend. We persisted a smaller graph

dataset of 11.8k nodes and 13.8k edges in both

systems and ran the same query consisting of a

moderately complex graph of 4 nodes and 4 edges.

Query performance was comparable: GraphFrames

averaged about 17.2 seconds while Titan averaged

about 16.1 seconds. In addition to search, retrieval,

and basic statistics offered by graph databases such

as Titan, our computing framework allows us to

easily build advanced analytics and algorithms.

Figure 7 shows an example of such processing in

which the full data graph has been marginalized into

a graph of coauthors, labeled using a community

detection algorithm, then filtered to uncover clusters

of highly-collaborative researchers. All of these

operations are possible as distributed computations in

Spark.

Figure 8. Exact Graph Matching Run Times

6. Inexact graph matching

When threat models are only partially

understood, or when discovery of novel threat

configurations is of interest, inexact graph matching

algorithms can be applied to calculate results of

interest. For inexact matching, we adopted the

structure of Tong’s algorithm [12] and its extension

to highly attributed graphs [13], and implemented

novel approaches to improve run time and to enable

expanded threat model queries to include temporal

and spatial relationships.

Figure 9. Run times for query graphs of varying

sizes

The algorithm returns exact or best-effort

subgraphs. The number of graphs returned is

specified by the user. Prior to searching the graph, the

algorithm calculates random walks with restart values

to rank nodes based on their proximity to other

nodes. Using these rankings and the given query

attributes, a desirable (usually central and well-

connected) seed node is selected. Neighbor nodes are

Page 949

similarly selected by finding the nearest highly

ranked node that matches another attribute of the

query graph. After selecting a neighboring node, a

path is found to connect these nearby neighbors to

seed nodes. This is done for all nodes in the query

graph and results in a best effort sub-graph. The

algorithm run time scales linearly with the size of the

query graph since each node in the query graph,

except for the initial node picked by the algorithm, is

processed sequentially using exactly the same steps

each time. Figure 9 shows run times for increasing

sizes of query graphs and increasing number of

iterations for random walk with restart calculations

(see [12] and [13] for details). Tong et al. have

demonstrated empirically that the run time scales

with the number of nodes and the number of edges in

the data graph as well. They have shown this on a

wide variety of graph sizes (see [13] for details).

Simple model in Figure 10 seeks to uncover

individuals currently working in a specific U.S.

geographic area who have previously been employed

by a non-U.S. biotechnology company.

Figure 10. Threat Model

Figure 11. Inexact Graph Matching Result

The knowledge graph contains no exact matches

for this threat model but does contain matches that

are semantically identical, one of which is shown in

Figure 11. The algorithm correctly discovers all 9 of

these matches in the full knowledge graph. Recall in

this instance is 1 but it should be noted that recall

varies widely depending on size and structure of both

the query graph and the data graph, and more

investigation is needed here. It should also be noted

that the goal of the algorithm is to present to the

analyst reasonable matches of interest and that the

algorithm can easily be combined with SQL-based

methods for exact match discovery.

Inexact graph matching is also useful when an

analyst knows certain connections and nodes of

interest but does not have a full understanding of the

various possible connections. For example, the threat

model in Figure 12 describes a scientist who has

published on pathogen research and who has also

communicated online with an individual who is

associated with an event of interest. A similar threat

model is discussed further in Section 7.

Figure 12. Threat Model

Figure 13. Inexact Graph Matching Results

Figure 13 shows some of the matches returned

for the query of Figure 12. The node colors represent

entity types. To evaluate how closely the resulting

matches correspond to the query graph, we have

created a goodness score G, defined as

𝐺 =
−2𝑢 − 𝑒 + 3𝑐 + 𝑚

3𝑡 + 𝑞
 (1)

where

𝑢 = number of unconnected nodes in result graph

𝑒 = number of extra nodes in result graph not in query

graph

𝑐 = number of edges in result graph that connect two

matching vertices

𝑚 = number of nodes in result graph matching nodes in

query graph

Page 950

𝑡 = number of edges in query graph

𝑞 = number of nodes in query graph

 A result graph that perfectly matches a query graph
receives a score of 1. Figure 14 demonstrates
calculation of G.

Figure 14. Sample Query (top) and Calculation of

Goodness Score G (bottom)

6.1. Geospatial and temporal filters

In practice, geospatial and temporal constraints

are key elements of many threat models. For

instance, a threat model may contain events 𝐸1 and

𝐸2 such that 𝐸1 always occurs before 𝐸2. The

knowledge graph, however, as represented for the

inexact matching algorithm execution, does not

facilitate searches incorporating such constraints. The

storage format consists of two sparse matrices, node-

to-node matrix N and node-to-attribute matrix A:

𝑁 = [𝑛𝑖 , 𝑛𝑗] 𝑖, 𝑗 = (1, … , 𝑛) (2)

𝐴 = [𝑛𝑖 , 𝑎𝑗] 𝑖 = (1, … , 𝑛); 𝑗 = (1, … , 𝑎)

 (3)

where 𝑛 is the number of nodes and 𝑎 is the number of
the attribute values. As constructed, N and A do not
account for the spectrum of comparisons intrinsic to
location and time. To address this deficiency, we
developed two approaches, the extra nodes approach
and the best rank neighbor approach.

6.1.1 Extra nodes approach. During preprocessing

stage, this approach inserts an extra node between all

pairs of nodes with the two attributes being

compared. Figure 15 displays an example of this

process for a temporal constraint. As shown in the

figure, to compare the time of an employment event

to the time a person is traveling, a node is inserted

between all nodes of type “Employment event” and

of type “Person Travel.” The attributes of these

additional nodes contain the difference in time or

difference in longitude and latitude.

Figure 15. Query Graph (top) Augmented to Include

Temporal Constraint (bottom)

The advantage of this approach is that the

comparisons are embedded in the structure of the

graph, so that the algorithm can continue to be used

in the same way as before. The drawback is an

increase in algorithm run time, arising both from the

preprocessing required to augment the matrices N and

A and from the added time needed to search the

larger augmented matrices.

6.1.2 Best rank neighbor approach. This approach

takes advantage of the algorithm’s selection of high-

rank neighboring nodes to select the highest rank

neighboring node that also matches the given

temporal or geospatial requirements. For the query

depicted in Figure 16, once a specific employment

event is selected, the algorithm iterates through rank-

sorted neighbor nodes and ends the iteration once a

neighbor node is found whose time of travel was

prior to the time of the employment event.

Figure 16. Queries For Run-Time Comparison

Thereby, the algorithm finds the best ranked neighbor

that meets the temporal requirement. This algorithm

is nearly always faster than the extra nodes approach;

the additional time comes only from iterating and

comparing over the given attribute.

 To compare run times for these approaches, we

used a representative subset of the full knowledge

graph. Since both algorithms scale linearly with

graph size (number of nodes and number of edges),

Page 951

the reported run time results can be extrapolated to

estimate run times for the entire graph.

Table 1. Run Time Results for Temporal

Comparisons – Average of 20 Runs

Table 1 shows that, while goodness scores are

similar for both methods for the query depicted in

Figure 16, the average run time for the best rank

neighbor approach was about half that for the extra

node approach.

6.2. Graph subsampling

For some search queries, large regions of the

knowledge graph may yield no matches simply

because the information stored there is not relevant to

the query. Graph subsampling is a technique that can

improve the run time of computationally intensive

graph search algorithms by prohibiting them from

entering such regions.

Figure 17. Query for Subsampling Approach

Table 2. Run Time Results for Graph Subsampling

Graph subsampling was implemented by

restricting the algorithm to regions of the knowledge

graph within n hops of any node that matches a node

attribute or type in the query graph. For example,

using the query in Figure 17 and choosing n = 2 hops

to subsample the full knowledge graph cuts the

number of edges and nodes that must be searched by

factors of 2 and 3, respectively. Run time results for

graph subsampling, averaged over 20 runs, are

summarized in Table 2. Three matches were

requested and three exact matches were found for

both the full and subsampled graphs. The “Start to

Finish Time” column lists time needed for graph

subsampling plus return of three matching results.

Graph subsampling is a preprocessing time cost and

needs to be calculated only initially.

7. Demonstrating the system: embedded

scenario

To demonstrate the capabilities of the system, we

embedded a scenario within the knowledge graph

based on the threat model of Figure 12. The

scientist’s online connection to an individual of

interest involves either communication with or

following an account of a radicalized person. The

event of interest here is a travel event to a virology

conference. We are interested in matches that show

both individuals traveling to the same conference.

Figure 18. Scenario Results

 Table 3. Embedded Scenario Statistics

The exact graph matching results are shown in

Figure 18. Larger clusters (1, 2, 4, and 7) represent

individuals who match one of these four

characteristics, while the smaller clusters (3, 5, and 6)

represent individuals who match two or more

characteristics. Cluster 6 contains individuals of

highest interest because they possess or are linked to

all criteria specified by the threat model.

Table 3 presents embedded scenario statistics,

showing that the system is able to filter the number of

Page 952

individuals of interest from tens of thousands to

three, potentially vastly reducing analyst workloads.

Examples of inexact matches to a similar threat

model are shown in Figure 13 in Section 6. The

analyst’s or subject matter expert’s input would be

needed to determine if those matches are of interest.

8. Conclusions and future work

This paper presents an end-to-end approach for

detecting threats within large volumes of multi-modal

data. A knowledge base, represented as a graph, is

constructed in an automated fashion to include

relevant data from disparate data sources. An

approach for generating threat models that reflect a

SME’s threat understanding is introduced, and

methods for retrieving both exact and inexact

instances of the complex threat model from the

knowledge base are described. We demonstrate

efficient retrieval performance on a graph of 38M

nodes and 140M edges and describe enhancements to

the current state of the art for linearly scaling inexact

subgraph matching that significantly reduce run times

while maintaining high match scores. We also

present new methods for discovering threat models

with spatial and temporal links. Finally we show how

the system can detect embedded threats within a large

knowledge base. While improvements can be made

to every step of the processing chain, particularly

graph construction and graph matching, we believe

the system provides a needed capability with

sufficient speed for providing useful, timely

indications and warning.

[1] IDC. The digital universe of opportunities: rich data and

the increasing value of the internet of things, 2014,

accessed at https://www.emc.com/leadership/digital-

universe/2014iview/index.htm.

[2] G. Gross, R. Nagi, and K. Sambhoos. A fuzzy graph

matching approach in intelligence analysis and

maintenance of continuous situational

awareness. Information Fusion 18, pp. 43-61, 2014.

[3] R. Colbaugh, K. Glass, and J. Gosler. Some intelligence

analysis problems and their graph formulations, J.

Intelligence Community Research and Development, 2010.

[4] J. Paul, K. Sambhoos, and G. Hariharan. Using dynamic

graph matching and gravity models for early detection of

bioterrorist attacks, J. Homeland Security and Emergency

Management 6, 2009.

[5] K. Sambhoos. Graph matching applications in high

level information fusion, Ph. D. thesis, State University of

New York at Buffalo, 2007.

[6] S. Hu, S. Barnes, and B. Golden. Early detection of

bioterrorism: Monitoring disease using an agent-based

model, Simulation Conference (WSC)Winter, 2014.

[7] A. Steinberg. A model for threat assessment, Fusion

Methodologies in Crisis Management, Springer, 2015.

[8] G. Koblentz. Predicting peril or the peril of prediction?

Assessing the risk of CBRN terrorism, Terrorism and

Political Violence 23, pp. 501–520, 2011.

[9] V. Carletti, P. Foggia, A. Sagese, and M. Vento.

Introducing VF3: A New Algorithm for Subgraph

Isomorphism, International Workshop on Graph-Based

Representations in Pattern Recognition, Springer, 2017.

[10] L. Babai. Graph isomorphism in quasipolynomial

time, Proceedings of the 48th Annual ACM SIGACT

Symposium on Theory of Computing, 2016.

[11] A. Khan, Y. Wu, C. Aggarwal, and X. Yan. Nema:

Fast graph search with label similarity, Proc. VLDB

Endowment 6, pp. 181–192, 2013.

[12] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-

Rad. Fast best-effort pattern matching in large attributed

graphs, Proc. International Conference on Knowledge

Discovery and Data Mining, 2007.

[13] R. Pienta, A. Tamersoy, H. Tong and D. Chau.

MAGE: Matching approximate patterns in richly-attributed

graphs, Big Data (Big Data), 2014 IEEE International

Conference on, 2014.

[14] B. Du, N. Cao, S. Zhang and H. Tong. FIRST: Fast

Interactive Attributed Subgraph Matching, Proceedings of

the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2017.

[15] M. Leitenberg and R. Zilinskas. The Soviet Biological

Weapons Program: A History, Harvard University Press,

2012.

[16] Stanford Named Entity Recognizer, https://

nlp.stanford.edu/software/CRF-NER.shtml.

[17] K. Geyer, K. Greenfield, A. Mensch, and O. Simek.

Named entity recognition in 140 characters or less, 6th

Workshop on Making Sense of Microposts, World Wide

Web Conference, pp. 78-79, 2016.

[18] T. Peng, L. Li, and J. Kennedy. A comparison of

techniques for name matching. GSTF Journal on

Computing (JoC) 2.1, 2014.

[19] M. Bastian, S. Heymann, and M. Jacomy, Gephi: an

open source software for exploring and manipulating

networks, International AAAI Conference on Weblogs and

Social Media, 2009.

[20] ElasticSearch, https://www.elastic.co/quide/en/

elasticsearch/reference.

[21] J. Lee and R. Kasperovics. An in-depth comparison of

subgraph isomorphism algorithms in graph databases, Proc.

VLDB Endowment 6, pp. 133-144, 2012.

[22] D. Ankur, A. Jindal, E. Li, R. Xin, J. Gonzalez, and M.

Zaharia. GraphFrames: an integrated API for mixing graph

and relational queries, Proc. Fourth International

Workshop on Graph Data Management Experiences and

Systems, 2016.

Page 953

https://www.emc.com/leadership/digital-universe/2014iview/index.htm
https://www.emc.com/leadership/digital-universe/2014iview/index.htm

