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Abstract 

 

XLab is an early warning system that addresses a 

broad range of national security threats using a 

flexible, rapidly reconfigurable architecture. XLab 

enables intelligence analysts to visualize, explore, 

and query a knowledge base constructed from 

multiple data sources, guided by subject matter 

expertise codified in threat model graphs.  

This paper describes a novel system prototype 

that addresses threats arising from biological 

weapons of mass destruction. The prototype applies 

knowledge extraction analytics—including link 

estimation, entity disambiguation, and event 

detection—to build a knowledge base of 40 million 

entities and 140 million relationships from open 

sources.  

Exact and inexact subgraph matching analytics 

enable analysts to search the knowledge base for 

instances of modeled threats. The paper introduces   

new methods for inexact matching that accommodate 

threat models with temporal and geospatial patterns. 

System performance is demonstrated using several 

simplified threat models and an embedded scenario. 

 

 

 

1. Introduction
*
  

 

As a result of diverse trends in globalization, 

communications, and advanced technology diffusion, 

many nations today face a variety of security 

challenges from peer nations, rogue or failed states, 

and criminal and terrorist organizations. Many of 

these same trends have also vastly increased the 
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volume of heterogeneous data that intelligence 

analysts must search to detect these threats. The 

volume of open source data in particular is expected 

to continue to grow exponentially, with estimates that 

the digital universe will grow by a factor of 10—from 

4.4 trillion gigabytes to 44 trillion gigabytes—

between 2013 and 2020 [1]. The broad range of 

possible threats, combined with the vast quantities of 

data that must be searched to detect them, present 

intelligence analysts with significant challenges.  

XLab is a prototype software system that 

addresses these challenges by providing analysts with 

advanced analytics for extracting early warning 

signals from large volumes of heterogeneous data, 

built on a flexible, rapidly reconfigurable 

architecture. The goal of XLab is to provide analysts 

with the ability to visualize, explore, and query a 

knowledge base constructed from multiple data 

sources and expressed as a graph.   

A key component of XLab is the ability to search 

this graph for instances of threat models, small 

graphs that describe anticipated threatening activity. 

This activity is often of interest not because of the 

characteristics of a single actor or event, but because 

of relationships or activity patterns among a group of 

actors and events. If these relationships are also 

expressed as graphs, then searching the knowledge 

base for threatening activity becomes a graph 

matching problem. One approach is to apply 

subgraph isomorphism algorithms to search the 

knowledge base for data that matches the threat 

models exactly. However, being able to find inexact 

matches is critical as well, because the knowledge 

base may be incomplete due to limited observability 

of threatening activity, because threat models may be 

incomplete due to limited analyst knowledge of threat 

operations, and because it enables discovery of novel 

threats analysts may not have even considered [2]. 

An initial XLab system prototype has been 

constructed that addresses threats associated with 

biological weapons of mass destruction (bio-WMDs). 

The prototype uses open sources to build a 

knowledge base of 40 million entities and 140 
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million relationships that can be visualized and 

queried using open source tools. Knowledge 

extraction analytics implemented in the prototype 

include entity disambiguation, link estimation, and 

event detection. Both exact and inexact subgraph 

matching have been implemented for detecting threat 

model instances in the knowledge base. For inexact 

matching, a state-of-the-art algorithm was extended 

to ensure timely response and to accommodate threat 

models with temporal and geospatial patterns. The 

system prototype performance is demonstrated using 

several simplified threat models and an embedded 

scenario. 

The paper is organized as follows: Section 2 

discusses related work; Section 3 describes 

knowledge base construction; threat models are 

explained in Section 4; Sections 5 and 6 deal with 

exact and inexact matching, respectively; Section 7 

reports on system-testing efforts; Section 8 

concludes. 

 

2. Related work  
 

The rapidly growing amount of information 

available on the internet and in other digital 

repositories poses a serious challenge for intelligence 

analysts. Many questions that analysts face can be 

naturally formulated as graph problems [3], yet many 

challenges remain, ranging from graph construction, 

where relevant data needs to be targeted and 

relationships of interest inferred, to efficient ontology 

and threat model generation, to effective search of the 

knowledge graph for information of interest. In 

addition, these capabilities need to be implemented 

on a flexible architecture that can adapt to rapidly 

evolving threats. 

A number of authors focus on detection of 

biological WMD attacks that have already occurred. 

For example, Paul et al. use hospital data to discover 

anthrax attacks [4], focusing on detection of 

spreading symptoms after the attack. They use an 

inexact graph matching algorithm, Truncated Search 

Tree (TruST) [5], to search a knowledge base for 

instances of a template describing anthrax inhalation 

symptoms. To enable TruST to scale to large data 

sets, various problem-specific heuristics are 

employed. Hu et al. create an agent-based model of a 

bioterrorist attack on connected cities [6] that aims to 

detect a bioterrorism attack before a sizeable 

proportion of the population is infected. 

A related and challenging area is risk 

assessment, which typically relies on probability 

estimates provided by subject matter experts (SMEs). 

Steinberg [7] provides a general Bayesian framework 

and discusses in detail a threat model paradigm that 

takes into consideration the means, motive, and 

opportunity of threat actors. XLab threat models, 

discussed in Section 4, make extensive use of this 

paradigm. Koblentz [8] discusses biases inherent to 

risk estimation of chemical, biological, radiological 

or nuclear (CBRN) weapons use.  

A number of authors address the graph 

isomorphism problem; for example, Carletti et al. [9] 

focus on large, dense graphs, while Babai [10] shows 

that graph isomorphism problem can be solved in 

quasi-polynomial time. By contrast, inexact graph 

matching is a much newer research area and the 

approaches can be basically broken down into two 

categories: index-based and index-free. NeMa [11] is 

an index-based algorithm that indexes the 

neighborhood of every node and uses an iterative 

inference algorithm similar to loopy belief 

propagation. Index-based algorithms tend to not scale 

to large data sets because of the enormous amount of 

storage space required for the index.  

For our work we have selected an algorithm by 

Tong et al. [12] and its extension to highly attributed 

graphs [13] (the authors have also recently modified 

their approach to address iterative subgraph matching 

as query graph gets refined [14]). Tong’s index-free 

algorithm allows for only the essential entities in the 

threat model—the ones that are required to match—

to be specified. Nodes are inserted as needed for best-

effort matches. This approach is attractive because, in 

contrast to indexed approaches, its run time scales 

linearly with graph size (i.e., number of nodes and 

edges). As described in Section 6, we extended the 

approach to incorporate both temporal and geospatial 

properties of threat models. 

 

3. Knowledge base construction 
 

Knowledge base construction is the process of 

data acquisition, information extraction, and 

persistence that results in a database of structured 

information. For XLab, the knowledge base provides 

the inputs to subsequent analysis such as threat 

detection and decision support aids. This section 

describes the knowledge base construction process.  

In the data acquisition phase, we gather 

information from a variety of open sources whose 

subject matter is relevant to the bio-WMD threat 

model. Three data sources were chosen: an academic 

article database that provides information about 

individuals with bio-WMD technical expertise; an 

online social media platform that contributes 

evidence of terror group intent, recruiting, and attack 

planning and execution; and a commercial open-

source service that provides a wide variety of 

documents—as well as entities, relationships, and 
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events extracted from them—that can be mapped to 

many elements of the threat model.  

As part of the data acquisition phase, filters are 

applied to ensure that data inserted into the 

knowledge base is relevant to the threat model while 

minimizing irrelevant information that can increase 

false alarms, hinder the discovery process, and lead 

to unmanageable knowledge base growth. These 

filters include lists of pathogens, technologies, 

equipment, facilities, individuals, and social media 

accounts known to be associated with either terror 

groups or bio-WMD development. For example, the 

Australia Group Control List of Dual-use Biological 

Equipment provides a list of specialized technical 

equipment; academic articles and textbooks [15] 

provide lists of government and commercial facilities 

associated with dual-use biotechnologies; and several 

websites provide lists of online accounts affiliated 

with terror groups. 

 

 
Figure 1. XLab Objective System Architecture 

 

In the knowledge extraction phase, references to 

entities of interest—such as people, organizations, 

pathogens, locations, facilities, and social media 

accounts—are detected in the data and inserted into 

the knowledge base. A variety of extraction methods 

are used depending on the degree of available 

structure in the underlying data.  

For structured datasets we derive high-

confidence, exact graph representations. For 

example, formatted records in the academic article 

database can be directly parsed to yield authors, 

documents, and associated author/document 

relationships. For unstructured data sources, we use a 

variety of statistically trained named entity 

recognition (NER) models—such as the Stanford 

Named Entity Recognizer [16] and the MIT 

Information Extraction (MITIE) library [17] — 

which detect and label entities in text. Confidence 

scores produced by these methods are stored along 

with data object metadata to enable computation of 

compounded estimates of fact veracity. 

Other forms of knowledge extraction 

implemented include entity disambiguation, link 

estimation, and event detection. Entity 

disambiguation refers to the inference either that a 

single text string refers to several different entities or 

that different strings refer to the same entity. A 

simple token-based string matching approach using a 

Jaro-Winkler distance metric [18] was implemented 

to resolve entities. Link estimation refers to the 

discovery of hidden relationships in the knowledge 

base. For the prototype, a simple link estimation 

algorithm based on n-gram matching was used to link 

real names with online account handles. For both 

entity disambiguation and link estimation, more 

sophisticated analytics incorporating social, textual, 

or spatiotemporal patterns of life and other features 

can be implemented to achieve better performance.  

Finally, event detection refers to the extraction of 

particular types of activities from their textual 

description. The prototype leveraged third party 

analytics to detect events, for example travel events 

of the form “person P traveled to location L” in news 

reports, social media posts, and other text documents. 

The extracted knowledge is represented as a 

multi-directed property graph whose vertices 

represent extracted entities and whose edges 

represent relationships between entities. A property 

graph is a graph in which vertices and edges may 

have associated attributes; for example, a vertex 

representing a person may have first name, last name, 

and date of birth attributes. A multi-directed graph is 

a graph in which vertices may be connected by 

multiple edges, each of which may have an 

associated semantic direction. For instance, if a 

Person entity is the author of a Document entity, an 

edge of type “Wrote” points from the Person to the 

Document. Once the data is processed into this 

representation, it becomes possible to perform 

powerful queries both for single entities and for 

graph template patterns. Such queries are discussed 

further in Sections 5 and 6. A key element of the 

knowledge extraction process is a schema of entity 

and relationship types that enables data to be 

logically organized in a database. 

In addition to the data described above, the 

knowledge base also incorporates data provenance 

information, so that derived data products and alerts 

have a traceable history to their original records. To 

accomplish this, unprocessed data is indexed 

separately from subsequent derived data, and each 

derived record has a reference to its original record. 

This separation also facilitates reprocessing of the 
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original source data as information extraction 

algorithms improve.  

From a software architecture point of view, we 

have incorporated a number of distributed computing 

technologies to enable processing and storage of 

large volumes of data. Figure 2 depicts the 

knowledge base software architecture, showing the 

primary elements of data processing and persistence. 

The architecture is built on a distributed messaging 

bus that accepts parsed raw data and serves as the 

interface for subsequent processing such as 

information extraction and indexing. The sensing and 

knowledge extraction steps described above, 

combined with the software architecture, yielded a 

prototype knowledge base containing approximately 

40 million entities with 140 million relationships 

between them.  

 

 
Figure 2. Graph Construction and Persistence 

Architecture 

 

The volume and complexity of this data lead to 

visualization, exploration, and query construction and 

execution challenges. The XLab objective 

architecture of Figure 1 envisions providing 

intelligence analysts with tools for visualizing small 

regions of the knowledge base; navigating easily 

between regions; adding, deleting, and correcting 

information; constructing graph-based queries using 

an intuitive interface; and automatically generating 

prioritized lists of knowledge base entities or 

subgraphs that correlate with threat models. For the 

prototype, visualization was implemented using the 

open-source Gephi graph visualization tool [19], 

while simple query capability was achieved using 

ElasticSearch [20], an open-source data indexing and 

search tool. The next section describes how threat 

models are designed to enable advanced knowledge 

discovery and threat detection.  

 

4. Threat models 

Threat models encode the knowledge of a subject 

matter expert (SME) about a particular threat into a 

model that can be used to search the knowledge base. 

For the XLab bio-WMD prototype, SME threat 

understanding is conceptualized as a network of 

activity between individuals, groups, locations, and 

critical equipment or resources. This network is 

encoded as a graph that may incorporate any entity or 

link type defined in the knowledge base schema. 

Additionally, temporal and spatial constraints can be 

imposed across a series of entities or links to capture 

a sequence of related activities. Such constraints are 

particularly useful to reduce the number of search 

results for threat models with commonly occurring 

entities.  

When constructing a threat model, SMEs can 

elect to model either a small element of a threat or 

their full threat understanding based on the 

means/motive/opportunity paradigm [7]. 

 

Figure 3. Bio-WMD Threat Model 

Figure 3 depicts an example of a full threat 

model for the bio-WMD threat. In this model, a 

technical expert with relevant knowledge and access 

to a biotechnology facility (means layer) is recruited 

and financed by a terror group (motive layer). 

Together the expert and group plan an attack, develop 

a bio-WMD, travel to an attack site, and deploy the 

weapon (opportunity layer). Once a threat model is 

constructed, it can be used to search the knowledge 

base for matches that may indicate real-world 

threatening activity.  Techniques for conducting such 

searches are described in the next two sections. 

 

5. Exact graph matching 

 

Once a knowledge base and threat model have 

been constructed, tools are needed for finding 

matches to the threat model and supporting ad hoc 

exploratory queries. Matches to a particular threat 

Page 947



model are considered a form of the subgraph 

isomorphism problem [21], which is the task of 

finding a subgraph H of the data graph G that is 

isomorphic to the threat model graph or “query 

graph” Q. Isomorphism between graphs H and Q 

means that there is a one-to-one mapping or bijection 

between the two vertex sets 𝑓: 𝑉(𝐻) → 𝑉(𝑄) and that 

any two vertices (𝑢, 𝑣) in H are adjacent if and only 

if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in Q. Isomorphism 

preserves structure. Also, H is a subgraph of G if the 

vertices and edges in H form a subset of the vertices 

and edges in G. Exact graph matching implies strict 

subgraph structure and attribute matches, as opposed 

to inexact graph matching, for which small deviations 

from the query structure and attributes are allowed. 

Section 6 is devoted to inexact graph matching. 

The advantage of constructing a graph of 

interrelated records is that it supports more complex 

queries than a traditional search engine that finds 

keyword matches to single records stored in isolation. 

For example, suppose an analyst is interested in using 

academic citation data to uncover collaborations or 

expertise transfer between laboratories. With 

traditional search engines, the process would be 

laborious and many searches would be required. On 

the other hand, when this information is encoded as a 

graph of Author, Facility, and Article nodes as shown 

in Figure 4, the desired relationships are also encoded 

implicitly, and the same query is represented simply 

as a small graph of relationships among the entities in 

question, shown in Figure 5. Searching the 

knowledge base for isomorphic matches to this graph 

enables the analyst to find results quickly and 

automatically, as shown in the example of Figure 6. 

In addition to finding the pattern of interest, the 

analyst can also easily access rich contextual 

information, such as the co-authors that are related to 

the author in question. 

Isomorphic graph matching is implemented in 

the XLab system using iterative graph traversals 

guided by a backtracking algorithm on a search tree. 

For a given threat model, an analyst inputs the graph 

as a set of directed vertex-edge-vertex triples with 

constraints on the vertex and edge properties. The 

algorithm starts by iterating over each triple and 

querying the database for entities matching the set of 

properties specified for the first vertex. These results 

become candidates for graph matches. Then the 

algorithm iterates over each candidate and traverses 

over the edges, filtering edges that do not meet edge 

property constraints, and gathers the terminal node 

for the triple. Each result node becomes another 

candidate for a complete match in a tree-like 

structure. The algorithm exhaustively iterates over 

every candidate and returns complete matches if 

found, or until all candidates have been searched. 

We chose to persist our graph in Elasticsearch, a 

NoSQL document-oriented distributed database. Both 

graph vertices and edges are treated as atomic records 

in the database, where structure is encoded by storing 

vertex IDs in each edge record. Thus, to traverse the 

graph, a series of joins must be done to match 

vertices to their associated edges and then to their 

terminal vertices. This storage approach also allows 

us to perform powerful single-record queries with 

support for geographic, temporal, keyword, and field 

matching queries. 

 
Figure 4. Relationships Extracted from Academic 

Article Data 

 

 
Figure 5. Example Academic Article Query 

 

To scale the graph matching capability, the 

system incorporates Apache Spark, an in-memory 

cluster computing framework. Spark integrates with 

Elasticsearch through Hadoop, which allows fast 

ingest, and GraphFrames allows parallelized graph 

search through an intuitive graph pattern language 

[22]. Without optimization, a full-graph query 

consisting of two nodes (one of type Person and the 

other of type Organization) and an edge connecting 

them takes about 5 minutes to complete on an 8-core 

machine with 12 GB of memory. 
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Figure 6. Exact Matching Result for Example Query 

 

Figure 8 shows some performance metrics for 

various resource configurations. These results were 

computed on a graph of 40 million nodes and 140 

million edges. 

 
Figure 7. Large-Scale Graph Analytics 

 

In order to compare our computing framework to 

existing graph databases, we ran graph matching tests 

between GraphFrames and Titan, the graph database 

management system with Apache Cassandra as the 

storage backend. We persisted a smaller graph 

dataset of 11.8k nodes and 13.8k edges in both 

systems and ran the same query consisting of a 

moderately complex graph of 4 nodes and 4 edges. 

Query performance was comparable: GraphFrames 

averaged about 17.2 seconds while Titan averaged 

about 16.1 seconds.  In addition to search, retrieval, 

and basic statistics offered by graph databases such 

as Titan, our computing framework allows us to 

easily build advanced analytics and algorithms. 

Figure 7 shows an example of such processing in 

which the full data graph has been marginalized into 

a graph of coauthors, labeled using a community 

detection algorithm, then filtered to uncover clusters 

of highly-collaborative researchers. All of these 

operations are possible as distributed computations in 

Spark. 

 

 
Figure 8. Exact Graph Matching Run Times 

 

6. Inexact graph matching 

 

When threat models are only partially 

understood, or when discovery of novel threat 

configurations is of interest, inexact graph matching 

algorithms can be applied to calculate results of 

interest. For inexact matching, we adopted the 

structure of Tong’s algorithm [12] and its extension 

to highly attributed graphs [13], and implemented 

novel approaches to improve run time and to enable 

expanded threat model queries to include temporal 

and spatial relationships.  

 

 
Figure 9. Run times for query graphs of varying 

sizes 

The algorithm returns exact or best-effort 

subgraphs. The number of graphs returned is 

specified by the user. Prior to searching the graph, the 

algorithm calculates random walks with restart values 

to rank nodes based on their proximity to other 

nodes. Using these rankings and the given query 

attributes, a desirable (usually central and well-

connected) seed node is selected. Neighbor nodes are 
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similarly selected by finding the nearest highly 

ranked node that matches another attribute of the 

query graph. After selecting a neighboring node, a 

path is found to connect these nearby neighbors to 

seed nodes. This is done for all nodes in the query 

graph and results in a best effort sub-graph. The 

algorithm run time scales linearly with the size of the 

query graph since each node in the query graph, 

except for the initial node picked by the algorithm, is 

processed sequentially using exactly the same steps 

each time. Figure 9 shows run times for increasing 

sizes of query graphs and increasing number of 

iterations for random walk with restart calculations 

(see [12] and [13] for details). Tong et al. have 

demonstrated empirically that the run time scales 

with the number of nodes and the number of edges in 

the data graph as well. They have shown this on a 

wide variety of graph sizes (see [13] for details). 

Simple model in Figure 10 seeks to uncover 

individuals currently working in a specific U.S. 

geographic area who have previously been employed 

by a non-U.S. biotechnology company. 

 

 
Figure 10. Threat Model 

 

 
Figure 11. Inexact Graph Matching Result 

 

The knowledge graph contains no exact matches 

for this threat model but does contain matches that 

are semantically identical, one of which is shown in 

Figure 11. The algorithm correctly discovers all 9 of 

these matches in the full knowledge graph. Recall in 

this instance is 1 but it should be noted that recall 

varies widely depending on size and structure of both 

the query graph and the data graph, and more 

investigation is needed here. It should also be noted 

that the goal of the algorithm is to present to the 

analyst reasonable matches of interest and that the 

algorithm can easily be combined with SQL-based 

methods for exact match discovery. 

Inexact graph matching is also useful when an 

analyst knows certain connections and nodes of 

interest but does not have a full understanding of the 

various possible connections. For example, the threat 

model in Figure 12 describes a scientist who has 

published on pathogen research and who has also 

communicated online with an individual who is 

associated with an event of interest. A similar threat 

model is discussed further in Section 7. 

 
Figure 12. Threat Model 

 

 
Figure 13. Inexact Graph Matching Results 

 

Figure 13 shows some of the matches returned 

for the query of Figure 12. The node colors represent 

entity types. To evaluate how closely the resulting 

matches correspond to the query graph, we have 

created a goodness score G, defined as 

 

𝐺 =
−2𝑢 − 𝑒 + 3𝑐 + 𝑚

3𝑡 + 𝑞
    (1) 

 

 
where 

𝑢 =  number of unconnected nodes in result graph 

𝑒 =  number of extra nodes in result graph not in query 

graph 

𝑐 =  number of edges in result graph that connect two 

matching vertices 

𝑚 = number of nodes in result graph matching nodes in 

query graph 
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𝑡 =  number of edges in query graph 

𝑞 =  number of nodes in query graph 
 
 A result graph that perfectly matches a query graph 
receives a score of 1. Figure 14 demonstrates 
calculation of G. 

 
Figure 14. Sample Query (top) and Calculation of 

Goodness Score G (bottom) 

 

6.1. Geospatial and temporal filters 

 
In practice, geospatial and temporal constraints 

are key elements of many threat models. For 

instance, a threat model may contain events 𝐸1 and 

𝐸2 such that 𝐸1 always occurs before 𝐸2. The 

knowledge graph, however, as represented for the 

inexact matching algorithm execution, does not 

facilitate searches incorporating such constraints. The 

storage format consists of two sparse matrices, node-

to-node matrix N and node-to-attribute matrix A: 

 
𝑁 = [𝑛𝑖 , 𝑛𝑗]   𝑖, 𝑗 = (1, … , 𝑛) (2) 

 

 

𝐴 = [𝑛𝑖 , 𝑎𝑗]   𝑖 = (1, … , 𝑛);  𝑗 = (1, … , 𝑎)  

 
 (3) 

 
where 𝑛 is the number of nodes and 𝑎 is the number of 
the attribute values. As constructed, N and A do not 
account for the spectrum of comparisons intrinsic to 
location and time. To address this deficiency, we 
developed two approaches, the extra nodes approach 
and the best rank neighbor approach. 

 

6.1.1 Extra nodes approach. During preprocessing 

stage, this approach inserts an extra node between all 

pairs of nodes with the two attributes being 

compared. Figure 15 displays an example of this 

process for a temporal constraint. As shown in the 

figure, to compare the time of an employment event 

to the time a person is traveling, a node is inserted 

between all nodes of type “Employment event” and 

of type “Person Travel.” The attributes of these 

additional nodes contain the difference in time or 

difference in longitude and latitude.  

 
Figure 15. Query Graph (top) Augmented to Include 

Temporal Constraint (bottom) 

 

The advantage of this approach is that the 

comparisons are embedded in the structure of the 

graph, so that the algorithm can continue to be used 

in the same way as before. The drawback is an 

increase in algorithm run time, arising both from the 

preprocessing required to augment the matrices N and 

A and from the added time needed to search the 

larger augmented matrices. 

 

6.1.2 Best rank neighbor approach. This approach 

takes advantage of the algorithm’s selection of high-

rank neighboring nodes to select the highest rank 

neighboring node that also matches the given 

temporal or geospatial requirements. For the query 

depicted in Figure 16, once a specific employment 

event is selected, the algorithm iterates through rank-

sorted neighbor nodes and ends the iteration once a 

neighbor node is found whose time of travel was 

prior to the time of the employment event.  

 

 
Figure 16. Queries For Run-Time Comparison 

 

Thereby, the algorithm finds the best ranked neighbor 

that meets the temporal requirement. This algorithm 

is nearly always faster than the extra nodes approach; 

the additional time comes only from iterating and 

comparing over the given attribute.  

    To compare run times for these approaches, we 

used a representative subset of the full knowledge 

graph. Since both algorithms scale linearly with 

graph size (number of nodes and number of edges), 
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the reported run time results can be extrapolated to 

estimate run times for the entire graph.  
 

 
Table 1. Run Time Results for Temporal 

Comparisons – Average of 20 Runs 

 

Table 1 shows that, while goodness scores are 

similar for both methods for the query depicted in 

Figure 16, the average run time for the best rank 

neighbor approach was about half that for the extra 

node approach. 

 

6.2. Graph subsampling 
 

For some search queries, large regions of the 

knowledge graph may yield no matches simply 

because the information stored there is not relevant to 

the query. Graph subsampling is a technique that can 

improve the run time of computationally intensive 

graph search algorithms by prohibiting them from 

entering such regions.  

 
Figure 17. Query for Subsampling Approach 

 

 
 

Table 2. Run Time Results for Graph Subsampling 

 

Graph subsampling was implemented by 

restricting the algorithm to regions of the knowledge 

graph within n hops of any node that matches a node 

attribute or type in the query graph. For example, 

using the query in Figure 17 and choosing n = 2 hops 

to subsample the full knowledge graph cuts the 

number of edges and nodes that must be searched by 

factors of 2 and 3, respectively. Run time results for 

graph subsampling, averaged over 20 runs, are 

summarized in Table 2. Three matches were 

requested and three exact matches were found for 

both the full and subsampled graphs. The “Start to 

Finish Time” column lists time needed for graph 

subsampling plus return of three matching results. 

Graph subsampling is a preprocessing time cost and 

needs to be calculated only initially. 

  

7. Demonstrating the system: embedded 

scenario 

 

To demonstrate the capabilities of the system, we 

embedded a scenario within the knowledge graph 

based on the threat model of Figure 12. The 

scientist’s online connection to an individual of 

interest involves either communication with or 

following an account of a radicalized person. The 

event of interest here is a travel event to a virology 

conference. We are interested in matches that show 

both individuals traveling to the same conference. 

 

 
Figure 18. Scenario Results 

 

 Table 3. Embedded Scenario Statistics 

 

The exact graph matching results are shown in  

Figure 18. Larger clusters (1, 2, 4, and 7) represent 

individuals who match one of these four 

characteristics, while the smaller clusters (3, 5, and 6) 

represent individuals who match two or more 

characteristics. Cluster 6 contains individuals of 

highest interest because they possess or are linked to 

all criteria specified by the threat model. 

Table 3 presents embedded scenario statistics, 

showing that the system is able to filter the number of 
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individuals of interest from tens of thousands to 

three, potentially vastly reducing analyst workloads. 

Examples of inexact matches to a similar threat 

model are shown in Figure 13 in Section 6. The 

analyst’s or subject matter expert’s input would be 

needed to determine if those matches are of interest. 

 

8. Conclusions and future work 

 
This paper presents an end-to-end approach for 

detecting threats within large volumes of multi-modal 

data. A knowledge base, represented as a graph, is 

constructed in an automated fashion to include 

relevant data from disparate data sources. An 

approach for generating threat models that reflect a 

SME’s threat understanding is introduced, and 

methods for retrieving both exact and inexact 

instances of the complex threat model from the 

knowledge base are described. We demonstrate 

efficient retrieval performance on a graph of 38M 

nodes and 140M edges and describe enhancements to 

the current state of the art for linearly scaling inexact 

subgraph matching that significantly reduce run times 

while maintaining high match scores. We also 

present new methods for discovering threat models 

with spatial and temporal links. Finally we show how 

the system can detect embedded threats within a large 

knowledge base. While improvements can be made 

to every step of the processing chain, particularly 

graph construction and graph matching, we believe 

the system provides a needed capability with 

sufficient speed for providing useful, timely 

indications and warning.    
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