
1

An Efficient Recommender System Using Locality Sensitive Hashing

Kunpeng Zhang

University of Maryland

 kzhang@rhsmith.umd.edu

Shaokun Fan

Oregon State University

 shaokun.fan@oregonstate.edu

Harry Jiannan Wang

University of Delaware

Chinese University of Hong

Kong, Shenzhen
hjwang@udel.edu

Abstract
Recommender systems are widely used for

personalized recommendation in many business

applications such as online shopping websites and

social network platforms. However, with the

tremendous growth of recommendation space (e.g.,

number of users, products, etc.), traditional systems

suffer from time and space complexity issues and

cannot make real-time recommendations when dealing

with large-scale data. In this paper, we propose an

efficient recommender system by incorporating the

locality sensitive hashing (LSH) strategy. We show that

LSH can approximately preserve similarities of data

while significantly reducing data dimensions. We

conduct experiments on synthetic and real-world

datasets of various sizes and data types. The

experiment results show that the proposed LSH-based

system generally outperforms traditional item-based

collaborative filtering in most cases in terms of

statistical accuracy, decision support accuracy, and

efficiency. This paper contributes to the fields of

recommender systems and big data analytics by

proposing a novel recommendation approach that can

handle large-scale data efficiently.

1. Introduction

Recommender systems automatically identify

recommendations for individual users based on

historical user behaviors and have changed the way

websites interact with their users [1]. Recommender

systems are considered as a powerful method that

allows users to filter through large volume of

information. For example, Amazon and other similar

online vendors strive to present each user with some

recommended products that they might like to buy

based their purchasing history or purchasing decisions

made by other similar customers. Due to the

exponential growth of big data, traditional

recommender systems have been challenged for its

scalability. Recently, various methods have been

proposed to for the development of scalable

recommendation systems. For example, researchers

proposed to use matrix factorization to map users or

items to vectors of factors and reduce the number of

dimensions [2]. Despite all these advances in

recommender systems, the current recommender

systems are still not entirely satisfactory. Current

recommendation systems cannot make real-time

recommendations when dealing with extremely large-

scale data [3]. This paper aims to improve the

efficiency of recommendation systems while

preserving a similar level of accuracy.

Collaborative filtering (short for CF), especially

item-based CF has been widely used in recommender

systems for ecommerce websites [2]. It works by

building a matrix of item preference by users. If item i

similar to item j, it will be recommended to a user with

high probability if the user likes item j. However, when

the number of users and number of items are large,

item-based CF has two fundamental challenges. The

first challenge is the time complexity. Item-based CF is

computationally expensive because it needs to

calculate similarity scores for all pairs of items. These

similarity scores will be used for predicting

preferences. The second challenge is the space

complexity. The original input user-item matrix in the

traditional item-based CF is too large to fit in memory.

These challenges become more significant nowadays

as we have much bigger data on users and items than

ever before. For example, Amazon has about 400

million unique products for on their website

(https://www.scrapehero.com/how-many-products-are-

sold-on-amazon-com-january-2017-report/). Thus,

finding information of interest from big data for

assisting us to make informed decisions requires

computationally scalable and efficient techniques.

In this paper, we address these challenges by

incorporating an efficient similarity finding algorithm

(both time and space) into recommender systems.

Locality sensitive hashing (short for LSH) uses

signature matrix to approximately preserve similarity

while significantly reducing dimension of data [4]. For

binary data, we employ a well-known hashing strategy

called minHash formed by minwise-independent

permutations. For real-valued data, we use simHash

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/49985
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 780

mailto:kzhang@rhsmith.umd.edu
mailto:shaokun.fan@oregonstate.edu
mailto:hjwang@udel.edu

2

formed through random-hyperplanes summarization.

Further, we divide signatures into bands and hash each

band into buckets of a global hash table to reduce the

number of similarity calculations. Two items hashed

into at least one same bucket are considered to be a

similar candidate pair. We show that this band hashing

method can guarantee low false positive and low false

negative rates. To evaluate the LSH based CF (short

for LSH-CF), we generate 6 different synthetic datasets

and collect two real-world datasets from Facebook. We

apply LSH-CF and traditional item-based CF to these

datasets and compare their performance. We find that

generally LSH-CF is more efficient than item-based

CF regardless of data size and type. Especially LSH-

CF is suitable for a large number of high-dimensional

real-valued items.

To summarize, this paper has the following

contributions:

• We build a framework of recommender system

that incorporates LSH into CF to improve both

time and space efficiency without losing

recommendation accuracy;

• We conduct experiments on both binary and real-

valued data to empirically compare LSH-CF with

traditional item-based CF;

• We implement both minHash and simHash and

apply them to recommending Facebook interest.

2. Literature Review

In this section, we briefly review the previous

research efforts related to recommender systems and

locality sensitive hashing.

Recommender systems can be built through many

approaches and have been successfully deployed in

many businesses, such Amazon.com [5] and

Netflix.com [6], social networks [7], and research

papers [8]. Collaborative filtering algorithms have been

widely used for recommendation systems [9]. Other

technologies have also been applied to recommender

systems, including Bayesian networks, clustering, and

content-based methods. Bayesian networks are

effective for environments where knowledge of user

preferences changes slowly with respect to the time

needed to build the model but are not suitable for

environments where user preference models must be

updated rapidly or frequently. Clustering techniques

usually produce less-personal recommendations than

other methods, and in some cases, the clusters have

worse accuracy than nearest neighbor algorithms [10].

Despite all these efforts, the current recommender

systems still require further improvement to make

recommendation methods more effective and

applicable [11, 12]. The recommendation algorithms

mentioned above are not suitable for real-time response

when an extremely large-scale data needs to be

processed.

The fundamental problem in recommender systems

is to find similar items. There are various similarity-

based techniques developed for similarity

identification, including cosine similarity, correlation

similarity, etc. Locality sensitive hashing is one of the

state-of-the-art efficient algorithms that approximately

preserving similarity but with significant dimension

reduction. Minwise-independent permutations form an

LSH for Jaccard coefficient, which was originally

proposed in 1998 [13]. It was later used for similarity

search in high dimensional data [14]. The basic idea is

to hash the data points so as to ensure that the

probability of collision is much higher for objects that

are close to each other than for those that are far apart.

Researchers introduced the idea of using random-

hyperplanes to summarize items in a way that respects

the cosine distance for real-valued data [15]. It was

also suggested that random hyperplanes plus LSH

could be more accurate at detecting similar documents

than minhashing plus LSH [16]. Techniques for

summarizing data points in a Euclidean space are

covered in [17]. Their scheme works directly on points

in the Euclidean space without embedding and their

experiments show that their data structure is up to 40

times faster than kd-tree. As data becomes huge, the

distributed layered LSH scheme focusing on the

Euclidean space under l2 norm was proposed [18]. It

can exponentially decrease the network cost while

maintaining a good load balance between different

machines.

In addition to theoretical contributions in LSH,

researchers from various domains used LSH to solve

many real applications. For example, LSH was used to

compute image similarity and then detected loop

closures by using visual features directly without

vector quantization as in Bag-of-Words approach [19].

Researchers also used collaborative filtering through

minHash clustering for generating personalized

recommendations for users of Google News [20]. LSH

techniques had also been used to quickly and

accurately index a large collection of images [21].

3. Overall Framework

Figure 1 shows the entire framework of the LSH-

CF recommender system. The input of the system is

the user-item rating matrix Rm×n and a user ID. The

output is the top-N recommended items for that user

based on predicted preference scores.

Page 781

3

Figure 1. The LSH-CF Framework

There are four major steps in our framework:

Step I: minHash or simHash is used to create signature

matrix Ms×n depending on whether data are binary or

real values.

Step II: Signatures are hashed into a hash bucket.

Step III: If signatures of two vectors are hashed into

the same bucket at least once, these two vectors are

likely to be similar therefore we consider them as a

candidate pair.

Step IV: Recommendations are generated using the

weighted sum strategy. Rather than using similarity

scores from all other items, we only focus on similarity

scores from candidate pairs. The clusters of candidate

pairs allow us to reduce the number of similarity

calculations to calculate preference scores for unknown

entries and increase time and space efficiency.

 The details of each step are discussed in the next

section.

4. Methodology

In this section, we first formally define item-based

CF approach and its disadvantages (especially the time

and space complexity for large-scale data). Then, we

explain the details of the four steps described in

Section 3.

4.1. Item-based Collaborative Filtering

The goal of an item-based collaborative filtering is

to predict the utility or preference of a certain item for

a given user based on user’s previous likes, ratings, or

opinions on other similar items. In a typical CF

recommender system, there is a list of m users U={u1,

u2, …, um} and a list of n items I={i1, i2, …, in}, where

usually m>>n. Each user ui can express opinions on a

subset of items. Each item ik can also receive opinions

from multiple users. Opinions can be explicitly

represented by the continuous rating scores within a

certain numerical scale or can be implicitly derived

from the raw data, for example, the number of

purchasing records for the pair of (user, product), the

browsing time length for a pair of (user, webpage), the

sentiment of comments for the pair of (user, Facebook

page), etc. It is possible to have users who never rate

any items and items which never receive any ratings.

This is called “cold-start” problem that will not be

discussed in this paper. Traditional item-based CF

systems aims to find items that a given user prefers

with high probability.

Item-based CF systems receive the entire

user-item rating matrix R as input and a user ID. Each

entry ri,j in R denotes the preference score (ratings) of

the user ui on item ij. ri,j is unknown if item j has not

been rated by user i. The first important step is to

calculate similarity scores for all pairs of items S={s1,2,

s1,3, …, si,j, …, sn-1,n}, where |S|=n(n-1)/2. To calculate

similarity of two items (i, j), we could choose various

vector distance measures such as cosine-based (see

Equation 1), correlation-based (see Equation 2), etc.

The second important step is to predict the value of

each unknown entry using weighted sum strategy (used

in this paper due to its simplicity, see Equation 3) or

regression-based method.

 (1)

Uu jjuUu iiu

Uu jjuiiu

ji

rrrr

rrrr
S

2

,

2

,

,,

,

)()(

))((

 (2)

k itemssimilar all ,

k itemssimilar all ,,

,
)(

*

ki

kuki

iu
S

rS
P (3)

The most time consuming operations in item-based

CF is similarity calculation for all pairs of items,

especially when the number of items (n) becomes

large. Once we obtain similarity scores, it is fast to

recommend items for a given user. The time

complexity of item-based CF is approximately

O(n*n*m) where m is the number of users. It is

infeasible to deploy this algorithm directly in a real-

time system because n is in a magnitude of thousands

in practice. For a real system, it usually caches all

similarity scores that can be computed offline and only

needs to be updated if needed when the matrix R

changes. On the other hand, the size of the user-item

rating matrix is too large to fit in memory. For

example, for a small matrix R with 100,000 users and

10,000 items (compared with Amazon with more than

300 million users and 400 million items), it

approximately takes about 8 Gigabytes memory size

when read these double numbers in Java. One possible

solution to this memory overflow issue is that using

Page 782

4

sparse matrix representation to avoid storage from

unknown entries. It is helpful for mid-size and highly

sparse matrix rather than large-scale and dense

matrices. Another practical solution is partial read,

meaning that only read entries related to two items for

calculating their similarity. But it requires many extra

computations such as filtering operation, frequent file

I/O, etc.

4.2. Signature Generation Using Hashing

Locality sensitive hashing is an algorithm for

solving the approximate nearest neighbor search in

high dimensional spaces. It is an approach of

transforming the data item to a low dimensional

representation, or equivalently a short code consisting

of a sequence of bits. It is based on the definition of

LSH family H (see formal definition below), a family

of hash functions mapping similar vectors to the same

hash code with higher probability than dissimilar

vectors. One of the most popular LSH methods

(minHash) invented in 1997 is extensively studied in

theory and widely used in practice in various

applications (clustering, duplicate detection, etc.),

especially for large-scale data [22]. There are two

aspects focused by researchers in LSH community: (1)

developing LSH family for various distances or

similarities. In this paper, we describe two commonly

used hashing algorithms for data transformation:

Jaccard similarity based minHash for binary data and

cosine similarity based simHash for general real-

valued data [15]; (2) exploring the theoretical boundary

(both time and space) for LSH family under specific

distances or similarities. Since the main topic of this

paper is improving the efficiency of item-based CF by

incorporating LSH without lowering performance, we

will not discuss too much about theoretical boundary,

which can be found in [15].

Definition: Locality Sensitive Hashing A family

H is called (d1, d2, p1, p2)-sensitive if for any two

vectors x, yÎ Rmand h chosen uniformly from H

satisfies the following two conditions.

(1) If similarity score sim(x, y) >= d1, then

PrH(h(x) = h(y)) >= p1

(2) If similarity score sim(x, y) <= d2, then

PrH(h(x) = h(y)) <= p2

The distance can be obtained through similarity via

D(x, y) = 1 – sim(x, y). These parameters especially d1

and d2 can be adjusted based on the application. We

can make d1 and d2 as close as we wish. Then the

penalty is that typically p1 and p2 are close as well. It is

possible to drive p1 and p2 apart while keeping d1 and

d2 fixed.

4.2.1 minHash for Binary Data. For binary data,

Jaccard similarity is usually used to measure how close

sets are, although it is not really a distance measure.

That is, the closer sets are, the higher the Jaccard

similarity. It is defined as the ratio of the sizes of the

intersection and union of two sets A and B: JS(A, B) =

. For example, two binary (0 or 1 for each

element) vectors A=(0,0,1,1,1,0,0,1) and

B=(0,1,1,1,1,1,0,0), their Jaccard similarity is 3/8.

Figure 2. minHash Signature Example

We want to find a hash function h to transform our

data into a low-dimension vector such that (1) if two

data items (x, y) are similar under some similarity

measures, then with high probability h(x)=h(y), and (2)

if (x, y) are dissimilar, then with high probability

h(x)≠h(y). minHash is suitable hash function for

Jaccard similarity. It is defined as “hπ(x) = the number

of the first row, in the permuted order, in which the

column x has value 1”. Let’s take four vectors V1, V2,

V3, and V4 shown in Figure 2 for example, if the

permutation () vector of rows is (4, 2, 1, 3, 6, 7, 5)T

(‘T’: transpose), then (V1) = 2, (V2) = 1,

(V3)=4, and (V4) = 1. There is a remarkable

connection between minhash and Jaccard similarity of

two vectors that are minhashed.

Theorem 1: The probability that the minhash

function for a random permutation of rows produces

the same value for two vectors C1 and C2 equals the

Jaccard similarity of those sets, which is Pr[hπ(C1) =

hπ(C2)] = sim(C1, C2).

Proof: For two column vectors C1 and C2, rows can be

divided into the following three types:

(1) Type I rows have 1 in both columns.

(2) Type II rows have 1 in one of the columns and 0 in

the other.

(3) Type III rows have 0 in both columns.

Since the matrix is sparse, most rows are of type

III. Let x rows of type I and y rows of type II. Then

similarity of C1 and C2 sim(C1, C2)=x/(x+y). x is the

size of the intersection of C1 and C2 and x+y is the size

of C1 union C2.

Now let’s consider the probability that hπ(C1) =

hπ(C2). If we image the rows permuted randomly, and

Page 783

5

we scan all rows from the top, the probability that we

shall meet a type I row before we meet a type II row is

x/(x+y). If we meet a type II row, then we know hπ(C1)

≠ hπ(C2). For type III rows, they are irrelevant to

minhash. We conclude the probability that hπ(C1) =

hπ(C2) is x/(x+y), which is also the Jaccard similarity of

C1 and C2.

 Based on the definition of LSH, the family of

minhash functions is a (d1, d2, 1-d1, 1-d2)-sensitive

family for any d1 and d2, where .

We can use s different permutations (minhash

functions) to create a signature vector for each item

vector and consequently result in a signature matrix

 associating to the original input matrix, where n

is the number of column vectors. This signature matrix

also significantly reduces the data size from m*n

integers to s*n integers that can be easily fit into

memory. As we all know that permuting rows even

once is prohibitive. Our solution is using row hashing

and we develop a one-pass implementation shown in

Algorithm 1.

4.2.2 simHash for Real-Valued Data. minHash is

used for binary data, however, most applications have

real-valued data and the distance between two vectors

are measured by cosine similarity. simHash does

similar process to minHash but for real-valued data. It

randomly projects high-dimensional vector to low

dimensional bit signatures such that cosine distance is

approximately preserved.

The following steps describe the generation of bit

signatures Sig1, Sig2 for two high-

dimensional vectors V1, V2 . V1 and V2 can form

a hyperplane P and they make an angle θ between

them.

(1) Uniformly randomly pick s hyperplanes {h1, h2, …,

hs} in the dimensional space that is orthogonal to

P and intersect P at the origin.

(2) For each hyperplane hi, if the projection of vector

onto hi is positive, we generate a bit 0, 1 otherwise.

Intuitively, if two vectors are similar (the angle θ is

small), then it is likely to have same bits for most

hyperplanes. The large size of bit signatures can reduce

the error between true cosine from original vectors and

approximate cosine from two-bit signatures while at

the cost of computing time. To find a balance between

cheap and accurate, the typical size of bit signature is

64 in real practice. Let’s look at an example of

generating 8-bit signatures for two-dimension vectors

as shown in Figure 3. For two-dimension vector, if it

locates above the line, the corresponding bit is 0, 1 if

below.

Figure 3. simHash Bit Signature Example
simHash originates from the concept of sign

random projections (SRP) [23]. Given two vectors V1

and V2, SRP utilizes a random vector w from a random

hyperplane with each component generated from i.i.d.

Gaussian distribution and only stores the sign of the

projected data. The collision under SRP satisfies the

following equation in [reference]: Pr(hw(V1) = hw(V2))

= , where . The term

 is the cosine similarity for V1 and V2. Since

 is monotonic with respect to cosine similarity,

simHash is a (d1, d2, , ,)

or a (d1, d2, 1-d1/180, 1-d2/180)-sensitive family of

hash functions. The simple simHash algorithm is

implemented in Algorithm 2. In addition, this signature

matrix also significantly reduces the size from m*n

integers to s*n bits (1 integers = 32 bits in Java) that

can be easily fit into memory for fast processing in

later steps.

Page 784

6

4.3. Hashing Signature and Finding Candidate

Pairs

The signature matrix created from

hashing significantly reduces the dimensionality of

vectors while approximately preserving similarities.

But it still needs O(n2) time for comparing all pairs of

signature columns to find similar vectors, which is not

efficient enough for real-time recommendation. In this

section, we will discuss the second important

component of LSH to efficiently find candidate similar

pairs. It basically involves three operations: partition,

hashing, and counting. Before these operations, we

define a hash table HT with k buckets. We could make

k as large as possible for avoiding hash collision. The

pictorial example to describe these steps is shown in

Figure 4.

Figure 4. Example of Hashing Band

• Partition: we first divide M into b bands of r rows

each: {b1, b2, …, bb}, the last band may have less

than r rows. B and r are parameters and they can

be tuned based on the threshold of vector

similarity (sim).

• Hashing: For each band, hash its portion of each

column to HT.

• Counting: Count the number of times two columns

are hashed into the same bucket. The higher the

count, the more confident we can say two vectors

are very similar. In practice, candidate column

vectors are those that hash to the same bucket for

at least 1 band.

Another question we have not answered yet is that

what is the mechanism to adjust parameters based on

the similarity threshold. To simplify the problem, we

make an assumption that there are enough buckets that

columns are unlikely to hash to the same bucket unless

they are identical in a particular band. Let’s denote t to

be similarity score of two vectors V1 and V2 (t =

sim(V1, V2)).

Theorem 2: The probability that at least 1 band

identical is 1-(1-tr)b.

Proof: Now we pick any band bi (r rows).

The probability that all rows in bi are equal is tr.

The probability that at least one row in bi is unequal is

1 – tr.

The probability that no bands are identical is (1 – tr)b.

The probability that at least 1 band is identical is 1-(1-

tr)b.

Three sub-figures in Figure 5 show the ideal case, 1

band of 1 row, and a general case, respectively. For

example, the signature matrix has 64 rows (64 minhash

signatures or 64 bit signatures from simhash). We

divide it into b=16 bands of r=4 rows each. The

similarity threshold s is set to 0.8. Then from the Table

1, we could find that 99.98% pairs of truly similar

document if they have at least one band hashed into the

same bucket. It is about 1/5,000th of the 80%-similar

column pairs are false negative. Similarly, The false

positive is also low. Approximately 2.53% pairs of

items with similarity 0.2 end up becoming candidate

pairs. These false positive can be removed during the

following similarity calculation process for

recommendation use (if the similarity score of two

candidate vectors is less than the threshold, they are

false positive).

Table 1. Example of probability of sharing a
bucket given a similarity threshold

Similarity

threshold s

P=1-(1-sr)b

0.1 0.0016

0.2 0.0253

0.3 0.1220

0.4 0.3396

0.5 0.6439

0.6 0.8915

Page 785

7

0.7 0.9876

0.8 0.9998

Figure 5. Analysis of LSH for Different Cases

4.4. Prediction and Recommendation

Traditional item-based CF is not efficient (both in

time and space) for large-scale data, regardless of

binary or real-valued. The most time-consuming part is

similarity calculation for all pairs of items. LSH solves

the approximate in a high-dimension space by creating

low-dimension signatures while preserving similarity.

After LSH, we obtain all candidate pairs. Then we

calculate their similarity scores. In this section, we

discuss how to incorporate LSH into item-based CF for

efficient recommendation without losing performance.

In item-based CF system, for any item Ii, we have a

list of similarity scores from all other items: {S1,i, S2,i,

…, Sn-1,i, Sn,i}. In our recommendation system, we also

have a list for each item: L = {Sk,i | }. The

size varies for different items and is much less than n

for most items. Each element in this list together with Ii

forms a candidate pair from the LSH process. During

the recommendation step, we use top-N nearest

neighbors to calculate predicted values for unknown

entries. Suppose we want to calculate the rating score

for user Uu on item Ii using weighted sum strategy. The

following equation 4 is used.

otherwise

S

rS

NLif

S

rS

r

N

k

ik

N

k

kuik

L

k

ik

L

k

kuik

iu

1

'

,

1

'

,

'

,

1

,

1

,,

,

*

*

 (4)

Where Sk,i
'

is the kth similarity score in the list L in a

descending order, ru,k
'

is the corresponding rating from

user u on the corresponding item. To output the binary

ratings, we use the threshold of 0.5. If the predicted

rating is large than threshold, we change it to 1, 0

otherwise.

5. Evaluation

To show the efficiency and accuracy of LSH-CF,

we use both synthetic and real-world data to run

computational experiments. We compare results from

traditional item-based CF with those from LSH-CF

recommender system in terms of three aspects: running

time consumed, memory spaces to store the matrix,

and the accuracy of recommended items to users. All

our experiments were implemented using Python and

Apache Mahout machine learning package. We ran all

our experiments on an OS X based Mac PC with Intel

Core i7 processor having speed of 3.4GHz and 16GB

of RAM.

5.1 Datasets

Synthetic data. We first randomly generate three

matrices with different dimensionalities for binary and

real-valued data, respectively. For binary data, each

column vector (denoting an item) is generated under

the binomial distribution Bin(m, 0.7), where 0.7 is the

probability of getting 1s. This also determines the

sparsity level (SL): .

For real-valued data, we first fix the SL and then non-

zero elements are randomly generated under a

Gaussian distribution. To make these numbers relevant

to star ratings on a five-point scale, we first generate

matrix use N(2.5, 1) and then change 0 elements to 1.

Facebook data. Our real-world data is collected

from a popular social media platform: Facebook. We

use Facebook Graph API to download data from about

13,000+ public pages in different categories, such as

celebrities, sport teams, food/beverages, retailers, etc.

On each page, we get user-page interaction

information, including users’ “likes”, “comments”, and

“shares” for all posts from the first day when the page

was founded on Facebook to January 1, 2013. Each

page is considered as an item. “Likes” is the only

information used for deriving binary data. If user u

likes a page i, then ru,i=1 regardless of the number of

times he/she liked. An item never liked by a user leads

to an unknown entry. For the real-valued user-item

matrix in Facebook, we use the number of historical

activities to represent user’s preference on a page. This

is actually considered to be a Facebook public page (or

interest) recommender system. For both, we choose

1,000 pages (items) and 10,000 users at random. As we

mentioned before, we do not consider cold-start

Page 786

8

problem in this paper. The summary of our datasets

(see Table 2) shows that each signature matrix can

significantly reduce the size of the data up to 1,200+

times.

Table 2. Summary of datasets
Binary data

 Synthetic data Facebook

Parameters R1 R2 R3 R4

of rows 100 1K 10K 10K

of columns 10K 100K 1M 1K

size of R ~0.1Mb ~12Mb ~1.2Gb 1.25Mb

of rows in M 64

size of M 0.08Mb 0.8Mb 8Mb 0.008Mb

Real-valued data

 Synthetic data Facebook

Parameters R5 R6 R7 R8

of rows 100 1K 10K 10K

of columns 10K 100K 1M 1K

size of R 8Mb 0.8Gb 80Gb 80Mb

of rows in M 64

size of M ~5Mb ~50Mb ~0.5Gb ~0.064Mb

LSH can approximately keep similarity after

dimension reduction. In the section of analysis of LSH,

we already show that false positive and false negative

based on parameters are low. We check the difference

between similarity scores from original item vectors

and signature vectors to check how good the

approximation is. Therefore, we randomly choose

1,000 different item pairs and their corresponding

signature vectors from two big matrices R3 and R7,

respectively. It is not easy to show 1,000 pairs in a

plot. We then further randomly pick 100 out of 1,000

pairs to show their similarities (see Figure 6). It tells us

that the difference is small regardless of data format

(binary or real-valued), data size, and similarities

within data. The average difference of all 1,000 pairs is

0.058 and 0.067 for R3 and R7, respectively.

Figure 6. Signature similarity and vector

similarity from R3 and R7

5.2 Evaluation Metrics
Researchers have employed many types of

measures for evaluating the quality of a recommender

system. They are mainly falling into two categories:

statistical accuracy and decision support accuracy

(DSA).

Statistical accuracy evaluates the accuracy of a

system by comparing the numerical/binary

recommendation scores against the actual user ratings.

Mean Absolute Error (MAE) is widely used and

measuring the deviation of predicted values from their

true values. It calculates the average on all absolute

errors of rating-prediction pair <ru,i, pu,i>. Formally,

where N is the number of pairs, ru,i is the actual

rating from user u on item i, and pu,i is the

corresponding predicted rating. The lower the MAE,

the more accurately the recommender system makes

predictions. For the binary data, we use the Jaccard

similarity accuracy (JSA) to measure the predicted

preference and the actual preferences. The

recommender system with higher JSA is better.

Decision support accuracy evaluates how

effective the recommender system is at helping users

select preferred items. It measures whether users really

choose items with high predicted ratings and really not

select items with low predicted ratings. For our real

data, we first divide our data into training (January 1,

2009 - May 1, 2012) and testing portion (May 2, 2012 -

January 1, 2013). We then randomly select K (e.g.,

100) users and recommend each m (e.g., 10) items that

are not in their interest lists during the training period.

Then we count the number of items (denoted as Ni) the

ith user is interested in the testing period. “Interested”

means that they have activities (“like”, “comment”, or

“share”) on that item. Formally, DSA is

. The higher the DSA, the better

quality our recommender system achieves. In addition,

we use weighted sum strategy to predict ratings for

each unknown entry. In this experiment, we use top 30

similar items instead of all other items.

In addition, we especially want to show the

efficiency of our recommender system. It can be

measured by the running time.

5.3 Results
We apply both traditional item-based CF and the

proposed LSH-CF to the eight datasets. The

experiment results mainly include two parts: accuracy

and efficiency. For accuracy, we randomly hide 1,000

existing ratings for each matrix and calculate

corresponding MAE and JSA. We find that LSH-CF

significantly improves efficiency over item-based CF

in most cases regardless of data, which can be up to in

a magnitude of thousand times (see Table 3 and Table

4).

Table 3. Comparisons for statistical
accuracy and time

Synthetic data

Page 787

9

 JSA1 Time (s)

Dataset LSH-CF Item-

based CF

LSH-CF Item-based

CF

R1 0.73 0.77 93.24 1.28*104

R2 0.72 NV 1.47*103 X

R3 NV NV X X

Real-valued data

 MAE2 Time (s)

LSH-CF Item-

based CF

LSH-CF Item-based

CF

R5 0.77 0.82 3.88 4.83*102

R6 0.71 0.74 299.10 1.81*105

R7 0.81 NV 2.59*103 X

‘X’ means the calculation cannot finish within a

day and ‘NV’ means no values because we could not

finish them. For binary synthetic data, JSA of LSH-CF

is slightly lower than item-based CF because we

convert our numerical predicted ratings to binary and

probably lose some accuracy. For real-valued synthetic

data, LSH-CF obtains lower MAE than item-based CF.

For Facebook data, both algorithms get low DSA

because user historical activity may not be a good

indicator of his/her future interest. LSH-CF has higher

DSA than item-based CF, because it only focuses on

potentially similar items for preference prediction.

However, item-based CF uses top-N similar items for

preference calculation no matter how similar these N

items to the focal item. In addition, LSH-CF is much

faster for real-valued data than binary data because set

operations when calculating Jaccard similarity are slow

comparing to cosine similarity for two real-valued

vectors. We further find that item-based CF performs

faster than LSH-CF for small number of binary high

dimensional data as indicated by R4 in Table 4,

because permutation operations take time for binary

data. However, item-based CF becomes less efficient if

the number of items increases.

Table 4. Comparisons for decision support
accuracy and time

 DSA3 Time (s)

Dataset Item-

based CF

LSH-CF Item-based

CF

LSH-CF

Facebook

binary: R4

0.63 0.58 415.26 888.17

Facebook Real-

valued: R8

0.73 0.76 144.80 25.73

6. Conclusions

Traditional item-based collaborative filtering

techniques are not suitable for real-time

1 The higher JSA, the better the system is.

2 The lower MAE, the better the system is.

3 The higher DSA, the better the system is.

recommendation when dealing with large-scale data.

This paper proposed an efficient recommender system

by incorporating hashing strategies, which can

approximately preserve similarities after significant

dimension reduction. Two hashing methods, minhash

for binary data and simhash for real-valued data, and

similar candidate pair identification were used to

increase the efficiency of similarity computing, which

is the most time-consuming task for traditional CF-

based recommender systems. We used generate

synthetic data and collected real-world data from

Facebook to evaluate the proposed LSH-CF method.

The experimental results showed that LSH-CF

generally outperforms item-based CF in terms of

statistical accuracy, decision support accuracy, and

efficiency regardless of data size and format.

Specifically, LSH-CF outperforms item-based CF

when the number of items is in a magnitude of

thousands.

The method proposed in this paper can significantly

improve the accuracy and efficiency of large-scale

recommendation systems. Ecommerce platforms with

huge number of items or users can utilize the method

to provide users with near better recommendations.

Traditional recommendation systems computes user

similarity or item similarity offline and assume the

similarities do not change frequently. However, this is

not realistic for real businesses. Hundreds of

transactions may happened in an Ecommerce website

per second. Without considering the most recent

transactions, the recommendation result may not reflect

the best interest of users. The LSH-CF computes all

similarities in real time and thus provides accurate

results in a dynamic business environment. For users of

Ecommerce websites or social media websites, they

can benefit from the proposed method and receive

recommendations that are computed based on their

real-time activities.

Distributed computing using Hadoop is a good

alternative and has been successfully deployed by

industries. Implementing LSH-CF using MapReduce

or Spark is one of our future work to further improve

the performance of recommender systems. In addition,

finding other locality sensitive hashing families for

other distance measures and incorporating content or

external knowledge (attributes of items, item-item

networks, etc.) into LSH-CF can also be thought as a

way to improve the accuracy of recommender systems.

7. References

[1] Bigdeli, E., and Bahmani, Z. "Comparing accuracy of

cosine-based similarity and correlation-based similarity

algorithms in tourism recommender systems," 4th IEEE

Page 788

10

International Conference on (21-24 2008) Management of

Innovation and Technology, pp. 469-474, 2008.

[2] Koren, Y., Bell, R., and Volinsky, C. "Matrix

factorization techniques for recommender systems,"

Computer, Vol. 42, Issue 8, pp. 30-37, 2009.

[3] Schnabel, T., Bennett, P. N., Dumais, S. T., & Joachims,

T. "Using shortlists to support decision making and improve

recommender system performance. " In Proceedings of the

25th International Conference on World Wide Web (pp. 987-

997), 2016.

[4] Ding, K., Huo, C., Fan, B., Xiang, S., & Pan, C. In

Defense of Locality-Sensitive Hashing. IEEE transactions on

neural networks and learning systems, 99, pp. 1-17, 2017.

[5] Smith, B., & Linden, G., Two Decades of Recommender

Systems at Amazon. com. IEEE Internet Computing, 21(3),

12-18, 2017.

[6] Gomez-Uribe, C.A. and Hunt, N., "The netflix

recommender system: Algorithms, business value, and

innovation." ACM Transactions on Management Information

Systems (TMIS), 6(4), p.13, 2016.

[7] Buettner, Ricardo. "A Framework for Recommender

Systems in Online Social Network Recruiting: An

Interdisciplinary Call to Arms." 2014 47th Hawaii

International Conference on System Sciences (HICSS),

IEEE, 2014.

[8] Beel, J., Gipp, B., Langer, S., and Breitinger, C.

Research-paper recommender systems: a literature survey.

International Journal on Digital Libraries, 17(4), 305-338,

2016.

[9] Li, C., & He, K., CBMR: An optimized MapReduce for

item‐based collaborative filtering recommendation algorithm

with empirical analysis. Concurrency and Computation:

Practice and Experience, 29(10), 2017.

[10] Breese, J. S., Heckerman, D., and Kadie, C. "Empirical

analysis of predictive algorithms for collaborative filtering,"

In proceedings of the 14th conference on Uncertainty in

Artificial Intelligence, pp. 43-52, 1998.

[11] Adomavicius, G., and Tuzhilin, A. "Toward the next

generation of recommender systems: a survey of the state-of-

the-art and possible extensions," IEEE Transaction on

Knowledge and Data Engineering, Vol. 17 Issue 6, pp. 734-

749, 2005.

[12] Lu, J., Wu D., Mao M., Wang W., Zhang G.,

"Recommender system application developments: A survey."

Decision Support Systems Vol. 74, pp. 12-32, 2015.

[13] Broder, A. Z., Charikar, M., Frieze, A. M., and

Mitzenmacher, M. "Min-wise independent permutations,"

ACM Symposium on Theory of Computing, pp. 327-336,

1998.

[14] Gionis, A., Indyk, P., and Motwani, R. "Similarity

search in high dimensions via hashing," In proceedings of

International Conference on Very Large Databases, pp. 518-

529, 1999.

[15] Charikar, M. "Similarity estimation techniques from

rounding algorithms," ACM Symposium on Theory of

Computing, pp. 380-388, 2002.

[16] Henzinger, M. "Finding near-duplicate web pages: a

large-scale evaluation of algorithms," In Proceedings of 29th

SIGIR Conference, pp. 284-291, 2006.

[17] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.

"Locality-sensitive hashing scheme based on p-stable

distributions," Symposium on Computational Geometry, pp.

253-262, 2004.

[18] Bahmani, B., Goel, A., and Shinde, R. "Efficient

distributed locality sensitive hashing," In Proceedings of the

21st ACM International Conference on Information and

Knowledge Management, pp. 2174-2178, 2012.

[19] Shahbazi, H., and Zhang, H. "Application of locality

sensitive hashing to realtime loop closure detection,"

IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 1228-1233, 2011.

[20] Das, A., Datar, M., and Garg, A. "Google news

personalization: scalable online collaborative filtering," In

Proceedings of the 16th International Conference on World

Wide Web, pp. 271-280, 2007.

[21] Aly, M., Munich, M. and Perona, P. "Indexing in large

scale image collections: scaling properties and benchmark,"

In IEEE Workshop on Applications of Computer Vision

(WACV), pp. 418-425, 2011.

[22] Broder, A. "On the resemblance and containment of

documents," In Proceedings of the Compression and

Complexity of Sequences, pp. 21-29, 1997.

[23] Shrivastava, A., and Li, P. "In defense of minhash over

simhash," In proceedings of AISTATS, pp. 886-894, 2014.

Page 789

