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Abstract 
Recommender systems are widely used for 

personalized recommendation in many business 

applications such as online shopping websites and 

social network platforms. However, with the 

tremendous growth of recommendation space (e.g., 

number of users, products, etc.), traditional systems 

suffer from time and space complexity issues and 

cannot make real-time recommendations when dealing 

with large-scale data. In this paper, we propose an 

efficient recommender system by incorporating the 

locality sensitive hashing (LSH) strategy. We show that 

LSH can approximately preserve similarities of data 

while significantly reducing data dimensions. We 

conduct experiments on synthetic and real-world 

datasets of various sizes and data types. The 

experiment results show that the proposed LSH-based 

system generally outperforms traditional item-based 

collaborative filtering in most cases in terms of 

statistical accuracy, decision support accuracy, and 

efficiency. This paper contributes to the fields of 

recommender systems and big data analytics by 

proposing a novel recommendation approach that can 

handle large-scale data efficiently.  

 

 

1. Introduction  

 
Recommender systems automatically identify 

recommendations for individual users based on 

historical user behaviors and have changed the way 

websites interact with their users [1]. Recommender 

systems are considered as a powerful method that 

allows users to filter through large volume of 

information. For example, Amazon and other similar 

online vendors strive to present each user with some 

recommended products that they might like to buy 

based their purchasing history or purchasing decisions 

made by other similar customers. Due to the 

exponential growth of big data, traditional 

recommender systems have been challenged for its 

scalability. Recently, various methods have been 

proposed to for the development of scalable 

recommendation systems. For example, researchers 

proposed to use matrix factorization to map users or 

items to vectors of factors and reduce the number of 

dimensions [2]. Despite all these advances in 

recommender systems, the current recommender 

systems are still not entirely satisfactory. Current 

recommendation systems cannot make real-time 

recommendations when dealing with extremely large-

scale data [3]. This paper aims to improve the 

efficiency of recommendation systems while 

preserving a similar level of accuracy. 

Collaborative filtering (short for CF), especially 

item-based CF has been widely used in recommender 

systems for ecommerce websites [2]. It works by 

building a matrix of item preference by users. If item i 

similar to item j, it will be recommended to a user with 

high probability if the user likes item j. However, when 

the number of users and number of items are large, 

item-based CF has two fundamental challenges. The 

first challenge is the time complexity. Item-based CF is 

computationally expensive because it needs to 

calculate similarity scores for all pairs of items. These 

similarity scores will be used for predicting 

preferences. The second challenge is the space 

complexity. The original input user-item matrix in the 

traditional item-based CF is too large to fit in memory. 

These challenges become more significant nowadays 

as we have much bigger data on users and items than 

ever before. For example, Amazon has about 400 

million unique products for on their website 

(https://www.scrapehero.com/how-many-products-are-

sold-on-amazon-com-january-2017-report/). Thus, 

finding information of interest from big data for 

assisting us to make informed decisions requires 

computationally scalable and efficient techniques.  

In this paper, we address these challenges by 

incorporating an efficient similarity finding algorithm 

(both time and space) into recommender systems. 

Locality sensitive hashing (short for LSH) uses 

signature matrix to approximately preserve similarity 

while significantly reducing dimension of data [4]. For 

binary data, we employ a well-known hashing strategy 

called minHash formed by minwise-independent 

permutations. For real-valued data, we use simHash 
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formed through random-hyperplanes summarization. 

Further, we divide signatures into bands and hash each 

band into buckets of a global hash table to reduce the 

number of similarity calculations. Two items hashed 

into at least one same bucket are considered to be a 

similar candidate pair. We show that this band hashing 

method can guarantee low false positive and low false 

negative rates. To evaluate the LSH based CF (short 

for LSH-CF), we generate 6 different synthetic datasets 

and collect two real-world datasets from Facebook. We 

apply LSH-CF and traditional item-based CF to these 

datasets and compare their performance. We find that 

generally LSH-CF is more efficient than item-based 

CF regardless of data size and type. Especially LSH-

CF is suitable for a large number of high-dimensional 

real-valued items.  

To summarize, this paper has the following 

contributions: 

• We build a framework of recommender system 

that incorporates LSH into CF to improve both 

time and space efficiency without losing 

recommendation accuracy; 

• We conduct experiments on both binary and real-

valued data to empirically compare LSH-CF with 

traditional item-based CF; 

• We implement both minHash and simHash and 

apply them to recommending Facebook interest. 

 

2. Literature Review 

 
In this section, we briefly review the previous 

research efforts related to recommender systems and 

locality sensitive hashing.  

Recommender systems can be built through many 

approaches and have been successfully deployed in 

many businesses, such Amazon.com [5] and 

Netflix.com [6], social networks [7], and research 

papers [8]. Collaborative filtering algorithms have been 

widely used for recommendation systems [9]. Other 

technologies have also been applied to recommender 

systems, including Bayesian networks, clustering, and 

content-based methods. Bayesian networks are 

effective for environments where knowledge of user 

preferences changes slowly with respect to the time 

needed to build the model but are not suitable for 

environments where user preference models must be 

updated rapidly or frequently. Clustering techniques 

usually produce less-personal recommendations than 

other methods, and in some cases, the clusters have 

worse accuracy than nearest neighbor algorithms [10]. 

Despite all these efforts, the current recommender 

systems still require further improvement to make 

recommendation methods more effective and 

applicable [11, 12]. The recommendation algorithms 

mentioned above are not suitable for real-time response 

when an extremely large-scale data needs to be 

processed. 

The fundamental problem in recommender systems 

is to find similar items. There are various similarity-

based techniques developed for similarity 

identification, including cosine similarity, correlation 

similarity, etc. Locality sensitive hashing is one of the 

state-of-the-art efficient algorithms that approximately 

preserving similarity but with significant dimension 

reduction. Minwise-independent permutations form an 

LSH for Jaccard coefficient, which was originally 

proposed in 1998 [13]. It was later used for similarity 

search in high dimensional data [14]. The basic idea is 

to hash the data points so as to ensure that the 

probability of collision is much higher for objects that 

are close to each other than for those that are far apart. 

Researchers introduced the idea of using random-

hyperplanes to summarize items in a way that respects 

the cosine distance for real-valued data [15]. It was 

also suggested that random hyperplanes plus LSH 

could be more accurate at detecting similar documents 

than minhashing plus LSH [16]. Techniques for 

summarizing data points in a Euclidean space are 

covered in [17]. Their scheme works directly on points 

in the Euclidean space without embedding and their 

experiments show that their data structure is up to 40 

times faster than kd-tree. As data becomes huge, the 

distributed layered LSH scheme focusing on the 

Euclidean space under l2 norm was proposed [18]. It 

can exponentially decrease the network cost while 

maintaining a good load balance between different 

machines.  

In addition to theoretical contributions in LSH, 

researchers from various domains used LSH to solve 

many real applications. For example, LSH was used to 

compute image similarity and then detected loop 

closures by using visual features directly without 

vector quantization as in Bag-of-Words approach [19]. 

Researchers also used collaborative filtering through 

minHash clustering for generating personalized 

recommendations for users of Google News [20]. LSH 

techniques had also been used to quickly and 

accurately index a large collection of images [21]. 

 

3. Overall Framework 

 
Figure 1 shows the entire framework of the LSH-

CF recommender system. The input of the system is 

the user-item rating matrix Rm×n and a user ID. The 

output is the top-N recommended items for that user 

based on predicted preference scores.  
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Figure 1. The LSH-CF Framework 

There are four major steps in our framework: 

Step I: minHash or simHash is used to create signature 

matrix Ms×n depending on whether data are binary or 

real values.  

Step II: Signatures are hashed into a hash bucket.  

Step III: If signatures of two vectors are hashed into 

the same bucket at least once, these two vectors are 

likely to be similar therefore we consider them as a 

candidate pair.  

Step IV: Recommendations are generated using the 

weighted sum strategy. Rather than using similarity 

scores from all other items, we only focus on similarity 

scores from candidate pairs. The clusters of candidate 

pairs allow us to reduce the number of similarity 

calculations to calculate preference scores for unknown 

entries and increase time and space efficiency.  

     The details of each step are discussed in the next 

section. 

 

4. Methodology 

 
In this section, we first formally define item-based 

CF approach and its disadvantages (especially the time 

and space complexity for large-scale data). Then, we 

explain the details of the four steps described in 

Section 3. 

 

4.1. Item-based Collaborative Filtering 

 
The goal of an item-based collaborative filtering is 

to predict the utility or preference of a certain item for 

a given user based on user’s previous likes, ratings, or 

opinions on other similar items. In a typical CF 

recommender system, there is a list of m users U={u1, 

u2, …, um} and a list of n items I={i1, i2, …, in}, where 

usually m>>n. Each user ui can express opinions on a 

subset of items. Each item ik can also receive opinions 

from multiple users. Opinions can be explicitly 

represented by the continuous rating scores within a 

certain numerical scale or can be implicitly derived 

from the raw data, for example, the number of 

purchasing records for the pair of (user, product), the 

browsing time length for a pair of (user, webpage), the 

sentiment of comments for the pair of (user, Facebook 

page), etc. It is possible to have users who never rate 

any items and items which never receive any ratings. 

This is called “cold-start” problem that will not be 

discussed in this paper. Traditional item-based CF 

systems aims to find items that a given user prefers 

with high probability.  

Item-based CF systems receive the entire  

user-item rating matrix R as input and a user ID. Each 

entry ri,j in R denotes the preference score (ratings) of 

the user ui on item ij. ri,j is unknown if item j has not 

been rated by user i. The first important step is to 

calculate similarity scores for all pairs of items S={s1,2, 

s1,3, …, si,j, …, sn-1,n}, where |S|=n(n-1)/2. To calculate 

similarity of two items (i, j), we could choose various 

vector distance measures such as cosine-based (see 

Equation 1), correlation-based (see Equation 2), etc. 

The second important step is to predict the value of 

each unknown entry using weighted sum strategy (used 

in this paper due to its simplicity, see Equation 3) or 

regression-based method.  

                         (1) 
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The most time consuming operations in item-based 

CF is similarity calculation for all pairs of items, 

especially when the number of items (n) becomes 

large. Once we obtain similarity scores, it is fast to 

recommend items for a given user. The time 

complexity of item-based CF is approximately 

O(n*n*m) where m is the number of users. It is 

infeasible to deploy this algorithm directly in a real-

time system because n is in a magnitude of thousands 

in practice. For a real system, it usually caches all 

similarity scores that can be computed offline and only 

needs to be updated if needed when the matrix R 

changes. On the other hand, the size of the user-item 

rating matrix is too large to fit in memory. For 

example, for a small matrix R with 100,000 users and 

10,000 items (compared with Amazon with more than 

300 million users and 400 million items), it 

approximately takes about 8 Gigabytes memory size 

when read these double numbers in Java. One possible 

solution to this memory overflow issue is that using 
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sparse matrix representation to avoid storage from 

unknown entries. It is helpful for mid-size and highly 

sparse matrix rather than large-scale and dense 

matrices. Another practical solution is partial read, 

meaning that only read entries related to two items for 

calculating their similarity. But it requires many extra 

computations such as filtering operation, frequent file 

I/O, etc. 

 
4.2. Signature Generation Using Hashing 

 
Locality sensitive hashing is an algorithm for 

solving the approximate nearest neighbor search in 

high dimensional spaces. It is an approach of 

transforming the data item to a low dimensional 

representation, or equivalently a short code consisting 

of a sequence of bits. It is based on the definition of 

LSH family H (see formal definition below), a family 

of hash functions mapping similar vectors to the same 

hash code with higher probability than dissimilar 

vectors. One of the most popular LSH methods 

(minHash) invented in 1997 is extensively studied in 

theory and widely used in practice in various 

applications (clustering, duplicate detection, etc.), 

especially for large-scale data [22]. There are two 

aspects focused by researchers in LSH community: (1) 

developing LSH family for various distances or 

similarities. In this paper, we describe two commonly 

used hashing algorithms for data transformation: 

Jaccard similarity based minHash for binary data and 

cosine similarity based simHash for general real-

valued data [15]; (2) exploring the theoretical boundary 

(both time and space) for LSH family under specific 

distances or similarities. Since the main topic of this 

paper is improving the efficiency of item-based CF by 

incorporating LSH without lowering performance, we 

will not discuss too much about theoretical boundary, 

which can be found in [15]. 

Definition: Locality Sensitive Hashing A family 

H is called (d1, d2, p1, p2)-sensitive if for any two 

vectors x, yÎ Rmand h chosen uniformly from H 

satisfies the following two conditions.  

(1) If similarity score sim(x, y) >= d1, then 

PrH(h(x) = h(y)) >= p1 

(2) If similarity score sim(x, y) <= d2, then 

PrH(h(x) = h(y)) <= p2 

The distance can be obtained through similarity via 

D(x, y) = 1 – sim(x, y). These parameters especially d1 

and d2 can be adjusted based on the application. We 

can make d1 and d2 as close as we wish. Then the 

penalty is that typically p1 and p2 are close as well. It is 

possible to drive p1 and p2 apart while keeping d1 and 

d2 fixed.  

 

4.2.1 minHash for Binary Data. For binary data, 

Jaccard similarity is usually used to measure how close 

sets are, although it is not really a distance measure. 

That is, the closer sets are, the higher the Jaccard 

similarity. It is defined as the ratio of the sizes of the 

intersection and union of two sets A and B: JS(A, B) = 

. For example, two binary (0 or 1 for each 

element) vectors A=(0,0,1,1,1,0,0,1) and 

B=(0,1,1,1,1,1,0,0), their Jaccard similarity is 3/8. 

 
Figure 2. minHash Signature Example 

We want to find a hash function h to transform our 

data into a low-dimension vector such that (1) if two 

data items (x, y) are similar under some similarity 

measures, then with high probability h(x)=h(y), and (2) 

if (x, y) are dissimilar, then with high probability 

h(x)≠h(y). minHash is suitable hash function for 

Jaccard similarity. It is defined as “hπ(x) = the number 

of the first row, in the permuted order, in which the 

column x has value 1”. Let’s take four vectors V1, V2, 

V3, and V4 shown in Figure 2 for example, if the 

permutation ( ) vector of rows is (4, 2, 1, 3, 6, 7, 5)T 

(‘T’: transpose), then (V1) = 2, (V2) = 1, 

(V3)=4, and (V4) = 1. There is a remarkable 

connection between minhash and Jaccard similarity of 

two vectors that are minhashed.  

Theorem 1: The probability that the minhash 

function for a random permutation of rows produces 

the same value for two vectors C1 and C2 equals the 

Jaccard similarity of those sets, which is Pr[hπ(C1) = 

hπ(C2)] = sim(C1, C2). 

Proof: For two column vectors C1 and C2, rows can be 

divided into the following three types: 

(1) Type I rows have 1 in both columns. 

(2) Type II rows have 1 in one of the columns and 0 in 

the other. 

(3) Type III rows have 0 in both columns. 

Since the matrix is sparse, most rows are of type 

III. Let x rows of type I and y rows of type II. Then 

similarity of C1 and C2 sim(C1, C2)=x/(x+y). x is the 

size of the intersection of C1 and C2 and x+y is the size 

of C1 union C2. 

Now let’s consider the probability that hπ(C1) = 

hπ(C2). If we image the rows permuted randomly, and 
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we scan all rows from the top, the probability that we 

shall meet a type I row before we meet a type II row is 

x/(x+y). If we meet a type II row, then we know hπ(C1) 

≠ hπ(C2). For type III rows, they are irrelevant to 

minhash. We conclude the probability that hπ(C1) = 

hπ(C2) is x/(x+y), which is also the Jaccard similarity of 

C1 and C2.  

     Based on the definition of LSH, the family of 

minhash functions is a (d1, d2, 1-d1, 1-d2)-sensitive 

family for any d1 and d2, where . 

We can use s different permutations (minhash 

functions) to create a signature vector for each item 

vector and consequently result in a signature matrix 

 associating to the original input matrix, where n 

is the number of column vectors. This signature matrix 

also significantly reduces the data size from m*n 

integers to s*n integers that can be easily fit into 

memory. As we all know that permuting rows even 

once is prohibitive. Our solution is using row hashing 

and we develop a one-pass implementation shown in 

Algorithm 1. 

 
4.2.2 simHash for Real-Valued Data. minHash is 

used for binary data, however, most applications have 

real-valued data and the distance between two vectors 

are measured by cosine similarity. simHash does 

similar process to minHash but for real-valued data. It 

randomly projects high-dimensional vector to low 

dimensional bit signatures such that cosine distance is 

approximately preserved.  

The following steps describe the generation of bit 

signatures Sig1, Sig2  for two high-

dimensional vectors V1, V2 . V1 and V2 can form 

a hyperplane P and they make an angle θ between 

them.  

(1) Uniformly randomly pick s hyperplanes {h1, h2, …, 

hs} in the  dimensional space that is orthogonal to 

P and intersect P at the origin. 

(2) For each hyperplane hi, if the projection of vector 

onto hi is positive, we generate a bit 0, 1 otherwise. 

Intuitively, if two vectors are similar (the angle θ is 

small), then it is likely to have same bits for most 

hyperplanes. The large size of bit signatures can reduce 

the error between true cosine from original vectors and 

approximate cosine from two-bit signatures while at 

the cost of computing time. To find a balance between 

cheap and accurate, the typical size of bit signature is 

64 in real practice. Let’s look at an example of 

generating 8-bit signatures for two-dimension vectors 

as shown in Figure 3. For two-dimension vector, if it 

locates above the line, the corresponding bit is 0, 1 if 

below.  

 
Figure 3. simHash Bit Signature Example 
simHash originates from the concept of sign 

random projections (SRP) [23]. Given two vectors V1 

and V2, SRP utilizes a random vector w from a random 

hyperplane with each component generated from i.i.d. 

Gaussian distribution and only stores the sign of the 

projected data. The collision under SRP satisfies the 

following equation in [reference]: Pr(hw(V1) = hw(V2)) 

= , where . The term 

 is the cosine similarity for V1 and V2.  Since 

 is monotonic with respect to cosine similarity, 

simHash is a (d1, d2, , ,) 

or a (d1, d2, 1-d1/180, 1-d2/180)-sensitive family of 

hash functions. The simple simHash algorithm is 

implemented in Algorithm 2. In addition, this signature 

matrix also significantly reduces the size from m*n 

integers to s*n bits (1 integers = 32 bits in Java) that 

can be easily fit into memory for fast processing in 

later steps.  
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4.3. Hashing Signature and Finding Candidate 

Pairs 

 

The signature matrix  created from 

hashing significantly reduces the dimensionality of 

vectors while approximately preserving similarities. 

But it still needs O(n2) time for comparing all pairs of 

signature columns to find similar vectors, which is not 

efficient enough for real-time recommendation. In this 

section, we will discuss the second important 

component of LSH to efficiently find candidate similar 

pairs. It basically involves three operations: partition, 

hashing, and counting. Before these operations, we 

define a hash table HT with k buckets. We could make 

k as large as possible for avoiding hash collision. The 

pictorial example to describe these steps is shown in 

Figure 4. 

 
Figure 4. Example of Hashing Band 

• Partition: we first divide M into b bands of r rows 

each: {b1, b2, …, bb}, the last band may have less 

than r rows. B and r are parameters and they can 

be tuned based on the threshold of vector 

similarity (sim). 

• Hashing: For each band, hash its portion of each 

column to HT. 

• Counting: Count the number of times two columns 

are hashed into the same bucket. The higher the 

count, the more confident we can say two vectors 

are very similar. In practice, candidate column 

vectors are those that hash to the same bucket for 

at least 1 band. 

Another question we have not answered yet is that 

what is the mechanism to adjust parameters based on 

the similarity threshold. To simplify the problem, we 

make an assumption that there are enough buckets that 

columns are unlikely to hash to the same bucket unless 

they are identical in a particular band. Let’s denote t to 

be similarity score of two vectors V1 and V2 (t = 

sim(V1, V2)). 

Theorem 2: The probability that at least 1 band 

identical is 1-(1-tr)b. 

Proof: Now we pick any band bi (r rows).  

The probability that all rows in bi are equal is tr.  

The probability that at least one row in bi is unequal is 

1 – tr. 

The probability that no bands are identical is (1 – tr)b. 

The probability that at least 1 band is identical is 1-(1-

tr)b.  

Three sub-figures in Figure 5 show the ideal case, 1 

band of 1 row, and a general case, respectively. For 

example, the signature matrix has 64 rows (64 minhash 

signatures or 64 bit signatures from simhash). We 

divide it into b=16 bands of r=4 rows each. The 

similarity threshold s is set to 0.8. Then from the Table 

1, we could find that 99.98% pairs of truly similar 

document if they have at least one band hashed into the 

same bucket. It is about 1/5,000th of the 80%-similar 

column pairs are false negative. Similarly, The false 

positive is also low. Approximately 2.53% pairs of 

items with similarity 0.2 end up becoming candidate 

pairs. These false positive can be removed during the 

following similarity calculation process for 

recommendation use (if the similarity score of two 

candidate vectors is less than the threshold, they are 

false positive). 

Table 1. Example of probability of sharing a 
bucket given a similarity threshold 

Similarity 

threshold s 

P=1-(1-sr)b 

0.1 0.0016 

0.2 0.0253 

0.3 0.1220 

0.4 0.3396 

0.5 0.6439 

0.6 0.8915 
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0.7 0.9876 

0.8 0.9998 

 

 
Figure 5. Analysis of LSH for Different Cases 
 

4.4. Prediction and Recommendation 
 

Traditional item-based CF is not efficient (both in 

time and space) for large-scale data, regardless of 

binary or real-valued. The most time-consuming part is 

similarity calculation for all pairs of items. LSH solves 

the approximate in a high-dimension space by creating 

low-dimension signatures while preserving similarity. 

After LSH, we obtain all candidate pairs. Then we 

calculate their similarity scores. In this section, we 

discuss how to incorporate LSH into item-based CF for 

efficient recommendation without losing performance.  

In item-based CF system, for any item Ii, we have a 

list of similarity scores from all other items: {S1,i, S2,i, 

…, Sn-1,i, Sn,i}. In our recommendation system, we also 

have a list for each item: L = {Sk,i | }. The 

size varies for different items and is much less than n 

for most items. Each element in this list together with Ii 

forms a candidate pair from the LSH process. During 

the recommendation step, we use top-N nearest 

neighbors to calculate predicted values for unknown 

entries. Suppose we want to calculate the rating score 

for user Uu on item Ii using weighted sum strategy. The 

following equation 4 is used. 
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Where Sk,i
'

is the kth similarity score in the list L in a 

descending order, ru,k
'

is the corresponding rating from 

user u on the corresponding item. To output the binary 

ratings, we use the threshold of 0.5. If the predicted 

rating is large than threshold, we change it to 1, 0 

otherwise.  

 

5. Evaluation   

 
To show the efficiency and accuracy of LSH-CF, 

we use both synthetic and real-world data to run 

computational experiments. We compare results from 

traditional item-based CF with those from LSH-CF 

recommender system in terms of three aspects: running 

time consumed, memory spaces to store the matrix, 

and the accuracy of recommended items to users. All 

our experiments were implemented using Python and 

Apache Mahout machine learning package. We ran all 

our experiments on an OS X based Mac PC with Intel 

Core i7 processor having speed of 3.4GHz and 16GB 

of RAM.  

 

5.1 Datasets 

 
Synthetic data. We first randomly generate three 

matrices with different dimensionalities for binary and 

real-valued data, respectively. For binary data, each 

column vector (denoting an item) is generated under 

the binomial distribution Bin(m, 0.7), where 0.7 is the 

probability of getting 1s. This also determines the 

sparsity level (SL): . 

For real-valued data, we first fix the SL and then non-

zero elements are randomly generated under a 

Gaussian distribution. To make these numbers relevant 

to star ratings on a five-point scale, we first generate 

matrix use N(2.5, 1) and then change 0 elements to 1.  

 

Facebook data. Our real-world data is collected 

from a popular social media platform: Facebook. We 

use Facebook Graph API to download data from about 

13,000+ public pages in different categories, such as 

celebrities, sport teams, food/beverages, retailers, etc. 

On each page, we get user-page interaction 

information, including users’ “likes”, “comments”, and 

“shares” for all posts from the first day when the page 

was founded on Facebook to January 1, 2013. Each 

page is considered as an item. “Likes” is the only 

information used for deriving binary data. If user u 

likes a page i, then ru,i=1 regardless of the number of 

times he/she liked. An item never liked by a user leads 

to an unknown entry. For the real-valued user-item 

matrix in Facebook, we use the number of historical 

activities to represent user’s preference on a page. This 

is actually considered to be a Facebook public page (or 

interest) recommender system. For both, we choose 

1,000 pages (items) and 10,000 users at random. As we 

mentioned before, we do not consider cold-start 
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problem in this paper. The summary of our datasets 

(see Table 2) shows that each signature matrix can 

significantly reduce the size of the data up to 1,200+ 

times. 

Table 2. Summary of datasets 
Binary data 

 Synthetic data Facebook 

Parameters R1 R2 R3 R4 

# of rows 100 1K 10K 10K 

# of columns 10K 100K 1M 1K 

size of R ~0.1Mb ~12Mb ~1.2Gb 1.25Mb 

# of rows in M 64 

size of M 0.08Mb 0.8Mb 8Mb 0.008Mb 

Real-valued data 

 Synthetic data Facebook 

Parameters R5 R6 R7 R8 

# of rows 100 1K 10K 10K 

# of columns 10K 100K 1M 1K 

size of R 8Mb 0.8Gb 80Gb 80Mb 

# of rows in M 64 

size of M ~5Mb ~50Mb ~0.5Gb ~0.064Mb 

LSH can approximately keep similarity after 

dimension reduction. In the section of analysis of LSH, 

we already show that false positive and false negative 

based on parameters are low. We check the difference 

between similarity scores from original item vectors 

and signature vectors to check how good the 

approximation is. Therefore, we randomly choose 

1,000 different item pairs and their corresponding 

signature vectors from two big matrices R3 and R7, 

respectively. It is not easy to show 1,000 pairs in a 

plot. We then further randomly pick 100 out of 1,000 

pairs to show their similarities (see Figure 6). It tells us 

that the difference is small regardless of data format 

(binary or real-valued), data size, and similarities 

within data. The average difference of all 1,000 pairs is 

0.058 and 0.067 for R3 and R7, respectively. 

 
Figure 6. Signature similarity and vector 

similarity from R3 and R7 

 

5.2 Evaluation Metrics 
Researchers have employed many types of 

measures for evaluating the quality of a recommender 

system. They are mainly falling into two categories: 

statistical accuracy and decision support accuracy 

(DSA).  

Statistical accuracy evaluates the accuracy of a 

system by comparing the numerical/binary 

recommendation scores against the actual user ratings. 

Mean Absolute Error (MAE) is widely used and 

measuring the deviation of predicted values from their 

true values. It calculates the average on all absolute 

errors of rating-prediction pair <ru,i, pu,i>. Formally,  

 
where N is the number of pairs, ru,i is the actual 

rating from user u on item i, and pu,i is the 

corresponding predicted rating. The lower the MAE, 

the more accurately the recommender system makes 

predictions. For the binary data, we use the Jaccard 

similarity accuracy (JSA) to measure the predicted 

preference and the actual preferences. The 

recommender system with higher JSA is better.  

Decision support accuracy evaluates how 

effective the recommender system is at helping users 

select preferred items. It measures whether users really 

choose items with high predicted ratings and really not 

select items with low predicted ratings. For our real 

data, we first divide our data into training (January 1, 

2009 - May 1, 2012) and testing portion (May 2, 2012 - 

January 1, 2013). We then randomly select K (e.g., 

100) users and recommend each m (e.g., 10) items that 

are not in their interest lists during the training period. 

Then we count the number of items (denoted as Ni) the 

ith user is interested in the testing period. “Interested” 

means that they have activities (“like”, “comment”, or 

“share”) on that item. Formally, DSA is 

. The higher the DSA, the better 

quality our recommender system achieves. In addition, 

we use weighted sum strategy to predict ratings for 

each unknown entry. In this experiment, we use top 30 

similar items instead of all other items.  

In addition, we especially want to show the 

efficiency of our recommender system. It can be 

measured by the running time.  

5.3 Results 
We apply both traditional item-based CF and the 

proposed LSH-CF to the eight datasets. The 

experiment results mainly include two parts: accuracy 

and efficiency. For accuracy, we randomly hide 1,000 

existing ratings for each matrix and calculate 

corresponding MAE and JSA. We find that LSH-CF 

significantly improves efficiency over item-based CF 

in most cases regardless of data, which can be up to in 

a magnitude of thousand times (see Table 3 and Table 

4).  

Table 3. Comparisons for statistical 
accuracy and time 

Synthetic data 
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 JSA1 Time (s) 

Dataset LSH-CF Item-

based CF 

LSH-CF Item-based 

CF 

R1 0.73 0.77 93.24 1.28*104 

R2 0.72 NV 1.47*103 X 

R3 NV NV X X 

Real-valued data 

 MAE2 Time (s) 

 
LSH-CF Item-

based CF 

LSH-CF Item-based 

CF 

R5 0.77 0.82 3.88 4.83*102 

R6 0.71 0.74 299.10 1.81*105 

R7 0.81 NV 2.59*103 X 

 

‘X’ means the calculation cannot finish within a 

day and ‘NV’ means no values because we could not 

finish them. For binary synthetic data, JSA of LSH-CF 

is slightly lower than item-based CF because we 

convert our numerical predicted ratings to binary and 

probably lose some accuracy. For real-valued synthetic 

data, LSH-CF obtains lower MAE than item-based CF. 

For Facebook data, both algorithms get low DSA 

because user historical activity may not be a good 

indicator of his/her future interest. LSH-CF has higher 

DSA than item-based CF, because it only focuses on 

potentially similar items for preference prediction. 

However, item-based CF uses top-N similar items for 

preference calculation no matter how similar these N 

items to the focal item. In addition, LSH-CF is much 

faster for real-valued data than binary data because set 

operations when calculating Jaccard similarity are slow 

comparing to cosine similarity for two real-valued 

vectors. We further find that item-based CF performs 

faster than LSH-CF for small number of binary high 

dimensional data as indicated by R4 in Table 4, 

because permutation operations take time for binary 

data. However, item-based CF becomes less efficient if 

the number of items increases.  

Table 4. Comparisons for decision support 
accuracy and time 

 DSA3 Time (s) 

Dataset Item-

based CF 

LSH-CF Item-based 

CF 

LSH-CF 

Facebook 

binary: R4 

0.63 0.58 415.26 888.17 

Facebook Real-

valued: R8 

0.73 0.76 144.80 25.73 

 

6. Conclusions  

 
Traditional item-based collaborative filtering 

techniques are not suitable for real-time 

                                                 
1 The higher JSA, the better the system is.  

2 The lower MAE, the better the system is.  

3 The higher DSA, the better the system is. 

recommendation when dealing with large-scale data. 

This paper proposed an efficient recommender system 

by incorporating hashing strategies, which can 

approximately preserve similarities after significant 

dimension reduction. Two hashing methods, minhash 

for binary data and simhash for real-valued data, and 

similar candidate pair identification were used to 

increase the efficiency of similarity computing, which 

is the most time-consuming task for traditional CF-

based recommender systems. We used generate 

synthetic data and collected real-world data from 

Facebook to evaluate the proposed LSH-CF method.  

The experimental results showed that LSH-CF 

generally outperforms item-based CF in terms of 

statistical accuracy, decision support accuracy, and 

efficiency regardless of data size and format. 

Specifically, LSH-CF outperforms item-based CF 

when the number of items is in a magnitude of 

thousands.  

The method proposed in this paper can significantly 

improve the accuracy and efficiency of large-scale 

recommendation systems. Ecommerce platforms with 

huge number of items or users can utilize the method 

to provide users with near better recommendations.  

Traditional recommendation systems computes user 

similarity or item similarity offline and assume the 

similarities do not change frequently. However, this is 

not realistic for real businesses. Hundreds of 

transactions may happened in an Ecommerce website 

per second. Without considering the most recent 

transactions, the recommendation result may not reflect 

the best interest of users. The LSH-CF computes all 

similarities in real time and thus provides accurate 

results in a dynamic business environment. For users of 

Ecommerce websites or social media websites, they 

can benefit from the proposed method and receive 

recommendations that are computed based on their 

real-time activities.  

Distributed computing using Hadoop is a good 

alternative and has been successfully deployed by 

industries. Implementing LSH-CF using MapReduce 

or Spark is one of our future work to further improve 

the performance of recommender systems. In addition, 

finding other locality sensitive hashing families for 

other distance measures and incorporating content or 

external knowledge (attributes of items, item-item 

networks, etc.) into LSH-CF can also be thought as a 

way to improve the accuracy of recommender systems.  
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