Emotional Labor in the Sharing Economy

Christoph Lutz
BI Norwegian Business School
cristoph.lutz@bi.no

Gemma Newlands
BI Norwegian Business School
gemma.e.newlands@bi.no

Christian Fieseler
BI Norwegian Business School
christian.fieseler@bi.no

Abstract

The peer-to-peer nature of the sharing economy encourages participants to alter their behavior in ways that resemble traditional notions of emotional labor. A key element in this shift lies in the coercive nature of feedback mechanisms which condition both providers and consumers to perform emotional labor during service encounters. Using survey data from 207 sharing economy consumers in the US, we show how different facets of the feedback mechanisms employed by sharing economy services influence consumers’ emotional labor. In addition, we show how platforms and their policies matter in encouraging emotional labor, indicating the need to analyze the topic on a fine-grained level. We conclude by deriving propositions for future research and practical recommendations.

1. Introduction

Encouraged by widespread technological advancements [9, 13, 64], as well as by shifts in consumer culture towards collaboration [4, 5, 6, 23, 48], a phenomenon widely referred to as the ‘sharing economy’ has arisen in the last decade.

At its broadest conceptualization, a variety of different interaction modalities have been included within the umbrella of the sharing economy: peer-to-peer, business-to-consumer, and even business-to-business [22]. For our purposes, we approach the sharing economy in the sense of being a peer-to-peer exchange of tangible resources, mediated through a digital platform.

Recently, a vivid stream of research has started to explore various facets of the sharing economy. Key areas of investigation have included conceptual clarifications, business models, and motivations for sharing [16, 19], as well as marketing and consumer research [e.g., 40, 41]. In addition, legal studies have considered questions of regulation and labor law [18, 20, 57].

Under a critical lens, scholars have begun to look at questions of power [56] and inequality [1], covering algorithms [17, 62], information asymmetries [69], collective action [66], and ratings [30, 52, 73]. However, limited research to date has looked at the psychological and emotional repercussions of the sharing economy on providers or consumers.

Defined by Hochschild as ‘the management of feeling to create a publicly observable facial and bodily display’ [42, p. 7], emotional labor has been long regarded as an important phenomenon across traditional work contexts [45]. Despite some initial work focusing on the specific context of Uber drivers [60, 62, 64], emotional labor has been largely overlooked to date as a factor within the sharing economy. In the following, we argue that emotional labor is a central factor in the experience sharing services.

Although the proliferation of third party services, such as impersonal key-exchanges in homesharing, may be shifting the element of direct human interaction, services such as Airbnb are predicated on the idea of staying at a stranger’s home and meeting the host in person. Similarly, ride-sharing services, such as Uber or BlaBlaCar, necessitate human interaction with a driver. While optimistic expectations for self-driving cars may remove the human-interaction element in the future, for now human-interaction within a service remains a fundamental aspect of the sharing transaction. In transactions with such a ‘service’ element, we would therefore expect providers (e.g., hosts, drivers) to engage in some form of emotional labor [32, 60].

We argue that emotional labor is encouraged among providers through the specific platform architectures since, to incentivize trustworthiness, sharing platforms employ reputation based feedback systems [54]. This mechanism works in a form of indirect reciprocity, where information about participants can be shared among a network [12, 43, 50]. For example, the key trust mechanism on Airbnb is the review feature [30, 73], while Uber and other ride-sharing platforms rely on bilateral user ratings [52].

The proliferation of services has resulted in a scenario where providers compete in a crowded market and consistently high ratings have become crucial for success and even eligibility [62]. Achieving top ratings is dependent on the continued provision of emotional
labor [64]. However, distinct from many traditional work contexts where emotional labor factors into services, the reputation services of the sharing economy are uniquely two-sided in that consumers receive a rating as well as providers.

As a measure of reciprocity, providers have the opportunity to reject potential consumers if they have either low ratings or unflattering written feedback [32, 52]. Accordingly, consumers are encouraged to mediate their behavior to at least avoid bad ratings, if not to achieve good feedback. Moreover, consumers are treated as ‘guests’ and ‘peers’ rather than customers, suggesting a more balanced power-dynamic and the expectation of a polite, equal, and friendly hospitality relationship. In this article, we are thus interested in the question of whether this specific setup has implications for consumers’ experience of a service and whether they engage in parallel emotional labor efforts.

To date, no research has looked at the emotional labor undertaken by consumers during a transaction. Rather, there is a presumption in the literature that consumers display their authentic emotions, ranging from anger to joy. This research is thus an attempt to narrow the research gap by examining emotional labor among consumers, which might be necessitated by the guiding role of bilateral feedback mechanisms.

We addressed these questions by developing the following research questions: How pronounced is emotional labor among consumers of sharing economy platforms? How do demographic, socio-economic, and behavioral characteristics affect consumers’ emotional labor in the sharing economy? How does the rating system affect consumers’ emotional labor in the sharing economy?

2. Emotional Labor
2.1. Emotional Labor in Work Contexts

Emerging from the seminal work of sociologist Arlie Russell Hochschild [42], the concept of emotional labor concerns an individual’s efforts to induce or suppress certain feelings so as to produce the outward expression of organizationally desired emotions. It is based on the socio-psychological theoretical underpinning of the concept of emotion regulation [38]. By integrating earlier theoretical work into a robust conceptualization of emotional labor [2, 42, 55], Grandey [35, p. 97] provided an often-used definition of emotional labor as ‘the process of regulating both feelings and expressions for organizational goals’.

Fueled by developments in the labor market, research into emotional labor has burgeoned in the last three decades [29, 33, 72], directed towards service industries such as retail, aviation, and the medical profession. While research has mainly looked at face-to-face contexts, some research has looked recently at emotional labor even in e-commerce transactions [46].

The context within which emotional labor is carried out is significant since emotional labor is driven by occupational norms, namely the desired emotional display rules of an organization [28, 35, 55, 59]. In training and at work, individuals face conditioning towards meeting such emotional display rules [42].

Although recent work has attempted to extend emotional labor profiles into more granulated divisions [31], extant models conceptualize emotional labor as a bi-dimensional concept, covering two distinct strategies: deep acting and surface acting [35, 36, 42 45]. Building on Stanislawski’s ‘method acting’ technique [63], where actors must recall emotions from their own ‘emotional memory’, deep acting involves individuals conditioning themselves to ‘feel’ emotions and project them outwards [31, 39]. Surface acting, in contrast, is more superficial, ‘faking or amplifying emotions by displaying emotions not actually felt’ [39, p.958]. However, the consequences of emotional labor, with regard to surface acting, have also been noted, such as burnout, dissatisfaction, cynicism, service misbehavior, and turnover intention [15, 35, 45, 47, 49, 53, 71].

Despite this growth of scholarly work on emotional labor, a number of important questions remain to be answered. A close look at the emotional labor literature shows that, in current discussions, attention has been focused on the worker-side. As a result, our understanding of the consumer side is limited, thus restricting a holistic understanding of the entire transaction. This is perhaps due to Hochschild [42], who created a path dependency for further discussion on the role of the consumer. According to Hochschild, workers, in the airline industry, had to learn that ‘the passenger has no obligation to return empathy or even courtesy...’ [42, p. 110]. Accordingly, in emotional labor literature of the past three decades, the customer is perceived as merely a passive audience member whose emotions are there to be managed and influenced [34, 39, 58, 67, 68].

As a caveat, it is debatable whether consumers are eligible to perform emotional labor, per se, as they are not in a work setting. However, to date, considerable literature has attempted to re-define work as existing beyond that which is compensated [24, 51]. If consumers are performing some form of emotional regulation which complements the emotional labor of the service workers, then the notion of emotion labor can thus be conceptualized more broadly than a strict employment context to include the labor of consumers.

Following up on the emotional labor literature in established work settings, we propose the following hypotheses in order to control for demographic factors.
H1a: Women perform more emotional labor than men.
H1b: Education has a positive effect on emotional labor.
H1c: Age has a positive effect on emotional labor.
H1d: Income has a positive effect on emotional labor.

Volunteering describes whether individuals engage in community work, help people in need, or get involved in issues of health and safety. Reflecting altruistic personality traits, it is connected to factors such as helpfulness and empathy [16]. Individuals who are active in that regard would be confronted more often with situations where they have to perform emotional labor. They should therefore be more likely to perform emotional labor in sharing economy interactions.

H2: Volunteering has a positive effect on emotional labor.

We also control for the frequency of use. We would expect users who participate more frequently to perform more emotional labor because they are accustomed to the “rules of the game”.

H3: Sharing frequency has a positive effect on emotional labor.

2.2. Emotional Labor in the Sharing Economy

The sharing economy is predicated on the temporary exchange of goods in a peer-to-peer transaction. While certain sectors of the sharing economy are relatively hands-off, such as finance-sharing, other sectors involve a significant value-add service layer. In transactions with such a ‘service’ element, providers are put in the position of service providers, which mirror pre-existing service roles known for their emotional labor requirements, such as hoteliers and taxi drivers. Accordingly, literature has begun to tentatively engage with the notion that providers in the sharing economy are undertaking emotional labor (cf. [32, 60]).

Raval and Dourish [60], for instance, raised the possibility of emotional labor among Uber drivers in their study of emotional labor in ride-sharing. They concluded that drivers’ performance of confidence and calm was a form of emotional labor. Their study was expanded on by ethnographic research undertaken by Rosenblat and Stark [62], who similarly focused on Uber drivers in the US (cf. [64]), finding that Uber drivers were required to perform emotional labor. Moreover, they asserted that the design of the Uber app acted as a conditioning force which encouraged drivers to perform such emotional labor.

Glöss et al. [32], most recently in their study of ride-sharing drivers, conducted a series of interviews and similarly note that Uber driving demands emotional labor from the providers, ‘Small talk seems to be an expected part of the Uber journey’ (p. 9).

H4: Emotional labor varies depending on the platform.

2.3. The Role of Ratings and Reviews

In Hochschild’s [42] discussion of emotional labor among airline personnel, the presence of passenger feedback, in the form of letters or opinion polls, translated into rewards or punishments. In the sharing economy, emotional labor is similarly encouraged by the presence of dynamic feedback mechanisms.

In early reputation literature, reputation was modeled as the beliefs of market participants about each other [37, 50]. As distributed e-commerce platforms needed to form trust, they reified ‘reputation’ by collecting and displaying feedback ratings as a seemingly objective calculation of reputation within a network [3, 7, 8, 11, 26, 27, 61]. To incentivize trustworthiness, online commerce platforms thus employ reputation based feedback systems which enable actors to provide information about past transactions [54].

However, beyond merely acting as an instrument of ensuring trust, reputation mechanisms also act as a factor in determining the success of a transaction. Providers with bad feedback can face negative consequences, up to and including rejection from the platform [62]. In the context of ride-sharing, Lee et al. [52] found that ratings created a service mentality among providers, while Horton and Golden [44] stated that the reputation system worked to motivate good behavior.

Cockayne [21] has similarly discussed how ratings can act as an instrument of imposing discipline and economic control over user behavior, ensuring that provider behavior aligns to what can meet the ratings required. As Van Doorn [69, p. 903] notes, ‘customer ratings serve as another crucial metric with which to control service providers’.

This reputation system is, however, bilateral and reputation systems act as an incentive for both parties to act acceptably in a transaction. Both parties have the opportunity to provide a rating on certain sharing platforms, suggesting a notionally equivalency of the rating. While the impact of ratings is arguably greater on providers, the power of the reputation mechanism can be seen on both sides of the transaction. On ride-sharing platforms, for instance, Lee et al. [52] noted that providers would use consumer ratings to decide whether to accept the ride. While Glöss and colleagues [32] raised the issue that some consumers may not be aware that they are being rated, given the impact of ratings on emotional labor for providers, we hypothesize that ratings will have an influence on consumer behavior.

We distinguish between three aspects of ratings: rating experience, rating literacy, and rating process fairness. Each of these aspects is expected to have a positive effect on emotional labor. More experienced and literate raters develop a stronger sense of how certain behavior, including emotional labor, leads to better
ratings. In that sense, rating experience and rating literacy incorporate behavioral conditioning towards favorable ratings. Rating fairness, in turn, describes consumers’ perception that ratings are non-arbitrary and based on actual experiences. When modified favorably, these experiences will predictably lead to more positive ratings. Thus, we propose the following hypotheses:

H5a: Rating experience has a positive effect on emotional labor.

H5b: Rating literacy has a positive effect on emotional labor.

H5c: Rating process fairness has a positive effect on emotional labor.

In addition to aspects of the rating system, we deem matching quality to be an important predictor of emotional labor since effort expended to find a suitable and personally tailored match would encourage good behavior in a form of reciprocation.

H6: Matching quality has a positive effect on emotional labor.

3. Methods

3.1. Data and Sample

Our goal was to explore the incidence of emotional labor among consumers in the sharing economy, taking note of any demographic or behavioral antecedents. Bilateral rating systems presented the opportunity to further explore the impact of the rating system on emotional labor among consumers. As the interaction between users varies depending on sharing service, we wanted to differentiate between use-type.

In May 2017, we conducted a quantitative survey among 393 US-based respondents. The survey was distributed via Amazon Mechanical Turk (AMT) and the survey administration was handled via TurkPrime.

The questionnaire consisted of a series of open and closed questions, with closed questions vastly outnumbering the open ones. For most closed questions, respondents could state their agreement to a statement on a five-point Likert scale, ranging from 1—strongly disagree, to 5—strongly agree, with 2—somewhat disagree, 3—neither agree nor disagree, and 4—somewhat agree as the middle categories.

The survey took 1013 seconds (about 18.5 minutes) on average to fill out and the median number of seconds to complete it was 885 (about 14.75 minutes), with a standard deviation of 508 seconds (about 8.5 minutes). Respondents received a reward of 2 US Dollars with an additional 1 US Dollar completion bonus.

We included an attention check question with the wording, “The purpose of this question is to assess your attentiveness to question wording. For this question, please mark the ‘Weekly’ option.” Seven participants (1.8 percent) failed the attention check and were excluded from the data analysis. This left us with a sample of 386 respondents.

After a set of demographic questions, respondents were filtered into one of four response streams, corresponding to four groups relative to the sharing economy: providers (e.g., Airbnb host, Uber driver), consumers (e.g., Airbnb guest, Uber passenger), aware non-users (i.e., individuals who have heard of sharing economy services but never used them), and non-aware non-users (i.e., individuals who have never heard of sharing economy services). Respondents who use sharing economy services as providers and consumers were classified as providers because this category is rarer.

Of the 386 respondents, 3.6 percent were providers (14 respondents), 55.2 percent consumers (213 respondents), 40.9 percent aware non-users (158 respondents), and only one person was a non-aware non-user (0.3 percent). In the overall sample, 55.4 percent were male and 44.6 percent female. The gender distribution was different in each group. There was a female majority among providers (57 percent) but an overrepresentation of men among consumers (61 percent). For aware non-users, the gender distribution was roughly equal with 51 percent women. The average age in the whole sample was 35 years and the median 32 years (standard deviation 10.2 years, with a range of 51 years from 19-70 years). There was not much variation between the groups in terms of age. The average age among both providers and aware non-users was 37 and among consumers 33, indicating a slightly younger profile for consumers. In terms of education, 48 percent had a bachelor’s degree, 8 percent a master, 1 percent a doctorate, 13 percent a vocational certificate, and 30 percent a high school certificate or lower as their highest qualification. Consumers were slightly more educated than the average and non-aware users slightly less educated. The median annual income in the dataset corresponds to the category 50,000-59,999 US Dollars. Consumers (and providers, but the provider group is too small to make substantial statistical claims) have higher incomes than aware non-users, with a median income of 50,000-59,999 US Dollars, in contrast to a median income of 30,000-39,999 US Dollars among aware non-users. In the following, we focus on the consumer sub-sample (N=213) as we are interested in participants in the sharing economy and their experience of emotional labor.

For providers and consumers, we asked the respondents to specify which service(s) they have used. The exact question wording for consumers was: “In the following questions, we are interested in your experience of the sharing economy as a consumer. Please answer all subsequent questions from your point of view as a consumer. Use the following text field to
write down which sharing platform (e.g., Airbnb, Uber, Peerby, Feastly, Lending Club...) you have used as a consumer (e.g., Airbnb guest, Uber passenger). If you have used more than one sharing platform as a consumer, please choose the sharing platform which you have used most frequently. For all subsequent questions, please answer with reference to this identified sharing platform.” Six individuals wrote down services that do not correspond to our understanding of the sharing economy (e.g., Amazon Prime, Etsy, Facebook, none from the above [sic]) and were therefore excluded. This left us with a final sample of 207 sharing economy consumers. As shown in Table, more than 70 percent of the final sample selected ride-sharing (Lyft and Uber) and one fourth home-sharing (Airbnb). Peer-to-peer lending was represented with a low percentage of respondents. No one selected food sharing and tool-sharing services.

Table 1. Services used or most frequently used by respondents

<table>
<thead>
<tr>
<th>Service</th>
<th>Freq.</th>
<th>%</th>
<th>Cum. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airbnb</td>
<td>52</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Uber</td>
<td>140</td>
<td>67.6</td>
<td>92.8</td>
</tr>
<tr>
<td>Lyft</td>
<td>11</td>
<td>5.3</td>
<td>98.1</td>
</tr>
<tr>
<td>Lending Club</td>
<td>3</td>
<td>1.4</td>
<td>99.5</td>
</tr>
<tr>
<td>Prosper</td>
<td>1</td>
<td>0.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

3.2. Measures

We measured emotional labor with four items, adapted from [10]. The question prompt was: “When you interact with providers (e.g., hosts, drivers), how often do you do the following?” The items were: *Express feelings of sympathy* (e.g., saying you are sorry to hear about something, saying you understand); *Express friendly emotions* (e.g., smiling, giving compliments, making small talk); *Hide your anger about something someone has done*; and *Hide your disgust about something someone has done*. Respondents could answer on a five-point scale with the categories 1-never, 2-rarely, 3-sometimes, 4-frequently, 5-very frequently. Initial principal component analysis (Kaiser criterion, Varimax rotation) indicated two distinct sub-constructs. The first sub-construct includes the first two items and revolves around expressive aspects (“express), while the second sub-construct includes the last two items and revolves around suppressive aspects (“hide”). Consequently, we termed sub-construct 1 *expression* and sub-construct 2 *suppression*.

For the independent constructs, we relied on established scales whenever possible. However, for rating experience, rating literacy and matching quality, we did not find suitable established scales. Therefore, these measures were newly developed.

(Negative) rating experience was measured with four items: *Providers rate me arbitrarily*; *I often get unjustified ratings*; *Providers rate me too harshly*; and *Providers have unrealistic expectations*. The scale had a Cronbach’s α of 0.86, showing sufficient reliability. Rating literacy was measured with three items: *I know how the rating/review system works*; *I am aware of the consequences of bad ratings for providers*; and *I expect a professional level of service from my providers*. The Cronbach’s α of this scale was 0.71. Rating system fairness was measured with four items: *The rating/review system is fair*; *The rating/review system works well*; *The rating/review system is accurate*; and *The rating/review system is clear*. Not finding any applicable examples, we developed this scale ourselves. The scale had a Cronbach’s α of 0.88, showing sufficient reliability. Matching quality was measured with six items: *The platform does a good job matching me with a provider*; *The platform is transparent over why I am matched with a provider*; *The search results/matching mechanisms make sense*; *I feel I have control over the matching process*; *I should be allowed to choose a provider based on my own criteria*; and *Sharing platforms are a fair and unbiased source of information*. The scale was newly developed but had good reliability, with a Cronbach’s α of 0.80. Volunteering was measured with three items directly taken from [16]. The scale proved to have high internal consistency, with a Cronbach’s α of 0.89.

3.3. Method

We used ordinary least square (linear) regression to analyze the influence of the rating aspects and demographic characteristics on emotional labor. The analyses were conducted with Stata (v.14). We used the robust estimator option to account for possible sources of distortion such as heteroscedasticity and non-normality and also checked for multi-collinearity, using the VIF post-estimation command. The highest VIF value was 2.18 for the rating process and the lowest 1.09 for gender. Thus, none of the VIF-values exceeded 5 and we can exclude the presence of serious multi-collinearity affecting the estimation process.

4. Results

Consumers of sharing economy services perform relatively high levels of emotional labor with regards to the expressive dimension. The item about expressing feelings of sympathy (item 1) is normally distributed with an arithmetic mean of 2.91 and median of 3 (on a
pressive emotional labor among Lyft users compared to Airbnb and Uber. We find significantly higher values of expressive emotional labor, supporting H2 and H3. For volunteerism, where they have to interact in a friendly and expressive way, to the sharing situation. For the sharing economy, as differences between companies can have a big impact.

Turning to the regression analysis, we find (Table 2) that income is the only significant demographic predictor for expression. The effect is negative, indicating that consumers with higher income perform less emotional labor, contradicting hypothesis 1d. Thus, we have to reject all hypotheses 1a-d. The sharing frequency and volunteerism positively affect expressive emotional labor, supporting H2 and H3. For volunteering, it could be that a transfer process takes place: Consumers might transfer their emotional labor from volunteering, where they have to interact in a friendly and expressive way, to the sharing situation. For the sharing frequency, it might be that a habituation and learning process takes place: Consumers might learn the implicit rules of the game by repeated interaction and feedback. We find significantly higher values of expressive emotional labor among Lyft users compared to Airbnb and Uber. This partly supports H4.

Turning to the rating dimensions, we find that rating literacy, but not rating experience or rating process fairness, affect expressive emotional labor significantly and positively, showing support for hypothesis 5b, but not 5a and 5c. Thus, the better consumers think they know the rating system, the more expressive emotional labor the consumers perform. Somewhat surprisingly, the rating experience (being rated unfavorably in the past) does not influence consumers’ performance of expressive emotional labor. It could be, however, that some consumers are not aware of their ratings and have never experienced a negative rating situation. Descriptive analysis confirms this, showing low prevalence of negative rating experience (arbitrary, unjustified, too harsh ratings as well as unrealistic provider expectations), with arithmetic means as low as 1.74 for unjustified ratings and 1.81 for too harsh ratings. Finally, perceived matching quality significantly and positively influences the expressive dimension of emotional labor, supporting H6. Consumers who perceive the matching and search process as efficient, good and transparent are more likely to perform emotional labor. It could be that these consumers want to make sure to fulfill the expectations of a positive matching process.

1-5 scale). The item about expressing friendly emotions (item 2) is positively skewed with an arithmetic mean of 3.86 and a median of 4. Both items of the suppression factor are negatively skewed, with arithmetic means of 2.33 and 2.28, respectively, and median values of 2. The presence of emotional labor varies substantially by the service. We excluded the peer-to-peer finance services (LendingClub and Prosper) from this analysis due to too low case numbers. Although the case numbers for Lyft are low, with only 11 respondents selecting this option, the emotional labor values – both in terms of expression and suppression – are substantially higher for Lyft than for Uber and Airbnb. This is reflected in the principal component analysis factor scores (which are standardized and thus have an arithmetic mean of 0 and standard deviation of 1). They are on average 0.29 for Lyft, 0.06 for Airbnb and -0.07 for Uber for the expressive dimension and 0.33 for Lyft, -0.11 for Airbnb and -0.11 for Uber for the suppressive dimension. Thus, Airbnb and Uber score similarly for both forms of emotional labor. However, the variance for Airbnb is somewhat lower for expression. Overall, we conclude that Uber is the platform where consumers perform least emotional labor and Lyft is the platform where consumers perform the most emotional labor. In the case of the two major ride-hailing services, Uber and Lyft, these results seem to be in line with company policies as well as public perception [25, see also 14, section “The Passenger Experience”]. While Lyft passengers should sit at the front, Uber has always maintained a professional, less social reputation. This separation argues for a more fine-grained approach to sectoral discussions of the sharing economy, as differences between companies can have a big impact.

Table 2. Linear regression of emotional labor factor expression on predictor variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.04 (0.01)</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.00 (0.12)</td>
</tr>
<tr>
<td>Income</td>
<td>-0.13* (0.02)</td>
</tr>
<tr>
<td>Education (Ref. = High School or lower)</td>
<td></td>
</tr>
<tr>
<td>Vocational Certificate</td>
<td>-0.02 (0.23)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>-0.06 (0.15)</td>
</tr>
<tr>
<td>Master</td>
<td>-0.09 (0.23)</td>
</tr>
<tr>
<td>Doctorate or higher</td>
<td>0.07* (0.29)</td>
</tr>
<tr>
<td>Volunteer</td>
<td>0.25*** (0.07)</td>
</tr>
<tr>
<td>Sharing Frequency</td>
<td>0.15* (0.07)</td>
</tr>
<tr>
<td>Service (Ref. = Airbnb)</td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>0.02 (0.14)</td>
</tr>
<tr>
<td>Lyft</td>
<td>0.15* (0.33)</td>
</tr>
<tr>
<td>Rating Experience</td>
<td>0.05 (0.07)</td>
</tr>
<tr>
<td>Rating Literacy</td>
<td>0.23** (0.08)</td>
</tr>
<tr>
<td>Rating Process Fairness</td>
<td>0.13 (0.08)</td>
</tr>
<tr>
<td>Matching Quality</td>
<td>0.16* (0.08)</td>
</tr>
<tr>
<td>Constant</td>
<td>. (0.32)</td>
</tr>
<tr>
<td>R²</td>
<td>0.38</td>
</tr>
</tbody>
</table>

N=203; standardized regression coefficients displayed; robust standard errors in brackets; * p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001
Regarding the suppressive dimension of emotional labor (Table 3), we find very few significant effects. None of the demographic and socio-economic predictors significantly influence suppressive forms of emotional labor, so that we have to reject H1a-d. The same is true for volunteering, so that we have to reject H2. The sharing frequency has a weak effect which is significant only at the 10 percent level (we decided to report significance at the 10 percent level due to the low case numbers), partly supporting H3. Again, Lyft users have higher propensity to perform emotional labor than Airbnb guests and Uber passengers, partly supporting H4. Finally, the rating experience has a significant effect at the 5 percent level, influencing suppressive emotional labor positively. Thus, we find support for H5b but have to reject H5a, H5c and H6.

Table 3. Linear regression of emotional labor factor suppression on predictor variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.10 (0.01)</td>
</tr>
<tr>
<td>Gender</td>
<td>0.03 (0.15)</td>
</tr>
<tr>
<td>Income</td>
<td>-0.09 (0.03)</td>
</tr>
<tr>
<td>Education (Ref. = High School or lower)</td>
<td></td>
</tr>
<tr>
<td>Vocational Certificate</td>
<td>0.00 (0.22)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>-0.00 (0.18)</td>
</tr>
<tr>
<td>Master</td>
<td>-0.02 (0.29)</td>
</tr>
<tr>
<td>Doctorate or higher</td>
<td>0.05 (0.33)</td>
</tr>
<tr>
<td>Volunteer</td>
<td>-0.00 (0.09)</td>
</tr>
<tr>
<td>Sharing Frequency</td>
<td>0.15+ (0.08)</td>
</tr>
<tr>
<td>Service (Ref. = Airbnb)</td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>0.09 (0.17)</td>
</tr>
<tr>
<td>Lyft</td>
<td>0.14+ (0.35)</td>
</tr>
<tr>
<td>Rating Experience</td>
<td>0.17+ (0.08)</td>
</tr>
<tr>
<td>Rating Literacy</td>
<td>-0.01 (0.09)</td>
</tr>
<tr>
<td>Rating Process Fairness</td>
<td>-0.00 (0.09)</td>
</tr>
<tr>
<td>Matching Quality</td>
<td>0.07 (0.11)</td>
</tr>
<tr>
<td>Constant</td>
<td>. (0.34)</td>
</tr>
<tr>
<td>R²</td>
<td>0.10</td>
</tr>
</tbody>
</table>

N=203; robust standard errors in brackets; + p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001

We also looked at the attitude of consumers towards the rating system and found that consumers accept the need for ratings. More specifically, they disagreed with two statements addressing the necessity of ratings. First, disagreement with the statement The rating/review system should be removed was very high (arithmetic mean = 1.83; median = 2; standard deviation = 1.05 on a 1-5 scale). Thus, most consumers think the review system is necessary. Second, consumers mostly disagreed with the statement Consumers should not be rated (arithmetic mean = 2.40; median = 2; standard deviation = 1.27 on a 1-5 scale). In sum, this indicates that consumers are accustomed to getting rated.

5. Discussion and Conclusion

Emotional labor has emerged as an important concept in looking at workers in an organizational context, while psychological research has shown its predictors and – often detrimental – outcomes [45]. Sociological research has provided context and described areas where emotional labor occurs as well as how it unfolds, often through qualitative and ethnographic approaches. However, despite being a widely researched and striving field of research, scholars have only started to explore the prevalence, antecedents and outcomes of emotional labor in the sharing economy [32, 60, 64].

Existing studies on emotional labor in the sharing economy, reflecting a focus in the general literature, have focused on the provider side. We argue for the need to investigate emotional labor beyond merely looking at providers, since providers also have the opportunity to reject potential consumers if they have bad ratings or feedback. Accordingly, we expected that consumers would also engage in emotional labor to prevent their future rejection.

We found that consumers partake in emotional labor when engaged in the sharing economy. Expressive, maybe more superficial, forms of emotional such as expressing feelings of sympathy and doing small talk, were very pronounced. Suppressive forms, on the other hand, where consumers hide negative emotions such as anger and disgust, were much less pronounced. However, this could be due to overall lower prevalence of such emotions in sharing transactions (something for which we did not control). Despite the relatively strong wording of the items for the suppressive factor (hiding anger, hiding disgust), we still found a considerable minority of consumers who perform such forms of emotional labor (42 percent sometimes or more in the case of hiding anger and 38 percent in the case of hiding disgust).

We also found that greater exposure to the sharing economy increased the level of emotional labor, suggesting an element of behavioral change. The need for emotional labor on behalf of consumers might act as a deterrent for those who are approaching the services for utilitarian motives (according to some studies, this is the primary motive for using commercial sharing services, cf. [4]). By surveying consumers, we are
missing looking at people who have decided not to partake due to the need for such emotional labor.

As discussed, emotional labor is induced through a level of conditioning or training. We also found that the rating system adds a conditioning mechanism which, in the long run, should condition consumers to be friendly and nice – to a point where they might perform different forms of emotional labor.

Having a consumer-rating which might impact future use of the platform may also act a form of conditioning. Whereas in most consumer transactions bad customer behavior will not impact or preclude future use of the service, in the sharing economy, feedback and ratings create a footprint.

We further argue for the need to explore emotional labor beyond the ride-sharing context. Other sharing contexts such as home-sharing, object-sharing, and peer-to-peer lending also present interesting cases for emotional labor. As long as there is a level of human interaction, emotional labor is possible.

Following these findings, we would argue for the need for fine-grained analyses between platforms. A fruitful area of research would be to explore emotional labor requirements as differentiating based on different service categories within a single platform (e.g., Airbnb entire home vs private room vs shared room users).

Our study has implications for theory and practice. In terms of theory, we contribute by showing how emotional labor occurs beyond Uber and ride-hailing. Also in the case of Airbnb, we found substantial prevalence of the expressive dimension. For the nascent literature on the sharing economy in general and emotional labor in the sharing economy in particular, our findings offer first insights on the importance of studying the phenomenon beyond providers. In that regard, the role of the rating system and its underlying functionalities and mechanisms becomes particularly important, with implications for information systems literature on reputational mechanisms and trust.

From a practical perspective, clearer guidelines on what to expect and what not to expect in a sharing economy experience could also give the consumers more confidence.

Our study comes with a few limitations that indicate opportunities for future research. First, the data set at hand is not representative of the overall sharing economy population in the US and is relatively small. Future research should use population-wide surveys or wider sampling frames to investigate emotional labor more holistically. This would allow for the comparison between consumers and providers. It would also make comparisons between the sharing economy and traditional industries (hotel, taxi) possible to see whether there really is that much of a difference. Second, the data only covers one point in time. Longitudinal data would allow to observe developments over time, for example whether users become more or less emotionally laborious. Moreover, it would be possible to test causal claims more rigorously. Third, we included relatively few predictor variables. Future research might use additional sociological and psychological predictors to explain the phenomenon better. Fourth and finally, our focus was in describing and explaining emotional labor rather than investigating its outcomes. Related studies should also look at how emotional labor results in certain negative (or maybe positive) consequences such as satisfaction with the sharing experience. Here, a combination of different methods and data types would be very fruitful, for example through combining qualitative, ethnographic evidence with user-generated or quantitative data.

6. References

