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Abstract 

 
The utilization of 3D printing technology within 

the manufacturing process creates an environment 
that is potentially conducive to malicious activity. 
Previous research in 3D printing focused on attack 
vector identification and intellectual property 
protection. This research develops and implements 
malicious code using Printrbot’s branch of the open 
source Marlin 3D printer firmware. Implementations 
of the malicious code were activated based on a 
specified printer command sent from a desktop 
application. The malicious firmware successfully 
ignored incoming print commands for a printed 3D 
model, substituted malicious print commands for an 
alternate 3D model, and manipulated extruder feed 
rates. The research contribution is three-fold. First, 
this research provides an initial assessment of 
potential effects malicious firmware can have on a 
3D printed object. Second, it documents a potential 
vulnerability that impacts 3D product output using 
3D printer firmware. Third, it provides foundational 
grounding for future research in malicious 3D 
printing process activities.  
 
 
1. Introduction  
 

Three-dimensional (3D) printing capabilities 
present intriguing opportunities for businesses in 
today’s globally networked environment. 3D printers 
operate by fusing successive layers, with varying 
degrees of layer thickness, to produce 3D objects 
[18]. The ability to print objects on demand 
potentially provides organizations with the ability to 
develop custom, cost effective components for a 
variety of purposes [3]. A PriceWaterhouseCoopers 
(PwC) report indicates that, approximately, 71% of 
manufactures in the US are implementing 3D printing 
in some form or fashion [23]. The report goes on to 
indicate that 42% believe that 3D printing will be 

implemented in high volume production settings in 
the ensuing three to five years. 

As the use of 3D printers and their components 
grows, industry impact is already visible in several 
industries [3]. A Wohlers Associates report states 
that, in 2015, the 3D printing industry (a.k.a. 
Additive Manufacturing or AM) accounted for 
$5.165 billion of revenue, with 32.5% of all AM-
manufactured objects used as functional parts [29]. 
The integration of 3D printing is observable in 
aviation, medical and manufacturing industries [11, 
16, 29]. In the aviation industry, Airbus is 
experimenting with the use of metal 3D printers in 
their manufacturing process [29]. General Electric is 
already producing fuel nozzles for a jet engine that is 
scheduled to be available in 2016 [17]. NASA is 
incorporating 3D printing into its space program in 
order to build components on an as-needed basis [6]. 
The medical field is exploring the use of 3D printed 
scaffolds for bone tissue engineering [9, 16]. From a 
manufacturing perspective, Ford announced that they 
have created 500,000 parts in the last few decades 
using 3D printers for the purposes of rapid 
prototyping [11, 20]. The use of 3D printers in rapid 
prototyping has prompted the idea that 3D printing 
will lead to rapid production environments [2]. In 
addition, the integration of 3D printers into all 
aspects of society has stimulated debates in regard to 
the overall geopolitical and socioeconomic impact of 
these devices [7, 21, 24].  

With the continued assimilation of 3D printers 
into manufacturing scenarios, it is plausible that the 
escalating importance of these devices will provide 
motivation for attackers along with creating new 
attack surface opportunities. This is similar to 
integration issues and residual data risk experienced 
with other digital devices in business environments 
[15]. The ramifications of these compromises range 
from physical damage to the 3D printer, to theft of 
intellectual property, to physically harming the 
operator, to sabotage of the production product [31]. 

Prospective attack vectors for 3D printers and 
associated printer components include consumer 
applications used to interact with the printer, 3D 
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model files, the communication architecture use to 
pass commands to the 3D printer and the firmware. 
[26, 27]. Due to the data flow of the 3D printing 
process, the firmware is a piece of software that 
controls the 3D printer and, as such, is the final piece 
of software involved in manufacturing process.  

The potential magnitude of a compromise coupled 
with an understanding of the inherent data flow in a 
3D printer prompted the hypothesis that a 3D 
printer’s firmware can be maliciously modified so 
that it negatively impacts printed objects. To explore 
this hypothesis several research questions were 
identified:  
1. Is open source data available to assist in 

modifying the 3D printer firmware?  
2. How does the 3D printer firmware interpret and 

execute received commands?   
3. What effect can manipulation of the commands 

have on the printed model? 
The research contribution is three-fold. First, this 

research provides an initial assessment of potential 
effects malicious firmware can have on the 3D 
printed object. Second, it documents a, potential, 
vulnerability that impacts 3D product output using 
Marlin firmware. Third, it provides the foundation for 
future areas of research involving firmware 
manipulation. The paper is structured as follows: 
Section 2 discusses relevant research in 3D printer 
security. Section 3 describes the methodology and 
experimental design to evaluate the research 
questions. Section 4 discusses implementation and 
results. Section 5 discusses conclusions gathered 
from the conducted experiment and section 6 
identifies areas for future research. 
 
2. Literature review   
 

As the proliferation of 3D printers escalates, it 
stands to reason that the number and various types of 
attacks will increase. Recent research indicates that 
the introduction and impact of residual data extracted 
from digital devices is continuing to escalate in legal 
atmospheres [4, 19]. This situation emphasizes the 
necessity to understand how a devise can be 
compromised along with effective mitigation 
strategies for the production product and the 
intellectual property.  

So far, two major security threat categories have 
been identified for 3D printing in the literature: 
violation of Intellectual Property (IP) and ability to 
inflict physical damage, e.g., via a sabotage of a 
manufactured part’s quality.  

Yamploskiy, et al., [30] express a need to expand 
intellectual property protection beyond the 3D model 

and incorporate all 3D printing parameters involved 
in the printing process. This is due to the unique 
effects printing parameters have on the structural 
properties of the printed object.  

Brown, et al., [5] analyze legal aspects of IP 
protection in AM. Based on current US law, the 
authors discuss whether and to what extent patent, 
copyright, and trademark protection can be applied to 
blueprint, process, printed object, and design on 
object. While some protection can be offered by the 
existing legal framework, the authors identify 
numerous limitations. For instance, a 3D scan of a 
manufactured object is not considered an original 
technical drawing (blueprint); thus it can be used to 
legally avoid copyright protection of a blueprint. 

From an attack perspective, Faruque, et al., [10] 
present the first side-channel attack on a 3D printer. 
The authors show how acoustic emanations of a 
desktop 3D printer can be used to reconstruct the 
printed object’s geometry. The authors report an 
average accuracy for axis prediction of 78.35% and 
an average length prediction error of 17.82%. In the 
follow-up poster and technical report [8], the authors 
analyze a video feed from a thermal imaging camera 
in an attempt to measure and reproduce the print bed 
and nozzle movements of a 3D printer, from which a 
complete design specification can be derived. 

Turner, et al. [27] analyzed the manufacturing 
tool chain in AM and found several attack vectors 
that can be easily exploited. The authors have 
examined the lack of integrity checks when receiving 
the design (common non-secure mechanisms include 
email and USB drives), the lack of physical security 
on machining tools, and the exposure to common 
network attacks. The authors note the difficulty of 
relying on the quality control process because it is 
expensive and not tailored for detection of 
cybersecurity attacks. 

Yampolskiy, et al., [31] present on an extensive 
survey of AM related material science literature and  
discuss which manufacturing parameters can have a 
negative impact on the quality of manufactured parts. 
The discussion focuses on AM with metals and alloys 
and covers a variety of AM processes, including 
power bed fusion, direct energy deposition, and sheet 
lamination. The identified parameters include but are 
not limited to build direction, scanning strategy, heat 
source energy, etc. The researchers identify the 
following cyber and physical attack vectors 
categories: malicious software and firmware, 
malicious 3D models, and the physical supply chain.  

Yampolskiy, et al., [32] generalizes the ability to 
sabotage AM as the weaponization of 3D printing. 
The authors propose a framework for the analysis of 
attacks involving AM and then then discuss how 
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certain categories of attacks can generate effects 
comparable with those produced by weapons (e.g., 
kinetic damage). Further, the authors argue that the 
targets of such an attack can be 3D manufactured 
objects, AM equipment or environments. 

Sturm, et al., [26] discuss that, during the 
transition through the AM process chain, the 
description of the object geometry is used by various 
tools that change its representation. Any of these 
representations can be corrupted, e.g., the interior of 
a part can be altered without affecting its exterior 
shape. The authors then use malware to alter the 
STereoLithography (STL) file containing the object’s 
geometry. The experiments described in the paper 
focus on the introduction of voids (i.e., internal 
cavities) in the STL file. This attack takes into 
account the location of the void, its shape, its size, 
and whether it is fully enclosed. The authors vary 
these parameters to experimentally evaluate the 
impact of a void placed inside of a part on its quality. 
The authors then provide an experimental proof that 
the part-quality can be reduced by injection of the 
voids in its design. 

Zeltmann, et al., [33] investigate the impact on 
tensile strength of two types of manufacturing 
modifications, sub-millimeter scale defects in the 
interior of 3D printed parts, and orientation of the 
part during printing. For the first defect type, cubic 
defects in three sizes were introduced by replacing 
main material with a contaminant. For the second 
analyzed defect type, the authors performed tensile 
test experiments on objects printed with three 
different orientations. Their experiments confirm that 
these manipulations can impact a printed part’s 
physical characteristics. 

Current research not only highlights growing 
interest in cyber-physical systems but also more 
specific concerns focusing on 3D printer security. 
However, there is, currently, minimal research 
investigating the effects of malicious firmware on the 
3D printing process. 

 
3. Methodology   
 

This research’s high-level problems statement 
investigates the ability to develop malicious 3D 
printer firmware to compromise printed objects. The 
approach utilized in this research is an initial pass at 
an implementation of a design science methodology 
as defined by Peffers, et. al., [22]. The refinement of 
the problem statement identified the main objective 
of the research. The objective focused on malicious 
firmware development designed to modify a 3D 
printer’s behavior to ignore incoming commands and 

execute its predefined commands. The printer 
equipment utilized in this research was a  Printrbot 
3D printer (model 1404) running Marlin Firmware 
(version: 1.0.0 bedlevel metal-simple) [12]. The 
firmware was selected due to the open-source 
availability of the source code. Modification to the 
firmware were implemented using an Arduino IDE 
[1]. Printrbots (version 2.0.1) firmware update tool 
was used to flash the printer with new firmware [13]. 
The desktop software used to communicate print 
commands with the 3D printer is a Repetier-Host 
(version 0.56) running on a Macbook Pro. The 
development and experimental environment is 
illustrated in Figure 1 - Environment. 

The design and development started with an 
investigation of the control flow and format of 
commands handled by the firmware. To achieve this, 
the source code for Printrbot’s Marlin Firmware 
(version: 1.0.0 bedlevel_metal-simple) was 
downloaded, compiled and flashed to the 3D printer 
following Printrbot’s community instructions [12]. 
Upon validation of the newly flashed firmware, a 
further review of the communication protocol was 
performed to identify data that is translated into 
specific 3D printer actions. 

 
Figure 1. Environment 

The communication investigation used Repetier-
Host software which is a desktop application that 
communicates with the 3D printer through a G-code 
protocol [25]. G-code (a.k.a. RS-274) is a Numerical 
Control (NC) programming language used to specify 
hardware parameters that is commonly used to 
control computer-aided manufacturing. In the case of 
3D printers, it can be used to specify parameters like 
temperature, the extruder speed and movement along 
the x, y, and z axis. [27].  

According to an examination of the Marlin source 
code and associated documentation, incoming 
commands are transferred via USB or through an 
onboard SD card [12]. The Marlin firmware is 
structured to utilize a repetitive loop method that 
periodically checks for serial input. To determine the 
command process flow, a manual code review was 
performed tracing the path of incoming G-code 

6091



 

 

commands from reception to execution. It was found 
that while the firmware uses sequential numbering 
and check sums to validate incoming commands from 
the desktop application before processing, it is 
possible to bypass this functionality by directly 
updating private variables with desired hardware 
parameters values.  

To validate the format used for data transfer USB 
packet capture was performed using USBPcap with 
Wireshark during a test print [14, 28]. Based on the 
data gathered from the packet capture and the 
firmware’s documentation, G-code and USB were 
chosen as identifiers of functions within the firmware 
that effect the control flow process 

The investigation of the printer’s source code and 
functionality resulted in the design and development 
of malicious Marlin firmware. The malicious 
behavior is activated by an external command. A 
corresponding boolean variable is set to true when 
the command to turn on the extruder fan is received.  

The extruder fan was chosen as a trigger due to its 
common activation when print jobs are initiated. The 
analysis of the source code indicates that an effective 
placement of the trigger was in the void 
‘process_commands’ function. It also indicated that 
the alternate control path should be inserted into the 
loop located in the ‘main’ function. The alternate 
control path subverts control flow during the print 
process to a malicious block of code. The purpose of 
the diversion is to produce alternative output or 
manipulate the values of valid commands in order to 
increase or decrease the rate of material extruded. In 
the presented work, two versions of the firmware 
were developed. One version subverted control flow 
of the firmware and another version manipulated a 
variable that is used to impact the extruder feed rate. 

For the version of the firmware that impacts 
control flow, a trigger needs to be inserted into the 
code and the control paths had to be modified. The 
next step added the values needed to print a substitute 
model and manipulate valid print commands into the 
firmware. The G-code command values needed for 
the alternative model were hardcoded into the 
firmware as array variables. Five arrays were created 
to store the values needed to print the pyramid model. 
Three arrays were used to store values corresponding 
to the x, y, and z axis positions. The creation of two 
arrays containing extruder rate and feed rate values 
were necessary for printing. Lastly, a counter variable 
was used to iterate through all of the arrays. 

 For the version of the firmware that impacts the 
extruder feed rate, a trigger needed to be inserted into 
the code and a variable was added to the 
‘plan_buffer_line’ function call for rate manipulation. 
This variable is used to increase the current extruder 

rate by an increment ranging from 10% to 40%. The 
default value of the variable is one, representing a 
zero percent increase. When the G-code command 
M106 is processed by the 3D printer, the variable is 
set to a value between 1.1 and 1.4. 

The demonstration of the modified firmware is 
segmented into six distinct experiments that issue six 
identical print requests from the Repetier-Host 
application. Each experiment has its own firmware 
version and a unique ID. The version specific to an 
individual experiment is flashed to the printer prior to 
running the experiment. The version of the 
firmware’s unique ID is visually validated prior to 
executing the experiment. 

The first experiment issues a print job from the 
Repetier-Host application using an unmodified 
version of the firmware. At this point, the necessary 
information was sent to the printer via a USB 
connection to print the cube. The purpose of this 
experiment is to ensure that the printer is functioning 
properly. 

For the second experiment, a print job was issued 
using a modified version of the firmware that has 
been flashed to the printer. When triggered, this 
version of the firmware prints alterative output. The 
necessary information is sent to the printer via a USB 
connection to print the cube. 

The third, fourth, fifth and sixth experiments issue 
print jobs that execute modified firmware following 
the same execution protocol as the previously 
discussed. The series of experiments starting with the 
third print request is designed to manipulate the 
extruder feed rate to a precise increment. The third 
experiment sets the extruder feed rate to 1.1. Each 
sequential printing experiment increased the 
extrusion rate by 10%. The result of each print is 
evaluated through a visual inspection and a 
comparison to the print job specified by the Repetier-
Host application. 

It should be noted that for the purposes of this 
research, investigation of the delivery mechanism and 
installation processes for the malicious firmware onto 
the 3D printer are considered out of scope. This 
research also focuses solely on USB communication 
with the printer. 
 
4. Implementation and results  
 

The details of this research is presented in three 
segments: examination, implementation and results. 
The examination section details communication 
protocol characteristics. The implementation section 
describes modifications made to the Marlin firmware. 
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Lastly, the results section examines experimental 
findings. 
 
4.1 Examination 
 

The G-code protocol is the only supported form 
of communication for sending commands and status 
information between the Repeiter-Host application 
and the 3D printer. An inspection of the USB packets 
identified the format for commands sent to the 3D 
printer as G-code syntax. The result of a packet 
capture is illustrated in Figure 2 – USB g-code packet 
capture. A G-code command in the captured packet is 
highlighted in the figure. This command activates the 
extruder fan. 

 
Figure 2. USB g-code packet capture 

The documentation retrieved from GitHub 
revealed that the Marlin firmware runs on an Arduino 
board and is written in C++ [12]. The functionality of 
the firmware is controlled in an infinite loop located 
in the ‘main’ function. The ‘loop’ function processes 
the received G-code commands. The ‘loop’ utilizes 
get and process command functions. This function is 
displayed in Figure 3 - Unmodified control loop. 

 
Figure 3. Unmodified control loop 

The Marlin firmware processes the incoming G-
code in three steps. The first step is handled by an ‘if 
statement’ that continually checks to see if the input 
command buffer is full. If it is not full, the firmware 
checks for incoming data received via USB.  

 For the second step, within the ‘get_command’ 
function, the firmware then parses the G-code packet 
to retrieve the command parameters.  Parameters sent 
using G-code can include the axis values for the x, y, 
and z plane, filament and extruder rate along with the 

temperature values for both the extruder and print 
bed. An example of the G-code format is presented in 
Figure 4 – G-code Format. 

 
Figure 4. G-code format 

During the parsing, the firmware validates that the 
incoming command is in sequential order based on 
previously executed G-code. Upon validation, the 
parameters are stored in private variables for later 
processing. If the command does not have a valid 
sequence number, an error will be reported and the 
command will not be executed. Lastly, the 
‘process_commands’ function will process validated 
commands utilizing the values stored in the 
aforementioned private variables and invoking the 
‘plan_buffer_line’ function shown in Figure 5 – 
Process commands function. 

 
Figure 5. Process commands function 

The outlined organization of incoming command 
processing enables execution of an arbitrary G-code 
command sequence via a comparatively simple 
modification of firmware. Thus, this modification 
effectively bypasses any restrictions and security 
measures that might be incorporated into the 
communication protocol by invoking the 
‘plan_buffer_line’ function directly within the 
modified control loop. Directly calling this function 
circumvents integrity checks normally performed on 
incoming G-code commands. Figure 6 - Private 
control variables display the private variables used to 
store parameters needed to execute the next 
command. The destination array stores the values for 
x, y, and z axis movements. The ‘feedrate’ variable 
stores the current filament rate for printing. The ‘G-
code_N’ variable tracks the current command 
number for sequential processing. Modification of G-
code_N was not needed for this experiment. The 
security measure, to execute commands in order, is 
bypassed by utilizing the ‘plan_buffer_line’ within 
the ‘process commands’ function as illustrated in 
Figure 5. 
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Figure 6. Private control variables 

 
4.2 Implementation 
 

In the implementation experiment, a user initiates 
a print job as usual. When the modified firmware 
receives the M106 command, it sets the Boolean 
‘attack’ variable to true. The code for the trigger flag 
is available in Figure 7 – Boolean flag. 

 
Figure 7. Boolean flag 

Two categories of attack were used to modify the 
model printed by the 3D printer. The first category 
involves subverting program control through the use 
of a loop that executes commands to print an 
alternative model. The second category modifies a 
variable that will increase the rate at which the 
filament is extruded during the printing process. In 
order to submit malicious commands for technique 
one, G-code was created for a pyramid model, 
illustrated in Figure 8 – Pyramid model, using the 
Repetier-Host application.  

 
Figure 8. Pyramid model 

The parameters contained within the generated G-
code were then hard coded into corresponding arrays 
within the malicious firmware. There was a total of 
152 commands needed to print the pyramid model. 
Figure 9 – Malicious parameter values shows the 
section of code where values for parameters are 
stored. 

Upon activating the trigger, the firmware will 
subvert the control flow to a malicious function that 
is hardcoded within the main loop. 

 
Figure 9. Malicious parameter values 

A full example of the code can be found in Figure 
10 – Malicious control loop.  

 
Figure 10. Malicious control loop 

In this function, a ‘while’ loop iterates through a 
sequence of 152 individual commands (stored in five 
arrays) and updates variables controlling the next 
action to be executed. For each pre-stored command, 
once the variables have been updated, the firmware 
directly calls the ‘plan_buffer_line’ method that 
executes the specified action. After finishing the last 
commands, the ‘attack’ variable is set to false, thus 
restoring benign control flow. 

 The second category of attack is also triggered by 
the command M106, as displayed in Figure 11 – Rate 
value. When this command is received the variable 
‘malicious_rate’ is changed from 1 to one of the 
following values: 1.1, 1.2, 1.3, and 1.4. This variable 
controls a malicious increment of the extruder feed 
rate, ranging from 10% to 40%. 

The malicious firmware modifications for the first 
category of attack are placed above the trusted 
control loop code found in Figure 3 – Unmodified 
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control loop. This code simply diverts control flow 
upon the triggering of a boolean flag. The firmware 
modification for the second attack is implemented in 
the same manner along with changing the 
‘plan_buffer_line’ function parameters. 

 
Figure 11. Rate Value 

The ‘malicious_rate’ variable is then programmed 
into the ‘plan_buffer_line’ function, found in Figure 
12 – Modified plan_buffer_line, which is utilized to 
print valid commands communicated to the 3D 
printer. 

 

 
Figure 12. Modified plan_buffer_line 

 
4.3 Results 
 

The modified firmware was installed on the 3D 
printer replacing previous versions of the software. It 
should be noted that this did not impact printer 
properties as these are stored in the Repetier-Host 
application. The modified firmware was 198 KB in 
size and required six minutes to install. Each print 
test took an average of two minutes to complete. 

 
4.3.1 Unmodified Firmware Control Test. The 3D 
printer was flashed using an unmodified version of 
the Marlin firmware. The 3D printer was then 
connected to a desktop computer running Repetier-
Host. Using Repetier-Host, the cube model is 
uploaded, as illustrated in Figure 13 – Test cube 
model and processed to generate the corresponding 
G-code commands that are needed for printing the 
object. The print process is then executed using 
Repetier-Host. The model printed by the 3D printer 
should match the model uploaded to Repetier-Host. 

Figure 14 – Actual model, depicts the actual 
printed product using the valid firmware. The first 
print utilizes the unmodified software functioned as 
expected. The cube model processed by Repetier-
Host matches the cube model that was printed. 

 

 
Figure 13. Test cube model 

 

 
Figure 14. Actual Printed Model 

During execution of the first test print involving 
the unmodified firmware, acknowledgment logs are 
continually sent back to the Repetier-Host 
application. These acknowledgments continually 
verify the printer is connected, returns hardware 
values such as current position, temperature, and fan 
speed. The mechanism for sending the 
acknowledgment logs are maintained within the 
‘get_commands’ function. The log information that is 
sent back during verification contains the command 
sequence number and a checksum verification to 
ensure the command is trusted and not out of order. 
 
4.3.2 Modified Firmware Substituted Model. The 
3D printer was re-flashed using a modified version of 
firmware. The modifications in this version of the 
firmware included a trigger on the M106 command 
that subverts control flow, a while loop directly 
invokes hardcoded machine commands, and 
hardcoded parameter values that correspond to the 
generated G-code from the pyramid model. 
Following the same steps as before, the Repetier-
Host is connected to the 3D printer and used to 
process the cube model. During the processing of the 
model, the specific G-code required to print the 
object is generated. A selection of G-code generated 
from the cube is shown in Figure 15 – Generated G-
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code. The trigger command is highlighted in the 
illustrated G-code. 

After the model has been processed, the print job 
is started by the Repetier-Host. The model printed by 
the 3D printer should correspond to the pyramid 
model, while the model displayed by Repetier-Host 
should be that of the cube. 

 
Figure 15. Generated g-code 

A screen shot of the Repetier-Host application is 
available in Figure 16 – Expected print model. An 
image of the printed object is available in Figure 17 – 
Actual model. The object printed utilizing the 
malicious firmware installed on the 3D printer 
provides a visual indicator that the malicious 
malware is working. During this test execution, no 
logs were received beyond the acknowledgment log 
for the M106 command. This is because the modified 
firmware operates directly with the function that 
controls hardware movement once the trigger has 
been set. 

 
Figure 16. Expected print model 

While the print job did complete, operators 
monitoring the desktop application can notice a lack 
of log files. In this scenario, the lack of log files and 
the resulting pyramid model printed are indicators 
that could reveal malicious activities. 
 
4.3.3 Modified Firmware Extruder Rate. The 3D 
printer was re-flashed using a modified version of 
firmware. The modifications in this version of the 
firmware included a trigger on the M106 command 
that sets the ‘malicious_rate’ variable to a predefined 
value. Four new prints were executed using this 
version of the modified firmware. Each print 
corresponds to the values chosen for the 
‘malicious_rate’ variable which incrementally 
increased the feed rate from 10% to 40%. Following 

the previous steps, the Repetier-Host was connected 
to the 3D printer and used to process the cube model. 

Subsequent to processing the model and G-code 
generation, the print job is started by the Repetier-
Host. According to the Repetier-Host, the model 
printed by the 3D printer should be the cube model. 
However, the modified firmware should consume 
more material for the same dimensioned model. 

 
Figure 17. Actual model 

Four print jobs were executed using this 
technique. Prints using 10% to 30% more material 
successfully completed printing, but displayed visual 
deformities. The results of this output along with the 
original cube with no modifications are represented 
in Figure 18 – Extruder rate increment 0% to 30%. 

 
Figure 18. Extruder rate increment 0% to 30% 

The print job using 40% more material caused 
excess material to accumulate around the extruder 
nozzle, causing the extruder to dislodge the model 
from the print bed. The output at 40% is illustrated in 
Figure 19 – Extruder rate 40%. 

During the execution of experimental prints 
involving extruder rate manipulation, logs were 
received as expected from normal operation. This is 
because the firmware modified to achieve this result 
is logically located after the validity checks 
performed on the commands. 

 
Figure 19. Extruder rate 40% 
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5. Conclusion   
 

The escalation of 3D printing in industry is 
prompting interest in security research in both 
industry and academia.  The results generated from 
this research provides insight to the proposed 
research questions. In reference to the first question, 
open source data is available to assist with modifying 
3D printer firmware. The project acquired attack 
ideas from relevant literature, modified Marlin 
firmware source code and used an open source 
firmware tool to deploy the code.   

In reference to the second question, the code 
analysis helped to identify a vulnerability in how the 
firmware interacts with variables. The malicious 
firmware developed in this research bypassed the 
firmware’s validation process by directly updating 
private variables. This allowed the malicious 
firmware to effectively modify the output.  

In regard to the third question, the experiment 
used a G-code command that is commonly used by 
the software in the experiment to trigger malicious 
behavior. In this case, the trigger was a call to the 
extruder fan. The manipulation of the extruder rate, 
in this research, had a blatant impact on the product 
along with creating an absence of logging output. It is 
plausible that in a production environment output 
could be modified that is not easily perceptible to the 
human eye. Modification of this nature could 
potentially have catastrophic outcomes when 3D 
printed products are used in safety critical systems. 

Hence, the results from this experiment support 
the hypothesis that a 3D printer’s firmware can be 
maliciously modified so that it negatively impacts 
printed objects. The malicious firmware developed in 
this experiment subverted control flow to print a 
substitute model and modified valid commands to 
increase the volume of material used in the printing 
process. The data points identified in this research 
provide an initial foundation for future firmware 
investigation. It also provides the ground work for 
future research into acquiring a more in-depth 
understanding of 3D printer vulnerabilities along 
with the potential impact that these compromises 
have on production products. 
 
6. Future work  
 

Future research will examine more sophisticated 
malicious modifications to the firmware that 
implement obfuscation techniques and anti-forensics 
behaviors. This includes alternative trigger methods 
to initiate subversion of control that include: a rare 
sequence of valid G-code commands, connection 

handshakes, or malformed command calls. This also 
includes support of false acknowledgments and 
monitoring information that will accompany an 
active attack. Research will also need to investigate 
the effectiveness of minute modifications, from an 
overall impact perspective, of varying the times, rates 
and extruder feeds for multiple input environments. 

Based on the initial proof of concept presented in 
this paper, we plan to develop a full-fledged 
firmware-based attack tool that will support script-
based logic for complex trigger mechanisms and 
manipulation logic. This should enable selective 
(e.g., layer-based) modifications introduced into the 
manufacturing process (e.g., presented in this paper 
extrusion speed increment). This tool will further 
implement extensive logging capabilities in order to 
support post-production analysis. This firmware-
based tool will be used for the future research on 
sabotage of a manufactured part’s quality as well as 
on the detection of this category of attacks. 

 In addition, subsequent research will examine the 
output for relevant residual data produced by the 
software that could be useful in a digital forensics 
examination of the hardware and software analysis 
along with developing effective and efficient visual 
indicators for the production product. 
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