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Abstract 
    The cybersecurity community typically reacts to 

attacks after they occur.  Being reactive is costly and 

can be fatal where attacks threaten lives, important 

data, or mission success.  But can cybersecurity be done 

proactively? Our research capitalizes on the 

Germination Period—the time lag between hacker 

communities discussing software flaw types and flaws 

actually being exploited—where proactive measures 

can be taken. We argue for a novel proactive approach, 

utilizing big data, for (I) identifying potential attacks 

before they come to fruition; and based on this 

identification, (II) developing preventive counter-

measures. The big data approach resulted in our vision 

of the Proactive Cybersecurity System (PCS), a layered, 

modular service platform that applies big data 

collection and processing tools to a wide variety of 

unstructured data sources to predict vulnerabilities and 

develop countermeasures.  Our exploratory study is the 

first to show the promise of this novel proactive 

approach and illuminates challenges that need to be 

addressed.   
 

1. Introduction  

 
    The number and variety of cyber-attacks is rapidly 

increasing, and the rate of new software vulnerabilities 

is also rising dramatically.  According to a recent study 

“the compound annual growth rate (CAGR) of detected 

security incidents has increased 66% year-over-year 

since 2009” [21]. But the software security community 

is typically reacting to attacks after they occur. Being 

reactive is costly and can be fatal, where attacks threaten 

lives, important data, or mission success.      

Unfortunately, existing research on cybersecurity has 

focused almost exclusively on reactive strategies.  Some 

attempts to be “proactive”, such as in the guidelines 

published by IEEE Center for Secure Design [14], have 

been outlined, but these are limited to the scope of 

software design and are rather abstract.  

     Predictive analytics, an emerging tool being used to 

identify potential cyber threats against organizations, 

has the capability to be proactive but currently it is not.  

The emerging predictive analytics used in the security 

industry attempts to build a specific response to a 

specific cybersecurity threat [26].  As attackers find new 

ways to avoid detection, predictive analytics helps 

security professionals find unknown malware wherever 

it may be hiding. Bit predictive analytics, as it is 

currently practiced, doesn’t mean seeing an attack 

before it occurs [26], which is what we mean by being 

“proactive”.  For instance, the analytics software 

company FICO, although still not “proactive” by our 

definition, used predictive real-time analytics to respond 

to data breaches faster than before [12].  The traditional 

approach of gathering data on a compromise, 

developing a threat’s “signature” and then using that 

signature to protect against future threats, results in 

massive time delays. FICO, in contrast, identifies threats 

as they come on the scene by identifying anomalous 

patterns using real-time analytics.   This identification 

has to build on the profiling of attacks that are currently 

known. But by this time considerable damage has 

already been done.    

Can we be truly proactive about cybersecurity, in the 

sense that we can prevent the attack before it occurs? 

Can we predict what concepts that are emerging in the 

hacker community will eventually evolve into a 

successful exploit or an attack?  These are our research 

questions. Our research is on analogy with the medical 

industry’s use of predictive analytics to proactively 

prevent disease outbreaks.  To be proactive, the disease 

has to be recognized before, not after, it becomes 

widespread.   

 In addition, continuing the medical analogy, to be 

proactive, we not only look out for external attacks, e.g., 

disease outbreaks, but we also need to look internally, 

in terms of an individual’s predisposition to a disease. It 

has been shown [20] that a majority of security bugs—

nearly two thirds—are “foundational”; that is, they have 

existed for many years in a system’s legacy code. Many 

of them are, in fact, 0-day vulnerabilities, which give no 

5978

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41885
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND



time to plan any mitigation against their exploitation 

once the flaws become known.  To be proactive, 

organizations must take security assurance steps after a 

software product has been released, but before the broad 

hacker community discovers its vulnerabilities [7]. 

The proactive approach, if proven feasible, would be 

a game-changer for the cybersecurity community. Our 

research is motivated by the enormous potential benefits 

of this approach. The proactive approach is appealing, 

but questions remain whether it is feasible. Our 

exploratory study is the first to show the promise of this 

novel proactive approach, utilizing big data, and 

illuminates challenges that need to be addressed.    

       In what follows, we discuss the “Germination 

Period”, a time lag between hacker communities 

discussing software flaw types and those flaws being 

exploited. Our definition of Germination Period 

includes the previously identified “Honeymoon period”, 

which occurs after the release of a system, but before the 

identification of its first vulnerability [7]. Both of these 

periods represent opportunities where proactive 

counter-measures can be advantageously taken.    

   The rest of this paper is structured as follows: In 

Section 3, we present our vision of a Proactive 

Cybersecurity System (PCS), based on the big data 

approach. In Section 4, we describe our research 

framework and discuss challenges and directions for 

realizing PCS. Section 5 presents our exploratory study.  

Section 6 concludes with remarks for future work.  

  

2. The Germination Period and Big Data 

 
We first conducted a literature review on the patterns 

of past cyber-attacks to help answer our research 

questions. We found that the ‘black hat’ (offensive 

hacker) community is a learning community with unique 

ecologic properties, and we found there’s a time lag that 

we called the Germination Period. This is the time 

between the emergence of a vulnerability concept in the 

hacker community and the creation of successful 

attacks.  It is during this Germination Period that we can 

be proactive.  For example, in May 2005, Robert 

Seacord, a security specialist at the Software 

Engineering Institute, published the first edition of 

Secure Coding in C and C++. On page 156 of his book, 

he cautioned about "referencing freed memory" [23]. In 

2007, researchers from WatchFire reported a "Dangling 

Pointer" vulnerability in Microsoft IIS [1] and Justin 

Ferguson gave a talk at the Blackhat conference 

reporting one of the first valid exploits of what became 

known as Use-After-Free (UAF) [9].  Blogs and 

tutorials related to the concepts of UAF began to appear 

frequently around 2010.   Figure 1 below shows the 

reported number of common vulnerabilities and 

exposures (CVEs), by year, for UAF entries. Successful 

UAF attacks can have serious consequences: corruption 

of data, and the execution of arbitrary code. 

Clearly the offensive hacker community learned 

(about UAFs) and just as clearly it takes time, from the 

initial discovery of a vulnerability until it becomes a 

significant and viable threat to the “white hat” 

community. This time lag between 2006 to 2010, the 

Germination Period, during which offensive 

communities are gaining understanding and expertise 

and planning exploits, represents an opportunity for 

proactive counter-measures. But such counter-measures 

can only be applied if the potential threat is determined 

early enough.  

 

 
 

Figure 1. Use-After-Free Common Vulnerabilities 

and Exposures (CVEs) 
 

How does the offensive community gain 

understanding and expertise in planning exploits?  What 

traces do they leave? In our exploratory study, we have 

identified two main categories of data sources 

containing information leading to emerging concepts 

describing vulnerabilities that are likely to be targeted: 

(1) hacker communities, and (2) public security 

databases. Both types of data sources discuss 

vulnerabilities, PoC (Proof of Concept) exploits, and 

attacks.  Interestingly, we have noted that both source 

types recognize occurrences of PoC exploits, attacks, 

and vulnerabilities at the same time. It has been shown 

that there are time delays, e.g., the Germination Period, 

both between the identification of vulnerabilities and the 

production of PoC exploits and also between hostile 

attacks targeting these vulnerabilities and the 

corresponding PoC exploits [6][23]. We intend to 

broaden these data sources, thus taking a big data 

approach, to show something more general, by 

identifying as many contexts as possible and 

determining whether the time delays are different in 

different contexts. 

 Hackers form communities. Some of the hackers’ 

blogs, software repositories, IRC channels, etc. can be 

found on the internet.  They are learning communities 

and they are innovation communities, no different from 

entrepreneurs, venture capitalists, researchers and even 

terrorist organizations. This is why they are successful 
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and why we fear them. But, mounting a successful 

attack requires tremendous resources and patience. 

Hacker communities, as with all innovation 

communities, need to share information to be effective; 

they build on each other’s work and discourse, 

sometimes directly but more often indirectly [26]. By 

analyzing the topics in hackers' discussions, we will be 

are likely to be the focus of upcoming attacks. Early 

insight can lead to early, and hence more effective, 

quality assurance and mitigation strategies.able to get 

early indication as to which vulnerabilities  

As a result, we believe and will present early evidence 

that we can mine hacker discussion forums, blogs, and 

Internet Relay Chat (IRC) channels (e.g. freenode.net, 

AnonOps IRC, Metasploit IRC, Google Project Zero, 

blackhat.com, GMANE.org, seclists.org) to identify 

emerging concepts.  In this way the software security 

community can be more proactive in detecting and 

eliminating vulnerabilities, rather than simply reacting 

to vulnerabilities as they occur. For example, the 

Heartbleed bug was discovered simultaneously by 

(defensive) security researchers at Google and at 

Codenomicon, avoiding potentially huge losses if 

hackers had found this bug first (in April, 2014 more 

than 2/3 of the world’s web servers were vulnerable to 

Heartbleed). 

  In addition, our exploratory study has already mined 

publicly available vulnerability, exploit, and attack 

databases such as CVEs (cve.mitre.org), CVE Details 

(cvedetails.com), and the Open Web Application 

Security Project's (OWASP) WASC Web Hacking 

Incidents Database (WHID) 

(https://www.owasp.org/index.php/OWASP_WASC_

Web_Hacking_Incidents_Database_Project) to create 

an initial ontology of prominent security concepts.   

     There are also important differences between these 

two types of data sources. By collecting data from 

various sources, we can assemble information about 

different aspects of the same vulnerabilities and 

exploits. This means that such differences can be 

combined and compared for better understanding of the 

conditions responsible for the time delays between 

vulnerabilities and exploits—a distinct advantage of 

utilizing big data. 

 

3. Proactive Cybersecurity System (PCS) 

Vision 
 

   Our big data approach results in a vision of the 

Proactive Cybersecurity System (PCS) as shown in 

Figure 1.   Grounded on a wide variety of unstructured 

big data sources, the PCS has two goals:  

      Goal I: identify potential attacks before they take 

place and cause harm, and based on this identification, 

     Goal II: develop preventive counter-measures.  

  

 
Figure 2.   Proactive Security System
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     To achieve Goal I, a Targeted Vulnerability 

Prediction (TVP) subsystem detects, from hackers' ad 

hoc communities and publicly available security 

sources, the emerging concepts that are the early 

warning signs of likely vulnerability targets.     To 

achieve Goal II, (a) an Architectural Vulnerability 

Detection (AVD) subsystem and (b) a Risk Analysis and 

Recommender (RAR) subsystem were designed. AVD 

adds a further capability of predicting the impact of the 

attack vectors identified in the TVP subsystem on a 

system architecture of a company. RAR analyzes the 

risks associated with identified vulnerabilities, estimate 

the costs of mitigation actions, and recommend 

refactoring and assurance strategies. The TVP, AVD, 

and RAR subsystems constitute the PCS, a modular 

service platform that combines data sources, data 

collection and processing tools, metrics and models for 

use of security personnel, researchers, governments, and 

insurance companies.   

     

4.  Research Framework and Challenges 

 
    Figure 3 shows our research framework for 

developing a PCS.  We will discuss the research steps, 

analytical foundations, tools employed as well as the 

preliminary results for achieving Goal I and Goal II. 
    As shown in Figure 3, for TVP our research steps 

include (1) identifying big data sources; (2) collecting 

and managing big data; (3) identifying emerging 

concepts; (4) tracking concept evolution; and (5) 

prioritizing vulnerabilities.  In parallel, we develop 

internal proactive measures for an organization by the 

AVD and RAR subsystems. Next we describe our 

preliminary directions and illuminate the challenges to 

be addressed in each step.  

 

 
 

Figure 3.  PCS Research Framework

  

4.1 Identify Big Data Sources 
 

Inherent in the big data approach, identifying and 

assessing the data sources is a critical activity as the 

subsequent analysis and proactive measures rely on the 

quality, comprehensiveness, and reliability of the data. 

There are many potential data sources available and 

different data sources have different characteristics and 

provide different information. For instance, one 

important difference is that most of the public security 

databases do not provide information about who 

contributed an entry to the database. Hacker sources do 

typically identify who is making a contribution. In many 

cases, however, the names provided are fanciful and an 

individual may not use the same designation in different 

chats, lists and database contributions.  

     Furthermore, publicly accessible online databases 

are maintained by various organizations. MITRE’s CVE 
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database collects vulnerability, exploit and attack 

information. An offshoot of this is CVE Details. This 

website identifies vulnerability and corresponding 

exploit types for which advanced searching can be done. 

This data can be tabulated showing frequencies of 

instances of vulnerability or exploit types on a yearly 

basis. This tabularized data can also show the frequency 

of exploits across all types also on a yearly basis. We 

have already explored some of this data, and patterns 

have emerged.  In most cases, there are spikes in certain 

years in the number of recognized vulnerabilities. In 

some cases, the changes from one year to another can be 

as great as 1000 occurrences. 

    Similar variations and spikes in frequency are seen in 

data on exploits, both PoC and hostile. This information 

can be mined from CVEs, CVE Details, the exploit 

databases, and the WHID. As with the vulnerability 

frequency data, the frequency of occurrence of PoC 

exploits and attacks changes over time. Determining the 

root causes for such patterns, particularly the spikes, is 

one of our research goals. We may find that some 

attacks come prior to PoC exploits and close in time to 

the discovery of a vulnerability, perhaps even before its 

discovery. In such cases initial attacks would not be 

preventable. Even if we don’t find the requisite events 

or conditions that occur enough before all attacks, the 

events and conditions we do find will enable us to make 

predictions about a spike in attacks that we can mitigate. 

In addition to keeping track of instances of 

vulnerabilities, exploits and attacks, we also have to 

keep track of what category in the ontology they are 

instances of. We may find, for example, that while 

instances are increasing in a high-level category, they 

are only increasing in certain sub-categories, and not 

others. It is these specific increasing subcategories that 

provide a basis for mitigation strategies. 

   There are several challenges here. Exploit databases 

typically have much more extensive coverage of 

exploits than the CVE Details website. Also, the 

WHID’s collection of attack instances is much smaller 

than the true number since organizations are often 

reluctant to acknowledge that they have been attacked. 

Because of these and other discrepancies among the data 

sources, our analyses will not treat any source as 

definitive. We will instead triangulate over several data 

sources, and in the TVP module we will generate a 

confidence score for the predictions, depending on the 

extent to which trends discovered in multiple data 

sources are compatible. 

 

4.2 Collecting and Managing Data 
 

   Collecting and managing this big, unstructured data 

presents significant challenges.  Quantifying instances 

of vulnerabilities and exploits is currently done through 

numerous manual searches, laboriously selecting and 

counting entries. One of our goals is to automate this 

process as much as possible, although we realize that a 

human will always be “in the loop”, as indicated in 

Figure 2.  We will utilize existing web spider technology 

to collect data from hacker forums. Also, we have 

gained substantial experience in network evolution 

visualization and successfully developed web-scraping 

and crowdsourcing tools, which will be core modules 

for data collection and management. Large volumes and 

different varieties of data will have to be collected from 

the main data sources, ingested, stored and prepared for 

analysis.  A big data repository is thus planned for 

storing the raw data to allow “schema on read” [5][6] 

for different types of analysis.  There are tremendous 

technical challenges in terms of preparing data for 

analysis.  The data cleaning and integration is not a 

trivial task  [6].   

 

4.3 Identifying Emerging Concepts 
 

   Accurately identifying emerging concepts is critical to 

the success of PCS. To address the inherent complexity 

of the data collected, we are employing text mining, 

concept clustering and sentiment analysis techniques to 

identify: 1) emerging concepts against the background 

of more prominent and lasting ones; and 2) emerging 

hacker communities associated with the emerging 

concepts. Because of the huge amount of data involved, 

manual curation will not be possible in general, and so 

PCS needs to aid and guide a human analyst who will 

make the final interpretation and decision to develop 

countermeasures. 

    For 1), we are primarily applying text mining 

(extracting and clustering noun phrases [3]), concept 

clustering and mapping, and ontological analysis to 

identify and track concepts. The text mining results will 

provide continuous input for the concept clustering, 

mapping and sentiment analysis phase and together they 

will provide results for inclusion into an evolving 

ontology. Ontology building is done manually at the 

moment, but we are investigating ways to automate as 

much of this as possible. 

     For 2), the tasks are: a) elaborate the structure and 

evolution of hacker communities by analyzing their 

network structures; and b) determine which of the 

emerging concepts are not only likely vulnerabilities but 

which are likely targets of attacks and hence worthy of 

attention by a human analyst.  

     For concept clustering, mapping and sentiment 

analysis, we are employing the Leximancer tool 

(leximancer.com). Leximancer analyzes the frequencies 

and co-occurrence relationships between words in a text 

corpus and produces concept maps that show and name 

the significant concepts in the corpus. Leximancer also 
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shows the relationships among the most significant 

concepts used in a text corpus, including those that 

express sentiment [16][24]. It enables rapid analysis of 

tens of thousands or more text entries in records like 

those collected in Gmane or CVE List, but also allows 

modulation of the results through researcher 

intervention and interpretation. As an example, a portion 

of the concept map from a completed automated 

analysis of the entire CVE List circa August 2015 is 

shown in Figure 4.    

 

 

 

 

 

 
 

Figure 4: CVE Concept Map 

 

 

4.4 Tracking Concept Evolution 
 

    We iteratively perform three interrelated processes to 

mine concepts and track their changes. The concepts to 

be mined and tracked cover conditions leading to the 

identification of vulnerabilities and exploits (both non-

hostile and hostile) along with a characterization of the 

vulnerabilities and exploits themselves and their 

classification. The characterization differentiates, and 

the classification relates, the individuals, groups, 

communities and organizations, the systems and 

applications, and the processes, methods and techniques 

involved. The three processes are:  

1) mining security data sources using noun-

phrase parsing, automated terminology 

construction, statistical analysis and clustering 

to determine the most salient concepts [16] in 

the corpora being analyzed and track their 

changes through time;  

2) mapping the relationships among these 

concepts and also tracking their changes 

through time, employing Leximancer. This 

will generate a series of maps representing the 

changing networks of the most prominent, 

relevant, and important concepts mined, 

including concepts representing both positive 

and negative sentiments;  

3) building a security ontology [17][19][9], that 

we call the Emergent Vulnerabilities and 

Exploits Ontology (EVEO), based on the 

results of 1) and 2) that will help guide the 

construction and tracking of emerging 

concepts.  

    One challenge is to compare a series of maps, and to 

view the changing state of the ontology over time. 

However, we have already identified a promising 

candidate technology, TopicFlow, to aid us in 

visualizing topics and topic evolution [25]. 

 

4.5         Prioritizing Vulnerabilities 
 

Not all vulnerabilities are of the same value.  We have 

identified two approaches to help prioritize identified 

vulnerabilities. One is using machine learning to 

determine the characteristics of a “high priority” 

vulnerability. We will perform retrospective case 

studies as training sets for the machine learning. The 

other is to apply ecology theory [13] to help identify 

emerging concepts, refine the categorization, and 

prioritize the vulnerabilities. Two processes coexist in 
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each concept's community: symbiosis and competition. 

As more and more participants join a community, their 

symbiosis allows them to coexist in the community, 

through collaboration and cooperation. At the same 

time, as more and more participants are in the 

community, they may face increasing competition with 

each other. Accordingly, the density of a community is 

used as an indicator for both symbiosis and competition 

among individual participants. 

We will identify, as far as possible, the participants in 

the hacker discussion forums, blogs, and IRC channels 

who contributed to or commented on the topics and 

concepts detected. The participants for each concept 

will be considered as a community for that concept. If 

two participants contributed content to the same concept 

in one of the venues or they commented on each other's 

contributions, then there is a relation between them. 

Based on these participants and relationships, we are 

able to build a network for each concept for any period 

of time. To assess the impact of ecology on the evolution 

of concepts, at the community level, we will apply the 

density-dependence model [13] to explain the vital rates 

of concept communities (e.g., entry, growth, and exit 

rates). Using a technique of text mining—sentiment 

analysis—we will also be able to associate rates of entry 

with different sentiments, thus enhancing our 

understanding of concept trajectory and momentum. 

 

4.6 Developing Countermeasures 
 

   The AVD and RAR subsystems will enable internal 

proactive measures for an organization, taking 

advantage of the Germination Period. For a specific 

organization producing software the Germination 

Period will be a short window of opportunity after their 

software product has been released, but before the 

hacker community discovers its vulnerabilities.   

Currently, there exist few proactive methods. As 

aforementioned, it has been shown [20] that a majority 

of security bugs—nearly two thirds—are 

“foundational.” Taken together with the Germination 

Period, these observations suggest that one cannot 

simply try to find all of the security bugs in a system, 

but rather must take a strategic, risk-driven approach to 

security assurance.  For this reason, we are constructing 

a cybersecurity countermeasures approach, extending 

the existing tools and methods:  

    1) Driven by input (e.g. candidate emerging 

vulnerabilities) from the TVP subsystem, we will 

analyze the architecture of individual systems, using the 

Architecture Analysis for Security (AAFS) method [22] 

to understand the risks posed by these vulnerabilities; 

The AAFS method grew out of existing architecture 

analysis techniques, such as the architecture tradeoff 

analysis method (ATAM) [8], but focuses solely on 

security. The rationale behind architectural analysis is 

that discovering design problems during coding or 

maintenance is too late, because addressing these 

problems later in the life cycle is costly, risky, and 

disruptive to a project. At the point in a project’s 

lifecycle when a software architecture has been 

established, but before much code has been written, the 

architecture can be analyzed for risks [2].  

   2) A toolcalled Titan [28] will be used to identify 

architectural structures that are potentially implicated in 

the targeted vulnerabilities, to locate the design flaws 

within these structures, and to identify the specific files 

within these structures that have the highest probability 

of experiencing a security bug. The Titan tool chain 

takes, as input, a project’s source code, its revision 

history (from a configuration management tool such as 

SVN), and its issues (from an issue-tracking system 

such as Jira) and, based on this input, clusters the 

architecture into a set of overlapping DRSpaces. These 

DRSpaces are then analyzed for architectural flaws—

anti-patterns that we call hotspots.  These hotspots have 

been shown to be highly correlated with bugs, changes, 

and churn [17]. And we have discovered that these 

results hold for security as well [10]. That is, when a file 

is implicated in architectural flaws, it is significantly 

more likely to be involved in a security bug.  The more 

flaws a file is implicated in, the greater the probability 

that the file will experience security problems. 

    3) Using the knowledge from 1) and 2), the RAR 

subsystem will propose refactoring solutions to the 

architectures, based on removing the design flaws 

[15][17].  AAFS and Titan techniques serve to identify 

the risks in the system. To actually remove these risks, 

the system under scrutiny needs to be fixed and often 

this requires refactoring, to remove the identified 

hotspots. While it is true that many bugs are caused by 

pure coding errors, our Titan-based results suggest that 

architectural flaws play a large role in increasing the 

frequency of security bugs. Thus, no simple coding 

solution will fix this problem.  The only way to fix it is 

to refactor the architecture, to remove the flaws.  

Fortunately, we have the necessary information to do 

just that.  The Titan tool identifies not only flawed parts 

of the architecture, but also the reasons for the flaws and 

the precise set of files implicated.   

 

4.  Exploratory Study  
     We have conducted a retrospective exploratory study 

to gauge the feasibility of the proactive cybersecurity 

approach and the TVP design.  We analyzed both the 

Gmane “Full-Disclosure” email list 

(http://dir.gmane.org/gmane.comp.security.fulldisclosu

re) and the CVE database for comparison. We wanted to 

see the differences between the contents of the hacker 

mailing list and the CVE database for purposes of 
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characterizing already recognized vulnerabilities and 

identifying and characterizing emerging ones. The 

Gmane list, which covers 2010 to 2015, is well over 250 

MB. It contains a lot of noise including binary code, 

source code and boilerplate information (such as 

advertisements for security products and services) that 

can be repeated thousands of times, but contribute little, 

if any, useful information. Cleansing such files is part of 

our text mining process.  

    Our initial approach was to extract and mine the 

contents of the Subject and Date fields. There were over 

22,000 Subject and Date fields. We found similarities 

and differences in the coverage of DLL hijacking when 

we analyzed the two data sources. Additional 

information about product targets found in hacker 

discussions was not found in CVE database contents. 

The additional information that hacker discussions 

provide increases the potential for preventing or 

reducing attacks on these targets crucial for an early 

warning model relevant to attacks on these targets.  

Conversely, the relationships among DLL Hijacking on 

the one hand and Trojan Horse, local users, gaining 

privileges, untrusted search path vulnerabilities, and 

executing arbitrary code on the other are, in fact, the 

primary considerations in the CVE entries.  Knowing 

these relationships is an important part of understanding 

how DLL Hijacking attacks are performed and what 

kinds of targets they are likely to aim for. 

    In short, the two data sources (Gmane and CVE) 

supplement one another.  Both sources are needed for an 

early warning model that prevents attacks or mitigates 

their numbers. The retrospective case study re-enforces 

the importance of 1) identifying and integrating  

information from various data  sources and 2) 

determining  what information can be indicative of 

emerging vulnerabilities, new forms of exploit, or the 

(types of) targets of future attacks.  

   For example, in analyzing the text of “Full 

Disclosure” for 2009 we can see that DLL is an 

important concept, but “hijack” that has not emerged as 

a concept. There are other, however, potentially relevant 

concepts that are clustered close to DLL, such as 

“bypass” and “exploitation”, as shown in Figure 5. 

 

 
 

Figure 5: Concept Clusters from 2009 “Full 

Disclosure” 

  

   Using our ontology, however, we can attempt to 

“seed” the concept clustering process. An analysis of the 

same “Full Disclosure” list for 2009, but with seeding, 

shows DLL and “hijack” in a single cluster, as shown in 

Figure 6.  

 

 
 

Figure 6: 2009 “Full Disclosure” with Seeding 

 

Finally, in 2010, we can see that DLL and hijacking 

appear clustered together, as shown in Figure 7, and 

distinct from other attack types such as SQL injection. 
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Figure 7: Concept Clusters from 2010 “Full 

Disclosure” 

    

 This case study demonstrates the two major 

components of the TVP module of PCS: text mining and 

concept clustering. Together they aid an analyst in 

identifying potential categories (types), subcategories, 

their characteristics and relations, all elements of an 

ontology. Building a useful PCS ontology requires 

keeping track not only of all the concepts that have been 

discovered, as well as their associated characteristics 

and relationships at every level of the concept hierarchy, 

but also a way of keeping track of when people became 

aware of the concepts and when their corresponding 

instances occur. Having a way of keeping track of these 

correspondences is crucial, and this is precisely what the 

PCS ontology is designed to do.  There are other reasons 

why building an ontology is critical. The hierarchical 

and relational structure of the categories provide 

blueprints of how new categories are derived from 

existing categories. This could be the basis for detecting 

emerging concepts.  

   For example, using text mining results from the Full-

Disclosure list, we found that there are occurrences of 

terms standing for concepts like SQL-injection, XSS-

injection and SQL and XSS-injection. Since we also 

found HTML-injection, might we find HTML and XSS-

injection? In fact, we did find this.  However, if we did 

not, this would put us on the lookout for it—a proactive 

measure. Also, for sibling categories like remote code 

execution and local code execution, if a code execution 

exploit or a code execution attack has been identified, 

we would look for a remote-code execution exploit or a 

local-code execution exploit and a remote-code 

execution attack or a local-code execution attack. 

Assuming that an exploit of a vulnerability is to make it 

part of a viable method for attacking a system, if we find 

an exploit but not a corresponding attack, this might be 

an early warning sign that the corresponding attack is 

imminent. 

 

6. Conclusions and Future Work  

 
In this paper, we have explored the idea of a 

proactive approach to cybersecurity and shown 

promising progress towards this goal. We have 

identified an opportunity in the Germination Period, 

which is the time-period during which proactive 

measures may be most advantageously taken, and we 

have shown that a proactive approach to cybersecurity, 

utilizing big data, holds enormous potential. We also 

contributed the design of the Proactive Cybersecurity 

System, which serves as a research framework, and 

illuminates a number of research and practical 

challenges that need to be addressed. Big data is the 

predictive analytics foundation for the PCS.  The PCS 

rests on a big data infrastructure for extracting 

information from hackers’ communities and security 

data sources, transforming (cleansing) and loading the 

data, clustering and visualizing it, and curating it for 

future use. Our first exploratory retrospective study 

showed significant potential as a training set for 

machine learning. We are currently developing more 

retrospective studies and heuristics for machine learning 

and hope to develop the full PCS as envisioned.   

  A proactive approach to cybersecurity will be a 

game-changer.  If successful, we expect our eventual 

research results will guide quality assurance and risk 

mitigation activities, allowing the security assurance 

community to be proactive rather than reactive.  

Although security assurance personnel must have been 

doing some of this already, they currently do so in an ad 

hoc fashion, based on their personal experience. Thus 

they are operating without proper decision support and 

with limited, typically organization-internal data. These 

existing efforts will be significantly enhanced by the 

PCS.    

We must stress that the challenges that we have 

already encountered are not trivial. The data to be 

collected is vast and poorly structured, and the analysis 

is complex. We are truly looking for needles among 

haystacks.  But in view of the enormous benefits that 

may be achieved by the proactive approach, we are 

compelled to share our preliminary results, hoping to 

engage broader participation and collaboration for 

building a proactive cybersecurity community and 

realizing the PCS vision.      

 

5986



7. Acknowledgement 

 
The last co-author would like to acknowledge the 

support from the National Science Foundation's 

BIGDATA program (Grant # IIS-1546404). 

 

8. References  

      
[1] Afek, J., Sharabani, A. 2007. "Dangling Pointer: 

Smashing the Pointer for Fun and Profit." 

http://www.orkspace.net/secdocs/Conferences/BlackHat

/USA/2007/Dangling%20Pointer-paper.pdf. 

[2] Bass, L., Clements, P., Kazman, R. 2012. Software 

Architecture in Practice. Addison-Wesley. 

[3] Bhat, T.N., Collard, J., Subrahmanian, E., Sriram, R.D., 

Elliot, J.T., Kattner, U.R., Campbell, C.E., Monarch, I. 

2015. "Generating Domain Ontologies Using Root- and 

Rule-Based Terms," NIST Information Technology 

Laboratory. 

[4] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, 

P., Stal, M. 1996. Pattern-Oriented Software Architecture 

Volume 1: A System of Patterns. Wiley. 

[5] Chen, H-M, Kazman R., and Haziyev S. 2016. “Agile Big 

Data Analytics Development:  An Architecture-centric 

Approach,” IEEE Proceedings of Hawaiian International 

Conference on System Science (HICSS-49), Grand 

Hyatt, Kauai. 

[6] Chen, H-M, Kazman R., and Haziyev S. 2016.  “Agile 

Big Data Analytics for Web-based Systems:  An 

Architecture-centric Approach,” IEEE Transactions on 

Big Data, in press, April 2016. 

[7] Clark, S., Frei, S., Blaze, M., and Smith, J. 2010. 

"Familiarity Breeds Contempt," in Proceedings of the 

Annual Computer Security Applications Conference 

(ACSAC) 2010. 

[8] Clements, P., Kazman, R., Klein, M. 2001. Evaluating 

Software Architectures: Methods and Case Studies. 

Addison-Wesley. 

[9] Ekelhart, A., Fenz, S., Klemen, M., Weippl, E. 2007. 

"Security Ontologies: Improving Quantitative Risk 

Analysis," Proceedings of the 40th Annual Hawaii 

International Conference on System Sciences, IEEE 

Press. 

[10] Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L., “An 

Architecture-centric Approach to Security Analysis”, 

Proceedings of the 13th Working IEEE/IFIP Conference 

on Software Architecture (WICSA 2016), (Venice, Italy), 

April 2016. 

[11] Ferguson, J. 2007. "Understanding the Heap by Breaking 

It", https://www.blackhat.com/presentations/bh-usa-

07/Ferguson/Presentation/bh-usa-07-ferguson.pdf 

[12] FICO, “Using Predictive Analytics to Advance 

Cybersecurity”, http://www.fico.com/en/blogs/fraud-

security/using-predictive-analytics-advance-

cybersecurity,  retrieved  Jan. 2016.  

[13] Hannan, M.T., and Freeman, J. 1989. Organizational 

Ecology. Harvard University Press. 

[14] IEEE Center for Secure Design.  2016.  “Avoiding the 

Top 10 Software Security Design flaw,”  

https://www.computer.org/cms/CYBSI/docs/Top-10-

Flaws.pdf, retrieved March 1, 2016. 

[15] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, 

S., Fedak, V., Shapochka, A. 2015. "A Case Study in 

Locating the Architectural Roots of Technical Debt," in 

Proceedings of the International Conference on Software 

Engineering (ICSE), Florence, Italy. 

[16] Kazman, R., Goldenson, D., Monarch, I., Nichols, W., 

Valetto, G. 2016. “Evaluating the Effects of Architectural 

Documentation: A Case Study of a Large Scale Open 

Source Project”, IEEE Transactions on Software 

Engineering. 

[17] Mo, R., Cai, Y., Kazman, R., Xiao, l. 2015. "Hotspot 

Patterns: The Formal Definition and Automatic 

Detection of Architecture Smells," Proceedings of the 

The 12th Working IEEE/IFIP Conference on Software 

Architecture. 

[18] Mundie, D.A., McIntire, D.M. 2013. "The Mal: A 

Malware Analysis Lexicon," Software Engineering 

Institute Technical Note CMU/SEI-2013-TN-010. 

[19] Obrst, L., Chase, P., Markeloff, R. 2012. "Developing an 

Ontology of the Cyber Security Domain," Proceedings of 

the STIDS: MITRE Corp., 49-56. 

[20] Ozment, A., Schechter, S.E. 2006. "Milk or Wine: Does 

Software Security Improve with Age?," Proceedings of 

the Usenix Security Symposium. 

[21] PWC. 2015. “Managing cyber risks in an interconnected 

world”, 

http://www.dol.gov/ebsa/pdf/erisaadvisorycouncil2015s

ecurity3.pdf. 

[22] Ryoo, J., Kazman, R., Anand, P. 2015. "Architectural 

Analysis of Security Vulnerabilities",  IEEE Security and 

Privacy, September/October 2015. 

[23] Seacord, R.C. 2005. Secure Coding in C and C++, 

Addison-Wesley. 

[24] Smith, A., Humphreys, M. 2006. "Evaluation of 

Unsupervised Semantic Mapping of Natural Language 

with Leximancer Concept Mapping," Behavior Research 

Methods (38:2), 262-279. 

[25] Smith, A., Malik, S., Shneiderman, B. “Visual Analysis 

of Topical Evolution in Unstructured Text: Design and 

Evaluation of TopicFlow” in Applications of Social 

Media and Social Network Analysis, Springer, 2015. 

[26] Solomon, M. “Predictive Analytics: Using the Past to 

Create a More Secure Future” 

http://www.securityweek.com/predictive-analytics-

using-past-create-more-secure-future, September, 2014 

[27] Swanson, E.B., Ramiller, N.C.  1997. "The Organizing 

Vision in Information Systems Innovation," Organization 

Science (8:5), 458-474. 

[28] Xiao, L., Cai, Y., Kazman, R. 2014. "Design Rule 

Spaces: A New Form of Architecture Insight," 

Proceedings of the Proceedings of the 36th International 

Conference on Software Engineering, 967-977.

 

5987


