
Can Cybersecurity Be Proactive? A Big Data Approach and Challenges

Hong-Mei Chen
Shidler College of Business

Univ. of Hawaii at Manoa

Honolulu, USA

hmchen@hawaii.edu

Rick Kazman
Univ. of Hawaii at Manoa

& SEI/CMU

 Pittsburgh, USA

kazman@hawaii.edu

Ira Monarch
Independent Consultant

Pittsburgh, USA

iramonarch@gmail.com

Ping Wang
University of Maryland

College Park, USA

pwang@umd.edu

Abstract
 The cybersecurity community typically reacts to

attacks after they occur. Being reactive is costly and

can be fatal where attacks threaten lives, important

data, or mission success. But can cybersecurity be done

proactively? Our research capitalizes on the

Germination Period—the time lag between hacker

communities discussing software flaw types and flaws

actually being exploited—where proactive measures

can be taken. We argue for a novel proactive approach,

utilizing big data, for (I) identifying potential attacks

before they come to fruition; and based on this

identification, (II) developing preventive counter-

measures. The big data approach resulted in our vision

of the Proactive Cybersecurity System (PCS), a layered,

modular service platform that applies big data

collection and processing tools to a wide variety of

unstructured data sources to predict vulnerabilities and

develop countermeasures. Our exploratory study is the

first to show the promise of this novel proactive

approach and illuminates challenges that need to be

addressed.

1. Introduction

 The number and variety of cyber-attacks is rapidly

increasing, and the rate of new software vulnerabilities

is also rising dramatically. According to a recent study

“the compound annual growth rate (CAGR) of detected

security incidents has increased 66% year-over-year

since 2009” [21]. But the software security community

is typically reacting to attacks after they occur. Being

reactive is costly and can be fatal, where attacks threaten

lives, important data, or mission success.

Unfortunately, existing research on cybersecurity has

focused almost exclusively on reactive strategies. Some

attempts to be “proactive”, such as in the guidelines

published by IEEE Center for Secure Design [14], have

been outlined, but these are limited to the scope of

software design and are rather abstract.

 Predictive analytics, an emerging tool being used to

identify potential cyber threats against organizations,

has the capability to be proactive but currently it is not.

The emerging predictive analytics used in the security

industry attempts to build a specific response to a

specific cybersecurity threat [26]. As attackers find new

ways to avoid detection, predictive analytics helps

security professionals find unknown malware wherever

it may be hiding. Bit predictive analytics, as it is

currently practiced, doesn’t mean seeing an attack

before it occurs [26], which is what we mean by being

“proactive”. For instance, the analytics software

company FICO, although still not “proactive” by our

definition, used predictive real-time analytics to respond

to data breaches faster than before [12]. The traditional

approach of gathering data on a compromise,

developing a threat’s “signature” and then using that

signature to protect against future threats, results in

massive time delays. FICO, in contrast, identifies threats

as they come on the scene by identifying anomalous

patterns using real-time analytics. This identification

has to build on the profiling of attacks that are currently

known. But by this time considerable damage has

already been done.

Can we be truly proactive about cybersecurity, in the

sense that we can prevent the attack before it occurs?

Can we predict what concepts that are emerging in the

hacker community will eventually evolve into a

successful exploit or an attack? These are our research

questions. Our research is on analogy with the medical

industry’s use of predictive analytics to proactively

prevent disease outbreaks. To be proactive, the disease

has to be recognized before, not after, it becomes

widespread.

 In addition, continuing the medical analogy, to be

proactive, we not only look out for external attacks, e.g.,

disease outbreaks, but we also need to look internally,

in terms of an individual’s predisposition to a disease. It

has been shown [20] that a majority of security bugs—

nearly two thirds—are “foundational”; that is, they have

existed for many years in a system’s legacy code. Many

of them are, in fact, 0-day vulnerabilities, which give no

5978

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41885
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

time to plan any mitigation against their exploitation

once the flaws become known. To be proactive,

organizations must take security assurance steps after a

software product has been released, but before the broad

hacker community discovers its vulnerabilities [7].

The proactive approach, if proven feasible, would be

a game-changer for the cybersecurity community. Our

research is motivated by the enormous potential benefits

of this approach. The proactive approach is appealing,

but questions remain whether it is feasible. Our

exploratory study is the first to show the promise of this

novel proactive approach, utilizing big data, and

illuminates challenges that need to be addressed.

 In what follows, we discuss the “Germination

Period”, a time lag between hacker communities

discussing software flaw types and those flaws being

exploited. Our definition of Germination Period

includes the previously identified “Honeymoon period”,

which occurs after the release of a system, but before the

identification of its first vulnerability [7]. Both of these

periods represent opportunities where proactive

counter-measures can be advantageously taken.

 The rest of this paper is structured as follows: In

Section 3, we present our vision of a Proactive

Cybersecurity System (PCS), based on the big data

approach. In Section 4, we describe our research

framework and discuss challenges and directions for

realizing PCS. Section 5 presents our exploratory study.

Section 6 concludes with remarks for future work.

2. The Germination Period and Big Data

We first conducted a literature review on the patterns

of past cyber-attacks to help answer our research

questions. We found that the ‘black hat’ (offensive

hacker) community is a learning community with unique

ecologic properties, and we found there’s a time lag that

we called the Germination Period. This is the time

between the emergence of a vulnerability concept in the

hacker community and the creation of successful

attacks. It is during this Germination Period that we can

be proactive. For example, in May 2005, Robert

Seacord, a security specialist at the Software

Engineering Institute, published the first edition of

Secure Coding in C and C++. On page 156 of his book,

he cautioned about "referencing freed memory" [23]. In

2007, researchers from WatchFire reported a "Dangling

Pointer" vulnerability in Microsoft IIS [1] and Justin

Ferguson gave a talk at the Blackhat conference

reporting one of the first valid exploits of what became

known as Use-After-Free (UAF) [9]. Blogs and

tutorials related to the concepts of UAF began to appear

frequently around 2010. Figure 1 below shows the

reported number of common vulnerabilities and

exposures (CVEs), by year, for UAF entries. Successful

UAF attacks can have serious consequences: corruption

of data, and the execution of arbitrary code.

Clearly the offensive hacker community learned

(about UAFs) and just as clearly it takes time, from the

initial discovery of a vulnerability until it becomes a

significant and viable threat to the “white hat”

community. This time lag between 2006 to 2010, the

Germination Period, during which offensive

communities are gaining understanding and expertise

and planning exploits, represents an opportunity for

proactive counter-measures. But such counter-measures

can only be applied if the potential threat is determined

early enough.

Figure 1. Use-After-Free Common Vulnerabilities

and Exposures (CVEs)

How does the offensive community gain

understanding and expertise in planning exploits? What

traces do they leave? In our exploratory study, we have

identified two main categories of data sources

containing information leading to emerging concepts

describing vulnerabilities that are likely to be targeted:

(1) hacker communities, and (2) public security

databases. Both types of data sources discuss

vulnerabilities, PoC (Proof of Concept) exploits, and

attacks. Interestingly, we have noted that both source

types recognize occurrences of PoC exploits, attacks,

and vulnerabilities at the same time. It has been shown

that there are time delays, e.g., the Germination Period,

both between the identification of vulnerabilities and the

production of PoC exploits and also between hostile

attacks targeting these vulnerabilities and the

corresponding PoC exploits [6][23]. We intend to

broaden these data sources, thus taking a big data

approach, to show something more general, by

identifying as many contexts as possible and

determining whether the time delays are different in

different contexts.

 Hackers form communities. Some of the hackers’

blogs, software repositories, IRC channels, etc. can be

found on the internet. They are learning communities

and they are innovation communities, no different from

entrepreneurs, venture capitalists, researchers and even

terrorist organizations. This is why they are successful

5979

and why we fear them. But, mounting a successful

attack requires tremendous resources and patience.

Hacker communities, as with all innovation

communities, need to share information to be effective;

they build on each other’s work and discourse,

sometimes directly but more often indirectly [26]. By

analyzing the topics in hackers' discussions, we will be

are likely to be the focus of upcoming attacks. Early

insight can lead to early, and hence more effective,

quality assurance and mitigation strategies.able to get

early indication as to which vulnerabilities

As a result, we believe and will present early evidence

that we can mine hacker discussion forums, blogs, and

Internet Relay Chat (IRC) channels (e.g. freenode.net,

AnonOps IRC, Metasploit IRC, Google Project Zero,

blackhat.com, GMANE.org, seclists.org) to identify

emerging concepts. In this way the software security

community can be more proactive in detecting and

eliminating vulnerabilities, rather than simply reacting

to vulnerabilities as they occur. For example, the

Heartbleed bug was discovered simultaneously by

(defensive) security researchers at Google and at

Codenomicon, avoiding potentially huge losses if

hackers had found this bug first (in April, 2014 more

than 2/3 of the world’s web servers were vulnerable to

Heartbleed).

 In addition, our exploratory study has already mined

publicly available vulnerability, exploit, and attack

databases such as CVEs (cve.mitre.org), CVE Details

(cvedetails.com), and the Open Web Application

Security Project's (OWASP) WASC Web Hacking

Incidents Database (WHID)

(https://www.owasp.org/index.php/OWASP_WASC_

Web_Hacking_Incidents_Database_Project) to create

an initial ontology of prominent security concepts.

 There are also important differences between these

two types of data sources. By collecting data from

various sources, we can assemble information about

different aspects of the same vulnerabilities and

exploits. This means that such differences can be

combined and compared for better understanding of the

conditions responsible for the time delays between

vulnerabilities and exploits—a distinct advantage of

utilizing big data.

3. Proactive Cybersecurity System (PCS)

Vision

 Our big data approach results in a vision of the

Proactive Cybersecurity System (PCS) as shown in

Figure 1. Grounded on a wide variety of unstructured

big data sources, the PCS has two goals:

 Goal I: identify potential attacks before they take

place and cause harm, and based on this identification,

 Goal II: develop preventive counter-measures.

Figure 2. Proactive Security System

5980

https://www.owasp.org/index.php/OWASP_WASC_Web_Hacking_Incidents_Database_Project
https://www.owasp.org/index.php/OWASP_WASC_Web_Hacking_Incidents_Database_Project

 To achieve Goal I, a Targeted Vulnerability

Prediction (TVP) subsystem detects, from hackers' ad

hoc communities and publicly available security

sources, the emerging concepts that are the early

warning signs of likely vulnerability targets. To

achieve Goal II, (a) an Architectural Vulnerability

Detection (AVD) subsystem and (b) a Risk Analysis and

Recommender (RAR) subsystem were designed. AVD

adds a further capability of predicting the impact of the

attack vectors identified in the TVP subsystem on a

system architecture of a company. RAR analyzes the

risks associated with identified vulnerabilities, estimate

the costs of mitigation actions, and recommend

refactoring and assurance strategies. The TVP, AVD,

and RAR subsystems constitute the PCS, a modular

service platform that combines data sources, data

collection and processing tools, metrics and models for

use of security personnel, researchers, governments, and

insurance companies.

4. Research Framework and Challenges

 Figure 3 shows our research framework for

developing a PCS. We will discuss the research steps,

analytical foundations, tools employed as well as the

preliminary results for achieving Goal I and Goal II.
 As shown in Figure 3, for TVP our research steps

include (1) identifying big data sources; (2) collecting

and managing big data; (3) identifying emerging

concepts; (4) tracking concept evolution; and (5)

prioritizing vulnerabilities. In parallel, we develop

internal proactive measures for an organization by the

AVD and RAR subsystems. Next we describe our

preliminary directions and illuminate the challenges to

be addressed in each step.

Figure 3. PCS Research Framework

4.1 Identify Big Data Sources

Inherent in the big data approach, identifying and

assessing the data sources is a critical activity as the

subsequent analysis and proactive measures rely on the

quality, comprehensiveness, and reliability of the data.

There are many potential data sources available and

different data sources have different characteristics and

provide different information. For instance, one

important difference is that most of the public security

databases do not provide information about who

contributed an entry to the database. Hacker sources do

typically identify who is making a contribution. In many

cases, however, the names provided are fanciful and an

individual may not use the same designation in different

chats, lists and database contributions.

 Furthermore, publicly accessible online databases

are maintained by various organizations. MITRE’s CVE

5981

database collects vulnerability, exploit and attack

information. An offshoot of this is CVE Details. This

website identifies vulnerability and corresponding

exploit types for which advanced searching can be done.

This data can be tabulated showing frequencies of

instances of vulnerability or exploit types on a yearly

basis. This tabularized data can also show the frequency

of exploits across all types also on a yearly basis. We

have already explored some of this data, and patterns

have emerged. In most cases, there are spikes in certain

years in the number of recognized vulnerabilities. In

some cases, the changes from one year to another can be

as great as 1000 occurrences.

 Similar variations and spikes in frequency are seen in

data on exploits, both PoC and hostile. This information

can be mined from CVEs, CVE Details, the exploit

databases, and the WHID. As with the vulnerability

frequency data, the frequency of occurrence of PoC

exploits and attacks changes over time. Determining the

root causes for such patterns, particularly the spikes, is

one of our research goals. We may find that some

attacks come prior to PoC exploits and close in time to

the discovery of a vulnerability, perhaps even before its

discovery. In such cases initial attacks would not be

preventable. Even if we don’t find the requisite events

or conditions that occur enough before all attacks, the

events and conditions we do find will enable us to make

predictions about a spike in attacks that we can mitigate.

In addition to keeping track of instances of

vulnerabilities, exploits and attacks, we also have to

keep track of what category in the ontology they are

instances of. We may find, for example, that while

instances are increasing in a high-level category, they

are only increasing in certain sub-categories, and not

others. It is these specific increasing subcategories that

provide a basis for mitigation strategies.

 There are several challenges here. Exploit databases

typically have much more extensive coverage of

exploits than the CVE Details website. Also, the

WHID’s collection of attack instances is much smaller

than the true number since organizations are often

reluctant to acknowledge that they have been attacked.

Because of these and other discrepancies among the data

sources, our analyses will not treat any source as

definitive. We will instead triangulate over several data

sources, and in the TVP module we will generate a

confidence score for the predictions, depending on the

extent to which trends discovered in multiple data

sources are compatible.

4.2 Collecting and Managing Data

 Collecting and managing this big, unstructured data

presents significant challenges. Quantifying instances

of vulnerabilities and exploits is currently done through

numerous manual searches, laboriously selecting and

counting entries. One of our goals is to automate this

process as much as possible, although we realize that a

human will always be “in the loop”, as indicated in

Figure 2. We will utilize existing web spider technology

to collect data from hacker forums. Also, we have

gained substantial experience in network evolution

visualization and successfully developed web-scraping

and crowdsourcing tools, which will be core modules

for data collection and management. Large volumes and

different varieties of data will have to be collected from

the main data sources, ingested, stored and prepared for

analysis. A big data repository is thus planned for

storing the raw data to allow “schema on read” [5][6]

for different types of analysis. There are tremendous

technical challenges in terms of preparing data for

analysis. The data cleaning and integration is not a

trivial task [6].

4.3 Identifying Emerging Concepts

 Accurately identifying emerging concepts is critical to

the success of PCS. To address the inherent complexity

of the data collected, we are employing text mining,

concept clustering and sentiment analysis techniques to

identify: 1) emerging concepts against the background

of more prominent and lasting ones; and 2) emerging

hacker communities associated with the emerging

concepts. Because of the huge amount of data involved,

manual curation will not be possible in general, and so

PCS needs to aid and guide a human analyst who will

make the final interpretation and decision to develop

countermeasures.

 For 1), we are primarily applying text mining

(extracting and clustering noun phrases [3]), concept

clustering and mapping, and ontological analysis to

identify and track concepts. The text mining results will

provide continuous input for the concept clustering,

mapping and sentiment analysis phase and together they

will provide results for inclusion into an evolving

ontology. Ontology building is done manually at the

moment, but we are investigating ways to automate as

much of this as possible.

 For 2), the tasks are: a) elaborate the structure and

evolution of hacker communities by analyzing their

network structures; and b) determine which of the

emerging concepts are not only likely vulnerabilities but

which are likely targets of attacks and hence worthy of

attention by a human analyst.

 For concept clustering, mapping and sentiment

analysis, we are employing the Leximancer tool

(leximancer.com). Leximancer analyzes the frequencies

and co-occurrence relationships between words in a text

corpus and produces concept maps that show and name

the significant concepts in the corpus. Leximancer also

5982

shows the relationships among the most significant

concepts used in a text corpus, including those that

express sentiment [16][24]. It enables rapid analysis of

tens of thousands or more text entries in records like

those collected in Gmane or CVE List, but also allows

modulation of the results through researcher

intervention and interpretation. As an example, a portion

of the concept map from a completed automated

analysis of the entire CVE List circa August 2015 is

shown in Figure 4.

Figure 4: CVE Concept Map

4.4 Tracking Concept Evolution

 We iteratively perform three interrelated processes to

mine concepts and track their changes. The concepts to

be mined and tracked cover conditions leading to the

identification of vulnerabilities and exploits (both non-

hostile and hostile) along with a characterization of the

vulnerabilities and exploits themselves and their

classification. The characterization differentiates, and

the classification relates, the individuals, groups,

communities and organizations, the systems and

applications, and the processes, methods and techniques

involved. The three processes are:

1) mining security data sources using noun-

phrase parsing, automated terminology

construction, statistical analysis and clustering

to determine the most salient concepts [16] in

the corpora being analyzed and track their

changes through time;

2) mapping the relationships among these

concepts and also tracking their changes

through time, employing Leximancer. This

will generate a series of maps representing the

changing networks of the most prominent,

relevant, and important concepts mined,

including concepts representing both positive

and negative sentiments;

3) building a security ontology [17][19][9], that

we call the Emergent Vulnerabilities and

Exploits Ontology (EVEO), based on the

results of 1) and 2) that will help guide the

construction and tracking of emerging

concepts.

 One challenge is to compare a series of maps, and to

view the changing state of the ontology over time.

However, we have already identified a promising

candidate technology, TopicFlow, to aid us in

visualizing topics and topic evolution [25].

4.5 Prioritizing Vulnerabilities

Not all vulnerabilities are of the same value. We have

identified two approaches to help prioritize identified

vulnerabilities. One is using machine learning to

determine the characteristics of a “high priority”

vulnerability. We will perform retrospective case

studies as training sets for the machine learning. The

other is to apply ecology theory [13] to help identify

emerging concepts, refine the categorization, and

prioritize the vulnerabilities. Two processes coexist in

5983

each concept's community: symbiosis and competition.

As more and more participants join a community, their

symbiosis allows them to coexist in the community,

through collaboration and cooperation. At the same

time, as more and more participants are in the

community, they may face increasing competition with

each other. Accordingly, the density of a community is

used as an indicator for both symbiosis and competition

among individual participants.

We will identify, as far as possible, the participants in

the hacker discussion forums, blogs, and IRC channels

who contributed to or commented on the topics and

concepts detected. The participants for each concept

will be considered as a community for that concept. If

two participants contributed content to the same concept

in one of the venues or they commented on each other's

contributions, then there is a relation between them.

Based on these participants and relationships, we are

able to build a network for each concept for any period

of time. To assess the impact of ecology on the evolution

of concepts, at the community level, we will apply the

density-dependence model [13] to explain the vital rates

of concept communities (e.g., entry, growth, and exit

rates). Using a technique of text mining—sentiment

analysis—we will also be able to associate rates of entry

with different sentiments, thus enhancing our

understanding of concept trajectory and momentum.

4.6 Developing Countermeasures

 The AVD and RAR subsystems will enable internal

proactive measures for an organization, taking

advantage of the Germination Period. For a specific

organization producing software the Germination

Period will be a short window of opportunity after their

software product has been released, but before the

hacker community discovers its vulnerabilities.

Currently, there exist few proactive methods. As

aforementioned, it has been shown [20] that a majority

of security bugs—nearly two thirds—are

“foundational.” Taken together with the Germination

Period, these observations suggest that one cannot

simply try to find all of the security bugs in a system,

but rather must take a strategic, risk-driven approach to

security assurance. For this reason, we are constructing

a cybersecurity countermeasures approach, extending

the existing tools and methods:

 1) Driven by input (e.g. candidate emerging

vulnerabilities) from the TVP subsystem, we will

analyze the architecture of individual systems, using the

Architecture Analysis for Security (AAFS) method [22]

to understand the risks posed by these vulnerabilities;

The AAFS method grew out of existing architecture

analysis techniques, such as the architecture tradeoff

analysis method (ATAM) [8], but focuses solely on

security. The rationale behind architectural analysis is

that discovering design problems during coding or

maintenance is too late, because addressing these

problems later in the life cycle is costly, risky, and

disruptive to a project. At the point in a project’s

lifecycle when a software architecture has been

established, but before much code has been written, the

architecture can be analyzed for risks [2].

 2) A toolcalled Titan [28] will be used to identify

architectural structures that are potentially implicated in

the targeted vulnerabilities, to locate the design flaws

within these structures, and to identify the specific files

within these structures that have the highest probability

of experiencing a security bug. The Titan tool chain

takes, as input, a project’s source code, its revision

history (from a configuration management tool such as

SVN), and its issues (from an issue-tracking system

such as Jira) and, based on this input, clusters the

architecture into a set of overlapping DRSpaces. These

DRSpaces are then analyzed for architectural flaws—

anti-patterns that we call hotspots. These hotspots have

been shown to be highly correlated with bugs, changes,

and churn [17]. And we have discovered that these

results hold for security as well [10]. That is, when a file

is implicated in architectural flaws, it is significantly

more likely to be involved in a security bug. The more

flaws a file is implicated in, the greater the probability

that the file will experience security problems.

 3) Using the knowledge from 1) and 2), the RAR

subsystem will propose refactoring solutions to the

architectures, based on removing the design flaws

[15][17]. AAFS and Titan techniques serve to identify

the risks in the system. To actually remove these risks,

the system under scrutiny needs to be fixed and often

this requires refactoring, to remove the identified

hotspots. While it is true that many bugs are caused by

pure coding errors, our Titan-based results suggest that

architectural flaws play a large role in increasing the

frequency of security bugs. Thus, no simple coding

solution will fix this problem. The only way to fix it is

to refactor the architecture, to remove the flaws.

Fortunately, we have the necessary information to do

just that. The Titan tool identifies not only flawed parts

of the architecture, but also the reasons for the flaws and

the precise set of files implicated.

4. Exploratory Study
 We have conducted a retrospective exploratory study

to gauge the feasibility of the proactive cybersecurity

approach and the TVP design. We analyzed both the

Gmane “Full-Disclosure” email list

(http://dir.gmane.org/gmane.comp.security.fulldisclosu

re) and the CVE database for comparison. We wanted to

see the differences between the contents of the hacker

mailing list and the CVE database for purposes of

5984

characterizing already recognized vulnerabilities and

identifying and characterizing emerging ones. The

Gmane list, which covers 2010 to 2015, is well over 250

MB. It contains a lot of noise including binary code,

source code and boilerplate information (such as

advertisements for security products and services) that

can be repeated thousands of times, but contribute little,

if any, useful information. Cleansing such files is part of

our text mining process.

 Our initial approach was to extract and mine the

contents of the Subject and Date fields. There were over

22,000 Subject and Date fields. We found similarities

and differences in the coverage of DLL hijacking when

we analyzed the two data sources. Additional

information about product targets found in hacker

discussions was not found in CVE database contents.

The additional information that hacker discussions

provide increases the potential for preventing or

reducing attacks on these targets crucial for an early

warning model relevant to attacks on these targets.

Conversely, the relationships among DLL Hijacking on

the one hand and Trojan Horse, local users, gaining

privileges, untrusted search path vulnerabilities, and

executing arbitrary code on the other are, in fact, the

primary considerations in the CVE entries. Knowing

these relationships is an important part of understanding

how DLL Hijacking attacks are performed and what

kinds of targets they are likely to aim for.

 In short, the two data sources (Gmane and CVE)

supplement one another. Both sources are needed for an

early warning model that prevents attacks or mitigates

their numbers. The retrospective case study re-enforces

the importance of 1) identifying and integrating

information from various data sources and 2)

determining what information can be indicative of

emerging vulnerabilities, new forms of exploit, or the

(types of) targets of future attacks.

 For example, in analyzing the text of “Full

Disclosure” for 2009 we can see that DLL is an

important concept, but “hijack” that has not emerged as

a concept. There are other, however, potentially relevant

concepts that are clustered close to DLL, such as

“bypass” and “exploitation”, as shown in Figure 5.

Figure 5: Concept Clusters from 2009 “Full

Disclosure”

 Using our ontology, however, we can attempt to

“seed” the concept clustering process. An analysis of the

same “Full Disclosure” list for 2009, but with seeding,

shows DLL and “hijack” in a single cluster, as shown in

Figure 6.

Figure 6: 2009 “Full Disclosure” with Seeding

Finally, in 2010, we can see that DLL and hijacking

appear clustered together, as shown in Figure 7, and

distinct from other attack types such as SQL injection.

5985

Figure 7: Concept Clusters from 2010 “Full

Disclosure”

 This case study demonstrates the two major

components of the TVP module of PCS: text mining and

concept clustering. Together they aid an analyst in

identifying potential categories (types), subcategories,

their characteristics and relations, all elements of an

ontology. Building a useful PCS ontology requires

keeping track not only of all the concepts that have been

discovered, as well as their associated characteristics

and relationships at every level of the concept hierarchy,

but also a way of keeping track of when people became

aware of the concepts and when their corresponding

instances occur. Having a way of keeping track of these

correspondences is crucial, and this is precisely what the

PCS ontology is designed to do. There are other reasons

why building an ontology is critical. The hierarchical

and relational structure of the categories provide

blueprints of how new categories are derived from

existing categories. This could be the basis for detecting

emerging concepts.

 For example, using text mining results from the Full-

Disclosure list, we found that there are occurrences of

terms standing for concepts like SQL-injection, XSS-

injection and SQL and XSS-injection. Since we also

found HTML-injection, might we find HTML and XSS-

injection? In fact, we did find this. However, if we did

not, this would put us on the lookout for it—a proactive

measure. Also, for sibling categories like remote code

execution and local code execution, if a code execution

exploit or a code execution attack has been identified,

we would look for a remote-code execution exploit or a

local-code execution exploit and a remote-code

execution attack or a local-code execution attack.

Assuming that an exploit of a vulnerability is to make it

part of a viable method for attacking a system, if we find

an exploit but not a corresponding attack, this might be

an early warning sign that the corresponding attack is

imminent.

6. Conclusions and Future Work

In this paper, we have explored the idea of a

proactive approach to cybersecurity and shown

promising progress towards this goal. We have

identified an opportunity in the Germination Period,

which is the time-period during which proactive

measures may be most advantageously taken, and we

have shown that a proactive approach to cybersecurity,

utilizing big data, holds enormous potential. We also

contributed the design of the Proactive Cybersecurity

System, which serves as a research framework, and

illuminates a number of research and practical

challenges that need to be addressed. Big data is the

predictive analytics foundation for the PCS. The PCS

rests on a big data infrastructure for extracting

information from hackers’ communities and security

data sources, transforming (cleansing) and loading the

data, clustering and visualizing it, and curating it for

future use. Our first exploratory retrospective study

showed significant potential as a training set for

machine learning. We are currently developing more

retrospective studies and heuristics for machine learning

and hope to develop the full PCS as envisioned.

 A proactive approach to cybersecurity will be a

game-changer. If successful, we expect our eventual

research results will guide quality assurance and risk

mitigation activities, allowing the security assurance

community to be proactive rather than reactive.

Although security assurance personnel must have been

doing some of this already, they currently do so in an ad

hoc fashion, based on their personal experience. Thus

they are operating without proper decision support and

with limited, typically organization-internal data. These

existing efforts will be significantly enhanced by the

PCS.

We must stress that the challenges that we have

already encountered are not trivial. The data to be

collected is vast and poorly structured, and the analysis

is complex. We are truly looking for needles among

haystacks. But in view of the enormous benefits that

may be achieved by the proactive approach, we are

compelled to share our preliminary results, hoping to

engage broader participation and collaboration for

building a proactive cybersecurity community and

realizing the PCS vision.

5986

7. Acknowledgement

The last co-author would like to acknowledge the

support from the National Science Foundation's

BIGDATA program (Grant # IIS-1546404).

8. References

[1] Afek, J., Sharabani, A. 2007. "Dangling Pointer:

Smashing the Pointer for Fun and Profit."

http://www.orkspace.net/secdocs/Conferences/BlackHat

/USA/2007/Dangling%20Pointer-paper.pdf.

[2] Bass, L., Clements, P., Kazman, R. 2012. Software

Architecture in Practice. Addison-Wesley.

[3] Bhat, T.N., Collard, J., Subrahmanian, E., Sriram, R.D.,

Elliot, J.T., Kattner, U.R., Campbell, C.E., Monarch, I.

2015. "Generating Domain Ontologies Using Root- and

Rule-Based Terms," NIST Information Technology

Laboratory.

[4] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,

P., Stal, M. 1996. Pattern-Oriented Software Architecture

Volume 1: A System of Patterns. Wiley.

[5] Chen, H-M, Kazman R., and Haziyev S. 2016. “Agile Big

Data Analytics Development: An Architecture-centric

Approach,” IEEE Proceedings of Hawaiian International

Conference on System Science (HICSS-49), Grand

Hyatt, Kauai.

[6] Chen, H-M, Kazman R., and Haziyev S. 2016. “Agile

Big Data Analytics for Web-based Systems: An

Architecture-centric Approach,” IEEE Transactions on

Big Data, in press, April 2016.

[7] Clark, S., Frei, S., Blaze, M., and Smith, J. 2010.

"Familiarity Breeds Contempt," in Proceedings of the

Annual Computer Security Applications Conference

(ACSAC) 2010.

[8] Clements, P., Kazman, R., Klein, M. 2001. Evaluating

Software Architectures: Methods and Case Studies.

Addison-Wesley.

[9] Ekelhart, A., Fenz, S., Klemen, M., Weippl, E. 2007.

"Security Ontologies: Improving Quantitative Risk

Analysis," Proceedings of the 40th Annual Hawaii

International Conference on System Sciences, IEEE

Press.

[10] Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L., “An

Architecture-centric Approach to Security Analysis”,

Proceedings of the 13th Working IEEE/IFIP Conference

on Software Architecture (WICSA 2016), (Venice, Italy),

April 2016.

[11] Ferguson, J. 2007. "Understanding the Heap by Breaking

It", https://www.blackhat.com/presentations/bh-usa-

07/Ferguson/Presentation/bh-usa-07-ferguson.pdf

[12] FICO, “Using Predictive Analytics to Advance

Cybersecurity”, http://www.fico.com/en/blogs/fraud-

security/using-predictive-analytics-advance-

cybersecurity, retrieved Jan. 2016.

[13] Hannan, M.T., and Freeman, J. 1989. Organizational

Ecology. Harvard University Press.

[14] IEEE Center for Secure Design. 2016. “Avoiding the

Top 10 Software Security Design flaw,”

https://www.computer.org/cms/CYBSI/docs/Top-10-

Flaws.pdf, retrieved March 1, 2016.

[15] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev,

S., Fedak, V., Shapochka, A. 2015. "A Case Study in

Locating the Architectural Roots of Technical Debt," in

Proceedings of the International Conference on Software

Engineering (ICSE), Florence, Italy.

[16] Kazman, R., Goldenson, D., Monarch, I., Nichols, W.,

Valetto, G. 2016. “Evaluating the Effects of Architectural

Documentation: A Case Study of a Large Scale Open

Source Project”, IEEE Transactions on Software

Engineering.

[17] Mo, R., Cai, Y., Kazman, R., Xiao, l. 2015. "Hotspot

Patterns: The Formal Definition and Automatic

Detection of Architecture Smells," Proceedings of the

The 12th Working IEEE/IFIP Conference on Software

Architecture.

[18] Mundie, D.A., McIntire, D.M. 2013. "The Mal: A

Malware Analysis Lexicon," Software Engineering

Institute Technical Note CMU/SEI-2013-TN-010.

[19] Obrst, L., Chase, P., Markeloff, R. 2012. "Developing an

Ontology of the Cyber Security Domain," Proceedings of

the STIDS: MITRE Corp., 49-56.

[20] Ozment, A., Schechter, S.E. 2006. "Milk or Wine: Does

Software Security Improve with Age?," Proceedings of

the Usenix Security Symposium.

[21] PWC. 2015. “Managing cyber risks in an interconnected

world”,

http://www.dol.gov/ebsa/pdf/erisaadvisorycouncil2015s

ecurity3.pdf.

[22] Ryoo, J., Kazman, R., Anand, P. 2015. "Architectural

Analysis of Security Vulnerabilities", IEEE Security and

Privacy, September/October 2015.

[23] Seacord, R.C. 2005. Secure Coding in C and C++,

Addison-Wesley.

[24] Smith, A., Humphreys, M. 2006. "Evaluation of

Unsupervised Semantic Mapping of Natural Language

with Leximancer Concept Mapping," Behavior Research

Methods (38:2), 262-279.

[25] Smith, A., Malik, S., Shneiderman, B. “Visual Analysis

of Topical Evolution in Unstructured Text: Design and

Evaluation of TopicFlow” in Applications of Social

Media and Social Network Analysis, Springer, 2015.

[26] Solomon, M. “Predictive Analytics: Using the Past to

Create a More Secure Future”

http://www.securityweek.com/predictive-analytics-

using-past-create-more-secure-future, September, 2014

[27] Swanson, E.B., Ramiller, N.C. 1997. "The Organizing

Vision in Information Systems Innovation," Organization

Science (8:5), 458-474.

[28] Xiao, L., Cai, Y., Kazman, R. 2014. "Design Rule

Spaces: A New Form of Architecture Insight,"

Proceedings of the Proceedings of the 36th International

Conference on Software Engineering, 967-977.

5987

