Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach

Meng Wu
Texas A&M University
marie126@tamu.edu

Le Xie
Texas A&M University
le.xie@tamu.edu

Abstract
This paper presents an online data-driven algorithm to detect false data injection attacks towards synchrophasor measurements. The proposed algorithm applies density-based local outlier factor (LOF) analysis to detect the anomalies among the data, which can be described as spatio-temporal outliers among all the synchrophasor measurements from the grid. By leveraging the spatio-temporal correlations among multiple time instants of synchrophasor measurements, this approach could detect false data injection attacks which are otherwise not detectable using measurements obtained from single snapshot. This algorithm requires no prior knowledge on system parameters or topology. The computational speed shows satisfactory potential for online monitoring applications. Case studies on both synthetic and real-world synchrophasor data verify the effectiveness of the proposed algorithm.

1. Introduction

The electric power system is evolving towards tighter coupling between the information and physical systems [1]-[4]. As a prime example of sensor and communication deployment, synchrophasors provide high-resolution measurements with GPS-synchronized time stamps, which could benefit system monitoring, control, and protection. However, the communication and sensory system for synchrophasors also gives rise to threats of cyber attacks, which is of increasing concern for the grid operators [5]-[10].

As a first step towards preventing the synchrophasor system from possible cyber attacks, several algorithms for better monitoring have been introduced. References [11]-[12] propose methodologies to identify and protect key measurements in a power grid, in order to prevent the system from “unobservable false data injection attacks”, which are created by manipulating multiple measurements simultaneously while keeping all the measurement residuals within normal range. These detection methods use measurements obtained from a single time instant and deal with false data injection attacks for supervisory control and data acquisition (SCADA) systems. References [13]-[14] study false data injection attacks using synchrophasor measurements obtained from multiple time instants, and perform detections according to the spatio-temporal correlations among these measurements. However, expensive computations such as nonlinear optimizations are involved in [13], which may limit the real-time applicability of the algorithm. Prior knowledge on system parameters and topology is required in [14], which may introduce detection errors if inaccurate system information is presented.

In this paper, a purely data-driven approach is proposed for online detection of false data injection attacks for synchrophasor measurements. An online attack detection framework is proposed to detect false synchrophasor data that is temporarily injected into a limited number of synchrophasors in certain power system. The proposed approach leverages the spatio-temporal correlations among multi-time-instant synchrophasor measurements, and detects local outliers using a density-based data-mining technique. This approach is shown to be capable of detecting false data injection attacks in synchrophasor systems under both normal and eventful operating conditions, without introducing false alarms when system physical disturbances are presented. It requires no prior knowledge of system parameters or topology, and has fast computational speed suitable for online applications.

The rest of the paper is organized as follows. Section II provides problem formulation for the false-data-injection-attack detection of synchrophasor
measurements; Section III proposes the online false-data-injection-attack detection approach for synchrophasor systems; Section IV verifies the proposed approach through case studies; Section V presents concluding remarks to this paper.

2. Problem Formulation

In this section, the detection of false data injection attacks for synchrophasor measurements is formulated as detection of spatio-temporal outliers among time series measured by synchrophasors installed at various locations in the same power network.

2.1. False Data Injection Attacks

Let \(m \times n \) matrix \(M \) denote a set of synchrophasor measurements collected from \(n \) synchrophasor channels of the same type (i.e. all of them are voltage/current/power channels), within \(m \) time instants. This measurement matrix can be decomposed into the following two matrices:

\[
M = L + D
\]

where \(L \) denotes the matrix whose columns represent true synchrophasor measurements without false data injections attacks, and \(D \) denotes the matrix of false data injections created by attackers. Each nonzero entry \(D_{ij} \) represents an injected data point to the \(j^{th} \) synchrophasor channel at time instant \(i \).

Definition 1: Let \(m_i \), \(l_i \), and \(d_i \) denote the \(i^{th} \) row of matrices \(M \), \(L \), and \(D \), respectively. \(d_i \) represents the vector of coordinated false data injections at time instant \(i \), and \(m_i \) represents the vector of attacked synchrophasor measurements at time instant \(i \). The coordinated attack \(d_i \) is defined to be successful (undetectable) if the following conditions are satisfied:

\[
m_i^T = h(x_i) + r_i
\]

\[
f(r_i) \leq \tau
\]

where \(x_i \) denotes the system state variables estimated by certain state estimation algorithm at time instant \(i \); \(h(\cdot) \) denotes the nonlinear relationship between system states and measurements (i.e., the power flow equations); \(r_i \) denotes the measurement residuals at time instant \(i \); \(f(\cdot) \) denotes the bad data detection criterion based on measurement residuals; \(\tau \) denotes the threshold for bad data detection. The detection criterion shown in (3) is determined by the bad data detection mechanism used in certain state estimation program. Specifically, the \(\chi^2 \)-test and largest normalized residual test can be applied on \(r_i \) to build (3) and identify bad data.

In the above definition, the detection mechanism takes advantages of the following information: 1) system measurements obtained from single time instant; 2) power flow relationship among system measurements. Therefore, a coordinated attack \(d_i \) can go undetectable if power flow relationship \(h(\cdot) \) is satisfied without gross error, for the given measurement set \(m_i^T \) at single time instant \(i \). In the following section, a different detection mechanism is proposed to deal with false data injection attacks. The proposed mechanism leverages the following information to detect false data injection attack: 1) system synchrophasor measurements obtained from multiple time instants; 2) spatio-temporal correlations among system synchrophasor measurements. By utilizing the above different set of information, the proposed approach is able to detect false data injection attacks which are undetectable when traditional detection mechanism is applied.

2.2. Features of Synchrophasor Measurements with/without False Data Injection Attacks

In order to analyze measurements obtained at multiple time instants, row vectors \(m_i \), \(l_i \), and \(d_i \) are inserted back into matrices \(M \), \(L \), and \(D \), respectively. Each column of \(M \) represents a measurement curve obtained at a synchrophasor channel, whose \(i^{th} \) entry could be attacked. In this paper, we focus on the false data injection attacks that could temporarily affect a limited number of synchrophasors. This indicates the attack matrix \(D \) is a sparse matrix with only a few nonzero entries.

It has been demonstrated in [13]-[16] that under both normal and eventful operating conditions, matrix \(L \) has the property of low rank, indicating strong linear correlations among attack-free synchrophasor measurements. However, matrix \(M \) is shown to have a higher rank compared to \(L \), due to the nonzero entries of matrix \(D \). Since rank of a
matrix represents the number of linearly independent columns/rows in the matrix, it can be concluded that the number of linearly independent synchrophasor measurements is increased due to the presence of false data injection attacks. This indicates synchrophasor curves under attacks tend to have weaker (linear) correlations among each other, compared with synchrophasor curves without attacks.

In order to further explain the above property, Figure 1 shows voltage magnitude curves obtained at two synchrophasors within the same local area. The system is under eventful condition from 3s to 5s. The upper curve contains a false data injection attack at around 1s, while the lower curve is free of false data injection attack. It can be observed that: 1) the upper curve tends to have outlier behavior (weak temporal correlation) when false data injection attack is presented (around 1s) and when system event is presented (from 3s to 5s); 2) during the attack-free time period (from 2s to 10s), the two curves obtained at different physical locations tend to have similar behavior (strong spatial correlation), no matter when the system is under normal or eventful operating condition; 3) when the system is under attack (around 1s), the upper curve tends to have outlier behavior (weak spatial correlation) compared with the lower curve. The above phenomena is caused by the low-rank property of the attack-free measurement matrix L and the sparse property of the attack matrix D. Since components in the same power grid are strongly coupled with each other through transmission network, the system dynamic measurements obtained by different synchrophasors within a local area tend to be strongly correlated with similar behavior, under both normal and eventful operating conditions. However, when a limited number of synchrophasors are temporarily attacked by the attackers, only the attacked synchrophasors in the system would encounter a temporary change in their measurements, while measurements obtained by the other synchrophasors would reflect normal system dynamics. Unlike system events which could affect most of the synchrophasor measurements within a local area, these false data injection attacks affect only a small fraction of all the synchrophasor measurements. Therefore, synchrophasor measurements under this type of attack would have outlier behavior compared with their spatial neighborhoods which are free of attack.

The above features of synchrophasors with/without false data injection attacks can be summarized as follows:

Feature 1: Under normal operating conditions, synchrophasor measurements without false data injection attacks obtained from nearby physical locations exhibit strong spatial and temporal correlations with each other.

Feature 2: Under eventful operating conditions, synchrophasor measurements without false data injection attacks obtained from nearby physical locations exhibit strong spatial correlations but weak temporal correlations with each other.

Feature 3: Under both normal and eventful operating conditions, synchrophasor measurements with false data injection attacks exhibit weak spatial and temporal correlations with synchrophasor measurements without false data injection attacks.

The above three features are further demonstrated through the simple example shown in Figure 2. Three 2x8 measurement matrices $M(1)$, $M(2)$, and $M(3)$ are sampled from the same set of synchrophasor channels at three different time periods. Each matrix contains 8 synchrophasor curves within 2 consecutive time instants. $M(1)$ contains 6 attack-free synchrophasor curves and 2 attacked synchrophasor curves obtained under normal operating condition. $M(2)$ and $M(3)$ contain 8 attack-free synchrophasor curves obtained under eventful and normal operating conditions, respectively. The Euclidean distance is used to quantify the strength of the spatio-temporal correlations among these curves. Each synchrophasor curve in the three matrices is projected to the 2D Euclidean space shown in Figure 2. The x and y coordinates of each point are the data values at the
first and second time instant of the corresponding synchrophasor curve, respectively.

Figure 2. 2D points representing synchrophasor curves under normal/eventful/attacked conditions.

The following observations can be drawn from Figure 2: (1) the cluster of eventful synchrophasor data (eventful cluster) lies far from the clusters of attack-free synchrophasor data under normal operating condition (normal cluster), indicating weak temporal correlation between the two clusters; (2) all the points within the eventful cluster lie close to each other, indicating strong spatial correlation among points within the eventful cluster; (3) the two points representing attacked synchrophasor curves lie far from the normal cluster, as well as the majority of points in the other 6 points representing the 6 attack-free synchrophasor curves in \(M(1) \), indicating weak spatial and temporal similarities with those neighboring points. Therefore, synchrophasor measurements under false data injection attacks show the feature of weak spatio-temporal correlations with their neighboring measurements.

2.3. Detection of Spatio-temporal Outliers due to False Data Injection Attacks

The above features of synchrophasor measurements with/without false data injection attacks indicate that under both normal and eventful operating conditions, synchrophasor measurements with false data injection attacks can be considered as spatio-temporal outliers among all the synchrophasor measurements of the same type. These outliers can be detected using density-based outlier detection methods, if the strength of spatio-temporal correlations among synchrophasor measurements can be measured properly by certain definition of “distance”.

For a measurement matrix \(M \) obtained within a certain period of time, general steps to formulate the false-data-injection-attack detection problem are presented as follows:

Step 1: Define a proper distance function to quantify the similarity between \(j^{th} \) and \(j^{th} \) column of \(M \).

Step 2: Map each column of \(M \) to the subspace \(S \) where the distance function is defined. Each column of \(M \) can be represented as a point in the corresponding subspace \(S \).

Step 3: Examine the outlier behavior of the points in the subspace \(S \), according to the distance function defined in Step 1. Points lying far from the majority are classified as data with false data injection attacks.

In the above formulation, a data segment that can be identified as “spatio-temporal” outlier among its neighboring data segments has the the following characteristics: it shows certain outlying behavior (quantified by the definition of “distance”) along both row direction and column direction of the measurement matrix \(M \).

3. Online Detection of False Data Injection Attacks

In this section, a local outlier factor (LOF) based approach is proposed for online detection of false data injection attacks towards synchrophasor measurements. In [17], we present a similar LOF-based approach for data quality improvement of synchrophasor systems. In this paper, we focus on the false data injection attack detection problem for synchrophasor measurements, and propose a more robust definition of “distance”, which is tailored for detecting false data injection attacks caused by false data injections in synchrophasor systems. The proposed LOF-based false-data-injection-attack detection algorithm is described as follows.

3.1. Definition of “Distance” between Synchrophasor Measurements

In order to measure the strength of spatio-temporal correlations among synchrophasor measurements, the following definition of “distance” is proposed.

Definition 2: Let \(M(k) \) denote the measurement matrix obtained at the \(k^{th} \) time interval. Let \(M_i(k) \) and \(M_j(k) \) denote the \(i^{th} \) and \(j^{th} \) columns of
measurement matrix $M(k)$, that is, $M_i(k)$ and $M_j(k)$ are synchrophasor measurements obtained from the ith and jth synchrophasor channels at the same time interval. The distance $d(i, j)$ between $M_i(k)$ and $M_j(k)$ is defined as follows:

$$d(i, j) = \left| \sigma_i^{Norm} - \sigma_j^{Norm} \right|$$ \hspace{1cm} (4)

$$\sigma_i^{Norm} = \frac{\sigma_i(k)}{\sum_{t=1}^{k-1} \sigma_i(t) \chi_C(M_i(t)) / \sum_{t=1}^{k-1} \chi_C(M_i(t))}$$ \hspace{1cm} (5)

$$\chi_C(M_i(t)) = \begin{cases} 1 & (M_i(t) \in C) \\ 0 & (M_i(t) \notin C) \end{cases}$$ \hspace{1cm} (6)

where $\sigma_i(t)$ denotes the standard deviation of the columns of $M_i(t)$, C denotes the data set of all the synchrophasor measurements identified to be clean (without false data injection attacks) by the proposed algorithm.

Intuitively, σ_i^{Norm} represents the standard deviation of measurements obtained from the ith synchrophasor channel at current time interval k, normalized by the average of all the standard deviations of measurements obtained from the same channel at previous time intervals, when this channel is identified to be clean. This normalized standard deviation σ_i^{Norm} serves as an indicator of the strength of dynamic behavior of time series $M_i(t)$. For clean measurements without false data injection attacks, their normalized standard deviations tend to have similar values, indicating strong spatio-temporal correlations among them. However, the normalized standard deviations of attacked measurements tend to have significantly different values compared with those of clean measurements, due to their weak spatio-temporal correlations. Therefore, the distance $d(i, j)$ can be defined as the absolute difference between σ_i^{Norm} and σ_j^{Norm}. Larger distance indicates weaker spatio-temporal correlations between $M_i(k)$ and $M_j(k)$.

3.2. LOFs Computation

Based on the above definition of distance, LOFs for synchrophasor measurements can be calculated through the following procedure. Details of the LOF analysis can be found in reference [18].

3.2.1. Calculation of k-distance(p)

Let the measurement matrix M be the matrix consisting of synchrophasor measurements, each row of M represents a time instant, and each column of M represents measurements obtained from a synchrophasor channel. Let p, q, o be some objects in M, each object represents a column in M. Let k be a positive integer. Let $q \in M \setminus \{p\}$ denotes $\{q : q \in M, q \notin \{p\}\}$. The distance between p and q, denoted by $d(p, q)$, is defined in the previous section.

For any positive integer k, the k-distance of object p, denoted by k-distance(p), is defined as the distance $d(p, o)$ between p and an object $o \in M$ such that:

a) for at least k objects $o' \in M \setminus \{p\}$ it holds that $d(p, o') \leq d(p, o)$, and

b) for at most $k - 1$ objects $o' \in M \setminus \{p\}$ it holds that $d(p, o') < d(p, o)$.

The value of k-distance(p) provides a measure on the density around the object p. Smaller k-distance(p) indicates higher density around p.

3.2.2. Identification of k-distance neighborhood of p

Given k-distance(p), the k-distance neighborhood of p contains every object whose distance from p is not greater than the k-distance, i.e.,

$$N_{k-distance}(p) = \{q \in M \setminus \{p\} \mid d(p, q) \leq k-distance(p)\}$$ \hspace{1cm} (7)

These objects q are called the k-nearest neighbors of p.

3.2.3. Calculation of reachability distance of object p with respect to object o

The reachability distance of object p with respect to object o is defined as:

$$reach-dist_{t_k}(p, o) = \max[k-distance(o), d(p, o)]$$ \hspace{1cm} (8)

Intuitively, if object p is far away from object o, then the reachability distance between p and o is simply their actual distance. However, if they are
‘sufficiently’ close to each other, the actual distance is replaced by the k-distance of o. The reason is that in doing so, the statistical fluctuations of $d(p,o)$ for all the p’s close to o can be significantly reduced. The strength of this smoothing effect can be controlled by the parameter k. The higher the value of k, the more similar the reachability distances for objects within the same neighborhood.

3.2.4. Calculation of local reachability density of p. The local reachability density of p is defined as:

$$lrd_{MinPts}(p) = \left(\sum_{o \in N_{MinPts}(p)} \frac{reach-dist_{MinPts}(p,o)}{|N_{MinPts}(p)|}\right)^{-1}$$

where $N_k(p) = N_{k-distance}(p)$. Intuitively, the local reachability density of an object p is the inverse of the average reachability distance based on the $MinPts$-nearest neighbors of p. It is essentially an estimation of the density at point p by analyzing the k-distance of the objects in $N_k(p)$. The local reachability density of p is just the reciprocal of the average distance between p and the objects in its k-neighborhood.

3.2.4. Calculation of LOF of p. The local outlier factor of p is defined as:

$$LOF_{MinPts}(p) = \sum_{o \in N_{MinPts}(p)} \frac{lrd_{MinPts}(o)}{lrd_{MinPts}(p)} \frac{1}{|N_{MinPts}(p)|}$$

The local outlier factor of object p captures the degree to which p is a local outlier. It is the average of the ratio of the local reachability density of p and those of p’s $MinPts$-nearest neighbors. It is easy to see that the lower p’s local reachability density is, and the higher the local reachability densities of p’s $MinPts$-nearest neighbors are, the higher the LOF value of p is.

After obtaining LOFs for all the synchrophasor channels, each LOF is compared with a pre-defined threshold to detect false data injection attacks. The LOF threshold is a system-dependent value and can be determined through offline training, using historical data obtained from the same system. Synchrophasor channels with LOFs exceeding the threshold can be detected as attacked channels. Figure 2 shows the implementation flowchart for the proposed LOF-based false-data-injection-attack detection approach.

Figure 3. Flowchart of the proposed false-data-injection-attack detection approach.

4. Case Studies

In this section, the proposed false-data-injection-attack detection approach is tested using both synthetic and practical synchrophasor data. In order to demonstrate the proposed approach can detect false data injection attack under eventful operating condition, without introducing false alarms by system physical events, a system event is presented in each of the test cases. In all the following test cases, a unique set of algorithm parameters are used: moving data window length = 20 data points; LOF threshold = 10; Number of neighboring data for LOF algorithm $= 0.5 \times$ number of synchrophasor curves. The setting of the algorithm parameters can be optimized through offline training using historical synchrophasor measurements obtained in the same power grid.

It is worth emphasizing that, the physical events chosen for the following case studies are fast transient events with similar temporal outlying behavior compared to the false data injection attacks. Both the events and the attacks show some sudden changes in the eventful/attacked synchrophasor curve. This similarity could potentially cause false alarms for false-data-attack detection algorithms. For slower events such as variation of loading conditions, historical data obtained from the same system. Synchrophasor channels with LOFs exceeding the threshold can be detected as attacked channels. Figure 2 shows the implementation flowchart for the proposed LOF-based false-data-injection-attack detection approach.

Figure 3. Flowchart of the proposed false-data-injection-attack detection approach.

4. Case Studies

In this section, the proposed false-data-injection-attack detection approach is tested using both synthetic and practical synchrophasor data. In order to demonstrate the proposed approach can detect false data injection attack under eventful operating condition, without introducing false alarms by system physical events, a system event is presented in each of the test cases. In all the following test cases, a unique set of algorithm parameters are used: moving data window length = 20 data points; LOF threshold = 10; Number of neighboring data for LOF algorithm $= 0.5 \times$ number of synchrophasor curves. The setting of the algorithm parameters can be optimized through offline training using historical synchrophasor measurements obtained in the same power grid.

It is worth emphasizing that, the physical events chosen for the following case studies are fast transient events with similar temporal outlying behavior compared to the false data injection attacks. Both the events and the attacks show some sudden changes in the eventful/attacked synchrophasor curve. This similarity could potentially cause false alarms for false-data-attack detection algorithms. For slower events such as variation of loading conditions, historical data obtained from the same system. Synchrophasor channels with LOFs exceeding the threshold can be detected as attacked channels. Figure 2 shows the implementation flowchart for the proposed LOF-based false-data-injection-attack detection approach.

Figure 3. Flowchart of the proposed false-data-injection-attack detection approach.
less false alarms would be introduced, since these slow events do not have very similar temporal outlying behavior compared to false data injection attacks.

4.1. Case Study with Synthetic Data

The synthetic synchrophasor measurements are generated using simulation results obtained from a standard IEEE-14 bus system in Matlab PSAT toolbox [19]. In order to verify the performance of the proposed algorithm under eventful operating condition, a three-phase line-to-ground fault is applied to the system. All the simulation results are sampled at the rate of 50Hz to build the synthetic synchrophasor data. The synthetic data set has 14 synchrophasor curves for voltage magnitudes, where synchrophasor channels No. 1, 3, and 9 contain constant false data injections (lasting from 6s to 6.4s) [13]-[14]. The length of each injected data segment is 0.4s. Figure 3 shows the data curves with false data injection attacks.

Figure 3. LOF values of synthetic synchrophasor channels when system physical event (right) or false data injection attack (left) is presented.

The detection results of false data injection attacks for synthetic synchrophasor data are shown in Table 1. It can be seen that all the attacked synchrophasor channels (No. 1, 3, and 9) are successfully detected, and no false alarms are created by system events. The time delay of the starting and ending time instants of the false data injection attacks is less than 0.38s. The time delay is mainly caused by the time window length determined in the algorithm. Larger time window may result in more time delay for the detection. The average computation time for the proposed algorithm over one time window is 0.0130s. The detection delay and computation time of the proposed approach are insignificant compared with the latency requirements for online quasi-steady-state applications, ranging from 1 seconds to 5 seconds [20]. The performance of the proposed approach is satisfactory for online applications.

Table 1. Detection results for synthetic synchrophasor data with false data injection attack

<table>
<thead>
<tr>
<th>Index of Synchrophasor with Cyber Attack</th>
<th>Starting Time of Attacked Segment</th>
<th>Ending Time of Attacked Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.20s (LOF = 101.5)</td>
<td>6.78s (LOF = 33.4)</td>
</tr>
<tr>
<td>3</td>
<td>6.32s (LOF = 52.3)</td>
<td>6.78s (LOF = 26.3)</td>
</tr>
<tr>
<td>9</td>
<td>6.32s (LOF = 73.9)</td>
<td>6.78s (LOF = 36.6)</td>
</tr>
</tbody>
</table>

4.2. Case Study with Actual PMU Data

The proposed approach is also tested using real synchrophasor measurements obtained in a practical power grid during a line-tripping fault. The sampling rate of the synchrophasor data is 100Hz. Since we do not have access to some cyber compromised actual PMU data, in order to test the performance under
false data injection attacks, we added constant data
injections to PMU No. 14, 18, 24, and 37 (lasting
from 1.0s to 1.2s). The length of each injected data
segment is 0.2s. Figure 5 shows the data curves with
false data injection attacks.

Figure 6. Practical synchrophasor measurements with
false data injection attacks.

Figure 6 shows the LOF values of the
synchrophasor measurements under physical event
and false data injection attack. It can be seen that
under physical events, LOFs of all the measurements
lie far below the threshold value, while under false
data injection attacks, LOFs of the attacked
measurements (synchrophasor channel No. 14, 18,
24, and 37) exceed the threshold value. This verifies
the effectiveness of the proposed algorithm in
accurately detecting false data injection attacks
without creating false alarms due to physical system
events.

Figure 7. LOF values of practical synchrophasor
channels when system physical event (right) or false
data injection attack (left) is presented.

The detection results of false data injection attacks
for practical synchrophasor data are shown in Table
2. It can be seen that all the attacked synchrophasor
channels (No. 14, 18, 24, and 37) are successfully
detected, and no false alarms are created by system
events. The time delay of the starting and ending time
instants of the false data injection attacks is less than
0.19s. The time delay is mainly caused by the time
window length determined in the algorithm. Larger
time window may result in more time delay for the
detection. The average computation time for the
proposed algorithm over one time window is 0.040s.
The detection delay and computation time of the
proposed approach are insignificant compared with
the latency requirements for online quasi-steady-state
applications, ranging from 1 seconds to 5 seconds
[20]. The performance of the proposed approach is
satisfactory for online applications. Although the
computation time of the proposed algorithm would
grow if more synchrophasor curves are available in
the system, the growth in computation time would be
limited since there is no complicated computation,
such as nonlinear optimization or matrix inversion,
involved in the proposed approach. Moreover, in
order to detect false data injection attacks in large-
scale power systems with a large number of
synchrophasors, this approach can be easily applied
in a decentralized way by performing false-data-
injection-attack detection at each of the local phasor
data concentrators (PDC), using synchrophasor data
obtained at the corresponding local regions.

Table 2. Detection results for practical synchrophasor
data with false data injection attack

<table>
<thead>
<tr>
<th>Index of Synchrophasor with Cyber Attack</th>
<th>Starting Time of Attacked Segment</th>
<th>Ending Time of Attacked Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1.16s (LOF = 141.9)</td>
<td>1.39s (LOF = 133.4)</td>
</tr>
<tr>
<td>18</td>
<td>1.16s (LOF = 99.5)</td>
<td>1.39s (LOF = 93.6)</td>
</tr>
<tr>
<td>24</td>
<td>1.16s (LOF = 60.4)</td>
<td>1.39s (LOF = 55.9)</td>
</tr>
<tr>
<td>37</td>
<td>1.16s (LOF = 332.2)</td>
<td>1.39s (LOF = 311.8)</td>
</tr>
</tbody>
</table>

In order to study the impact of time delay on the
performance of the proposed algorithm, Figure 7
shows the receiver operator characteristic (ROC)
curves when different time window lengths are used.
It can be seen from Figure 7 that: a) the proposed
approach has higher detection accuracy when the
time window length is set to be 0.2s or 0.25s; b)
when the time window length is set at a lower value
(0.15s), the detection accuracy tends to be lower and
false alarms would happen; c) when the time window
length is increased form 0.2s to 0.25s, the detection
accuracy of the proposed algorithm is not improved.
significantly. Since time window length is also closely related to the detection delay of the algorithm, it is desirable to consider both detection accuracy and detection delay when determining the time window length for the algorithm.

Figure 8. ROC curves for test case with practical synchrophasor measurements when different time window lengths are used.

5. Conclusions

This paper proposes an online data-driven algorithm to detect false data injection attacks against synchrophasor measurements. This approach leverages the unique spatio-temporal correlation signatures among synchrophasor measurements over a moving window of time. The change of the signature indicates the presence of possible false data injection attacks. The detection is shown to be effective under both normal and fault-on conditions. It is purely data-driven algorithm without involving prior knowledge on parameters or topology of the power grid, which avoids the impact of inaccurate system information on the detection results. The effectiveness of the proposed approach is verified through case studies using both synthetic and practical data sets.

The proposed LOF-based framework can also be applied to detecting various low-quality synchrophasor measurements. Through proposing different ‘distance functions’ for different types of data quality problems, and introducing multiple ‘distance functions’ into the algorithm, the spatio-temporal features of each type of data quality problem can be quantified differently. This could improve the detection sensitivity for different types of problems.

While in this work we focus on attacks that only affect a limited number of synchrophasors in a temporary way, our future work will investigate the possibility of a more coordinated attack. The cross-domain correlation among different sets of data (e.g., SCADA and synchrophasors) would offer new possibilities to detect such coordinated attacks. We would also investigate more robust definitions of distances for various types of data attacks. Last but not least, we would also investigate different categories of cyber attacks such as spoofing of GPS clocks.

6. References

