
Excuse Me, Do I Know You From Somewhere? Unaware Facial Recognition 

Using Brain-Computer Interfaces 
 

 
Christopher Bellman 

University of Ontario Institute 

of Technology 

Christopher.Bellman@uoit.net 

Miguel Vargas Martin 

University of Ontario Institute 

of Technology 

Miguel.VargasMartin@uoit.ca 

Shane MacDonald 

University of Ontario Institute 

of Technology 

Shane.MacDonald2@uoit.net 

 

Ruba Alomari 

University of Ontario Institute of Technology 

Ruba.Alomari@uoit.ca 

 

Ramiro Liscano 

University of Ontario Institute of Technology 

rliscano@ieee.org

 

 

Abstract 

 
While a great deal of research has been done on 

the human brain’s reaction to seeing faces and 

reaction to recognition of these faces, the unaware 

recognition of faces is an area where further research 

can be conducted and contributed to. We performed a 

preliminary experiment where participants viewed 

images of faces of individuals while we recorded their 

EEG signals using a consumer-grade BCI headset. 

Pre-selection of the images used in each of the three 

phases in the experiment allowed us to tag each image 

based on what state of recognition we expect the image 

to take – No Recognition, a Possible Unaware 

Recognition, and a Possible Aware Recognition. We 

find, after filtering, artifact removal, and analysis of 

the participants’ EEG signals recorded from a 

consumer-grade BCI headset, obvious differences 

between the three classes of recognition (as defined 

above) and, more specifically, unaware recognitions, 

can be easily identified. 

 

 

1. Introduction  

 
Facial recognition research is not a newly studied 

field and it has been the focus of many studies over the 

past number of decades (see Section 2 – Related 

Work). While conscious facial recognition is 

becoming more and more understood and studied, 

facial recognitions at an unaware level is an area that 

has potential to be investigated, especially with 

advancements in modern technologies that allow us to 

approach the research from different angles. 

Electroencephalography (EEG) is a technology 

that uses electrodes placed on (non-invasive) or 

in/under (invasive) the skin, skull, or even the brain to 

record the brain’s electrical activity [1]. While 

traditional EEG setups are most commonly used and 

associated with the medical and neuroscience research 

community, Brain-Computer Interfaces (BCIs) have 

been used in a more general and non-medical manner 

to record these EEG signals without having to resort to 

a medical procedure or lab setup. In recent years, non-

invasive consumer-grade BCI headsets have been 

made available to the market at reasonable prices to 

allow for cheaper, broader access to EEG technology. 

While modern consumer-grade headsets do not have 

the features or quality that the medical-grade EEG 

caps have, they are a useful tool for consumers and 

researchers to be able to work with, play with, and 

study the human brain. Some examples of consumer 

use for BCI devices include EMOTIV’s wide variety 

of brain-based games, which include such activities as 

controlling an RC helicopter [2] or playing a game of 

Tetris [3], all with your brain. Other examples include 

NeuroSky’s online store where you can find games 

such as bowling [4], or even a BCI version of the 

widely popular Flappy Bird game [5]. With rapid 

advancement in modern EEG technologies and the 

introduction of consumer-grade non-invasive BCI 

headsets, it seems to suggest that EEG signals and BCI 

devices may start to become more and more involved 

in our daily lives, perhaps someday being able to 

accurately control your music based on your mood, or 

drive your car by thinking about it. With these 

potential practical application on the horizon, we, in 

this work, show how we can utilize the human brain to 

be able to recognize faces that we are unaware that we 

have seen previously. We define an “unaware 

recognition” as a participant “recognizing a face 

without being aware that any facial recognition took 

place in their mind”.  
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One of the brain’s features we can use to analyze 

the brain’s response to stimuli are Event-Related 

Potentials (ERPs). These ERPs are the brain’s reaction 

to stimuli and appear as positive and negative spikes 

or changes in voltage in the brain’s EEG signal, and 

are simply ranges of time after a stimuli that we expect 

these spikes to occur [6]. There are a number of ERPs 

that are commonly used when analyzing EEG signals, 

and we are focusing on a few specific ones most 

commonly related to facial recognitions (see Section 2 

– Related Work), as well as a more general look at the 

signal to determine any apparent differences between 

our three classifications of recognition; No 

Recognition (NR), Possible Unaware Recognition 

(PUR), and Possible Aware Recognition (PAR). 

We designed an experiment where participants 

wearing BCI headsets are shown a series of images 

containing faces of individuals, and are told to view 

the images and consider them. We break the 

experiment up into three phases – simply “Phase One”, 

“Phase Two”, and “Phase Three” – where the 

participants are shown these faces, but with specific 

images being shown in different orders and at varying 

times. As the participants view these images, we 

record their EEG signals which are later analyzed to 

determine if unaware facial recognitions can be 

accurately recorded and classified using BCI devices 

and modern machine learning and analysis techniques. 

 

2. Related Work  

 
EEG analysis using BCIs to gather data has 

become a very useful tool for gaining insight into the 

workings of the human brain and how it can be used 

to interact with computer systems. This relatively 

cheap and safe technology works as an alternative for 

those without the means to take part in more 

expensive, elaborate, and invasive brain-reading. 

From computer security [7] to visual design [8], BCIs 

are being used in a number of fields to enhance and 

improve current techniques, methodologies, and to 

add new understanding in the way our brains work and 

react. 

In the next few sections, we discuss previous 

works regarding such topics as unaware ERP 

elicitations and application, facial recognitions, and 

EEG signals and their processing and analysis. 

 

2.1. Subconscious ERP Elicitations 
 

While work regarding subconscious recognitions 

using EEGs and BCIs are few, a number of works have 

been done regarding the subconscious and the brain’s 

subconscious reaction to events or activities. A 

number of authors use “subconscious” in their work 

but we prefer to use the term “unaware” for describing 

events that take place in the brain without awareness. 

Vargas Martin et al. [9] performed an experiment 

where images of faces of famous individuals were 

shown to participants in the hopes that roughly 20% of 

images shown would be conscious recognized by the 

participants and 80% would not. Being that famous 

people are more likely to be seen often in passing 

without conscious recognition, it was assumed that the 

participants’ subconscious would recognize a subset 

of the faces in the 80% group. They used different 

ERPs for the testing and training of a support vector 

machine (SVM) and found that they were able to 

determine, with about 65% accuracy across all 

explored ERPs, which faces in the set of famous 

individuals were subconsciously recognized. Our 

work presented here is similar to Vargas Martin et al.’s 

experiment as faces were used as targets for aware and 

unaware recognitions, but famous individuals were 

used and the assumption was based on participants 

recognizing some, but not all of the individuals 

presented to them in their paper. We use faces that are 

assumed to not be recognized at all and use a two-

phase approach to add an unaware recognition of 

certain faces which are learned in the first phase. This 

helps to remove any assumptions on participants’ 

levels of recognition of famous individuals. We hope 

that with our analysis we can provide further depth 

into the brain’s reaction to different classes of 

recognition. 

Shalgi and Deouell [10] ran an experiment 

studying error processing in the human brain with 

regards to conscious or unconscious errors where they 

had participants bet money (real) on whether or not 

they could answer questions in the experiment session 

correctly. The level of wager that the participants 

placed on an answer was used to define a level of 

confidence in the answer. They found that an Error-

Related Negativity index (ERN, an index for error 

processing in the brain) remained the same for both 

conscious and unconscious scenarios, but when only 

looking at high-confidence trials (where participants 

bet a larger sum of money), the ERN was only noticed 

for errors that the participant was conscious of (i.e., 

they were aware of the error). This led them to 

conclude that ERNs are related to awareness of an 

error and that the amplitude of the elicited signal is 

related to confidence.  

The Implicit Association Test (IAT) [11] is a test 

to determine if a participant has any associations (both 

conscious and unconscious) between characteristics 

such as human ones (e.g. gender, physical 

characteristics, religion). Upon taking the IAT, a 

participant may find biases or associations that they 
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were unaware of along with associations that they had 

(e.g. dark vs. bright symbolizing good vs. evil, being a 

more obvious and common association). This 

understanding that the brain can unconsciously think 

and associate without the conscious mind being aware 

of it is interesting and allows us to delve further into 

the workings of the brain with respect to facial 

processing and recognition. 

To our knowledge, little other work has been 

published regarding the subconscious recognition of 

things or faces using EEG signals and consumer-grade 

BCI devices. 

 

2.2. Facial Recognition 
 

Facial recognition is a process that human beings 

do from dozens to potentially thousands of times per 

day, and plays a huge role in our person-to-person 

communication. From judging the structure of the 

face, to the analysis of facial emotions or features, the 

brain’s perception of faces is crucial in our recognition 

process. 

According to Seeck et al. [12], it was believed 

human visual analysis did not take place before the 

first 100 ms after visual stimulus, but they challenged 

these assumptions. They had participants view faces 

and recorded their EEG signals and found two Visual 

Evoked Potentials (VEPs) – one occurring at the 50-

90 ms interval, and then again at the 190-600 ms, thus 

challenging the previous notion that visual analysis 

does not take place earlier than 100 ms [12]. George et 

al. [13] confirmed the findings of Seeck et al. by 

finding VEPs at the 50 ms range for facial recognition. 

To challenge these findings by Seeck and George, 

Debruille et al. [14] made the claim that it is facial 

repetition – not recognition – that triggers VEPs before 

the 100 ms mark, and that facial recognition takes 

place in the post-100 ms time period. To back up these 

claims, Eimer [15] ran a study regarding facial 

recognition and found that facial identification 

happens in the 130-200 ms range (the “N170” ERP), 

which takes place separately from, and does not affect, 

the facial recognition and familiarity process 

(confirming Bentin and Deouell’s study [16]). Along 

with this finding of facial identification, it was found 

that the facial recognition and familiarity processes 

take place in the 300-500 ms range (“N400f” ERP) and 

the 500-700 ms range (“P600f” ERP) [15]. While 

Eimer’s experiment [15] asked the participants to 

judge their level of familiarity with a face shown to 

them (chosen via results of a pilot study), our study 

makes use of faces that are assumed to be completely 

unfamiliar to the participants and faces are implicitly 

learned during the study. Participants of our study are 

not asked to do any action to indicate their level of 

recognition during the later phases of the experiment, 

thus minimizing artifacts or bias from any movement 

or activity. With this knowledge of recognition, 

varying levels of recognition were judged. In a study 

by Bentin et al. [16], participants were shown faces of 

famous individuals and non-famous, unfamiliar 

individuals, and found that all faces shown triggered 

an N170 ERP (confirming Eimer’s findings [15]), but 

faces of individuals that were recognized (famous 

individuals, in this case) elicited greater amplitude 

during the N400 ERP whereas unfamiliar faces 

elicited lesser amplitudes [16]. To supplement these 

results, Caharel et al. [17] found that in a facial 

recognition study of famous faces, non-famous 

(unfamiliar) faces, and faces of the participant, less 

familiar faces exhibited larger positive amplitudes 

whereas self-images of the participant exhibited 

smaller amplitudes.  

The Sternberg task [18] tests and measures a 

participant’s response time when presented with a 

stimulus (in the case of Sternberg’s experiment, 

symbols rather than images of faces), and it was found 

that a positive recognition had a more rapid response 

time than a negative recognition by an average of 50 

ms. These findings may assist in our work as aware 

facial recognitions may result in EEG signals with 

lesser amplitudes than those that are unaware 

recognitions, or even faces that are not recognized at 

all, along with a knowledge that a recognized face may 

show signals earlier than an unknown face to a subject. 

Research by Mnatsakanian et al. [19] has 

suggested that certain ERPs exist specifically for facial 

recognition and processing (e.g. N170 [15] [16], VEPs 

[12] [13]), which differs from non-facial recognition 

that may be associated with different ERPs. This 

insight offers us a suggestion of which specific ERPs 

to focus on when considering facial recognition tasks, 

and assists in future work on the subject. 

 

2.3. EEG and Processing 
 

A number of studies have taken place using BCIs 

and EEG data to further understand the brain’s 

function when assigned a variety of jobs or actions. In 

a study by Solovey et al. [20], participants were given 

a variety of multi-tasking activities. They used 

Functional Near-Infrared Spectroscopy (fNIRS) [21] 

to analyze the participants’ brains during the tasks and 

were able to determine the mental processes involved 

in multi-tasking [20]. Peck et al. [8] also made use of 

fNIRS in analyzing the brain’s perception of visual 

designs. fNIRS data was recorded from participants 

viewing designs and choices within them and they 

found they were able to determine how the brain reacts 

to visual design [8].  
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 There are examples of research done using 

machine learning techniques to classify various 

features from EEG signals such as Lee et al. [22], who 

used a Bayesian Network classifier on EEG data from 

an experiment which tasked participants with a variety 

of cognitive and non-cognitive activities. They found 

that they could classify and identify the various tasks 

performed by the participants with high average 

accuracies of ~93% [22]. Our work does not make use 

of machine learning techniques as the signals are 

easily differentiated using a basic threshold, but in 

future works with greater number of participants, 

machine learning may be required to classify the 

different levels of recognition within the signals. 

The actual processing of EEG signals has been the 

subject of study for a long time, and still seems to be 

under debate as to which methods provide the best 

results, especially in the BCI community. There are 

various toolsets and libraries dedicated to assisting in 

the capture, processing, manipulation, and analysis of 

EEG signals from BCIs. For our work here, we choose 

to use EEGLAB [23], a MATLAB toolbox, for 

manipulation and pre-processing of raw EEG signals, 

then we provide our own analysis and post-processing. 

 

3. Experiment  

 
In order to determine the feasibility of classifying 

unaware facial recognitions using BCIs, an experiment 

was conducted with a total of three phases. In the first 

phase, a number of images depicting unknown (to the 

participant) faces were shown to participants. In the 

second phase, the same number of images were shown 

to participants, but a number of images from the first 

phase were included in this second phase to serve as 

possible unaware recognitions. The rest of the images 

in this phase were unknown faces, much like all of 

phase one. In the final phase – phase three - the same 

number of images were shown again to the 

participants, but this time the participants were given 

a single face from the list of unknown faces pulled 

from phase one and added to phase two, and were 

asked to memorize the face and continue when they 

felt comfortable that they had the face memorized. 

Additional images were also taken from phase one and 

added in to phase three to improve the number of 

possible unknown recognitions that each participant 

had. In this preliminary study, the three phases were 

conducted separately across two days (phase one on 

day one, phases two and three on day two) to prevent 

possible conscious recognition of images intended to 

be subconsciously recognized.  

At all times during the experiment while 

participants are viewing images (or the gaps in 

between), their brains’ electrical output is being 

measured (EEG) and recorded using the EPOC 

headset, which is then used as the input for our 

analysis. No manipulation or analysis is done during 

the experiment – all data is saved until after phase 

three for processing and analysis. 

 

3.1. Participants 
 

For this preliminary study, the participants only 

included two of the five authors of this paper. Since 

there is no deception involved in the experiment and 

the images chosen for each phase of the experiment are 

unknown via random selection based on a pre-defined 

seed, the research team can take part in the experiment 

with minimal bias, however, this does not mean that 

there is no impact on the study. The research team is 

aware of the structure of the experiment which may 

alter the way the individuals’ brains react to seeing the 

images of different classifications (No Recognition, 

Possible Unaware Recognition, and Possible Aware 

Recognition). This is a limitation that we hope to 

address in future work exploring the results of this 

study where we will use a broader general participant 

pool with minimal knowledge of the experimental 

setup and design. 

 

3.2. Experimental Setup and Stimuli 
 

All phases of the experiment used the Emotiv 

EPOC headset [24] for data capture, which 

records/samples data from the brain at 128 Hz, 

producing 14 channels (each sensor) of readings taken 

approximately every 7.8125 ms. Each of these 

channels can be reconstructed to form graphs of the 

signals similar to those depicted in Figures 1, 2, 3, and 

4. 

The EPOC BCI device is a consumer-grade EEG 

headset. We are interested in using this headset due to 

its potential ubiquity among consumers who may own 

BCI headsets for entertainment or accessibility 

purposes, rather than lab technicians and medical 

research personnel. This ubiquity may allow for more 

rapid realization of practical applications in a more 

meaningful and consumer-friendly way than a large, 

expensive, and complicated BCI headset. While we 

would not consider the EPOC as a toy that someone 

would normally pick up at a toy store, we do consider 

it a toy in general seeing that many games and 

interactive applications have been developed for 

entertainment purposes [3]. The EPOC headset has 14 

electrodes, all located according to the 10-20 system 

for EEG electrode positioning [25]. The 14 electrodes 

used on the headset are: AF3, F7, F3, FC5, T7, P7, O1, 

O2, P8, T8, FC6, F4, F8, and AF4. They are placed 
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externally on the scalp using pre-dampened felt pads 

to conduct the signal through the skin. Due to this, the 

EPOC is considered a non-invasive type of BCI [1].  

For this experiment, all images of faces shown to 

participants come from the FERET database [26] [27]. 

These images are of individuals’ faces positioned in 

the center of the image, converted from colour to gray-

scale, and only images that are frontal shots of faces in 

the pictures are used. The assumption is that 

participants will not initially recognize any of the faces 

shown to them from the database. In total, 366 images 

were shown to participants across three phases (see 

Table 1 for a breakdown of phases and recognition 

classes within them). In the first phase, 162 images 

were shown which included 60 images that were 

repeated to be implicitly learned for the following 

phases, plus the 102 NR images. 102 images were 

shown in both phase two and phase three. 10 of the 

images in phase two were considered PUR images 

(learned in phase one) and the other 92 images were 

again NR images. In the third phase, another 102 

images were shown with 10 PUR images as well as an 

additional 20 images for PAR, and the rest were NR 

images. Three phases were chosen to be able to 

separate the different recognition classes of images 

and to allow participants to implicitly learn faces in the 

first phase (day one of the experiment) that would be 

carried into the second and third phases (day two) as 

PUR images. 

 

Table 1. Recorded Data Summary 

Phase Data Recorded 

1  “No Recognition” (NR) 

2  “No Recognition” (NR) 

 “Possible Unaware Recognition 

(PUR) 

3  “No Recognition” (NR) 

 “Possible Unaware Recognition 

(PUR) 

 “Possible Aware Recognition” 

(PAR) 

 

The experiment was conducted within a program 

written in Python by the research team. This software 

was designed to construct the subsets of faces that 

were shown to participants, organize the different sets 

into the three phases, display the images to the 

participants, and to send signals via emulated serial 

port to the EPOC headset to provide markers in the raw 

output describing when images were shown and what 

recognition class they belonged to. It was designed to 

be simple for the participants to use during the 

experiment and to minimize the amount of participant 

movement by removing any need to use the mouse or 

keyboard during the three phases as this may add 

artifacts to the signal output. 

 

3.2.1. Phase One. In the first phase of the experiment, 

a number of images were shown to the participants of 

the study. They were tasked with simply considering 

the images shown to them. The goal of this phase was 

that the participants would not recognize any of the 

faces shown to them so that we could use the data 

gathered here as baseline “No Recognition” (NR) data 

for comparisons later on during the data analysis. In 

this phase the images that are to be shown as unaware 

images in later phases are shown to the participant a 

total of four times each to reinforce the implicit 

learning of the images. 

 

3.2.2. Phase Two. In the second phase of the 

experiment, the same number of images were shown 

to the participant as in phase one, but a number of 

images were inserted into the list from phase one. The 

goal of this phase was to generate more NR data, but 

to also hopefully gather “Possible Unaware 

Recognition” (PUR) data when the participants view 

the images that were taken from the first phase. 

Ideally, the participants would view and implicitly 

learn the faces shown to them in phase one [28] [29] 

[30], and then elicit an unaware recognition of these 

images in phase two. 

 

3.2.3. Phase Three. In the third and final phase of the 

experiment, participants were shown one of the 

images that was tagged as PUR from the second phase 

and asked to memorize the face. Once the participant 

felt comfortable enough with the face that they could 

remember it, they moved on and were again shown a 

number of images. The images in this phase consisted 

of a majority of NR images which they had not seen 

before, but also, spaced evenly throughout the images, 

there was the image of the face that they were asked to 

study at the beginning of the phase. Assuming the 

participant had memorized the face well enough to be 

able to recognize it, upon viewing that face, the 

participant would elicit a “Possible Aware 

Recognition” (PAR). This final classification of data 

allows us to now compare the EEG signals between 

the three classes (No Recognition, Possible Aware 

Recognition, and Possible Unaware Recognition). 

Since only a limited number of images could be taken 

from phase one and placed into phase two as PUR data 

images, more images were taken from phase one and 

placed into phase three to supplement the PUR data 

count. Each image shown to the participants in all 

three phases is shown for one second, with a one 

second blank screen in between before moving on to 

the next image. 
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To ensure that data collected from viewing 

images belongs to the correct possible classification, 

we pre-defined images that were shown to the 

participant in the various stages based on what we are 

looking for an image to be associated with. For 

example, one of the images that exists in Phase One 

that is picked to be shown again in Phase Two as a 

PUR would be labelled as a PUR image on the back-

end. This allowed us to easily compare any 

classification with another by looking at the tag that 

was associated with it. This also helped us to form a 

more obvious baseline for each of the classifications 

as they may have traits such as average voltage level 

or peaks that occur at specific times across all images 

of the same class. 

 

3.3. Data Pre-Processing 
 

Prior to analysis, data was pre-processed to 

remove or fix any artifacts that were found in the data. 

EEGLAB was used for data analysis and pre-

processing. This was chosen due to its large, mature 

development community and the libraries and 

functionality included. The first step taken to remove 

any artifacts caused by blinking or other disturbances 

was to run the data through a band-pass filter, filtering 

0.1-15 Hz (as recommended by Bougrain et al [31]). 

Next, the filtered data was run through one of 

EEGLAB’s ICA filters, which helps eliminate any 

remaining artifacts and smooth the waveform [32]. 

After filtering and early artifact reduction/removal via 

ICA filter, any sections of image data that exhibited 

amplitudes of +/- 100 microvolts (usually caused by 

movements of the participants such as coughing, head 

movements, blinking, etc.) were removed from 

consideration as the data for that image may corrupt 

any further analysis.  

As a result of this data pre-processing, a number 

of images were removed from analysis per participant 

included in the study. An average of 16 and 18 images 

for Participant 1 and 2 respectively were removed per 

sensor. In future work this may cause issues if images 

such as the PUR images in phase two or PAR images 

in phase three become corrupt, thus leading to less data 

for meaningful analysis. 

 

4. Analysis and Results  

 
Analysis of the data collected for this preliminary 

study was limited to simple analysis of the voltage of 

collected signals. First, the absolute value of the data 

for every image in a class for each participant was 

averaged at each time interval to produce an “average 

signal”. This allowed us to view and determine if a 

human-visible difference between the three 

classifications of recognition exists. The results of this 

signal averaging can be seen in the following four 

graphs (Figures 1, 2, 3 and 4), containing the averaged 

brain activity of the two subjects immediately 

following exposure to the presented images.  

In figures 1 and 2, the average signals collected 

during seven unique ERPs are displayed for each of 

the three recognition types. ERPs were averaged for 

each participant individually to allow us to get a 

general sense of where each image type falls in terms 

of voltage for each participant and to determine if the 

difference between classifications of image can be 

determined by a human without the need for machine 

learning tools. For this experiment we segmented the 

data into the following ERPs: VEPS1, VEPS2, N170, 

P2, N200, P3N400, and N400F. These ERPs are just 

segments of time in which we expect the brain to react 

in a specific way, so each sensor’s data can be 

segmented (14 sensors × 7 ERPs). In each of the 

graphs, certain averaged signals cut off at certain 

points due to the length of the ERP they are associated 

with (some ERPs are shorter than others). In figures 3 

and 4, the signals for each recognition class is 

presented for the full length that an image was shown. 

The signals represented in these two figures are 

averaged among all samples of each of their respective 

classes. In all signal figures, green signals correspond 

to NR images, blue signals correspond to PUR images, 

and orange signals correspond to PAR images. All 

data represented in these graphs are left-aligned rather 

than being aligned to their actual ERP-defined offset 

(time after stimulus). This is done to prevent missing 

signal lines due to overlapping signals as certain ERPs 

exist within other ERPs, thus producing the same 

shape as another at certain times. 

 

 
Figure 1 – Participant 1’s averaged ERP 

signals 
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Figure 2 – Participant 2’s averaged ERP 

signals 
 

 

 
Figure 3 – Participant 1’s averaged full-image 

signals 
 

 

 
Figure 4 – Participant 2’s averaged full-image 

signals 
 

In the two trials conducted thus far, there is a clear 

distinction between NR, PUR, and PAR images, 

which supports the theory that consumer-grade BCI 

headsets can be used to identify possible unaware 

facial recognition. Unfortunately, being such a small 

sample size, we cannot make a statistical analysis on 

the results or develop more concrete conclusions of the 

results in this study. Studies are in the process of being 

conducted using more participants. 

The differences between the three classes of 

recognition can be easily identified by the human eye 

without using any machine learning tools. The NR 

(green) images are generally of higher voltage levels 

and the PUR (blue) images appear slightly higher than 

the PAR (orange) images. The faces that are not 

recognized tend to be softer signals with less variance 

in voltage levels while the two classes that have 

recognition associated with them (PUR, PAR) tend to 

be more active in voltage changes. Considering that 

the aware recognitions (the faces that the participants 

were asked to specifically identify in phase three) 

share similar activity in the voltage levels as the 

unaware recognitions (phase two and three), this helps 

to reinforce that the brain is able to recognize these 

faces in a similar fashion to the aware recognitions, but 

at an unaware level. If reproducible in future work, 

these results may assist in applications which look to 

determine if an individual is recognized by another for 

example.  

There are specific ERPs that lend themselves 

more to visual facial recognition than others, so future 

work will inspect these closer, but we have chosen to 

include the results of other well-known ERPs to see 

what insight we could gather on their function in 

relation to the ERPs associated with facial recognition 

and identification. 

 

5. Future Work  

 
For the purposes of this paper, the study outlined 

here is only a preliminary study to test the feasibility 

of the theory and processing behind the idea of 

classifying unaware recognitions. There is far more 

research to be done on the subject in both the medical 

field and in the Human-Computer Interaction field, 

leaving room for great advancements. One of the 

major areas that future work will continue with is the 

number of participants. For this experiment, 

participant numbers was kept low and involved only 

the research team surrounding this project, but future 

work would include a more general population, to 

allow for a more diverse data collection. 

Another area to be investigated in future work is 

the left/right-handedness of the participants. The 

EPOC headset that was used for this experiment has 

14 sensors (seven on each side of the head – left/right), 

so we can measure the certain areas of the brain that 
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may be more responsive to viewing faces and reacting 

appropriately. While this preliminary experiment 

focuses purely on voltage levels, future work will 

differentiate voltage levels across the two halves of the 

brain to determine if a participant’s dominant hand and 

areas of the brain play a role in classifying unaware 

facial recognitions. 

While not performed on these initial results, we 

intend to use several additional methods of analysis in 

future trials. In addition to what was performed here, 

a variety of tools from the Scikit-Learn library for 

Python [33] will be used for preprocessing and 

classification. Initially, the feature set for all images 

that are analyzed consists of the voltage reading at 

each time interval (128 Hz, one sample per sensor 

every 7.8125 ms). 

This study was designed to take advantage of 

modern consumer-grade BCI headsets rather than the 

more expensive, elaborate, or even invasive lab-

/medical-grade devices. With the cost of such 

consumer-grade devices being appropriate for home or 

office use, additional applications are becoming 

available to be explored by a wider audience, which is 

what this study is directed towards. An area that this 

work could be taken in the future with regards to 

results is into a lab or medical study to delve further 

into the differences between aware and unaware 

recognitions. 

 

6. Conclusions  

 
While more participants are needed before any 

concrete conclusions can be made, preliminary results 

support the theory that consumer-grade BCI headsets 

can be used to identify unaware facial recognition. We 

explored the voltage differences that occur when the 

human brain is subjected to faces of varying states of 

recognition. From these limited results, we have found 

that the three states of recognition that we measured in 

the experiment (NR, PUR, and PAR) can be easily 

differentiated by taking the absolute values of signals 

after pre-processing. These results were obtained 

using a consumer-grade toy BCI headset rather than 

more expensive lab or medical grade headsets, thus 

lending credence to the idea that cheaper and more 

pervasive headsets found on the consumer marker can 

be used for recognition-based tasks. Finding such 

obvious differences in the voltages of these signals, we 

hope that scaling the experiment up to a larger sample 

size will produce a more statistically-sound result, 

along with a more in-depth analysis. 

If future trials produce similar results, this 

knowledge could have several potential uses, 

including aiding workers in finding missing persons, 

other such recognition-based tasks, and the further 

inspiration for development and use of low-cost, 

consumer-grade toy BCIs for research purposes. 
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