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Abstract 

 
In the domain of enterprise applications, 

organizations usually implement third-party standard 

software components in order to save costs. Hence, 

application performance monitoring activities 

constantly produce log entries that are comparable to 

a certain extent, holding the potential for valuable 

collaboration across organizational borders. Taking 

advantage of this fact, we propose a collaborative 

knowledge base, aimed to support decisions of 

performance engineering activities, carried out 

during early design phases of planned enterprise 

applications. To verify our assumption of cross-

organizational comparability, machine learning 

algorithms were trained on monitoring logs of 18,927 

standard application instances productively running 

at different organizations around the globe. Using 

random forests, we were able to predict the mean 

response time for selected standard business 

transactions with a mean relative error of 23.19 

percent. Hence, the approach combines benefits of 

existing measurement-based and model-based 

performance prediction techniques, leading to 

competitive advantages, enabled by inter-

organizational collaboration. 

 

 

1. Introduction  

 
As of today, development and operations 

activities are not integrated tightly enough within one 

organization [1] and in most cases do not collaborate 

across organizations, although similar and 

comparable standard software components are 

consistently deployed. The lack of integration and the 

distribution of responsibilities across organizational 

units lead to increasing difficulties in accessing 

information that is required to deploy, operate and 

maintain applications cost-effectively and in constant 

alignment to agreed service levels [1]. As a 

consequence, the end-user experience may suffer, 

e.g., from poor software performance caused by 

inadequate capacity planning. Recent approaches 

address these challenges from a software engineering 

perspective under the term DevOps [2], [3]. 

Corresponding research activities aim at increased 

flexibility through shorter release cycles in order to 

support frequently changing business processes. 

Therefore, DevOps enables a culture, practices and 

automation that support fast, efficient and reliable 

software delivery [4]. However, especially for 

enterprise applications, IT departments usually make 

use of existing standard software components instead 

of developing solutions entirely in-house [5]. In such 

cases, activities referred to as Dev, rather include 

requirements engineering, architectural design, 

customization, testing, performance-tuning and 

deployment [6]. Here, key service levels typically 

include performance objectives, expressed in terms of 

average response times, throughput or latency, in 

order to ensure deployment options that are aligned 

with actual business requirements. Since enterprise 

applications support vital corporate business 

functions, their performance is critical for success of 

business tasks and must never be degraded 

significantly [7]. As corporations tend to grow 

depending on an increased customer base, new 

product releases, new divisions and acquisitions [6], 

enterprise application performance needs to be 

monitored and managed continuously and proactively 

[8]. In order to evaluate and test software 

performance in early design stages, development 

teams carry out software performance engineering 

(SPE) activities [9]. In addition, operations teams 

conduct application performance monitoring (APM) 

[10] to control the status of running systems. In a 

recent technical report, [1] summarizes that the 

challenges of these two performance domains are 

often considered independently from each other. 

Hence, they identified the interoperability between 

tools and techniques of SPE and APM as a key 

success factor in order to support a level of technical 

and organizational flexibility that is required for 

DevOps. According to this review, performance data 

collected during operations provides various insights 

for development teams and replaces assumptions 

with knowledge. However, managing performance at 

design-time (SPE) or at run-time (APM) leads to 
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different challenges since, for instance, more degrees 

of freedom exist at design-time for the system 

architecture [11]. In both domains, application 

performance can be evaluated using either 

measurement-based or model-based techniques [1]. 

Depending on the application life cycle, 

measurement-based performance evaluation is 

conducted during regular operations or as part of 

stress tests or performance unit tests inside quality 

assurance systems [12]. While model-based 

approaches can be used at design-time, 

parametrization is often difficult and involves expert 

knowledge which may lead to low credibility of the 

obtained results. Measurement-based approaches, on 

the other hand, require (parts of) an implemented 

system and are normally limited in terms of the 

configuration alternatives to be considered [11] 

which means these are more suitable in the operation 

phase. The advantages of both approaches could be 

exploited if previously conducted measurements and 

derived knowledge are made available for the design 

of new landscapes. 

Gartner summarizes the efforts to integrate 

monitoring data from different sources under the term 

IT operations analytics [13]. As an example, in [8], a 

knowledge base is trained to collect performance 

profiles of services in a SOA environment. These 

efforts aim at the integration of SPE and APM in a 

single organization (intra-organizational). In order to 

utilize knowledge for different organizations, the 

specifics of this organization have to be considered in 

the applied performance models. However, in a 

standard application environment there is no need for 

individual performance models and monitoring data 

can potentially be normalized and aggregated across 

several systems. Thus, knowledge that has been 

applied to deploy existing landscapes can be 

extracted and applied to new scenarios, saving costs 

and time.  Furthermore, the risk of errors, for 

instance, by a service provider that conducts 

benchmarks, is avoided. To support intra- and inter-

organizational collaboration for performance 

activities during design and operations phase, we 

follow an empirical approach that combines 

monitoring data from various instantiations of 

running enterprise applications and provides data-

driven feedback for new software rollouts. 

Therefore, we investigate the comparability and 

applicability of this data to serve as an input for a 

domain-specific performance knowledge base which 

integrates different organizations that utilize the same 

standard software components. Within the knowledge 

base, we utilize machine learning algorithms to build 

performance prediction models that we train using 

230 million performance-related log entries of more 

than 18,000 productively running application 

instances of a global market leading enterprise 

resource planning software. Thus, the approach 

integrates data from different sources and utilizes 

methods and technologies related to the field of big 

data and statistical analyses.  

Our approach combines the accuracy of real 

quality assurance systems with the cost-effectiveness 

of performance models and data analysis. Hence, we 

combine the advantages of model-based (applicable 

at design-time) and measurement-based prediction 

(high accuracy of results) while not suffering from 

their disadvantages (difficult parameterization, 

required expert knowledge, need for an implemented 

system and sufficient training data size in operation). 

The following research questions narrow down 

our particular interest addressed in this paper: Do 

performance-related monitoring logs of enterprise 

standard software contain information that can be 

extracted on a global scale in order to serve as a 

valuable input for new software rollouts? How 

accurate are performance models that have been 

trained on mass data from different environments but 

similar software? Which model types are most 

suitable for log-based performance prediction? Our 

research methodology follows the design science 

paradigm [14], where the developed artefact 

comprises the knowledge base including performance 

models that we evaluate in terms of accuracy and 

applicability in multiple iterations. 

Therefore, the remainder of this paper is 

structured as follows: In Section 2, we provide an 

overview of the state of the art related to model-based 

and measurement-based software prediction. We 

conclude that both approaches have their 

disadvantages. A knowledge base is proposed in 

Section 3 to combine the advantages of model-based 

and measurement-based prediction as a concept and 

as a technical architecture. In the evaluation, 

presented in Section 4, a prototype of the knowledge 

base is implemented and applied to monitoring data 

of nearly 19,000 business application systems. The 

paper concludes with Section 5 in which the key 

findings of the paper as well as possible future 

research activities are discussed. 

 

2. Software Performance Prediction  

 
Software performance can be predicted using 

either model-based or measurement-based 

techniques. In order to be able to classify our 

approach, this section summarizes the state of the art 

for both techniques. 
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2.1. Model-based Prediction 

 
The basic idea behind model-based prediction 

techniques is to define an analytical performance 

model describing the relation between software 

artifacts and performance metrics. Artifacts include 

requirements, specification, architecture, and design 

as well as dynamic information about runtime 

behavior. Model types include queuing networks, 

stochastic process algebra, stochastic petri nets, 

stochastic processes and simulation models [15]. 

By incorporating expert knowledge within the 

performance model in combination with early design 

artifacts, these approaches can be applied in the 

development phase. Since model-based approaches 

are applicable before a system is implemented, e.g. 

by using specifications, many architectural 

alternatives can be evaluated leading to lower 

correction costs than during the operations phase [8]. 

While approaches can also be further used in later 

lifecycle phases to validate the used models and 

feedback information for future developments, their 

application in the operations phase is not as effective 

as in the design phase due to high time effort in 

construction and analysis [11]. 

Furthermore, model-based techniques require 

expert knowledge about the system to be 

implemented and its dependencies which may not be 

available especially for third-party products that are 

used in application system landscapes [5]. 

Additionally, identifying the parameters of the 

performance model can be difficult, e.g. when using 

test environments for single components [11]. 

Finally, the credibility of obtained results remains 

questionable until these can be validated in later 

lifecycle phases. 

 
2.2. Measurement-based Prediction 

 
Predicting performance on the basis of 

measurements requires an implemented system to be 

observed [11], [15]. Hence, measurement-based 

prediction techniques consider all executional 

dependencies which model-based approaches cannot 

guarantee [16]. On the one hand, measurement-based 

approaches are more used in practice than model-

based approaches due to their effectiveness in 

operation [5]. On the other hand, they usually allow 

for fewer degrees of freedom than model-based 

approaches resulting in a trade-off between runtime 

and accuracy [11]. According to [16], their main 

steps are as follows: 

1. Collecting training data, 

2. Extracting features from training data, and 

3. Selecting a suitable prediction technique. 

Collecting training data can be done by 

monitoring or benchmarking. For this purpose, 

software monitors are integrated into applications, 

termed instrumentation, in order to create log entries 

driven by any occurring events such as user activity 

[1], [17]. However, a dedicated implementation of 

these mechanisms can be very costly [5]. Subsequent 

feature extraction depends on the application; e.g., 

for database performance, important features include 

workload, cache, page size as well as disk speed [18]. 
Regarding suitable prediction techniques, different 

machine learning approaches exist. 

Two major machine learning approaches are the 

systems modeling and the performance counters 

approach [16]. For systems modeling, only a small 

amount of training data is required. Instead, expert 

knowledge is used, e.g., in [8]. In contrast, 

performance counters use a large number of low level 

counters, i.e. performance related measurements, that 

can be gathered either in real time from software 

monitors and operating systems or from log files 

[19]. Approaches such as random forests or support 

vector machines leverage these data to predict key 

metrics. Therefore, performance counters represent a 

pure black-box approach, where large amounts of 

training data are needed [16]. 

Determining the effect of changed configuration 

parameters usually requires a complex benchmarking 

process which may be expensive; thus, recent 

approaches focus on the exploitation of a few 

variants to train underlying models [20]. The total 

cost of these approaches is determined by the costs to 

obtain training and test data sets, the model building 

cost, and the cost of the prediction error [20]. 

Measurement-based techniques are most effective 

in operation resulting in higher correction costs and 

fewer degrees of freedom. Furthermore, preparing 

and conducting benchmarks is required which 

involves experts. In the systems modeling approach, 

additional expert knowledge is needed. On the other 

hand, the performance counters approach is only 

applicable with high amount of data which is usually 

not available within a single organization since the 

number of possible configurations to be benchmarked 

is limited. 

To conclude, model-based approaches are very 

costly e.g. due to needed expert knowledge, but 

measurement-based approaches are difficult to apply 

in the SPE normally due to lack of data; if data is 

available, however, feeding back information from 

APM to SPE can combine the advantages of both 

approaches. 
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3. Design of a Collaborative Performance 

Knowledge Base 

 
In the following, we propose the concept of a 

collaborative knowledge base that utilizes the 

measurement-based prediction technique of 

performance counters (c.f. Section 2.1.). 

Furthermore, enabling technical components are 

identified. 

 
3.1. Concept 
 

As pointed out in the introduction, our aim is to 

support the development of standard business 

application systems by knowledge from the operation 

of comparable systems. For that reason, a knowledge 

base is proposed that uses information of APM 

activities to support SPE activities in the design 

phase of a system or a system landscape. 

Hence, the system under analysis (SUA) does not 

need to be set up in order to manage performance. 

Instead, runtime-information from comparable 

systems can be utilized. In a standard business 

application environment, certain aspects of a system 

are comparable to systems of other departments or 

organizations. Thus, on a global scale, many possible 

configurations exist and outputs of running software 

monitors provide a high amount of comparable 

performance data. This allows for the application of 

machine learning algorithms based on performance 

counters [16] since log entries from APM activities 

can be used for training. Thus, no expert knowledge 

is needed to construct performance models as in 

model-based approaches. Instead, knowledge is 

extracted from a high number of separate 

observations and can be shared within or across 

organizations. 

The proposed knowledge base concept 

compromises three layers. The machine learning 

algorithms as well as the trained performance models 

are stored in an analytics layer. For these models, the 

number of different observations as well as their 

currentness determines the quality of the performance 

prediction. For instance, a release-specific change of 

transaction logic might leverage a particular 

operating system feature or hardware resource more 

efficiently resulting in lower average response times. 

Therefore, the knowledge base should provide an 

interface to import information of former and future 

APM activities into a data layer. 

From a business perspective, the knowledge base 

can be hosted by an IT consultancy company to 

provide unique “SPE as a service” offerings. At the 

same time, the knowledge base provider is enabled to 

leverage the data layer for further analytics in order 

to provide individual optimization services that are 

aligned with current needs, bottlenecks or other 

service opportunities that arise from the respective 

subset of monitoring data. 

End users should be provided with easy access to 

the knowledge base in order to support particular 

SPE related tasks, which we refer to as provisioning 

layer. As a usage example, a performance engineer 

may expect an estimated hourly workload for a 

particular timeframe and provides characteristics of 

the technical platform the application is running on or 

planned to be migrated to. In this case, the service 

can be used to predict the mean response times for a 

particular business transaction under the given 

conditions and, thus, support decision-making for 

capacity planning and capacity management. Such 

decisions may affect sizing processes for planned 

systems, e.g. in terms of required CPU capacity, 

scaling of existing systems (either down or up) in 

cost-effective accordance to operational level 

agreements, and release upgrade planning. Hence, 

knowledge from monitored systems is fed back 

through prediction models into performance 

engineering activities in order to evaluate change 

effects preliminary to their implementation. 

Since any functionality on the analytics and 

provisioning layer is limited by the type of available 

data, we interviewed three consultants who provide 

performance-related system analyses for enterprise 

applications in order to identify necessary data 

dimensions. According to our findings, the data layer 

of a performance knowledge base should include but 

is not limited to attributes of the following 

dimensions in order to enable performance model 

training: 

 System topology 

o Mapping of logical and physical 

components 

o Release information 

o System type 

 Resource capacity 

o Capabilities and capacity limits of 

hardware components 

 Workload characteristics 

o Transaction usage 

o Resource demands 

o Performance metrics 

Depending on the available data, additional use 

cases are conceivable on analytics layer, which are 

not subject to the evaluation conducted in this paper. 

As an exemplary outlook, the integration of 

monitored data from different systems enables cross-

system and cross-organizational analytics. Therefore, 

end users or organizations are given the opportunity 
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to assess their ERP system landscape by comparing 

own system performance with, e.g., mean values 

derived from empirical distribution functions across 

various systems on similar hardware, e.g. in order to 

identify performance anomalies. 

 
3.2. Technical Architecture 

 
The knowledge base is intended to serve as a 

bridge between APM and SPE activities for standard 

enterprise applications across organizational borders. 

Thus, data resulting from various monitoring 

activities during operations will serve as input for 

performance engineering tasks in the design phase. In 

the following section, we will introduce how the 

knowledge base can be instantiated. Therefore, 

Figure 1 shows the knowledge base layers and their 

enabling technical components. 

 

 
Figure 1. Components of the knowledge base 

As discussed in Section 3.1, we use measurement 

data from running enterprise applications to train 

prediction models. Software monitors can be used to 

collect data during execution. These are often 

inherent in standard enterprise applications and make 

use of event-driven techniques [17] to produce a 

constant flow of log entries. Typical examples are 

SAP statistical records or Oracle performance 

statistics. While extended tracing capabilities usually 

need to be activated intentionally in order to reduce 

measurement overhead [1], performance log entries 

such as SAP statistical records are stored on the file 

system by default, regardless of whether the 

contained data is analyzed or not. These log entries 

can be extracted, transformed and loaded by a data 

collecting software (data collector) into a central 

database periodically resulting in a classical ETL 

process. Such data collectors are already used by IT 

consultancies as part of system maintenance services 

[21]. While these services always focus on one 

particular customer and a limited timeframe (usually 

up to three weeks), a central knowledge base enables 

cross-case analytics and periodic data updates 

resulting in intra- and inter-organizational 

collaboration as depicted in Figure 1. 

The expected volume of the data layer depends on 

the data granularity, the number of data sources and 

the maximum required age of historic data which is 

subject to our future research. The capabilities to 

build prediction models are provided on the analytics 

layer, technically enabled by a statistics server or, 

alternatively, by stored procedures within the 

database itself. After prediction models have been 

trained, they need to be utilized by end users. 

Therefore, an integrated web server enables users to 

access the knowledge base on a provisioning layer. 

Hence, no separate application server is needed and 

predictive capabilities can be used through a web 

browser. In this manner, performance engineers are 

able to make use of existing knowledge which is 

encompassed in models to predict the performance of 

planned standard enterprise applications or to 

evaluate performance-related effects of planned 

changes. Hence, a valuable decision support is 

delivered. 

 

4. Evaluation  

 
According to [14], we utilize a descriptive 

evaluation using the scenario of “response time 

prediction” to evaluate the feasibility of the proposed 

knowledge base. The knowledge base builds upon the 

hypothesis that standard business application systems 

are to an extent comparable. Consequently, machine 

learning approaches can find a suitable description of 

the general dependency of performance and system 

configuration. In order to test this hypothesis, we 

instantiated the designed knowledge base by 

implementing the aforementioned components on 

each layer. On the analytics layer, the constructed 

prediction models are evaluated by testing their 

accuracy. 

 
4.1. Knowledge Base Instantiation 

 
The introduced knowledge base comprises a data 

layer, an analytics layer and a provisioning layer. In 

this subsection, we present the chosen components 

that we implemented on each layer to build an 

instance of the designed knowledge base. 

Furthermore, we give insights on the leveraged 

monitoring data. As source data for the knowledge 

base, monitoring logs from different implementations 

of EA standard software are required. For this 

purpose, we utilized a vast and anonymized amount 
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of data that was collected from various instantiations 

of SAP ERP systems across the globe, which 

represent widely used standard enterprise 

applications. Technical system characteristics such as 

the kernel version or basis release vary and, 

therefore, were included as attributes in the dataset 

(cf. Figure 2). The monitoring logs were contained in 

files using the comma separated values (CSV) 

format, which we merged and imported into a single 

relational database. The total data volume comprises 

runtime information related to 18,927 running SAP 

application instances distributed across 16,216 

differently characterized servers. 

Since requests are aggregated by the application 

software monitor along with performance-related 

metrics, mean response times related to more than six 

billion business transaction calls are included on the 

data layer of the implemented performance 

knowledge base. Therefore, the given level of data 

granularity does not intend nor allow for single user 

activities to be investigated. Instead, the mean 

response time (in milliseconds) per dialog step was 

calculated for each investigated hour of system usage 

and for each type of business transaction. Since this 

value can be used to express, assess and compare 

system performance, its accurate prediction would 

provide valuable decision support for performance 

engineering activities, e.g. during capacity planning 

and capacity management exercises. According to the 

design phase of the knowledge base (c.f. Section 3.1), 

monitoring data from the dimensions system 

topology, resource capacity and workload 

characteristics are required in order to address the 

given objective. 

 

 
Figure 2. ER model of the data layer 

Based on these dimensions, selected attributes 

from the total dataset were integrated in a common 

database schema. Figure 2 shows an excerpt of the 

entity relationship (ER) model we utilized on the data 

layer. As the chosen attributes depend on the output 

provided by application software monitors, this ER 

model can serve as a basis, but would need to be 

adapted if used for a different kind of standard 

software. The data layer, in our case, is technically 

enabled by the in-memory database SAP HANA 

(Support Package Stack 10), utilizing 1TB of 

physically available main memory.  

The analytics layer is intended to extract 

knowledge from the database. Therefore, database 

views can be created to serve as an input for 

prediction models. For the scope of this paper, we 

utilized publicly available libraries, written in the 

statistics language R, to train and test different kinds 

of models. For a given hourly workload and system 

architecture, the models can be used to predict the 

mean response time per dialog step. A dialog step 

refers to the smallest unit of work, triggered by end 

users, and processed by the system under analysis. 

Therefore, response times include processing times of 

both the database and application server as well as 

eventual lock times and queue times [22].  To support 

response time predictions, on the analytics layer, we 

integrated an R server with the database and were 

able to encapsulate analytics logic within stored 

procedures. 

Thus, the steps of both model training and 

predictions can be automated and triggered from the 

database server while being executed on a separate 

machine. Finally, the extracted knowledge needs to 

be shared across the participating entities to support 

intra- and inter-organizational collaboration. 

Therefore, a provisioning layer integrates a web 

server that has direct access to the database views and 

stored procedures containing the models. 

Hence, models can be trained directly on the 

respective database view as described in the 

subsequent section, and end users consume 

knowledge by predicting response times for varying 

workloads or system architectures of either planned 

or existing enterprise applications. 

 
4.2. Model Extraction 
 

Based on the monitored data that has been 

imported into the knowledgebase, we were able to 

build various kinds of prediction models. Which 

model is most suitable depends on the characteristics 

of the problem, hence, several machine learning 

prediction models have been considered. In order to 

evaluate which models can be applied to the given 
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scenario, we trained the following model types, 

which may be appropriate according to related work 

[16], and compared their prediction accuracy: 

 Regression tree 

 Random forest 

 Evolutionary earning 

 Support vector machine 

 M5P model trees 

 Gradient boosting machine 

As these represent existing machine learning 

algorithms, which are provided by publicly available 

libraries, written in R, further details on their 

functionality will not be presented in this paper, but 

can be found in the user guide of the respective R-

library available via the Comprehensive R Archive 

network (CRAN) [23].  

Often, standard software is customized or 

extended leading to components that are not 

comparable across implementations. Therefore, the 

data basis for model creation needs to be limited to 

standard business transactions that are used by a large 

number of customers. Thus, our first tests aimed at 

identifying a sufficient level of comparability within 

the dataset in order to limit the predictions to either a 

specific system type, a particular standard business 

transaction or a subset of standard business 

transactions. Our preliminary tests show generally 

increased prediction accuracy if models are limited to 

subsets of the same standard transaction having 

similar workload characteristics. In fact, the 

prediction accuracy decreases by up to 63% if all 

transaction types, including non-standard ones, are 

considered in the training phase of a single model. 

Therefore, the log records have been classified 

regarding the performed type of standard transaction, 

their actual business logic, and the load, which they 

caused on the application and on the database server. 

For the latter, their total number of database 

service units (DBSU), requested by the application 

server in the form of selects, updates or deletions, can 

be used (c.f. Figure 2). Hence, the models, presented 

in the following, are always limited to a particular 

standard transaction type 

The value that is to be predicted is the mean 

response time per dialog step in milliseconds for a 

given hour of application usage. All models were 

trained using the features presented in Figure 2, 

which we extracted from the data layer. As a metric 

for the model’s accuracy, we use the ratio of the 

mean absolute error (MAE), and the measured mean 

response time. In the following, we refer to this value 

as relative error. 

In order to guarantee a large volume of training 

data and to apply our predictions to business 

transactions that have existing performance 

requirements, we extracted a list of the 100 top used 

standard business transactions across all 

organizations. Subsequently, three different domain 

experts were instructed to choose business 

transactions from the list that are known to be 

business-critical in terms of their performance for 

many organizations. We consolidated the results to a 

new list of most used and most relevant standard 

business transactions and selected the top 15 

transactions to train the above mentioned models on. 

For each transaction, a separate model was built. 

Across the examined business transactions, the 

mean response time per dialog step varied between 

476 ms and 2,366 ms. For each model, we splitted the 

data set randomly into a training set which accounts 

to 70 percent of the data volume and a test set which 

accounts to the remaining 30 percent. 

Figure 3 shows the model’s accuracies by 

comparing their relative errors across all 15 

transaction models for each model type. As can be 

seen in Figure 3, the prediction accuracy highly 

depends on the type of the model. Overall, the 

relative error varied between 17.66 and 58.10 %. 

Models based on evolutionary learning further 

depend strongly on the type of transaction, resulting 

in a high variance between 26.69 and 45.40 %. 

Support Vector machines, M5P and gradient boosting 

machines did not vary significantly across different 

business transactions but show a comparably low 

prediction accuracy resulting in relative errors 

between 58.10 and 39.06 percent. In contrast, our 

experiments revealed a relative error of 23.19 percent 

for random forests, which turned out to be the most 

suitable type of model for the given scenario. 

 

 
Figure 3. Relative error per model type 
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As random forests combine decisions from 

multiple regression trees within one model, their 

accuracy outperforms any single regression tree (See 

Figure 3). Therefore, we state that, from the above 

mentioned prediction model types, random forests are 

most capable to recognize and represent existing 

performance dependencies within enterprise 

application system architectures. In our given 

scenario, most significant features were related to 

characteristics of the ERP system’s database server 

(number of CPUs, threads, cores, allocated main 

memory), followed by workload characteristics such 

as the number of active users, the number of database 

requests and the number of dialog steps at the 

investigated hour of system usage. In contrast, 

hardware characteristics of the application server 

were considered to be less important during the 

training process. 

Due to their comparatively low error (cf. Figure 

3), we limit further evaluation details to models that 

were trained using a random forest. Figure 4 shows 

the relative error for each tested standard business 

transaction from the above mentioned list, using 

random forests.  

For this model type, the mean relative error 

accounted to 23.19 percent across the listed standard 

transactions. Best results were achieved by a random 

forest that predicted the mean response time for 

showing stock overviews. Here, a relative error of 

only 17.66 percent was observed. Although this 

transaction shows one of the longest response times 

within our data subset, based on our experiments, no 

correlation between the actual response time and the 

prediction accuracy could be identified. 

 

 
Figure 4. Relative error per standard 

transaction type (random forest) 

In 2004, [24] stated that deviations up to 25 

percent are, according to general conditions, within 

acceptable ranges, results are also comparable to 

other approaches such as [25], [26]. 

Since monitoring data from multiple 

implementations of standard enterprise applications 

were used to train the models, a variety of different 

workload and server characteristics is represented 

within each model. Hence, our experimental results 

show that standard transactions of different enterprise 

application systems are comparable. As a 

consequence, their APM output can be combined and 

leveraged by machine learning algorithms to discover 

existing dependencies between response times, 

system capacities and workload information. 

 
4.3. Discussion 
 

Our evaluation results show how benefits of 

measurement-based and model-based performance 

prediction techniques can be combined in order to 

predict application performance in a cost-efficient yet 

comparatively accurate manner. 

Using the trained models, performance engineers 

are able to predict response times of planned 

enterprise applications for a given workload and 

system topology. 

Therefore, data from various APM activities was 

leveraged to serve as valuable input for training 

models in order to create knowledge that can be 

utilized during SPE. Accordingly, the designed 

knowledge base supports both intra- and inter-

organizational collaboration. 

Using the output data of elsewhere performed 

monitoring activities, the cost of applying the 

approach for a new customer are much lower than for 

the classical measurement-based approach, which 

would require dedicated quality assurance systems 

for any performance tests. Costs for model building 

arise for the service provider and would be included 

in the service price for the consumer; however, since 

economies of scale are utilized, these would be lower 

than model building costs in the context of a single 

application system. The cost of the prediction error 

decreases with a growing volume on the data layer of 

the knowledge base; furthermore, the service price 

could be designed to be flexible dependent on the 

prediction accuracy. Thus, costs for applying the 

approach are much less than for classical model-

based or measurement-based approaches since 

neither expert knowledge nor implemented systems 

are needed within an organization 

On the other hand, performance predictions for 

workloads and system setups that are not yet covered 

in the knowledge base might be less accurate in case 
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they do not follow rules reflected in the models. 

Hence, performance predictions for new software 

releases will become more accurate over time as 

these are increasingly used within monitored systems. 

Another drawback may arise from data protection 

concerns of participating organizations. Although no 

sensitive master or transaction data is ever accessed 

by existing monitoring data collectors, responsible 

administrators are known to be cautious when it 

comes to data exchange that is related to core 

enterprise applications. However, such doubts can be 

well addressed, since only performance metadata is 

needed to support analytics. While any identifiers or 

server names can be anonymized without affecting 

model accuracy, dynamic analytic privileges can be 

utilized on the provisioning layer to further limit user 

access to the data layer. 

Besides the evaluated performance prediction, 

further functionalities are conceivable on the 

analytics layer including benchmarking services, 

application health checks, workload consolidations or 

performance anomaly detections. In any case, the 

collaborative idea leads to individual decision 

support and leverages economies of scale by 

analytical capabilities that need to be implemented 

once while the resulting knowledge can be leveraged 

by all participants. 

 

5. Conclusion and Future Work 

 
In this paper, we introduced a novel approach of 

collaboration aiming at decision support during 

software performance engineering activities. The 

approach is enabled by a knowledge base that 

includes machine learning algorithms in order to 

extract knowledge from enterprise application 

monitoring data that was generated beyond 

organizational borders. 

Within the conceptual design, we take advantage 

of the fact that enterprise applications usually base on 

standard software components. Within such 

applications, end users execute standard business 

transactions that are comparable in many aspects. As 

instantiations of these systems are implemented 

around the globe by different organizations, 

monitoring activities constantly produce a growing 

amount of log data that follow the same format and 

refer to the same execution logic. 

Therefore, we examined the feasibility to 

integrate monitoring data from different sources into 

a common knowledge base in order to train 

performance prediction models on cross-

organizational data subsets. Such response time 

predictions that are performed on an analytics layer, 

can serve as valuable input for performance-affecting 

design decisions that need to be taken in an early 

stage of planned software rollouts and changes. 

We identified random forests to be the most 

suitable type of prediction model for the 

characteristics of the standard enterprise applications 

we studied. On a real-world data set of 18,927 

application instances, a mean relative error of 23.19 

percent could be observed for examined standard 

transactions, which is, according to related work from 

the field of performance prediction, a sufficient 

accuracy. Furthermore, the results demonstrate that 

systems are comparable in these aspects from a 

statistical point of view. In this manner, the presented 

approach combines the benefits of accurate 

measurement-based and early, e.g., during design 

phase, applicable model-based prediction techniques. 

Furthermore, the approach brings together 

performance-related activities of various 

development and operations teams and, therefore, 

serves as a contribution to the increasingly utilized 

DevOps principle.  

As the presented evaluation results verified a 

general feasibility of our approach, multiple 

interesting directions arise for future research. For 

instance, an appropriate time frame for keeping 

historical data in the knowledge base currently 

remains an open issue 

By limiting training data to a particular time 

frame that excludes entries from obsolete and, 

therefore, rarely used releases or platforms, 

prediction accuracy can potentially be further 

improved. Moreover, further analytical use cases, as 

mentioned in Section 4.3, can be designed based on 

existing information that is stored on the data layer. 

Each use case potentially supports new services that 

can be provided by the hosting party of the 

knowledge base. Hence, the design and 

implementation of an easily usable provisioning layer 

that delivers the extracted knowledge to the end user 

will be subject to continuing future efforts, too.  

To summarize, our approach presents an 

opportunity to transfer knowledge gained in 

operation into the development of system landscapes 

even beyond organizational borders.  
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