

Collaborative Software Performance Engineering for Enterprise Applications

Hendrik Müller, Sascha Bosse, Markus Wirth, Klaus Turowski

Faculty of Computer Science, Otto-von-Guericke-University, Magdeburg, Germany

{hendrik.mueller, sascha.bosse, markus.wirth, klaus.turowski}@ovgu.de

Abstract

In the domain of enterprise applications,

organizations usually implement third-party standard

software components in order to save costs. Hence,

application performance monitoring activities

constantly produce log entries that are comparable to

a certain extent, holding the potential for valuable

collaboration across organizational borders. Taking

advantage of this fact, we propose a collaborative

knowledge base, aimed to support decisions of

performance engineering activities, carried out

during early design phases of planned enterprise

applications. To verify our assumption of cross-

organizational comparability, machine learning

algorithms were trained on monitoring logs of 18,927

standard application instances productively running

at different organizations around the globe. Using

random forests, we were able to predict the mean

response time for selected standard business

transactions with a mean relative error of 23.19

percent. Hence, the approach combines benefits of

existing measurement-based and model-based

performance prediction techniques, leading to

competitive advantages, enabled by inter-

organizational collaboration.

1. Introduction

As of today, development and operations

activities are not integrated tightly enough within one

organization [1] and in most cases do not collaborate

across organizations, although similar and

comparable standard software components are

consistently deployed. The lack of integration and the

distribution of responsibilities across organizational

units lead to increasing difficulties in accessing

information that is required to deploy, operate and

maintain applications cost-effectively and in constant

alignment to agreed service levels [1]. As a

consequence, the end-user experience may suffer,

e.g., from poor software performance caused by

inadequate capacity planning. Recent approaches

address these challenges from a software engineering

perspective under the term DevOps [2], [3].

Corresponding research activities aim at increased

flexibility through shorter release cycles in order to

support frequently changing business processes.

Therefore, DevOps enables a culture, practices and

automation that support fast, efficient and reliable

software delivery [4]. However, especially for

enterprise applications, IT departments usually make

use of existing standard software components instead

of developing solutions entirely in-house [5]. In such

cases, activities referred to as Dev, rather include

requirements engineering, architectural design,

customization, testing, performance-tuning and

deployment [6]. Here, key service levels typically

include performance objectives, expressed in terms of

average response times, throughput or latency, in

order to ensure deployment options that are aligned

with actual business requirements. Since enterprise

applications support vital corporate business

functions, their performance is critical for success of

business tasks and must never be degraded

significantly [7]. As corporations tend to grow

depending on an increased customer base, new

product releases, new divisions and acquisitions [6],

enterprise application performance needs to be

monitored and managed continuously and proactively

[8]. In order to evaluate and test software

performance in early design stages, development

teams carry out software performance engineering

(SPE) activities [9]. In addition, operations teams

conduct application performance monitoring (APM)

[10] to control the status of running systems. In a

recent technical report, [1] summarizes that the

challenges of these two performance domains are

often considered independently from each other.

Hence, they identified the interoperability between

tools and techniques of SPE and APM as a key

success factor in order to support a level of technical

and organizational flexibility that is required for

DevOps. According to this review, performance data

collected during operations provides various insights

for development teams and replaces assumptions

with knowledge. However, managing performance at

design-time (SPE) or at run-time (APM) leads to

391

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41196
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

different challenges since, for instance, more degrees

of freedom exist at design-time for the system

architecture [11]. In both domains, application

performance can be evaluated using either

measurement-based or model-based techniques [1].

Depending on the application life cycle,

measurement-based performance evaluation is

conducted during regular operations or as part of

stress tests or performance unit tests inside quality

assurance systems [12]. While model-based

approaches can be used at design-time,

parametrization is often difficult and involves expert

knowledge which may lead to low credibility of the

obtained results. Measurement-based approaches, on

the other hand, require (parts of) an implemented

system and are normally limited in terms of the

configuration alternatives to be considered [11]

which means these are more suitable in the operation

phase. The advantages of both approaches could be

exploited if previously conducted measurements and

derived knowledge are made available for the design

of new landscapes.

Gartner summarizes the efforts to integrate

monitoring data from different sources under the term

IT operations analytics [13]. As an example, in [8], a

knowledge base is trained to collect performance

profiles of services in a SOA environment. These

efforts aim at the integration of SPE and APM in a

single organization (intra-organizational). In order to

utilize knowledge for different organizations, the

specifics of this organization have to be considered in

the applied performance models. However, in a

standard application environment there is no need for

individual performance models and monitoring data

can potentially be normalized and aggregated across

several systems. Thus, knowledge that has been

applied to deploy existing landscapes can be

extracted and applied to new scenarios, saving costs

and time. Furthermore, the risk of errors, for

instance, by a service provider that conducts

benchmarks, is avoided. To support intra- and inter-

organizational collaboration for performance

activities during design and operations phase, we

follow an empirical approach that combines

monitoring data from various instantiations of

running enterprise applications and provides data-

driven feedback for new software rollouts.

Therefore, we investigate the comparability and

applicability of this data to serve as an input for a

domain-specific performance knowledge base which

integrates different organizations that utilize the same

standard software components. Within the knowledge

base, we utilize machine learning algorithms to build

performance prediction models that we train using

230 million performance-related log entries of more

than 18,000 productively running application

instances of a global market leading enterprise

resource planning software. Thus, the approach

integrates data from different sources and utilizes

methods and technologies related to the field of big

data and statistical analyses.

Our approach combines the accuracy of real

quality assurance systems with the cost-effectiveness

of performance models and data analysis. Hence, we

combine the advantages of model-based (applicable

at design-time) and measurement-based prediction

(high accuracy of results) while not suffering from

their disadvantages (difficult parameterization,

required expert knowledge, need for an implemented

system and sufficient training data size in operation).

The following research questions narrow down

our particular interest addressed in this paper: Do

performance-related monitoring logs of enterprise

standard software contain information that can be

extracted on a global scale in order to serve as a

valuable input for new software rollouts? How

accurate are performance models that have been

trained on mass data from different environments but

similar software? Which model types are most

suitable for log-based performance prediction? Our

research methodology follows the design science

paradigm [14], where the developed artefact

comprises the knowledge base including performance

models that we evaluate in terms of accuracy and

applicability in multiple iterations.

Therefore, the remainder of this paper is

structured as follows: In Section 2, we provide an

overview of the state of the art related to model-based

and measurement-based software prediction. We

conclude that both approaches have their

disadvantages. A knowledge base is proposed in

Section 3 to combine the advantages of model-based

and measurement-based prediction as a concept and

as a technical architecture. In the evaluation,

presented in Section 4, a prototype of the knowledge

base is implemented and applied to monitoring data

of nearly 19,000 business application systems. The

paper concludes with Section 5 in which the key

findings of the paper as well as possible future

research activities are discussed.

2. Software Performance Prediction

Software performance can be predicted using

either model-based or measurement-based

techniques. In order to be able to classify our

approach, this section summarizes the state of the art

for both techniques.

392

2.1. Model-based Prediction

The basic idea behind model-based prediction

techniques is to define an analytical performance

model describing the relation between software

artifacts and performance metrics. Artifacts include

requirements, specification, architecture, and design

as well as dynamic information about runtime

behavior. Model types include queuing networks,

stochastic process algebra, stochastic petri nets,

stochastic processes and simulation models [15].

By incorporating expert knowledge within the

performance model in combination with early design

artifacts, these approaches can be applied in the

development phase. Since model-based approaches

are applicable before a system is implemented, e.g.

by using specifications, many architectural

alternatives can be evaluated leading to lower

correction costs than during the operations phase [8].

While approaches can also be further used in later

lifecycle phases to validate the used models and

feedback information for future developments, their

application in the operations phase is not as effective

as in the design phase due to high time effort in

construction and analysis [11].

Furthermore, model-based techniques require

expert knowledge about the system to be

implemented and its dependencies which may not be

available especially for third-party products that are

used in application system landscapes [5].

Additionally, identifying the parameters of the

performance model can be difficult, e.g. when using

test environments for single components [11].

Finally, the credibility of obtained results remains

questionable until these can be validated in later

lifecycle phases.

2.2. Measurement-based Prediction

Predicting performance on the basis of

measurements requires an implemented system to be

observed [11], [15]. Hence, measurement-based

prediction techniques consider all executional

dependencies which model-based approaches cannot

guarantee [16]. On the one hand, measurement-based

approaches are more used in practice than model-

based approaches due to their effectiveness in

operation [5]. On the other hand, they usually allow

for fewer degrees of freedom than model-based

approaches resulting in a trade-off between runtime

and accuracy [11]. According to [16], their main

steps are as follows:

1. Collecting training data,

2. Extracting features from training data, and

3. Selecting a suitable prediction technique.

Collecting training data can be done by

monitoring or benchmarking. For this purpose,

software monitors are integrated into applications,

termed instrumentation, in order to create log entries

driven by any occurring events such as user activity

[1], [17]. However, a dedicated implementation of

these mechanisms can be very costly [5]. Subsequent

feature extraction depends on the application; e.g.,

for database performance, important features include

workload, cache, page size as well as disk speed [18].
Regarding suitable prediction techniques, different

machine learning approaches exist.

Two major machine learning approaches are the

systems modeling and the performance counters

approach [16]. For systems modeling, only a small

amount of training data is required. Instead, expert

knowledge is used, e.g., in [8]. In contrast,

performance counters use a large number of low level

counters, i.e. performance related measurements, that

can be gathered either in real time from software

monitors and operating systems or from log files

[19]. Approaches such as random forests or support

vector machines leverage these data to predict key

metrics. Therefore, performance counters represent a

pure black-box approach, where large amounts of

training data are needed [16].

Determining the effect of changed configuration

parameters usually requires a complex benchmarking

process which may be expensive; thus, recent

approaches focus on the exploitation of a few

variants to train underlying models [20]. The total

cost of these approaches is determined by the costs to

obtain training and test data sets, the model building

cost, and the cost of the prediction error [20].

Measurement-based techniques are most effective

in operation resulting in higher correction costs and

fewer degrees of freedom. Furthermore, preparing

and conducting benchmarks is required which

involves experts. In the systems modeling approach,

additional expert knowledge is needed. On the other

hand, the performance counters approach is only

applicable with high amount of data which is usually

not available within a single organization since the

number of possible configurations to be benchmarked

is limited.

To conclude, model-based approaches are very

costly e.g. due to needed expert knowledge, but

measurement-based approaches are difficult to apply

in the SPE normally due to lack of data; if data is

available, however, feeding back information from

APM to SPE can combine the advantages of both

approaches.

393

3. Design of a Collaborative Performance

Knowledge Base

In the following, we propose the concept of a

collaborative knowledge base that utilizes the

measurement-based prediction technique of

performance counters (c.f. Section 2.1.).

Furthermore, enabling technical components are

identified.

3.1. Concept

As pointed out in the introduction, our aim is to

support the development of standard business

application systems by knowledge from the operation

of comparable systems. For that reason, a knowledge

base is proposed that uses information of APM

activities to support SPE activities in the design

phase of a system or a system landscape.

Hence, the system under analysis (SUA) does not

need to be set up in order to manage performance.

Instead, runtime-information from comparable

systems can be utilized. In a standard business

application environment, certain aspects of a system

are comparable to systems of other departments or

organizations. Thus, on a global scale, many possible

configurations exist and outputs of running software

monitors provide a high amount of comparable

performance data. This allows for the application of

machine learning algorithms based on performance

counters [16] since log entries from APM activities

can be used for training. Thus, no expert knowledge

is needed to construct performance models as in

model-based approaches. Instead, knowledge is

extracted from a high number of separate

observations and can be shared within or across

organizations.

The proposed knowledge base concept

compromises three layers. The machine learning

algorithms as well as the trained performance models

are stored in an analytics layer. For these models, the

number of different observations as well as their

currentness determines the quality of the performance

prediction. For instance, a release-specific change of

transaction logic might leverage a particular

operating system feature or hardware resource more

efficiently resulting in lower average response times.

Therefore, the knowledge base should provide an

interface to import information of former and future

APM activities into a data layer.

From a business perspective, the knowledge base

can be hosted by an IT consultancy company to

provide unique “SPE as a service” offerings. At the

same time, the knowledge base provider is enabled to

leverage the data layer for further analytics in order

to provide individual optimization services that are

aligned with current needs, bottlenecks or other

service opportunities that arise from the respective

subset of monitoring data.

End users should be provided with easy access to

the knowledge base in order to support particular

SPE related tasks, which we refer to as provisioning

layer. As a usage example, a performance engineer

may expect an estimated hourly workload for a

particular timeframe and provides characteristics of

the technical platform the application is running on or

planned to be migrated to. In this case, the service

can be used to predict the mean response times for a

particular business transaction under the given

conditions and, thus, support decision-making for

capacity planning and capacity management. Such

decisions may affect sizing processes for planned

systems, e.g. in terms of required CPU capacity,

scaling of existing systems (either down or up) in

cost-effective accordance to operational level

agreements, and release upgrade planning. Hence,

knowledge from monitored systems is fed back

through prediction models into performance

engineering activities in order to evaluate change

effects preliminary to their implementation.

Since any functionality on the analytics and

provisioning layer is limited by the type of available

data, we interviewed three consultants who provide

performance-related system analyses for enterprise

applications in order to identify necessary data

dimensions. According to our findings, the data layer

of a performance knowledge base should include but

is not limited to attributes of the following

dimensions in order to enable performance model

training:

 System topology

o Mapping of logical and physical

components

o Release information

o System type

 Resource capacity

o Capabilities and capacity limits of

hardware components

 Workload characteristics

o Transaction usage

o Resource demands

o Performance metrics

Depending on the available data, additional use

cases are conceivable on analytics layer, which are

not subject to the evaluation conducted in this paper.

As an exemplary outlook, the integration of

monitored data from different systems enables cross-

system and cross-organizational analytics. Therefore,

end users or organizations are given the opportunity

394

to assess their ERP system landscape by comparing

own system performance with, e.g., mean values

derived from empirical distribution functions across

various systems on similar hardware, e.g. in order to

identify performance anomalies.

3.2. Technical Architecture

The knowledge base is intended to serve as a

bridge between APM and SPE activities for standard

enterprise applications across organizational borders.

Thus, data resulting from various monitoring

activities during operations will serve as input for

performance engineering tasks in the design phase. In

the following section, we will introduce how the

knowledge base can be instantiated. Therefore,

Figure 1 shows the knowledge base layers and their

enabling technical components.

Figure 1. Components of the knowledge base

As discussed in Section 3.1, we use measurement

data from running enterprise applications to train

prediction models. Software monitors can be used to

collect data during execution. These are often

inherent in standard enterprise applications and make

use of event-driven techniques [17] to produce a

constant flow of log entries. Typical examples are

SAP statistical records or Oracle performance

statistics. While extended tracing capabilities usually

need to be activated intentionally in order to reduce

measurement overhead [1], performance log entries

such as SAP statistical records are stored on the file

system by default, regardless of whether the

contained data is analyzed or not. These log entries

can be extracted, transformed and loaded by a data

collecting software (data collector) into a central

database periodically resulting in a classical ETL

process. Such data collectors are already used by IT

consultancies as part of system maintenance services

[21]. While these services always focus on one

particular customer and a limited timeframe (usually

up to three weeks), a central knowledge base enables

cross-case analytics and periodic data updates

resulting in intra- and inter-organizational

collaboration as depicted in Figure 1.

The expected volume of the data layer depends on

the data granularity, the number of data sources and

the maximum required age of historic data which is

subject to our future research. The capabilities to

build prediction models are provided on the analytics

layer, technically enabled by a statistics server or,

alternatively, by stored procedures within the

database itself. After prediction models have been

trained, they need to be utilized by end users.

Therefore, an integrated web server enables users to

access the knowledge base on a provisioning layer.

Hence, no separate application server is needed and

predictive capabilities can be used through a web

browser. In this manner, performance engineers are

able to make use of existing knowledge which is

encompassed in models to predict the performance of

planned standard enterprise applications or to

evaluate performance-related effects of planned

changes. Hence, a valuable decision support is

delivered.

4. Evaluation

According to [14], we utilize a descriptive

evaluation using the scenario of “response time

prediction” to evaluate the feasibility of the proposed

knowledge base. The knowledge base builds upon the

hypothesis that standard business application systems

are to an extent comparable. Consequently, machine

learning approaches can find a suitable description of

the general dependency of performance and system

configuration. In order to test this hypothesis, we

instantiated the designed knowledge base by

implementing the aforementioned components on

each layer. On the analytics layer, the constructed

prediction models are evaluated by testing their

accuracy.

4.1. Knowledge Base Instantiation

The introduced knowledge base comprises a data

layer, an analytics layer and a provisioning layer. In

this subsection, we present the chosen components

that we implemented on each layer to build an

instance of the designed knowledge base.

Furthermore, we give insights on the leveraged

monitoring data. As source data for the knowledge

base, monitoring logs from different implementations

of EA standard software are required. For this

purpose, we utilized a vast and anonymized amount

395

of data that was collected from various instantiations

of SAP ERP systems across the globe, which

represent widely used standard enterprise

applications. Technical system characteristics such as

the kernel version or basis release vary and,

therefore, were included as attributes in the dataset

(cf. Figure 2). The monitoring logs were contained in

files using the comma separated values (CSV)

format, which we merged and imported into a single

relational database. The total data volume comprises

runtime information related to 18,927 running SAP

application instances distributed across 16,216

differently characterized servers.

Since requests are aggregated by the application

software monitor along with performance-related

metrics, mean response times related to more than six

billion business transaction calls are included on the

data layer of the implemented performance

knowledge base. Therefore, the given level of data

granularity does not intend nor allow for single user

activities to be investigated. Instead, the mean

response time (in milliseconds) per dialog step was

calculated for each investigated hour of system usage

and for each type of business transaction. Since this

value can be used to express, assess and compare

system performance, its accurate prediction would

provide valuable decision support for performance

engineering activities, e.g. during capacity planning

and capacity management exercises. According to the

design phase of the knowledge base (c.f. Section 3.1),

monitoring data from the dimensions system

topology, resource capacity and workload

characteristics are required in order to address the

given objective.

Figure 2. ER model of the data layer

Based on these dimensions, selected attributes

from the total dataset were integrated in a common

database schema. Figure 2 shows an excerpt of the

entity relationship (ER) model we utilized on the data

layer. As the chosen attributes depend on the output

provided by application software monitors, this ER

model can serve as a basis, but would need to be

adapted if used for a different kind of standard

software. The data layer, in our case, is technically

enabled by the in-memory database SAP HANA

(Support Package Stack 10), utilizing 1TB of

physically available main memory.

The analytics layer is intended to extract

knowledge from the database. Therefore, database

views can be created to serve as an input for

prediction models. For the scope of this paper, we

utilized publicly available libraries, written in the

statistics language R, to train and test different kinds

of models. For a given hourly workload and system

architecture, the models can be used to predict the

mean response time per dialog step. A dialog step

refers to the smallest unit of work, triggered by end

users, and processed by the system under analysis.

Therefore, response times include processing times of

both the database and application server as well as

eventual lock times and queue times [22]. To support

response time predictions, on the analytics layer, we

integrated an R server with the database and were

able to encapsulate analytics logic within stored

procedures.

Thus, the steps of both model training and

predictions can be automated and triggered from the

database server while being executed on a separate

machine. Finally, the extracted knowledge needs to

be shared across the participating entities to support

intra- and inter-organizational collaboration.

Therefore, a provisioning layer integrates a web

server that has direct access to the database views and

stored procedures containing the models.

Hence, models can be trained directly on the

respective database view as described in the

subsequent section, and end users consume

knowledge by predicting response times for varying

workloads or system architectures of either planned

or existing enterprise applications.

4.2. Model Extraction

Based on the monitored data that has been

imported into the knowledgebase, we were able to

build various kinds of prediction models. Which

model is most suitable depends on the characteristics

of the problem, hence, several machine learning

prediction models have been considered. In order to

evaluate which models can be applied to the given

396

scenario, we trained the following model types,

which may be appropriate according to related work

[16], and compared their prediction accuracy:

 Regression tree

 Random forest

 Evolutionary earning

 Support vector machine

 M5P model trees

 Gradient boosting machine

As these represent existing machine learning

algorithms, which are provided by publicly available

libraries, written in R, further details on their

functionality will not be presented in this paper, but

can be found in the user guide of the respective R-

library available via the Comprehensive R Archive

network (CRAN) [23].

Often, standard software is customized or

extended leading to components that are not

comparable across implementations. Therefore, the

data basis for model creation needs to be limited to

standard business transactions that are used by a large

number of customers. Thus, our first tests aimed at

identifying a sufficient level of comparability within

the dataset in order to limit the predictions to either a

specific system type, a particular standard business

transaction or a subset of standard business

transactions. Our preliminary tests show generally

increased prediction accuracy if models are limited to

subsets of the same standard transaction having

similar workload characteristics. In fact, the

prediction accuracy decreases by up to 63% if all

transaction types, including non-standard ones, are

considered in the training phase of a single model.

Therefore, the log records have been classified

regarding the performed type of standard transaction,

their actual business logic, and the load, which they

caused on the application and on the database server.

For the latter, their total number of database

service units (DBSU), requested by the application

server in the form of selects, updates or deletions, can

be used (c.f. Figure 2). Hence, the models, presented

in the following, are always limited to a particular

standard transaction type

The value that is to be predicted is the mean

response time per dialog step in milliseconds for a

given hour of application usage. All models were

trained using the features presented in Figure 2,

which we extracted from the data layer. As a metric

for the model’s accuracy, we use the ratio of the

mean absolute error (MAE), and the measured mean

response time. In the following, we refer to this value

as relative error.

In order to guarantee a large volume of training

data and to apply our predictions to business

transactions that have existing performance

requirements, we extracted a list of the 100 top used

standard business transactions across all

organizations. Subsequently, three different domain

experts were instructed to choose business

transactions from the list that are known to be

business-critical in terms of their performance for

many organizations. We consolidated the results to a

new list of most used and most relevant standard

business transactions and selected the top 15

transactions to train the above mentioned models on.

For each transaction, a separate model was built.

Across the examined business transactions, the

mean response time per dialog step varied between

476 ms and 2,366 ms. For each model, we splitted the

data set randomly into a training set which accounts

to 70 percent of the data volume and a test set which

accounts to the remaining 30 percent.

Figure 3 shows the model’s accuracies by

comparing their relative errors across all 15

transaction models for each model type. As can be

seen in Figure 3, the prediction accuracy highly

depends on the type of the model. Overall, the

relative error varied between 17.66 and 58.10 %.

Models based on evolutionary learning further

depend strongly on the type of transaction, resulting

in a high variance between 26.69 and 45.40 %.

Support Vector machines, M5P and gradient boosting

machines did not vary significantly across different

business transactions but show a comparably low

prediction accuracy resulting in relative errors

between 58.10 and 39.06 percent. In contrast, our

experiments revealed a relative error of 23.19 percent

for random forests, which turned out to be the most

suitable type of model for the given scenario.

Figure 3. Relative error per model type

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Regression

Tree

Random

Forest

Evolutionary

Learning

Support

Vector
Machine

M5P Model

Trees

Gradient

Boosting
Machine

Max Min Mean

397

As random forests combine decisions from

multiple regression trees within one model, their

accuracy outperforms any single regression tree (See

Figure 3). Therefore, we state that, from the above

mentioned prediction model types, random forests are

most capable to recognize and represent existing

performance dependencies within enterprise

application system architectures. In our given

scenario, most significant features were related to

characteristics of the ERP system’s database server

(number of CPUs, threads, cores, allocated main

memory), followed by workload characteristics such

as the number of active users, the number of database

requests and the number of dialog steps at the

investigated hour of system usage. In contrast,

hardware characteristics of the application server

were considered to be less important during the

training process.

Due to their comparatively low error (cf. Figure

3), we limit further evaluation details to models that

were trained using a random forest. Figure 4 shows

the relative error for each tested standard business

transaction from the above mentioned list, using

random forests.

For this model type, the mean relative error

accounted to 23.19 percent across the listed standard

transactions. Best results were achieved by a random

forest that predicted the mean response time for

showing stock overviews. Here, a relative error of

only 17.66 percent was observed. Although this

transaction shows one of the longest response times

within our data subset, based on our experiments, no

correlation between the actual response time and the

prediction accuracy could be identified.

Figure 4. Relative error per standard

transaction type (random forest)

In 2004, [24] stated that deviations up to 25

percent are, according to general conditions, within

acceptable ranges, results are also comparable to

other approaches such as [25], [26].

Since monitoring data from multiple

implementations of standard enterprise applications

were used to train the models, a variety of different

workload and server characteristics is represented

within each model. Hence, our experimental results

show that standard transactions of different enterprise

application systems are comparable. As a

consequence, their APM output can be combined and

leveraged by machine learning algorithms to discover

existing dependencies between response times,

system capacities and workload information.

4.3. Discussion

Our evaluation results show how benefits of

measurement-based and model-based performance

prediction techniques can be combined in order to

predict application performance in a cost-efficient yet

comparatively accurate manner.

Using the trained models, performance engineers

are able to predict response times of planned

enterprise applications for a given workload and

system topology.

Therefore, data from various APM activities was

leveraged to serve as valuable input for training

models in order to create knowledge that can be

utilized during SPE. Accordingly, the designed

knowledge base supports both intra- and inter-

organizational collaboration.

Using the output data of elsewhere performed

monitoring activities, the cost of applying the

approach for a new customer are much lower than for

the classical measurement-based approach, which

would require dedicated quality assurance systems

for any performance tests. Costs for model building

arise for the service provider and would be included

in the service price for the consumer; however, since

economies of scale are utilized, these would be lower

than model building costs in the context of a single

application system. The cost of the prediction error

decreases with a growing volume on the data layer of

the knowledge base; furthermore, the service price

could be designed to be flexible dependent on the

prediction accuracy. Thus, costs for applying the

approach are much less than for classical model-

based or measurement-based approaches since

neither expert knowledge nor implemented systems

are needed within an organization

On the other hand, performance predictions for

workloads and system setups that are not yet covered

in the knowledge base might be less accurate in case

0 0.1 0.2 0.3 0.4

Change Sales Order

Stock Overview

Display Sales Order

Display Stock

SAP Business Workplace

Create Sales Order

Goods Movement

Display Document

Display Material

Display Billing Document

Change Invoice Status

Material Document List

Enter Incoming Invoice

Create Billing Document

Change Material

398

they do not follow rules reflected in the models.

Hence, performance predictions for new software

releases will become more accurate over time as

these are increasingly used within monitored systems.

Another drawback may arise from data protection

concerns of participating organizations. Although no

sensitive master or transaction data is ever accessed

by existing monitoring data collectors, responsible

administrators are known to be cautious when it

comes to data exchange that is related to core

enterprise applications. However, such doubts can be

well addressed, since only performance metadata is

needed to support analytics. While any identifiers or

server names can be anonymized without affecting

model accuracy, dynamic analytic privileges can be

utilized on the provisioning layer to further limit user

access to the data layer.

Besides the evaluated performance prediction,

further functionalities are conceivable on the

analytics layer including benchmarking services,

application health checks, workload consolidations or

performance anomaly detections. In any case, the

collaborative idea leads to individual decision

support and leverages economies of scale by

analytical capabilities that need to be implemented

once while the resulting knowledge can be leveraged

by all participants.

5. Conclusion and Future Work

In this paper, we introduced a novel approach of

collaboration aiming at decision support during

software performance engineering activities. The

approach is enabled by a knowledge base that

includes machine learning algorithms in order to

extract knowledge from enterprise application

monitoring data that was generated beyond

organizational borders.

Within the conceptual design, we take advantage

of the fact that enterprise applications usually base on

standard software components. Within such

applications, end users execute standard business

transactions that are comparable in many aspects. As

instantiations of these systems are implemented

around the globe by different organizations,

monitoring activities constantly produce a growing

amount of log data that follow the same format and

refer to the same execution logic.

Therefore, we examined the feasibility to

integrate monitoring data from different sources into

a common knowledge base in order to train

performance prediction models on cross-

organizational data subsets. Such response time

predictions that are performed on an analytics layer,

can serve as valuable input for performance-affecting

design decisions that need to be taken in an early

stage of planned software rollouts and changes.

We identified random forests to be the most

suitable type of prediction model for the

characteristics of the standard enterprise applications

we studied. On a real-world data set of 18,927

application instances, a mean relative error of 23.19

percent could be observed for examined standard

transactions, which is, according to related work from

the field of performance prediction, a sufficient

accuracy. Furthermore, the results demonstrate that

systems are comparable in these aspects from a

statistical point of view. In this manner, the presented

approach combines the benefits of accurate

measurement-based and early, e.g., during design

phase, applicable model-based prediction techniques.

Furthermore, the approach brings together

performance-related activities of various

development and operations teams and, therefore,

serves as a contribution to the increasingly utilized

DevOps principle.

As the presented evaluation results verified a

general feasibility of our approach, multiple

interesting directions arise for future research. For

instance, an appropriate time frame for keeping

historical data in the knowledge base currently

remains an open issue

By limiting training data to a particular time

frame that excludes entries from obsolete and,

therefore, rarely used releases or platforms,

prediction accuracy can potentially be further

improved. Moreover, further analytical use cases, as

mentioned in Section 4.3, can be designed based on

existing information that is stored on the data layer.

Each use case potentially supports new services that

can be provided by the hosting party of the

knowledge base. Hence, the design and

implementation of an easily usable provisioning layer

that delivers the extracted knowledge to the end user

will be subject to continuing future efforts, too.

To summarize, our approach presents an

opportunity to transfer knowledge gained in

operation into the development of system landscapes

even beyond organizational borders.

6. References

[1] A. Brunnert, A. van Hoorn, F. Willnecker, A.

Danciu, W. Hasselbring, C. Heger, N. Herbst, P.

Jamshidi, R. Jung, J. von Kistowski, and others,

“Performance-oriented DevOps: A Research
Agenda,” arXiv preprint arXiv:1508.04752, 2015.

399

[2] M. Hüttermann, DevOps for developers. Apress,
2012.

[3] L. Bass, I. Weber, and L. Zhu, DevOps: A Software

Architect’s Perspective. Addison-Wesley

Professional, 2015.

[4] S. Sharma and B. Coyne, “DevOps for dummies,”
Limited IBM Edition’book, 2013.

[5] D. Westermann, J. Happe, M. Hauck, and C.

Heupel, “The performance cockpit approach: A

framework for systematic performance

evaluations,” in Software Engineering and

Advanced Applications (SEAA), 2010 36th
EUROMICRO Conference on, 2010, pp. 31–38.

[6] L. Grinshpan, Solving enterprise applications

performance puzzles: queuing models to the rescue.
John Wiley & Sons, 2012.

[7] A. Beloglazov and R. Buyya, “Energy Efficient

Resource Management in Virtualized Cloud Data

Centers,” in 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing,
2010.

[8] D. Tertilt and H. Krcmar, “Generic performance

prediction for ERP and SOA applications.,” in

ECIS, 2011.

[9] M. Woodside, G. Franks, and D. C. Petriu, “The

future of software performance engineering,” in

Future of Software Engineering, 2007. FOSE’07,
2007, pp. 171–187.

[10] D. A. Menasce, “Composing web services: A QoS

view,” Internet Computing, IEEE, vol. 8, no. 6, pp.

88–90, 2004.

[11] F. Brosig, N. Huber, and S. Kounev, “Architecture-

level software performance abstractions for online

performance prediction,” Science of Computer
Programming, vol. 90, pp. 71–92, 2014.

[12] V. Hork, P. Libic, L. Marek, A. Steinhauser, and P.

Tma, “Utilizing performance unit tests to increase

performance awareness,” in Proceedings of the 6th

ACM/SPEC International Conference on
Performance Engineering, 2015, pp. 289–300.

[13] J. Kowall and W. Cappelli, “Magic quadrant for

application performance monitoring,” Gartner

Research ID G, vol. 232180, 2012.

[14] A. R. Hevner, S. T. March, J. Park, and S. Ram,

“Design Science in Information Systems Research,”

Management Information Systems Quarterly, vol.
28, no. 1, pp. 75–105, May 2004.

[15] S. Balsamo, A. D. Marco, P. Inverardi, and M.

Simeoni, “Model-based performance prediction in

software development: A survey,” Software

Engineering, IEEE Transactions on, vol. 30, no. 5,
pp. 295–310, 2004.

[16] S. Venkataraman, Z. Yang, M. Franklin, B. Recht,

and I. Stoica, “Ernest: efficient performance

prediction for large-scale advanced analytics,” in

13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 16), 2016, pp.
363–378.

[17] D. J. Lilja, Measuring computer performance: a

practitioner’s guide. Cambridge University Press,
2005.

[18] N. Siegmund, S. S. Kolesnikov, C. Kästner, S.

Apel, D. Batory, M. Rosenmüller, and G. Saake,

“Predicting performance via automated feature-

interaction detection,” in Proceedings of the 34th

International Conference on Software Engineering,
2012, pp. 167–177.

[19] “About Performance Counters.” Microsoft, 2016

[Online]. Available: https://msdn.microsoft.com/de-

de/library/windows/desktop/aa371643(v=vs.85).asp

x

[20] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K.

Czarnecki, “Cost-Efficient Sampling for

Performance Prediction of Configurable Systems

(T),” in Automated Software Engineering (ASE),

2015 30th IEEE/ACM International Conference on,

2015, pp. 342–352.

[21] “Performance Database Collectors.” 2016 [Online].

Available:

https://help.sap.com/saphelp_scm41/helpdata/en/51
/84e93ad578f915e10000000a11402f/frameset.htm

[22] K. Wilhelm, “Capacity Planning for SAP-Concepts

and tools for performance monitoring and

modelling,” CMG Journal of Computer Resource
Management, no. 104, 2001.

[23] “The Comprehensive R Archive Network.”
[Online]. Available: https://cran.r-project.org/

[24] D. S. Liu, K. C. Tan, S. Y. Huang, C. K. Goh, and

W. K. Ho, “On solving multiobjective bin packing

problems using evolutionary particle swarm

optimization,” European Journal of Operational
Research, vol. 190, pp. 357–382, Oct. 2008.

[25] C. Rathfelder, B. Klatt, K. Sachs, and S. Kounev,

“Modeling event-based communication in

component-based software architectures for

performance predictions,” Software & Systems
Modeling, vol. 13, no. 4, pp. 1291–1317, 2014.

[26] G. Bontempi and W. Kruijtzer, “A data analysis

method for software performance prediction,” in

Proceedings of the conference on Design,
automation and test in Europe, 2002, p. 971.

400

