Introduction to our Task Forces and the Dynamic Document

Peter Pulsifer
High Level Objectives

i) Develop a model for data citation and attribution in linguistics;

ii) facilitate discipline-wide discussion on these topics at the 2017 annual meeting of the Linguistic Society of America;

iii) write a position paper(s) on standards for citation and attribution in linguistics and other relevant topics;

iv) submit a proposal for a Resolution on citation and attribution to the LSA.
Charges to the Task Forces

1. Free form “Body Text” and notes
 • Capture details for use in subsequent discussion and development of report
 • Self-determined format
 • Suggest key ideas, contributors to trace back during discussion, links

2. Summary
Summary

1. Points for Linguistic Society of America (LSA) panel proposal(s)
 • LSA conference, January, 2017
 • Key themes that can be included in proposal

2. Suggestion for LSA Resolution
 • Resolution is short document: 1-3 key points/messages for each task force

3. Abstract or summary of body text
 • 2-3 pages maximum – possibly basis for position paper; chapter; article
General Approach

• Form Task Forces

• Several suggested, but these can be modified, or new TFs established

• Several “rovers” will move from group to group to make links between TFs and identify cross-cutting themes

• Dynamic process – results of discussion may require modification of approach, addition of new TFs etc.

• Keep high level objectives and deliverables in mind
Questions and Answers
Overview - Reproducibility Goals & Values

Sample Guiding Questions:

• Foundational values related to reproducibility?
• What standards of practice need to be promoted/adopted?
• Infrastructure requirements?
• Linking across disciplines? Interoperability?
Sample Guiding Questions:

• How do these relate to overall ethics in linguistics?
• Other elements relevant to developing principles?
• How detailed do guidelines need to be? Method specific?
• Different guidelines for sub-disciplines?
Task Force: Stylesheet

Sample Guiding Questions:

• What already exists?

• What needs to be developed?

• Are we going to create guidance documents?

• Mendeley/Endnote templates?

• Sub-citation details? How to cite the various components of the subfield bundles? Or is the bundle a single citable object with a DOI? Profiles?
Data Citation

Data Summary, Landing Page

Spatial Resolution:	Not Specified
Temporal Coverage:	1 December 1998 to 31 January 1999
Temporal Resolution:	Not specified

Parameter(s):
- Glaciers/Ice Sheets > Glacier Elevation/Ace Sheet Elevation
- Snow/Ice > Ice Depth/Thickness
- Snow/Ice > Ice Extent
- Snow/Ice > Ice Growth/Melt
- Glaciers/Ice Sheets > Ice Sheets
- Radar
- Topography > Terrain Elevation

Platform(s): AIRCRAFT

Sensor(s): ALTIMETERS, LASERS, RADAR ALTIMETERS, RADAR ECHO SOUNDEERS

Date Format(s): ASCII Text (.txt), [PEG]

Version: V1

Date: Bruce Layendyke, Douglas Wilson
Contributor(s):
Data Set Metadata

Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica, Version 1

Data Set ID: NSIDC-0116
Version: 1

Data Set Supporting Program: Antarctic Glaciological Data Center

Investigator(s):
Bruce Layton
Douglas Wilson

Abstract:
This data set provides surface elevation and ice thickness data for a portion of the Marie Byrd Land sector of West Antarctica, including the Ferrar Ranges, the Sulzberger Ice Shelf, much of the Edward VII Peninsula, and the Shishe CoAst region of the eastern Ross Ice Shelf. The investigators used radar sounding and laser altimetry from a Twin Otter aircraft flying at varying altitudes, at least 300 m above the surface, at an air speed of about 130 knots. Surveys were accomplished with 64 flights in December 1998 and January 1999. This research was funded by the National Science Foundation (NSF) contract NSF OPP-9015281.

Location:
Antarctica

Spatial Coverage:
N: 71.50 E: 136.00 W: 157.00

Temporal Coverage:
1998-12-01 to 1999-01-31

GCOMD Parameter(s):
Glaciers/Ice Sheets > Glacier Elevation/Ice Sheet Elevation
Snow/Ice > Ice Depth/Thickness
Snow/Ice > Ice Albedo
Snow/Ice > Ice Growth/Melt
Glaciers/Ice Sheets > Ice Sheets
Radar Topography > Terrain Elevation

Platform(s):
AIRCRAFT

Sensor(s):
ALTIMETERS
LASERS
RADAR ALTIMETERS
RADAR ECHO SOUNDERS

Data Format(s):
...
Granular Metadata

Driver: GTiff/GeoTIFF
Files: pelcom_grid_3km.tif
pelcom_grid_3km.tif.aux.xml
Size is 5790, 3749
Coordinate System is:
PROJCS["Google Maps Global Mercator",
GEOGCS["WGS 84",
DATUM['WGS_1984',
SPHEROID['WGS 84', 6378137, 298.257223563,
AUTHORITY['EPSG','7030']],
AUTHORITY['EPSG','6926']],
PRIMEM['Greenwich',0],
UNIT['degree',0.0174532925199433],
AUTHORITY['EPSG','4326']],
PROJECTION['Mercator_1SP'],
PARAMETER['central_meridian',0],
PARAMETER['scale_factor',1],
PARAMETER['false_easting',0],
PARAMETER['false_northing',0],
UNIT['metre',1],
AUTHORITY['EPSG','9001']]
Origin = (-3859478.383312010553317, 12689616.713213227589626)
Pixel Size = (1772.380247605230825, -2436.652074025783348)
Metadata:
AREA_OR_POINT=Arca
Image Structure Metadata:
INTERLEAVE=BAND
Corner Coordinates:
Upper Left [-3859478.383312010553317, 12689616.713213227589626] [34d45 '36.42"W, 74d31 '28.40"N]
Lower Left [-3859478.383312010553317, 12689616.713213227589626] [34d45 '36.42"W, 74d31 '28.40"N]
Upper Right [6302487.470, 12689616.713] [57d25 '28.89"E, 74d31 '28.40"N]
Lower Right [6302487.470, 12689616.713] [57d25 '28.89"E, 74d31 '28.40"N]
Center [1261504.554, 812212.480] [11d19 '56.24"E, 58d53 '58.81"N]
Band 1 Block=5790x1 Type=Byte, ColorInterp=Gray
Min=0.000 Max=111.000
Minimum=0.000, Maximum=111.000, Mean=63.598, StdDev=35.433
NoData Value=255
Metadata:
STATISTICS_MAXIMUM=111
STATISTICS_MEAN=63.598039913133
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=35.43308651247
Data Paper

Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems

John J. Cassano1, 2, Mark W. Seefeldt1, Scott Palo3, Shelley L. Knuth4, Alice C. Bradley2, Paul D. Herrman5, Peter A. Kernebone6, and Nick J. Logan3

1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
2 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
3 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
4 Research Computing, Office of Information Technology, University of Colorado, Boulder, CO, USA
5 Aerosonde Pty. Ltd, Melbourne, Australia

Received: 07 Nov 2015 – Published in Earth Syst. Sci. Data Discuss.: 01 Dec 2015
Revised: 27 Feb 2016 – Accepted: 04 Mar 2016 – Published: 18 Mar 2016

Abstract. In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, in order to explore the details of air-sea ice-ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynyas. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).
Task Force: Education/Outreach

Sample Guiding Questions:

• Identify actors: funders? policy makers? etc.
• Recipients of education?
• Instructors?
• Disciplinary bodies? global bodies?
• Content of materials, form of materials, delivery Mechanisms, venues, platforms, evaluation methods?
Task Force: Attribution for Academic Credit

Sample Guiding Questions:

• Actions at global, national, disciplinary, institutional levels?
• Existing models?
• Credit in relation to other forms of publication?
• Promotion mechanisms?
Cite your data

Why is it so important to cite data? Books and journal articles have long benefited from an infrastructure that makes them easy to cite, a key element in the process of research and academic discourse. We believe that you should cite data in just the same way that you can cite other sources of information, such as articles and books. Data citation can help by:

- enabling easy reuse and verification of data
- allowing the impact of data to be tracked
- creating a scholarly structure that recognises and rewards data producers

Examples of data citation

We recognise that the challenges associated with data publication vary across disciplines, and we encourage research communities to develop citation systems that work well for them. Our recommended format for data citation is as follows:

- Creator (PublicationYear): Title. Publisher. Identifier

It may also be desirable to include information about two optional properties, Version and ResourceType (as appropriate). If so, the recommended form is as follows:

- Creator (PublicationYear): Title. Version. Publisher. ResourceType. Identifier
Task Force: ?

- Are there other TFs that we can/should identify now?
- TF can be established throughout the workshop
The Dynamic Document(s)!
DynaDoc Method

- Using web-accessible, multi-author, dynamically edited document (Google Doc)
- Templates have been established
URL: http://bit.ly/23gU1di
Guidelines

• Wherever possible add important text/content to the DynaDocs - including capturing notes and inserting/attaching

• Use links to connect to other DynaDocs and external resources

• Write/edit carefully – rollback is possible, but this takes time

• Use comments and “Suggesting” mode as needed

• NEED TO IDENTIFY RAPPORTEUR(s)