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Abstract

In this report we demonstrate the potential utility of
resource allocation management systems that use vir-
tual machine technology for sharing parallel comput-
ing resources among competing jobs. We formalize the
resource allocation problem with a number of underly-
ing assumptions, determine its complexity, propose sev-
eral heuristic algorithms to find near-optimal solutions,
and evaluate these algorithms in simulation. We find
that among our algorithms one is very efficient and also
leads to the best resource allocations. We then describe
how our approach can be made more general by remov-
ing several of the underlying assumptions.

1. Introduction

The use of commodity clusters has become main-
stream for high-performance computing applications,
with more than 80% of today’s fastest supercom-
puters being clusters [49]. Large-scale data process-
ing [23, 33, 39] and service hosting [4, 22] are also
common applications. These clusters represent signif-
icant equipment and infrastructure investment, and
having a high rate of utilization is key for justify-
ing their ongoing costs (hardware, power, cooling,
staff) [24, 50]. There is therefore a strong incen-
tive to share these clusters among a large number of
applications and users.

The sharing of compute resources among competing
instances of applications, or jobs, within a single system
has been supported by operating systems for decades via
time-sharing. Time-sharing is implemented with rapid
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context-switching and is motivated by a need for inter-
activity. A fundamental assumption is that there is no
or little a-priori knowledge regarding the expected work-
load, including expected durations of running processes.
This is very different from the current way in which clus-
ters are shared. Typically, users request some fraction of
a cluster for a specified duration. In the traditional high-
performance computing arena, the ubiquitous approach
is to use “batch scheduling”, by which jobs are placed in
queues waiting to gain exclusive access to a subset of the
platform for a bounded amount of time. In service host-
ing or cloud environments, the approach is to allow users
to lease “virtual slices” of physical resources, enabled
by virtual machine technology. The latter approach has
several advantages, including O/S customization and in-
teractive execution. In general resource sharing among
competing jobs is difficult because jobs have different re-
source requirements (amount of resources, time needed)
and because the system cannot accommodate all jobs at
once.

An important observation is that both resource alloca-
tion approaches mentioned above dole out integral sub-
sets of the resources, or allocations (e.g., 10 physical
nodes, 20 virtual slices), to jobs. Furthermore, in the
case of batch scheduling, these subsets cannot change
throughout application execution. This is a problem be-
cause most applications do not use all resources allo-
cated to them at all times. It would then be useful to be
able to decrease and increase application allocations on-
the-fly (e.g., by removing and adding more physical clus-
ter nodes or virtual slices during execution). Such appli-
cation are termed “malleable” in the literature. While so-
Iutions have been studied to implement and to schedule
malleable applications [12,25,46,51,52], it is often diffi-
cult to make sensible malleability decisions at the appli-



cation level. Furthermore, many applications are used as-
is, with no desire or possibility to re-engineer them to be
malleable. As a result sensible and automated malleabil-
ity is rare in real-world applications. This is perhaps also
due to the fact that production batch scheduling envi-
ronment do not provide mechanisms for dynamically in-
creasing or decreasing allocations. By contrast, in ser-
vice hosting or cloud environments, acquiring and relin-
quishing virtual slices is straightforward and can be im-
plemented via simple mechanisms. This provides added
motivation to engineer applications to be malleable in
those environments.

Regardless, an application that uses only 80% of a
cluster node or of a virtual slice would need to relin-
quish only 20% of this resources. However, current re-
source allocation schemes allocate integral numbers of
resources (whether these are physical cluster nodes or
virtual slices). Consequently, many applications are de-
nied access to resources, or delayed, in spite of cluster re-
sources not being fully utilized by the applications that
are currently executing, which hinders both application
throughput and cluster utilization.

The second limitation of current resource alloca-
tion schemes stems from the fact that resource al-
location with integral allocations is difficult from a
theoretical perspective [10]. Resource allocation prob-
lems are defined formally as the optimizations of
well-defined objective functions. Due to the difficulty
(i.e., NP-hardness) of resource allocation for optimiz-
ing an objective function, in the real-world no such ob-
jective function is optimized. For instance, batch
schedulers instead provide a myriad of configuration pa-
rameters by which a cluster administrator can tune the
scheduling behavior according to ad-hoc rules of thumb.
As a result, it has been noted that there is a sharp dis-
connect between the desires of users (low application
turn-around time, fairness) and the schedules com-
puted by batch schedulers [26, 44]. It turns out that
cluster administrators often attempt to maximize clus-
ter utilization. But recall that, paradoxically, current
resource allocation schemes inherently hinder clus-
ter utilization!

A notable finding in the theoretical literature is that
with job preemption and/or migration there is more flex-
ibility for resource allocation. In this case certain re-
source allocation problems become (more) tractable or
approximable [6, 11,27, 35,44]. Unfortunately, preemp-
tion and migration are rarely used on production par-
allel platforms. The gang scheduling [38] approach al-
lows entire parallel jobs to be context-switched in a
synchronous fashion. Unfortunately, a known problem
with this approach is the overhead of coordinated con-
text switching on a parallel platform. Another problem
is the memory pressure due to the fact that cluster appli-
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cations often use large amounts of memory, thus leading
to costly swapping between memory and disk [9]. There-
fore, while flexibility in resource allocations is desir-
able for solving resource allocation problems, affording
this flexibility has not been successfully accomplished
in production systems.

In this paper we argue that both limitations of cur-
rent resource allocation schemes, namely, reduced uti-
lization and lack of an objective function, can be ad-
dressed simultaneously via fractional and dynamic re-
source allocations enabled by state-of-the-art virtual ma-
chine (VM) technology. Indeed, applications running
in VM instances can be monitored so as to discover
their resource needs, and their resource allocations can
be modified dynamically (by appropriately throttling re-
source consumption and/or by migrating VM instances).
Furthermore, recent VM technology advances make the
above possible with low overhead. Therefore, it is possi-
ble to use this technology for resource allocation based
on the optimization of sensible objective functions, e.g.,
ones that capture notions of performance and fairness.

Our contributions are:

e We formalize a general resource allocation prob-
lem based on a number of assumptions regard-
ing the platform, the workload, and the underly-
ing VM technology;

e We establish the complexity of the problem and
propose algorithms to solve it;

e We evaluate our proposed algorithms in simulation
and identify an algorithm that is very efficient and
leads to better resource allocations than its com-
petitors;

e We validate our assumptions regarding the capa-
bilities of VM technology;

e We discuss how some of our other assumptions
can be removed and our approach adapted.

This paper is organized as follows. In Section 2 we
define and formalize our target problem, we list our as-
sumptions for the base problem, and we establish its NP-
hardness. In Section 3 we propose algorithms for solving
the base problem and evaluate these algorithms in simu-
lation in Section 4. Sections 5 and 6 study the resource
sharing problem with relaxed assumptions regarding the
nature of the workload, thereby handling parallel and dy-
namic workloads. In Section 7 we validate our funda-
mental assumption that VM technology allows for pre-
cise resource sharing. Section 8 discusses related work.
Section 9 discusses future directions. Finally, Section 10
concludes the paper with a summary of our findings.
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2. Flexible Resource Allocation
2.1. Overview

In this work we consider a homogeneous cluster plat-
form, which is managed by a resource allocation system.
The architecture of this system is depicted in Figure 1.
Users submit job requests, and the system responds by
sets of VM instances, or “virtual clusters” (VC) to run
the jobs. These instances run on physical hosts that are
each under the control of a VM monitor [8,34,53]. The
VM monitor can enforce specific resource consumption
rates for different VMs running on the host. All VM
monitors are under the control of a VM management
system that can specify resource consumption rates for
VM instances running on the physical cluster. Further-
more, the VM resource management system can enact
VM instance migrations among physical hosts. An ex-
ample of such a system is the Usher project [32]. Finally,
a Resource Allocator (RA) makes decisions regarding
whether a request for a VC should be rejected or admit-
ted, regarding possible VM migrations, and regarding re-
source consumption rates for each VM instance.

Our overall goal is to design algorithms implemented
as part of the RA that make all virtual clusters “play nice”
by allowing fine-grain tuning of their resource consump-
tions. The use of VM technology is key for increasing
cluster utilization, as it makes is possible to allocate to
VCs only the resources they need when they need them.
The mechanisms for allowing on-the-fly modification of
resource allocations are implemented as part of the VM
Monitors and the VM Management System.
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A difficult question is how to define precisely what

“playing nice” means, as it should encompass both no-

tions of individual job performance and notions of fair-
ness among jobs. We address this issue by defining a
performance metric that encompasses both these notions
and that can be used to value resource allocations. The
RA may be configured with the goal of optimizing this
metric but at the same time ensuring that the metric
across the jobs is above some threshold (for instance by
rejecting requests for new virtual clusters). More gener-
ally, a key aspect of our approach is that it can be com-
bined with resource management and accounting tech-
niques. For instance, it is straightforward to add notions
of user priorities, of resource allocation quotas, of re-
source allocation guarantees, or of coordinated resource
allocations to VMs belonging to the same VC. Further-
more, the RA can reject or delay VC requests if the per-
formance metric is below some acceptable level, to be
defined by cluster administrators.

2.2. Assumptions

We first consider the resource sharing problem using
the following six assumptions regarding the workload,
the physical platform, and the VM technology in use:

(H1) Jobs are CPU-bound and require a given amount
of memory to be able to run;

(H2) Job computational power needs and memory re-
quirements are known;

(H3) Each job requires only one VM instance;



(H4) The workload is static, meaning jobs have con-
stant resource requirements; furthermore, no job
enters or leaves the system;

(HS) VM technology allows for precise, low-overhead,
and quickly adaptable sharing of the computa-
tional capabilities of a host across CPU-bound VM
instances.

These assumptions are very stringent, but provide a
good framework to formalize our resource allocation
problem (and to prove that it is difficult even with these
assumptions). We relax assumption H3 in Section 5, that
is, we consider parallel jobs. Assumption H4 amounts
to assuming that jobs have no time horizons, i.e., that
they run forever with unchanging requirements. In prac-
tice, the resource allocation may need to be modified
when the workload changes (e.g., when a new job ar-
rives, when a job terminates, when a job starts needing
more/fewer resources). In Section 6 we relax assumption
H4 and extend our approach to allow allocation adapta-
tion. We validate assumption H5 in Section 7. We leave
relaxing H1 and H2 for future work, and discuss the in-
volved challenges in Section 10.

2.3. Problem Statement

We call the resource allocation problem described in
the previous section VCSCHED and define it here for-
mally. Consider H > 0 identical physical hosts and
J > 0jobs. Forjob i, i = 1,...,J, let a; be the (av-
erage) fraction of a host’s computational capability uti-
lized by the job if alone on a physical host, 0 < a; < 1.
(Alternatively, this fraction could be specified a-priori by
the user who submitted/launched job i.) Let m; be the
maximum fraction of a host’s memory needed by job i,
0 < m; < 1. Let «y; be the fraction of the computa-
tional capability of host j, j = 1,..., H, allocated to
jobi,i=1,...,J. Wehave 0 < o5 < 1. If oy is con-
strained to be an integer, that is either O or 1, then the
model is that of scheduling with exclusive access to re-
sources. If, instead, «;; is allowed to take rational values
between 0 and 1, then resource allocations can be frac-
tional and thus more fine-grain.

Constraints — We can write a few constraints due to re-
source limitations. We have

J
Vi) ai <1,
i=1

which expresses the fact that the total CPU fraction allo-
cated to jobs on any single host may not exceed 100%.
Also, a job should not be allocated more resource than it

can use:
H

Vi E ai; <y,
j=1
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Similarly,
J

vj Z(Oéiﬂmi <1, (D
i=1
since at most the entire memory on a host may be used.
With assumption H3, a job requires only one VM in-
stance. Furthermore, as justified hereafter, we assume
that we do not use migration and that a job can be al-
located to a single host. Therefore, we write the follow-
ing constraints:

H

Vi > fai]=1, 2)

j=1

which state that for all 7 only one of the c;; values is
non-zero.

Objective function — We wish to optimize a perfor-
mance metric that encompasses both notions of per-
formance and of fairness, in an attempt at designing
the scheduler from the start with a user-centric met-
ric in mind (unlike, for instance, current batch
schedulers). In the traditional parallel job schedul-
ing literature, the metric commonly acknowledged as
being a good measure for both performance and fair-
ness is the stretch (also called “slowdown”) [10, 16].
The stretch of a job is defined as the job’s turn-around
time divided by the turn-around time that would have
been achieved had the job been alone in the sys-
tem.

This metric cannot be applied directly in our context
because jobs have no time horizons. So, instead, we use
a new metric, which we call the yield and which we de-
fine for job i as ) avj/cv. The yield of a job repre-
sents the fraction of its maximum achievable compute
rate that is achieved (recall that for each ¢ only one of
the ;5 is non-zero). A yield of 1 means that the job con-
sumes compute resources at its peak rate. We can now
define problem VCSCHED as maximizing the minimum
yield in an attempt at optimizing both performance and
fairness (similar in spirit to minimizing the maximum
stretch [10,27]). Note that we could easily maximize the
average yield instead, but we may then decrease the fair-
ness of the resource allocation across jobs as average
metrics are starvation-prone [27]. Our approach is agnos-
tic to the particular objective function (although some of
our results hold only for linear objective functions). For
instance, other ways in which the stretch can be opti-
mized have been proposed [7] and could be adapted for
our yield metric.

Migration — The formulation of our problem precludes
the use of migration. However, as when optimizing job
stretch, migration could be used to achieve better re-
sults. Indeed, assuming that migration can be done with



no overhead or cost whatsoever, migrating tasks among
hosts in a periodic steady-state schedule afford more
flexibility for resource sharing, which could in turn be
used to maximize the minimum yield further. For in-
stance, consider 2 hosts and 3 tasks, with oy = as =
a3 = 0.6. Without migration the optimal minimum yield
is 0.5/0.6 ~ .83 (which corresponds to an allocation in
which two tasks are on the same host and each receive
50% of that host’s computing power). With migration it
is possible to do better. Consider a periodic schedule that
switches between two allocations, so that on average the
schedule uses each allocation 50% of the time. In the
first allocation tasks 1 and 2 share the first host, each re-
ceiving 45% and 55% of the host’s computing power, re-
spectively, and task 3 is on the second host by itself, thus
receiving 60% of its compute power. In the second allo-
cation, the situation is reversed, with task 1 by itself on
the first host and task 2 and 3 on the second host, task
2 receiving 55% and task 3 receiving 45%. With this
periodic schedule, the average yield of task 1 and 3 is
5% (.45/.604 .60/.60) ~ .87, and the average yield of
task 2 is .55/.60 ~ .91. Therefore the minimum yield is
.87, which is higher than that in the no-migration case.

Unfortunately, the assumption that migration comes
at no cost or overhead is not realistic. While recent ad-
vances in VM migration technology [13] make it possi-
ble for a VM instance to change host with a nearly imper-
ceptible delay, migration consumes network resources.
It is not clear whether the pay-off of these extra migra-
tions would justify the added cost. It could be interesting
to allow a bounded number of migrations for the pur-
pose of further increasing minimum yield, but for now
we leave this question for future work. We use migra-
tion only for the purpose of adapting to dynamic work-
loads (see Section 6).

2.4. Complexity Analysis

Let us consider the decision problem associated to
VCSCcHED: Is it possible to find an allocation so that its
minimum yield is above a given bound, /7 We term this
problem VCSCHED-DEC. Not surprisingly, VCSCHED-
DEC is NP-complete. For instance, considering only job
memory constraints and two hosts, the problem trivially
reduces to 2-PARTITION, which is known to be NP-
complete in the weak sense [18]. We can actually prove
a stronger result:

Theorem 1. VCSCHED-DEC is NP-complete in the
strong sense even if host memory capacities are infinite.

Proof. VCSCHED-DEC belongs to NP because a so-
lution can easily be checked in polynomial time. To
prove NP-completeness, we use a straightforward re-
duction from 3-PARTITION, which is known to be NP-
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complete in the strong sense [18]. Let us consider, 71,
an arbitrary instance of 3-PARTITION: given 3n posi-
tive integers {a,...,as,} and a bound R, assuming
that £ < a; < & for all i and that Zf’; aj = nR,
is there a partition of these numbers into n disjoint sub-
sets Iy, ..., I, such that Zjeli a; = R for all i? (Note
that |I;| = 3 for all i.) We now build Z5, an instance of
VCSCHED as follows. We consider H = n hosts and
J = 3n jobs. For job j we set o; = a;/R and m; = 0.
Setting m; to 0 amounts to assuming that there is no
memory contention whatsoever, or that host memories
are infinite. Finally, we set K, the bound on the yield, to
be 1. We now prove that Z; has a solution if and only if
75 has a solution.

Let us assume that 7; has a solution. For each job
7, we assign it to host ¢ if 5 € I;, and we give it
all the compute power it needs (c;; = a;/R). This is
possible because Y jer @ = R, which implies that
Zjeli aj; = R/R < 1. In other terms, the computa-
tional capacity of each host is not exceeded. As a result,
each job has a yield of K = 1 and we have built a solu-
tion to Zs.

Let us now assume that Z5 has a solution. Then, for
each job j there exists a unique ¢; such that oj;, = ay,
and such that aj; = 0 for 7 # i; (i.e., job j is allocated
to host i;). Let us define I; = {j]i; = i}. By this def-
inition, the I; sets are disjoint and form a partition of
{1,...,3n}.

To ensure that each processor’s compute capabil-

ity is not exceeded, we must have ) jen @ < 1 for all
i. However, by construction of Zs, Z;Zl aj = n. There-
fore, since the I; sets form a partition of {1,...,3n},
Zje 7, @; is exactly equal to 1 for all 7. Indeed, if
Zje 1, @ were strictly lower than 1 for some ¢4,
then 3, 1,, @ would have to be greater than 1 for
some iz, meaning that the computational capabil-
ity of a host would be exceeded. Since o; = a;/R, we
obtain ) .., a; = R for all i. Sets I; are thus a solu-
tion to Z;, which concludes the proof.

O

2.5. Mixed-Integer Linear Program Formula-
tion

It turns out that VCSCHED can be formulated as a
mixed-integer linear program (MILP), that is an opti-
mization problem with linear constraints and objective
function, but with both rational and integer variables.
Among the constraints given in Section 2.3, the con-
straints in Eq. 1 and Eq. 2 are non-linear. These con-
straints can easily be made linear by introducing a bi-
nary integer variables, e;;, set to 1 if job ¢ is allocated to
resource j, and to O otherwise. We can then rewrite the



constraints in Section 2.3 as follows, with: = 1,...,J
andj=1,..., H:

Vi,j €;j € N, 3)
Vlm] Q45 € Qa (4)
Vi,j  0<ey <1, (5)
Vi, i 0 < ayy < ey, (6)
Vi Zf:l €ij = 1, (7)
Vi Yy <, 8)
vy 2;721 ejm; <1 )
Vi Zle Q5 S Q5 (10)
Vi YL %>y (an

Recall that m; and «; are constants that define the jobs.
The objective is to maximize Y, i.e., to maximize the
minimum yield.

3. Algorithms VC-

SCHED

for Solving

In this section we propose algorithms to solve VC-
SCHED, including exact and relaxed solutions of the
MILP in Section 2.5 as well as ad-hoc heuristics. We
also give a generally applicable technique to improve
average yield further once the minimum yield has been
maximized.

3.1. Exact and Relaxed Solutions

In general, solving a MILP requires exponential time
and is only feasible for small problem instances. We use
a publicly available MILP solver, the Gnu Linear Pro-
gramming Toolkit (GLPK), to compute the exact solu-
tion when the problem instance is small (i.e., few tasks
and/or few hosts). We can also solve a relaxation of the
MILP by assuming that all variables are rational, con-
verting the problem to a LP. In practice a rational lin-
ear program can be solved in polynomial time. However,
the resulting solution may be infeasible (namely because
it could spread a single job over multiple hosts due to
non-binary e;; values), but has two important uses. First,
the value of the objective function is an upper bound on
what is achievable in practice, which is useful to evalu-
ate the absolute performance of heuristics. Second, the
rational solution may point the way toward a good feasi-
ble solution that is computed by rounding off the e;; val-
ues to integer values judiciously, as discussed in the next
section.

It turns out that we do not need a linear program
solver to compute the optimal minimum yield for the
relaxed program. Indeed, if the total of job memory re-
quirement is not larger than the total available memory
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(i.e.,if Zz]=1 m; < H), then there is a solution to the re-
laxed version of the problem and the achieved optimal

minimum yield, Yo(prtal), can be computed easily:
r . H
Yo(ptm) = min{ 57—, 1}.
i=1 %

The above expression is an obvious upper bound on the
maximum minimum yield. To show that it is in fact the
optimal, we simply need to exhibit an allocation that
achieves this objective. A simple such allocation is:

1 o Y(ra[).

o 1
VZMJ €ij = &7 E i+ opt

7 and «;; =

3.2. Algorithms Based on Relaxed Solutions

We propose two heuristics, RRND and RRNZ, that
use a solution of the rational LP as a basis and then
round-off rational e;; value to attempt to produce a feasi-
ble solution, which is a classical technique. In the previ-
ous section we have shown a solution for the LP; Unfor-
tunately, that solution has the undesirable property that
it splits each job evenly across all hosts, meaning that
all e;; values are identical. Therefore it is a poor start-
ing point for heuristics that attempt to round off e;; val-
ues based on their magnitude. Therefore, we use GLPK
to solve the relaxed MILP and use the produced solu-
tion as a starting point instead.

Randomized Rounding (RRND) - This heuristic first
solves the LP. Then, for each job ¢ (taken in an arbitrary
order), it allocates it to a random host using a probability
distribution by which host j has probability e;; of being
selected. If the job cannot fit on the selected host because
of memory constraints, then that host’s probability of be-
ing selected is set to zero and another attempt is made
with the relative probabilities of the remaining hosts ad-
justed accordingly. If no selection has been made and ev-
ery host has zero probability of being selected, then the
heuristic fails. Such a probabilistic approach for round-
ing rational variable values into integer values has been
used successfully in previous work [31].

Randomized Rounding with No Zero probabil-
ity (RRNZ) — This heuristic is a slight modifica-
tion of the RRND heuristic. One problem with RRND
is that a job, ¢, may not fit (in terms of memory require-
ments) on any of the hosts, j, for which e;; > 0, in
which case the heuristic would fail to generate a solu-
tion. To remedy this problem, we set each e;; value
equal to zero in the solution of the relaxed MILP to ¢ in-
stead, where ¢ << 1 (we used ¢ = 0.01). For those
problem instances for which RRND provides a solu-
tion RRNZ should provide nearly the same solution
most of the time. But RRNZ should also provide a so-
lution to a some instances for which RRND fails, thus
achieving a better success rate.



3.3. Greedy Algorithms

Greedy (GR) — This heuristic first goes through the list
of jobs in arbitrary order. For each job the heuristic ranks
the hosts according to their total computational load, that
is, the total of the maximum computation requirements
of all jobs already assigned to a host. The heuristic then
selects the first host, in non decreasing order of compu-
tational load, for which an assignment of the current job
to that host will satisfy the job’s memory requirements.
Sorted-Task Greedy (SG) — This version of the greedy
heuristic first sorts the jobs in descending order by their
memory requirements before proceeding as in the stan-
dard greedy algorithm. The idea is to place relatively
large jobs while the system is still lightly loaded.
Greedy with Backtracking (GB) - It is possible to
modify the GR heuristic to add backtracking. Clearly
full-fledged backtracking would lead to 100% success
rate for all instances that have a feasible solution, but
it would also require potentially exponential time. One
thus needs methods to prune the search tree. We use a
simple method, placing an arbitrary bound (500,000) on
the number of job placement attempts. An alternate prun-
ing technique would be to restrict placement attempts to
the top 25% candidate placements, but based on our ex-
periments it is vastly inferior to using an arbitrary bound
on job placement attempts.

Sorted Greedy with Backtracking (SGB) — This ver-
sion is a combination of SG and GB, i.e., tasks are sorted
in descending order of memory requirement as in SG
and backtracking is used as in GB.

3.4. Multi-Capacity Bin Packing Algorithms

Resource allocation problems are often akin to
bin packing problems, and VCSCHED is no excep-
tion. There are however two important differences be-
tween our problem and bin packing. First, our tasks
resource requirements are dual, with both mem-
ory and CPU requirements. Second, our CPU re-
quirements are not fixed but depend on the achieved
yield. The first difference can be addressed by us-
ing “multi-capacity” bin packing heuristics. Two
Multi-capacity bin packing heuristics were pro-
posed in [28] for the general case of d-capacity bins
and items, but in the d = 2 case these two algo-
rithms turn out to be equivalent. The second differ-
ence can be addressed via a binary search on the yield
value.

Consider an instance of VCSCHED and a fixed value
of the yield, Y, that needs to be achieved. By fixing Y,
each task has both a fixed memory requirement and a
fixed CPU requirement, both taking values between 0
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and 1, making it possible to apply the algorithm in [28]
directly.

Accordingly, one splits the tasks into two lists, with
one list containing the tasks with higher CPU require-
ments than memory requirements and the other contain-
ing the tasks with higher memory requirements than
CPU requirements. One then sorts each list. In [28] the
lists are sorted according to the sum of the CPU and
memory requirements.

Once the lists are sorted, one can start assigning tasks
to the first host. Lists are always scanned in order, search-
ing for a task that can “fit”” on the host, which for the sake
of this discussion we term a “possible task”. Initially one
searches for a possible task in one and then the other
list, starting arbitrarily with any list. This task is then as-
signed to the host. Subsequently, one always searches
for a possible task from the list that goes against the cur-
rent imbalance. For instance, say that the host’s available
memory capacity is 50% and its available CPU capacity
is 80%, based on tasks that have been assigned to it so
far. In this case one would scan the list of tasks that have
higher CPU requirements than memory requirements to
find a possible task. If no such possible task is found,
then one scans the other list to find a possible task. When
no possible tasks are found in either list, one starts this
process again for the second host, and so on for all hosts.
If all tasks can be assigned in this manner on the avail-
able hosts, then resource allocation is successful. Other-
wise resource allocation fails.

The final yield must be between 0, representing fail-
ure, and the smaller of 1 or the total computation capac-
ity of all the hosts divided by the total computational
requirements of all the tasks. We arbitrarily choose to
start at one-half of this value and perform a binary search
of possible minimum yield values, seeking to maximize
minimum yield. Note that under some circumstances the
algorithm may fail to find a valid allocation at a given po-
tential yield value, even though it would find one given
a larger yield value. This type of failure condition is to
be expected when applying heuristics.

While the algorithm in [28] sorts each list by the sum
of the memory and CPU requirements, there are other
likely sorting key candidates. For completeness we ex-
periment with 8 different options for sorting the lists,
each resulting in a MCB (Multi-Capacity Bin Packing)
algorithm. We describe all 8 options below:

e MCBI: memory + CPU, in ascending order;

e MCB2: max(memory,CPU) - min(memory,CPU),
in ascending order;

e MCB3: max(memory,CPU) / min(memory,CPU),
in ascending order;

e MCB4: max(memory,CPU), in ascending order;



e MCBS5: memory + CPU, in descending order;

e MCB6: max(memory,CPU) - min(memory,CPU),
in descending order.

e MCB7: max(memory,CPU) / min(memory,CPU),
in descending order;

e MCBS8: max(memory,CPU), in descending order;

3.5. Increasing Average Yield

While the objective function to be maximized for
solving VCSCHED is the minimum yield, once an alloca-
tion that achieves this goal has been found there may be
excess computational resources available which would
be wasted if not allocated. Let us call ) the maximized
minimum yield value computed by one of the afore-
mentioned algorithms (either an exact value obtained
by solving the MILP, or a likely sub-optimal value ob-
tained with a heuristic). One can then solve a new lin-
ear program simply by adding the constraint Y > ) and
seeking to maximize ), a;;/c, i.e., the average yield.
Unfortunately this new program also contains both inte-
ger and rational variables, therefore requiring exponen-
tial time for computing an exact solution. Therefore, we
choose to impose the additional condition that the e;;
values be unchanged in this second round of optimiza-
tion. In other terms, only CPU fractions can be modi-
fied to improve average yield, not job locations. This
amounts to replacing the e;; variables by their values
as constants when maximizing the average yield and the
new linear program has then only rational variables.

It turns out that, rather than solving this linear pro-
gram with a linear program solver, we can use the fol-
lowing optimal greedy algorithm. First, for each job i as-
signed to host j, we set the fraction of the compute capa-
bility of host j given to job ¢ to the value exactly achiev-
ing the maximum minimum yield: o;; = «;.). Then,
for each host, we scale up the compute fraction of the
job with smallest compute requirement ¢; until either
the host has no compute capability left or the job’s com-
pute requirement is fully fulfilled. In the latter case, we
then apply the same scheme to the job with the second
smallest compute requirement on that host, and so on.
The optimality of this process is easily proved via a typ-
ical exchange argument.

All our heuristics use this average yield maximiza-
tion technique after maximizing the minimum yield.

4. Simulation Experiments
We evaluate our heuristics based on four metrics:

(i) the achieved minimum yield; (ii) the achieved aver-
age yield; (iii) the failure rate; and (iv) the run time. We
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also compare the heuristics with the exact solution of the
MILP for small instances, and to the (unreachable upper
bound) solution of the rational LP for all instances. The
achieved minimum and average yields considered are av-
erage values over successfully solved problem instances.
The run times given include only the time required for
the given heuristic since all algorithms use the same av-
erage yield maximization technique.

4.1. Experimental Methodology

We conducted simulations on synthetic problem in-
stances. We defined these instances based on the num-
ber of hosts, the number of jobs, the total amount of free
memory, or memory slack, in the system, the average job
CPU requirement, and the coefficient of variance of both
the memory and CPU requirements of jobs. The memory
slack is used rather than the average job memory require-
ment since it gives a better sense of how tightly packed
the system is as a whole. In general (but not always) the
greater the slack the greater the number of feasible solu-
tions to VCSCHED.

Per-task CPU and memory requirements are sampled
from a normal distribution with given mean and coeffi-
cient of variance, truncated so that values are between
0 and 1. The mean memory requirement is defined as
Hx(1—slack)/J, where slack has value between 0 and
1. The mean CPU requirement is taken to be 0.5, which
in practice means that feasible instances with fewer than
twice as many tasks as hosts have a maximum minimum
yield of 1.0 with high probability. We do not ensure that
every problem instance has a feasible solution.

Two different sets of problem instances are examined.
The first set of instances, “small” problems, includes in-
stances with small numbers of hosts and tasks. Exact op-
timal solutions to these problems can be found with a
MILP solver in a tractable amount of time (from a few
minutes to a few hours on a 3.2Ghz machine using the
GLPK solver). The second set of instances, “large” prob-
lems, includes instances for which the numbers of hosts
and tasks are too large to compute exact solutions. For
the small problem set we consider 4 hosts with 6, 8,
10, or 12 tasks. Slack ranges from 0.1 to 0.9 with in-
crements of 0.1, while coefficients of variance for mem-
ory and CPU requirements are given values of 0.25 and
0.75, for a total of 144 different problem specifications.
10 instances are generated for each problem specifica-
tion, for a total of 1,440 instances. For the large prob-
lem set we consider 64 hosts with sets of 100, 250 and
500 tasks. Slack and coefficients of variance for mem-
ory and CPU requirements are the same as for the small
problem set for a total of 108 different problems spec-
ifications. 100 instances of each problem specification
were generated for a total of 10,800 instances.
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4.2. Experimental Results

4.2.1. Multi-Capacity Bin Packing We first present
results only for our 8 multi-capacity bin packing algo-
rithms to determine the best one. Figure 2 shows the
achieved maximum minimum yield versus the memory
slack averaged over small problem instances. As ex-
pected, as the memory slack increases all algorithms
tend to do better although some algorithms seem to expe-
rience slight decreases in performance beyond a slack of
0.4. Also expected, we see that the four algorithms that
sort the tasks by descending order outperform the four
that sort them by ascending order. Indeed, it is known
that for bin packing starting with large items typically

September 29, 2008 Revision 1727

% deg. from best

algorithm | avg. max
MCBS 1.06 40.45
MCBS5 1.60 38.67

MCB6 1.83 37.61
MCB7 391 40.71

MCB3 11.76 | 55.73
MCB2 14.21 48.30
MCBI 1490 | 55.84
MCB4 17.32 | 46.95

Table 1. Average and Maximum percent
degradation from best of the MCB algo-
rithms for small problem instances.

leads to better results on average.

The main message here is that MCBS8 outperforms
all other algorithms across the board. This is better seen
in Table 1, which shows the average and maximum per-
cent degradation from best for all algorithms. For a prob-
lem instance, the percent degradation from best of an al-
gorithm is defined as the difference, in percentage, be-
tween the minimum yield achieved by an algorithm and
the minimum yield achieved by the best algorithm for
this instance. The average and maximum percent degra-
dations from best are computed over all instances. We
see that MCBS8 has the lowest average percent degrada-
tion from best. MCBS, which corresponds to the algo-
rithm in [28] performs well but not as well as MCBS. In
terms of maximum percent degradation from best, we
see that MCBS8 ranks third, overtaken by MCBS5 and
MCB6. Examining the results in more details shows that,
for these small problem instances, the maximum degra-
dation from best are due to outliers. For instance, for
the MCBS algorithm, out of the 1,379 solved instances,
there are only 155 instances for which the degradation
from best if larger than 3%, and only 19 for which it is
larger than 10%.

Figure 3 shows the average yield versus the slack (re-
call that the average yield is optimized in a second phase,
as described in Section 3.5). We see here again that the
MCBS algorithm is among the very best algorithms.

Figure 4 shows the failure rates of the 8 algorithms
versus the memory slack. As expected failure rates de-
crease as the memory slack increases, and as before we
see that the four algorithms that sort tasks by descend-
ing order outperform the algorithms that sort tasks by as-
cending order. Finally, Figure 5 shows the runtime of the
algorithms versus the number of tasks. We use a 3.2GHz
Intel Xeon processor. All algorithms have average run
times under 0.18 milliseconds, with MCBS the fastest
by a tiny margin.
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Figures 6, 8, 9, and 10 are similar to Figures 2, 3,
4, and 5, but show results for large problem instances.
The message is the same here: MCBS is the best algo-
rithm, or closer on average to the best than the other al-
gorithms. This is clearly seen in Table 7, which is similar
to Table 1, and shows the average and maximum percent
degradation from best for all algorithms for large prob-
lem instances. According to both metrics MCBS is the
best algorithm, with MCBS5 performing well but not as
well as MCBS.

In terms of run times, Figure 10 shows run times un-
der one-half second for 500 tasks for all of the MCB al-
gorithms. MCBS is again the fastest by a tiny margin.

September 29, 2008 Revision 1727

10

0.55¢
- 05r
.;'_f
é 0.45} u ~-MCBL
E MCB2
s Y < MCB3
047 W -%-MCB4
K] MCB5
kS y ‘O MCB6
0.357 MCB7
R —~7-MCB8
0.3 : : : : : : ‘
01 02 03 04 05 06 07 08 09
Slack
Figure 6. MCB Algorithms — Minimum
Yield vs. Slack for large problem in-
stances.
% deg. from best
algorithm | avg. max
MCB38 0.09 3.16
MCB5S 0.25 3.50
MCB6 0.46 16.68
MCB7 1.04 48.39
MCB3 4.07 64.71
MCB2 8.68 46.68
MCBI1 10.97 | 73.33
MCB4 14.80 | 61.20

Figure 7. Average and Maximum percent
degradation from best of the MCB algo-
rithms for large problem instances.

Based on our results we conclude that MCBS is the
best option among the 8 multi-capacity bin packing op-
tions. In all that follows, to avoid graph clutter, we ex-
clude the 7 other algorithms from our overall results.

4.2.2. Small Problems Figure 11 shows the achieved
maximum minimum yield versus the memory slack in
the system for our algorithms, the MILP solution, and
for the solution of the rational LP, which is an upper
bound on the achievable solution. The solution of the
LP is only about 4% higher on average than that of the
MILP, although it is significantly higher for very low
slack values. The solution of the LP will be interesting
for large problem instances, for which we cannot com-
pute an exact solution. On average, the exact MILP so-
lution is about 2% better than MCBS, and about 11%
to 13% better than the greedy algorithms. All greedy
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algorithms exhibit roughly the same performance. The
RRND and RRNZ algorithms lead to results markedly
poorer than the other algorithms, with expectedly the
RRNZ algorithm slightly outperforming the RRND al-
gorithm. Interestingly, once the slack reaches 0.2 the re-
sults of both the RRND and RRNZ algorithms begin to
worsen.

Figure 12 is similar to Figure 11 but plots the average
yield. The solution to the rational LP, the MILP solution,
the MCBS solution, and the solutions produced by the
greedy algorithms are all within a few percent of each
other. As in Figure 11, when the slack is lower than 0.2
the relaxed solution is significantly better.

Figure 13 plots the failure rates of our algorithms.
The RRND algorithm has the worst failure rate, followed
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by GR and then RRNZ. There were a total of 60 in-
stances out of the 1,440 generated which were judged
to be infeasible because the GLPK solver could not find
a solution for them. We see that the MCBS, SG, and
SGB algorithms have failure rates that are not signifi-
cantly larger than that of the exact MILP solution. Out
of the 1,380 feasible instances, the GB and SGB never
fail to find a solution, the MCB8 algorithm fails once,
and the SG algorithm fails 15 times.

Figure 14 shows the run times of the various algo-
rithms on a 3.2GHz Intel Xeon processor. The computa-
tion time of the exact MILP solution is so much greater
than that of the other algorithms that it cannot be seen
on the graph. Computing the exact solution to the MILP
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took an average of 28.7 seconds, however there were 9
problem instances with solutions that took over 500 sec-
onds to compute, and a single problem instance that re-
quired 11,549.29 seconds (a little over 3 hours) to solve.
For the small problem instances the average run times
of all greedy algorithms and of the MCBS algorithm are
under 0.15 milliseconds, with the simple GR and SG al-
gorithms being the fastest. The RRND and RRNZ al-
gorithms are significantly slower, with run times a lit-
tle over 2 milliseconds on average; they also cannot be
seen on the graph.

4.2.3. Large Problems

Figures 15, 16, 17, and 18 are similar to Figures 11,
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12, 13, and 14 respectively, but for large problem in-
stances. In Figure 15 we can see that MCBS algorithm
achieves far better results than any other heuristic. Fur-
thermore, MCBS is extremely close to the upper bound
as soon as the slack is 0.3 or larger and is only 8% away
from this upper bound when the slack is 0.2. When the
slack is 0.1, MCBS8 is 37% away from the upper bound
but we have seen with the small problem instances that
in this case the upper bound is significantly larger than
the actual optimal (see Figure 11).

The performance of the greedy algorithms has wors-
ened relative to the rational LP solution, on average 20%
lower for slack values larger than 0.2. The GR and GB al-
gorithms perform nearly identically, showing that back-
tracking does not help on the large problem instances.
The RRNZ algorithm is again a poor performer, with a
profile that, unexpectedly, drops as slack increases. The
RRND algorithm not only achieved the lowest values for
minimum yield, but also completely failed to solve any
instances of the problem for slack values less than 0.4.

Figure 16 shows the achieved average yield values.
The MCBS algorithm again tracks the optimal for slack
values larger than 0.3. A surprising observation at first
glance is that the greedy algorithms manage to achieve
higher average yields than the optimal or MCB algo-
rithms. This is due to their lower achieved minimum
yields. Indeed, with a lower minimum yield, average
yield maximization is less constrained, making it pos-
sible to achieve higher average yield than when starting
from and allocation optimal for the minimum yield. The
greedy algorithms thus trade off fairness for higher av-
erage performance. The RRNZ algorithm starts out do-
ing well for average slack, even better than GR or GB
when the slack is low, but does much worse as slack in-



creases.

Figure 17 shows that for large problem instances the
GB and SGB algorithms have nearly as many failures
as the GR and SG algorithms when slack is low. This
suggests that the arbitrary bound of 500,000 placement
attempts when backtracking, which was more than suffi-
cient for the small problem set, has little affect on overall
performance for the large problem set. It could thus be
advisable to set the bound on the number of placement
attempts based on the size of the problem set and time al-
lowed for computation. The RRND algorithm is the only
algorithm with a significant number of failures for slack
values larger than 0.3. The SG, SGB and MCB8 algo-
rithms exhibit the lowest failure rates, about 40% lower
than that experienced by the other greedy and RRNZ al-
gorithms, and more than 14 times lower than the failure
rate of the RRND algorithm. Keep in mind that, based
on our experience with the small problem set, some of
the problem instances with small slacks may not be fea-
sible at all.

Figure 18 plots the average time needed to compute
the solution to VCSCHED on a 3.2GHz Intel Xeon for
all the algorithms versus the number of jobs. The RRND
and RRNZ algorithms require significant time, up to
roughly 650 seconds on average for 500 tasks, and so
cannot be seen at the given scale. This is attributed to
solving the relaxed MILP using GLPK. Note that this
time could be reduced significantly by using a faster
solver (e.g., CPLEX [14]). The GB and SGB algorithms
require significantly more time when the number of
tasks is small. This is because the failure rate decreases
as the number of tasks increases. For a given set of pa-
rameters, increasing the number of tasks decreases gran-
ularity. Since there is a relatively large number of unsolv-
able problems when the number of tasks is small, these
algorithms spend a lot of time backtracking and search-
ing though the solution space fruitlessly, ultimately stop-
ping only when the bounded number of backtracking at-
tempts is reached. The greedy algorithms are faster than
the MCB8 algorithm, returning solutions in 15 to 20 mil-
liseconds on average for 500 tasks as compared to nearly
half a second for MCB8. Nevertheless, less than .5 sec-
onds for 500 tasks is clearly acceptable in practice.

4.2.4. Discussion Our main result is that the multi-
capacity bin packing algorithm that sorts tasks in de-
scending order by their largest resource requirement
(MCBS) is the algorithm of choice. It outperforms or
equals all other algorithm nearly across the board in
terms of minimum yield, average yield, and failure rate,
while exhibiting relatively low run times. The sorted
greedy algorithms (SG or SGB) lead to reasonable re-
sults and could be used for very large numbers of tasks,
for which the run time of MCBS8 may become too high.
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The use of backtracking in the algorithms GB and SGB
led to performance improvements for small problem sets
but not for large problem sets, suggesting that some sort
of backtracking system with a problem-size- or run-time-
dependent bound on the number of branches to explore
could potentially be effective.

5. Parallel Jobs

5.1. Problem Formulation

In this section we explain how our approach and algo-
rithms can be easily extended to handle parallel jobs that
consist of multiple tasks (relaxing assumption H3). We
have thus far only concerned ourselves with independent
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jobs that are both indivisible and small enough to run
on a single machine. However, in many cases users may
want to split up jobs into multiple tasks, either because
they wish to use more CPU power in order to return re-
sults more quickly or because they wish to process an
amount of data that does not fit comfortably within the
memory of a single machine.

One naive way to extend our approach to parallel
jobs would be to simply consider the tasks of a job in-
dependently. In this case individual tasks of the same
job could then receive different CPU allocations. How-
ever, in the vast majority of parallel jobs it is not useful
to have some tasks run faster than others as either the job
makes progress at the rate of the slowest task or the job

September 29, 2008 Revision 1727

14

is deemed complete only when all tasks have completed.
Therefore, we opt to add constraints to our linear pro-
gram to enforce that the CPU allocations of tasks within
the same job must be identical. It would be straightfor-
ward to have more sophisticated constraints if specific
knowledge about a particular job is available (e.g., task
A should receive twice as much CPU as task B).

Another important issue here is the possibility of
gaming the system when optimizing the average yield.
When optimizing the minimum yield, a division of a job
into multiple tasks that leads to a higher minimum yield
benefits all jobs. However, when considering the aver-
age yield optimization, which is done in our approach
as a second round of optimization, a problem arises be-
cause the average yield metric favors small tasks, that
is, tasks that have low CPU requirements. Indeed, when
given the choice to increase the CPU allocation of a
small task or of a larger task, for the same additional frac-
tion of CPU, the absolute yield increase would be larger
for the small task, and thus would lead to a higher av-
erage yield. Therefore, an unscrupulous user might opt
for breaking his/her job into unnecessarily many smaller
tasks, perhaps hurting the parallel efficiency of the job,
but acquiring an overall larger portion of the total avail-
able CPU resources, which could lead to shorter job ex-
ecution time. To remedy this problem we use a per-job
yield metric (i.e., total CPU allocation divided by total
CPU requirements) during the average yield optimiza-
tion phase.

The linear programming formulation with these addi-
tional considerations and constraints is very similar to
that derived in Section 2.5. We again consider jobs 1..J
and hosts 1..H. But now each job ¢ consists of T; tasks.
Since these jobs are constrained to be uniform, «; rep-
resents the maximum CPU consumption and m; repre-
sents the maximum memory consumption of all tasks k
of job 4. The integer variables e;;; are constrained to be
either 0 or 1 and represent the absence or presence of
task k of job i on host j. The variables a;j; represent
the amount of CPU allocated to task & of job ¢ on host j.

Viv k?] Cikj € Na (12)
Vi, k. j aig; € Q, (13)
Vi7k7j 0< €ikj < 17 (14)
Vivkvj 0< QL5 < €ikj, (15)
Vi, k S e =1, (16)
Vi S Sy kg <1, (17)

Vi S S eingmi <1, (18)

Vi, k Sty kg < o, (19)
Via k7 k/ Zszl aikj = Zf:l aik?’j> (20)
Vi S YL Ass Y @D



Note that the final constraint is logically equivalent
to the per-task yield since all tasks are constrained to
have the same CPU allocation. The reason for writing it
this way is to highlight that in the second phase of opti-
mization one should maximize the average per-job yield
rather than the average per-task yield.

5.2. Results

The algorithms described in Section 3 for the case
of sequential jobs can be used directly for minimum
yield maximization for parallel jobs. The only major dif-
ference is that the average per-task yield optimization
phase needs to be changed for an average per-job op-
timization phase. As with the per-task optimization, we
make the simplifying assumption that task placement de-
cisions cannot be changed during this phase of the opti-
mization. This simplification removes not only the diffi-
culty of solving a MILP, but also allows us to avoid the
enormous number of additional constraints which would
be required to make sure that all of a given job’s tasks re-
ceive the same allocation while keeping the problem lin-
ear.

We present results only for large problem instances as
defined in Sectionfefsec.methodology. We use the same
experimental methodology as defined there as well. We
only need a way to decide how many tasks comprise a
parallel job. To this end, we use the parallel workload
model proposed in [30], which models many character-
istics of parallel workloads (derived based on statisti-
cal analysis of real-world batch system workloads). The
model for the number of tasks in a parallel job uses a
two-stage log-uniform distribution biased towards pow-
ers of two. We instantiate this model using the same pa-
rameters as in [30], assuming that jobs can consist of be-
tween 1 and 64 tasks.

Figure 19 shows results for the SG and the MCBS§
algorithms. We exclude all other greedy algorithms as
they were all shown to be outperformed by SG, all other
MCB algorithms because they were all shown to be out-
performed by MCBS, as well as the RRND and RRNZ
algorithms which were shown to perform poorly. The fig-
ure also shows the upper bound on optimal obtained as-
suming that e;; variables can take rational values. We
see that MCB8 outperforms the SGB algorithm signif-
icantly and is close to the upper bound on optimal for
slacks larger than 0.3.

Figure 20 shows the average job yield. We see the
same phenomenon as in Figure 16, namely that the
greedy algorithm can achieve higher average yield be-
cause it starts from a lower minimum yield, and thus has
more options to push the average yield higher (thereby
improving average performance at the expense of fair-
ness).
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Figure 21 shows the failure rates of the MCB8 and
SG algorithms, which are identical. Finally Figure 22
shows the run time of both algorithms. We see that the
SG algorithm is much faster than the MCBS algorithm
(by roughly a factor 32 for 500 tasks). Nevertheless,
MCBS can still compute an allocation in under one half
a second for 500 tasks.

Our conclusions are similar to the ones we made
when examining results for sequential jobs: in the case
of parallel jobs the BCBS algorithm is the algorithm of
choice for optimizing minimum yield, while the SGB al-
gorithm could be an alternate choice if the number of
tasks is very large.



=
1

-7 MCB8
0.9/ %SG
0.8F
0.7F

Failure Rate
o o

o [=2)

T T

©
IS
T

Figure 21. Failure Rate vs. Slack for large
problem instances for parallel jobs.

[
1

-7 MCB8
0.9F —#—SG
0.8f
0.7r

o©
o
T

Run Time (secs.)
© o o o
N w S o
: : :

I
N

e
250

—#
500

00 150 200 300 400 450

Tasks

350

Figure 22. Runtime vs. Number of Tasks
for large problem instances for parallel
jobs.

6. Dynamic Workloads

In this section we study resource allocation in the
case when assumption H4 no longer holds, meaning that
the workload is no longer static. We assume that job re-
source requirements can change and that jobs can join
and leave the system. When the workload changes, one
may wish to adapt the schedule to reach a new (nearly)
optimal allocation of resources to the jobs. This adapta-
tion can entail two types of actions: (i) modifying the
CPU fractions allocated to some jobs; and (ii) migrat-
ing jobs to different physical hosts. In what follows we
extend the linear program formulation derived in Sec-
tion 2.5 to account for resource allocation adaptation.
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We then discuss how current technology can be used to
implement adaptation with virtual clusters.

6.1. Mixed-Integer Linear Program Formula-
tion

One difficult question for resource allocation adapta-
tion, regardless of the context, is whether the adaptation
is “worth it.” Indeed, adaptation often comes with an
overhead, and this overhead may lead to a loss of perfor-
mance. In the case of virtual cluster scheduling, the over-
head is due to VM migrations. The question of whether
adaptation is worthwhile is often based on a time hori-
zon (e.g., adaptation is not worthwhile if the workload
is expected to change significantly in the next 5 min-
utes) [41,45]. In virtual cluster scheduling, as defined
in this paper, jobs do not have time horizons. Therefore,
in principle, the scheduler cannot reason about when re-
source needs will change. It may be possible for the
scheduler to keep track of past workload behavior to
forecast future workload behavior. Statistical workload
models have been built (see [29,30] for models and liter-
ature reviews). Techniques to make predictions based on
historical information have been developed (see [1] for
task execution time models and a good literature review).
Making sound short-term decisions for resource alloca-
tion adaptation requires highly accurate predictions, so
as to carry out precise cost-benefit analyses of various
adaptation paths. Unfortunately, accurate point predic-
tions (rather than statistical characterizations) are elu-
sive due to the inherently statistical and transient nature
of the workload, as seen in the aforementioned works.
Furthermore, most results in this area are obtained for
batch scheduling environments with parallel scientific
applications, and it is not clear whether the obtained
models would be applicable in more general settings
(e.g., cloud computing environments hosting internet ser-
vices).

Faced with the above challenge, rather than attempt-
ing arduous statistical forecasting of adaption cost and
pay-off, we side-step the issue and propose a pragmatic
approach. We consider schedule adaptation that attempts
to achieve the best possible yield, but so that job migra-
tions do not entail moving more than some fixed number
of bytes, B (e.g., to limit the amount of network load due
to schedule adaptation). If B is set to 0, then the adapta-
tion will do the best it can without using migration what-
soever. If B is above the sum of the job sizes (in bytes of
memory requirement), then all jobs could be migrated.

It turns out that this adaptation scheme can be easily
formulated as a mixed-integer linear program. More gen-
erally, the value of B can be chosen so that it achieves a
reasonable trade-off between overhead and workload dy-
namicity. Choosing the best value for B for a particular



system could however be difficult and may need to be
adaptive as most workloads are non-stationary. A good
approach is likely to pick relatively smaller values of B
for more dynamic workload. We leave a study of how to
best tune parameter B for future work.

We use the same notations and definitions as in Sec-
tion 2.5. In addition, we consider that some jobs are al-
ready assigned to a host: €;; is equal to 1 if job 4 is al-
ready running on host j, and O otherwise. For reasons
that will be clear after we explain our constraints, we
simply set e;; to 1 for all j if job 4 corresponds to a newly
arrived job. Newly departed jobs need not be taken into
account. We can now write a new set of constraints as
follows:

Vi,j €ij S N, (22)
Vi, j 0<ey; <1, (24)
Vi, j 0 < oy < eyy, (25)
Vi e =1, (26)
Vj S <1 27)
v ST eiymi <1 (28)
Vi Zf:l Q5 < (67 (29)
Vi S ey (30)
Y (1 —ei)eyms <B (31

The objective, as in Section 2.5, is to maximize Y.
The only new constraint is the last one. This constraint
simply states that if job ¢ is assigned to a host that is dif-
ferent from the host to which it was assigned previously,
then it needs to be migrated. Therefore, m; bytes need
to be transferred. These bytes are summed over all jobs
in the system to ensure that the total number of bytes
communicated for migration purposes does not exceed
B. Note that this is still a linear program as €;; is not a
variable but a constant. Since for newly arrived jobs we
set all €;; values to 1, we can see that they do not con-
tribute to the migration cost. Note that removing m; in
the last constraint would simply mean that B is a bound
on the total number of job migrations allowed during
schedule adaptation.

We leave the development of heuristic algorithms for
solving the above linear program for future work.

6.2. Technology Issues for Resource Allocation
Adaptation

In the linear program in the previous section nowhere
do we account for the time it takes to migrate a job.
While a job is being migrated it is presumably non re-
sponsive, which impacts the yield. However, modern
VM monitors support “live migration” of VM instances,
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which allows migrations with only milliseconds of unre-
sponsiveness [13]. There could be a performance degra-
dation due to memory pages being migrated between
two physical hosts. Resource allocation adaptation also
requires quick modification of the CPU share allocated
to a VM instance (assumption HS5). We validate this as-
sumption in Section 7 and find that, indeed, CPU shares
can be modified accurately in under a second.

7. Evaluation of the Xen Hypervi-
sor

Assumption HS in Section 2.2 states that VM tech-
nology allows for precise, low-overhead, and quickly
adaptable sharing of the computational capabilities of
a host across CPU-bound VM instances. Although this
seems like a natural expectation, we nevertheless vali-
date this assumption with state-of-the-art virtualization
technology, namely, the Xen VM monitor [8]. While vir-
tualization can happen inside the operating system (e.g,
Virtual PC [34], VMWare [53]), Xen runs between the
hardware and the operating system. It thus requires ei-
ther a modified operating system (“paravirtualization’)
or hardware support for virtualization (“hardware virtu-
alization” [21]). In this work we use Xen 3.1 on a dual-
CPU 64-bit machine with paravirtualization. All our VM
instances use identical 64-bit Fedora images, are allo-
cated 700MB of RAM, and run on the same physical
CPU. The other CPU is used to run the experiment con-
troller. All our VM instances perform continuous CPU-
bound computations, that is, 100 x 100 double precision
matrix multiplications using the LAPACK DGEMM rou-
tine [5].

Our experiments consist in running from one to ten
VM instances with specified “cap values”, which Xen
uses to control what fraction of the CPU is allocated
to each VM. We measure the effective compute rate of
each VM instance (in number of matrix multiplications
per seconds). We compare this rate to the expected rate,
that is, the cap value times the compute rate measured
on the raw hardware. We can thus ascertain both the ac-
curacy and the overhead of the CPU-sharing in Xen. We
also conduct experiments in which we change cap val-
ues on-the-fly and measure the delay before the effec-
tive compute rates are in agreement with the new cap
values.

Due to space limitations we only provide highlights
of our results and refer the reader to a technical report
for full details [43]. We found that Xen imposes a mini-
mal overhead (on average a 0.27% slowdown). We also
found that the absolute error between the effective com-
pute rate and the expected compute rate was at most
5.99% and on average 0.72%. In terms of responsive-



ness, we found that the effective compute rate of a VM
becomes congruent with a cap value less than one sec-
ond after that cap value was changed. We conclude that,
in the case of CPU-bound VM instances, CPU-sharing
in Xen is sufficiently accurate and responsive to enable
fractional and dynamic resource allocations as defined
in this paper.

8. Related Work

The use of virtual machine technology to improve
parallel job reliability, cluster utilization, and power effi-
ciency is a hot topic for research and development, with
groups at several universities and in industry actively de-
veloping resource management systems [2,3,19,32,42].
This paper builds on top of such research, using the re-
source manager intelligently to optimize a user-centric
metric that attempts to capture common ideas about fair-
ness among the users of high-performance systems.

Our work bears some similarities with gang schedul-
ing. However, traditional gang scheduling approaches
suffer from problems due to memory pressure and
the communication expense of coordinating con-
text switches across multiple hosts [9, 38]. By ex-
plicitly considering task memory requirements when
making scheduling decisions and using virtual ma-
chine technology to multiplex the CPU resources
of individual hosts our approach avoids these prob-
lems.

Above all, our approach is novel in that we define and
optimize for a user-centric metric which captures both
fairness and performance in the face of unknown time
horizons and fluctuating resource needs. Our approach
has the additional advantage of allowing for interactive
job processes.

9. Limitations and Future Direc-

tions

In this work we have made two key assumptions. The
first assumption is that VM instances are CPU-bound
(assumption H1), which made it possible to validate as-
sumption HS in Section 7. However, in reality, VM in-
stances may have composite needs that span multiple re-
sources, including the network, the disk, and the mem-
ory bus. The second assumption is that resource needs
are known (assumption H2). However, this typically
does not hold true in practice as users do not know pre-
cise resource needs of their applications. When assump-
tion H1 does not hold, the challenge is to model com-
posite resource needs in the definition of the resource al-
location problem, and to share these various resources
among VM instances in practice.
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In practice, CPU and network resources are strongly
dependent within a virtual machine monitor environ-
ment. To ensure secure isolation, VM monitors interpose
on network communication, adding CPU overhead as a
result. Experience has shown that, because of this depen-
dence, one can capture network needs in terms of addi-
tional CPU need [20]. Therefore, it should be straight-
forward to modify our approach to account for network
resource usage. In term of disk usage, we note that vir-
tual cluster environments typically use network-attached
storage to simplify VM migration. As a result, disk us-
age is subsumed in network usage. In both cases one
should then be able to both model and precisely share
network and disk usage. Much more challenging is the
modeling and sharing of the memory bus usage, due
to complex and deep memory hierarchies on multi-core
processors. However, current work on Virtual Private
Machines points to effective ways for achieving sharing
and performance isolation among VM instances of mi-
croarchitecture resources [37], including the memory hi-
erarchy [36].

In terms of discovering VM instance resource needs,
a first approach is to use standard services for tracking
VM resource usage across a cluster and collecting the in-
formation as input into a cluster system scheduler (e.g.,
the XenMon VM monitoring facility in Xen [15]. Appli-
cation resource needs inside a VM instance can be dis-
covered via a combination of introspection and config-
uration variation. With introspection, for example, one
can deduce application CPU needs by inferring process
activity inside of VMs [47], and memory pressure by in-
ferring memory page eviction activity [48]. This kind of
monitoring and inference provides one set of data points
for a given system configuration. By varying the config-
uration of the system, one can then vary the amount of
resources given to applications in VMs, track how they
respond to the addition or removal of resources, and
infer resource needs. Experience with such techniques
in isolation has shown that they can be surprisingly ac-
curate [47,48]. Furthermore, modeling resource needs
across a range of configurations with high accuracy is
less important than discovering where in that range the
application experiences an inflection point (e.g., cannot
make use of further CPU or memory) [17,40].

10. Conclusion

In this paper we have proposed a novel approach for
allocating resources among competing jobs, relying on
Virtual Machine technology and on the optimization of a
well-defined metric that captures notions of performance
and of fairness. We have given a formal definition of a
base problem, have proposed several algorithms to solve



it, and have evaluated these algorithms in simulation. We
have identified a promising algorithm that runs quickly,
is on par with or better than its competitors, and is close
to optimal. We have then discussed several extensions
to our approach to solve more general problems, namely
when jobs are parallel, when the workload is dynamic,
when job resource needs are composite, and when job
resource needs are unknown.

Future directions include the development of algo-
rithms to solve the resource allocation adaptation prob-
lem, and of strategies for estimating job resource needs
accurately. Our ultimate goal is to develop a new re-
source allocator as part of the Usher system [32], so that
our algorithms and techniques can be used as part of a
practical system and evaluated in practical settings.
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