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ABSTRACT

This dissertation introduces the concept of Q-Witt rings and SQ-Witt rings. A Q-Witt
ring is defined as a finite quotient of a torsion free abstract Witt ring for an elementary 2-group
G. Local Q-Witt rings are characterized using topological and ring theoretic tools. Q-Witt rings
of the integral group ring Z{Z] are classified and several properties are shown. An SQ-Witt ring
is formed as a finite quotient of torsion free Witt rings of a formally real field. Recursive

construction can be used to locate all SQ-Witt rings.
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CHAPTER 1
INTRODUCTION AND NOTATION

In this paper we will work in the category of commutative rings with 1. We will be
mainly interested in finite commutative rings with identity. There are many papers and books
written on the topics of finite fields as well as finite commutative groups, but only a few on
finite commutative rings. Thus, we will provide the reader with a substantial number
of definitions, theorems and examples, so that we can understand these rings better and find
ways in which they will be useful.

In Chapter 1 we will give some of the basic definitions and structure theorems for finite

rings. In particular, we discuss Galois rings and chain rings. Finite chain rings are quotient
rings of rings of algebraic integers in finite extensions of the rationals. Chain rings have
relevance in the areas of number theory and geometry. They are used as coordinatizing rings
of Hjelmslev planes [7]. In addition, there is more and more rescarch focusing on using local
rings in coding theory, mainly Galois rings and more general chain rings.

In Chapter 2 we describe abstract Witt rings, which have been defined in [10]. We offer
both ring theoretic and topological descriptions of these rings as was shown in [10] and [11].
It is here that we define a special class of finite rings in the context of [10}, called Q-Witt
rings. We study their structure and give conditions for when we get local Q-Witt rings. In
Chapter 3, we look at a very special class of Q-Witt rings, which are quotients of integral
group rings of the form Z[G] where G is an elementary abelian 2-group. We describe the

rings with |G| = 2 in great detail.



Chapter 4 deals with a class of finite rings, which are created as quotients of reduced
Witt rings of formally real fields, called SQ-Witt rings. In order to understand this construc-
tion, we provide some background information on Witt rings of formally real fields as was
described in [11].

For the remainder of this chapter, R will denote a finite commutative ring with

identity different from 0, unless stated otherwise.

DEFINITION 1.1 A ring R is called local if it has a unique maximal ideal.
We observe that the study of finite commutative rings can be reduced to the study

of finite local rings, as stated in [14, Theorem V1.2].

THEOREM 1.2 (Structure Theorem for Finite Commutative Rings)
Any finite commutative ring R with unity decomposes, up to order of summands,

uniquely as a direct sum of local vings.

The proof is a nice application of the Chinese Remainder Theorem,
So, for the remainder of this chapter we will assume that R is a local ring. We let m denote
the unique maximal ideal of R, and k = R/m be the residue field associated with R. Let
7 : R[x] - k[x] be the natural ring homomorphism. We denote the characteristic of R by
char(R), the additive group of R by R*, the units of R by R*, and the cardinality of R by |R)|.
The set of integers will be denoted by Z. Then Z, denotes the ring of equivalence classes of

Z under congruence modulo a fixed positive integer #.



The structure of local rings has been presented very comprehensively by B. McDonald,
so for the purposes of this paper we will simply give a short synopsis with a list of major

definitions and results which we shall need later.

Let S be a finite commutative local ring, as well, with maximal ideal 9% and

residue field K =5/ 9.

DEFINITION 1.3 A ring S is said to be an extension of R if R is a subring of S.

We note that if S is an extension of R, then S is an R-algebra with 1; = 15.
We remind the reader of [8, Corollary IV.2.12], which states that all commutative
rings have the invariant dimension property. That is, every free R-module S has the
property that the cardinality of any two bases is the same. The cardinal number of
any basis of § is called the dimension of § over R, denoted by dimz(S).

Since § is finite, we obtain

THEOREM 1.4 {14, Theorem XIII.1] Let R and S be finite commutative local
rings and § an extension of R. Then for any a € S there is a monic polynomial fin R[x]
such that fla) = 0. That is, 5 is integral over R, in the sense that every element of S

satisfies a monic polyvnomial in R[x].

We then have as an almost immediate consequence

LEMMA 1.5 Let R, S, a and f be as in Theorem 1.4. Then there is a natural surjective
R-algebra homomorphism R[x)/(f) - Rla)], where R{d] is the subring of S consisting of

all elements of the form p(a}, where p is in R[x].



DEFINITION 1.6 The enveloping algebra, 8¢, associated with an R-algebra S is the

R-algebra S ®5 S.

DEFINITION 1.7 The R-algebra S is called R-separabie or a separable extension of

R if §is a projective S¢- module.

DEFINITION 1.8 The local ring S is called an unramified extension of R if M = Sm,

that is the maximal ideal m of R generates the maximal ideal 3t of S.

Next we will state a result, called the Primitive Element Theorem, which can be

obtained using results from finite field extensions and Nakayama’s lemma.

THEQREM 1.9 [14, Theorem XIV.7] Let R and S be finite commutative local rings
and § a separable extension of R. Then S is a simple extension of R, that is S = R[a] for

some a in S.

We recall that an element a with § = R[a] is called a primitive element.

Using a series of lemmas and theorems, McDonald showed [14, Theorem XI1V.6]

THEOREM 1.10 Let R and S be finite commutative local rings. The ring S

is a separable extension of R if and only if S is an unramified extension of R.

These characterizations are difficult to check; luckily we have another charac-
terization of separabie extensions [[4, Theorem XIV.8], which will make our lives a ot

easier. In order to state this theorem however, we must introduce some more vocabulary



and notation, We will use the usual definitions associated with polynomials and so we will

only state the new terminology introduced by McDonald.

DEFINITION 1.11 A polynomial fin R[x] is called a regular polynomial if fis not a

zero divisor in R[x].

These polynomials have a central role in the study of local rings. Therefore, we list
some properties of regular polynomials, which can be easily checked using the natural ring
homomorphism 7 : R[x] - k[x}.

THEOREM 1.12 {14, Theorems X1I1.2 and XUL7]. Let fix} = ao + a1x +.. . +@nx"
be a regular polynomial in R[x], where R is a finite commutative local ring. Then

(1) n(f) + 0, which implies that for some i, 0 < i < n, a; is a unit.

(2) If n(f) is irreducible in K[x], then fis irreducible.

We can check that the converse of Theorem 1.12 {2) is not in general true. To see this,
we consider the monic regular polynomial p(x) = x? + 1 in Z4[x]. Observe that p is an

irreducible polynomial in Za{x]}; however, the image of p in Z;[x] faciors as (x + 1)*.

DEFINITION 1.13 An irreducible polynomial / € R[x) is called basic irreducible

provided that x(f) is irreducible in k[x].

With the proper definitions stated we are now ready to state [14, Theorem X[V .8].



THEOREM 1.14 Let R and § be finite commutative local rings. Then S is a
separable extension of R if and only if S = R[xJ/(f) as an R-algebra where fis a

monic basic irreducible polynomial.

To understand Galois extensions we need to characterize the R-algebra automor-

phisms of R[x] as well. To that end we state [14, Theorem XIIL.16].

THEOREM 1.15 Let R be a finite commutative local ring and
fx) = ao + arx +...+anx" be a polynomial in R[x]. Then oy : x —+ flx) induces an
R-algebra automorphism of R[x] if and only if ai is a unit and as, .. . ,a, are

nilpotent. Each R-algebra automorphism of R[x] is of the form o for some such f.

Suppose that § is an extension of R and suppose G is a group of R-algebra auto-
morphisms of S. Let
SC¢ = {s € S|o(s) =5 forallo € G},

be the subring of § fixed by the R-algebra automorphisms in the group G.

DEFINITION 1.16 Let G be as above. Then we say that S is a Galois extension of R
with Galois group G, denoted by Gg(S), if
1) 8¢ = R, and

2) S is a separable extension of R.

DEFINITION 1.17 A Galois extension S of R is called a splitting ring for a basic
irreducible fin R[x] if fis a product of linear factors in S[x] and § is generated over R by the

zeros of .



Now, without further ado we are ready to state the Galois theory for finite local

commutative rings, as stated in [14, Theorem XV.11].

THEOREM 1.18 Let R and S be finite local commutative rings and S a separable
extension of R. Then

1) S is a Galois extension of R and, if f € R(x] is a monic basic irreducible such that
S = R[xY(f), then the order of the Galois group |Gr(S)| = deg(f), S is a splitting ring of
fand S is the unigue Galois extension of R having R-dimension equal to deg(f).

2) Gg(S) is cyclic, isomorphic to G«(K) and generated by a power map

o:a- gk
on a suitable primitive element a.

3) There is a lattice preserving bijection between the subfields of K containing k
and the R-separable subrings of S containing R. If T is a separable extension of R in S,
then S is a separable extension of T and

1 = Gr(T) - Gr(S) - Gr(S) - 1
is exact.
4) S has a normal basis over R, that is, there exists an element a in S such that

{a(a) |o e GR(S)} is a free R-basis for S.

EXAMPLE 1.19 Let R = Zy. Then f{x) = x? + 1 is an irreducible polynomial in R[x].
Since x(f) is irreducible in Z3, fis basic irreducible. Hence, by Theorem 1.18, § = R[x]/()

is a Galois extension of R. We also know that deg(f) = 2, dimg(8) = 2 and |Gr(S)| = 2,



which means that Gz($) is isomorphic to Z» and so there are no proper R-separable

subrings of S containing R.

EXAMPLE 1.20 Let R = Zg. Then f{x) = x* + x* + x2 + x + 1 is an irreducible
polynomial in R[x]. One can check that n(f) is irreducible in Zs, so fis basic irreducible.
Hence, by Theorem 1.18, S = R[x}/(f) is a Galois extension of R. We also know that
deg(f) = 4, dimg(S) = 4 and [Gr(S)| = 4, which means that Gr(S) is isomorphic to
Z4. Therefore, there is an R-separable subring 7 of S containing R, where T = R[x]/(g)
and g(x) is a quadratic monic basic irreducible. By Theorem 1.18 (1), we know T is
unique, so we can choose g(x) = x* + 1.

Observe that if a is a root of fin S, then we can factor fas
fx) = (x— a)x— a*}x - a®)(x — (8a® + 8a? + 8a + 8)).
The set {1,a,a?,a>} is an R-basis for §. Then if Gz(S) = (o), we have
o(a) = a?
o’(a) = 8a° + 8a® + 8a + §
ocHa) = a?
oc¥a) = a.
To explicitly state what 7 is, we need to find the fixed ring of (?).
The polynomial g{x) = x? + 1 factors as g(x) = (x — [@* + a? + 5])(x + [@® + &? + 5])
and observe that
oXaP+at+5)=a’+a’+5

so a® + a? + 5 is in the fixed ring of (62} and T = R[a> + & + 5].



As the reader may expect the examples we have just described belong to a very

special class of local rings, which we define next.

DEFINITION 1.21 The Galois extension of degree r of the prime ring Z,~, where

p is a prime and # is a positive integer, is called a Galois Ring and is denoted by GR(p", r).

We should note that Galois rings were known to Krull in 1924, and were rediscovered

by Janusz and Raghavendran in 1966 and 1969 respectively [14, Pg 308].

EXAMPLE 1.22 One easily sees that the Galois ring GR(p,r) = GF(p"), the

Galois field of order p” and GR(p", 1) = Zp-.

EXAMPLE 1.23 In Example 1.18 § is isomorphic to the Galois ring GR(32,2) and
in Example 1.20 S is isomorphic to the Galois ring GR(32,4) and T is isomorphic to

GR(3%,2).

And finally we arrive at the highlight of this chapter which is [14, Theorem XVII.1].

THEOREM 1.24 (Structure Theorem for Finite Commutative Local Rings) Let R be a

finite local commutative ring of characteristic p" with maximal ideal m and residue field

k.Let[k : Z,] = r and {m;,...mz} be a minimal R-generating set of m. Then there
exists a subring T of R such that:
(1) T = GR(p",r), T is unique and is the largest Galois extension of Z,» in R.
(2) R is the ring homomorphic image of T[x,...,x4].

The Galois ring T is called the coefficient ring of R.



Hence, the theory of finite focal commutative rings reduces to determining the primary
ideals P in GR(p",r)|[x1,...,x4] and the quotient rings GR(p”,r)[x,,...,x2)/P. This
is an incredibly difficult job. Therefore, it would be very hard to actually find out how
many local rings of a given order there are. Even when we restrict our attention to the

class of local principal ideal rings, we do not have a complete classification.

DEFINITION 1.25 If R is a finite commutative local principal ideal ring, then

R is called a chain ring.

We note that if R is a chain ring with maximal ideal m, then each ideal of R is of
the form m’ for some positive integer ;. Hence, the ideals of R form a chain, thus the

name chain ring. We finish this section by stating [14, Theorem XVIL5].

THEOREM 1.26 (Characterization of Finite Commutative Chain Rings) Let R be a finite
commutative chain ring. Suppose that b is the least positive integer such that m® = 0.
Also, let char(R) = p" andr = [K : Z,). Then there exist positive integers t and s such that
R = GRQ", DxI(glx).p™"x")
wheret = b—(n—1)s > 0 and g(x) = x* + plasx*! +...+aix + ap)
where ap a unit in GR(p",r). Conversely, any such quotient ring is a finite commutative

chain ring.

EXAMPLE 1.27 Using the above theorem we know that R = Z4[x]/(x2 +2,2x) is a

chain ring. The set R can be represented as {0,1,2,3,y,y + 1,y + 2,y + 3}, where y satisfies

10



the equations y? = 2 and 2y = 0. The maximal ideal of Ris m = {0,y + 2,2,y} = (¥) which

has the property that m> = 0.

The classification of chain rings is of great interest. Currently, only partial classifications
have been accomplished. Clark and Liang classified all finite chain rings with invariants
p.n,r, 5, ¢ up to isomorphism provided that (p,s) = 1 in [2], where the invariants are as in
Theorem 1.25. In [7], Hou classified finite chain rings with invariants p,n,r,s,t, (p,s) = 1
up to isomorphism when n = 2 or when p || sbut {(p — 1) } s, where the invariants are as in
Theorem 1.25 and p || smeans p | sbutp? | s. Therefore, the classification of finite chain
rings with fixed invariants up to isomorphism is far from complete as of the writing of this
paper.

The study of Galois rings as well as chain rings is also important in current research in
coding theory. In {16], Norton provided among other things a solution to the classical key
equation of Algebraic Coding Theory over a finite chain ring. Later, Norton with Siligan
gave a decoding algorithm for alternant codes over a finite chain ring. Examples of such
codes are BCH and Reed-solomon codes over a Galois ring. In [5] and [6], the authors
showed that finite chain rings can be used to construct some useful nonlinear codes.

The goal of this thesis is to develop some new classes of finite rings. In terms of
Theorem 1.24, the rings we construct in later chapters will have r = 1 and & arbitrarily large.

We shall define abstract Witt Rings and study finite quotients of these rings.

11



CHAPTER 2
Q-WITT RINGS

In this chapter we introduce the reader to abstract Witt rings. In [10], Knebusch,

Rosenberg and Ware defined a class of commutative rings which are residue class rings of
Z[G] where G is an abelian torsion group. This paper gives a ring-theoretic approach to
the study of Witt rings of equivalence classes of nondegenerate symmetric bilinear forms
over a field of characteristic not 2. The main aim of this chapter is to define a special class
of finite rings within the general context of [10]. These rings do not generally occur in
quadratic form theory, but can be quotients of rings which do. This class of rings will be
called Q-Witt rings. In Chapter 4 we will consider a special subclass of these we call
SQ-Witt rings, which occur as quotients of Witt rings of formally real fields.

For the remainder of this section G is an elementary abelian 2-group, K a proper ideal of
the integral group ring Z[G], and R the residue class ring Z[G]/K. We let y be a character of
G, i.e., a homomorphism of G into C, the field of complex numbers. Note that if G is an
clementary 2-group, then since g = 1 forall g € G, we have that y(g) = +1 for all y.
Every character y gives rise to a ring homomorphism v, of Z[G] into Z. Similarly, any
ring homomorphism of Z[G] into Z, restricted to G gives rise to a character y of G.

RadR denotes the radical of R, which is the intersection of all maximal ideals of R,
and NilR denotes the set of nilpotent elements of 8. R, denotes the torsion subgroup
of the additive group of R, which is an ideal of R. We will use the following notation
as well. We let R,y = R/NilR. By SpecR we mean the set of prime ideals of R

topologized by the Zariski topology, and MaxR and MinR denote the subspaces of SpecR
12



consisting of the maximal ideals and minimal prime ideals respectively. We now state

a special case of [10, Lemma 3.1].

LEMMA 2.1 The minimal prime ideals of Z[G] are the kernels P, of the
ring homomorphisms v , : Z|G] —~ Z, with Z[G)/P, = Z. The maximal ideals
of Z{G] are of the form M = w)(pZ) = P, + pZ, where p is a positive prime

integer.

Due to the fact that any ring homomorphism of Z[G] onto Z is completely determined
by its kernel, there is a bijective correspondence between the set of characters of G and
the minimal prime ideals of Z[G]. Now we list some results from [10], which we shall
need later. We shall see that the finite rings we are interested in fall under the general scope
of {10], but are generally quite distinct from Witt rings of fields. They will be finite
quotients of the rings analyzed in [11].

From {10, Section 3], we have

LEMMA 2.2 Let R = Z]{G)/K. Then R is Jacobson; that is, each of its prime ideals is an

intersection of maximal ideals, NilR = RadR and R, o NilR.

LEMMA 2.3 R, = NilR if and only if no maximal ideal of R is a minimal prime ideal,

and R, = R if and only if all maximal ideals are minimal prime ideals.

LEMMA 2.4 Let p be an odd prime integer. Then the following are equivalent:
(1) There exists a character ¥ of Gwith G # v ,(K)N Z C pZ.

(2) R contains a minimal prime ideal M with RIM being a field of characteristic p.
13



(3) R has nonnilpotent p-torsion.

{4) R has nonzero p-torsion.

It is further shown in [10, Lemma 2.13] that Ay, defined as the kemel of the
augmentation map Z[G] ~ Z, defined by Y_ngg - 3 ng, followed by reduction mod 2,
is the unique maximal ideal of Z[G] containing 2. It is also proven that M, contains every
minimal prime ideal and that each maximal ideal distinct from My contains a unique minimal
prime ideal.

As in [10, Definition 3.12], we are now ready to define abstract Witt rings.

DEFINITION 2.5 Let R be a commutative ring of the form R = Z[{G]/K where G is an
elementary abelian 2-group and KX is an ideal of Z[G] with y (K)NZ = O or
v, (K) N Z = 2"Z for all homomorphism y of Z[G] and all characters ¥ of G. Then R is

called an abstract Witt ring for G.

We note that in the case of [10], the definition extends to Witt rings of abelian
g-groups with ¢ any prime. However, in this paper we will only consider Witt rings
of elementary abelian 2-groups. In the future, we will investigate adopting our ideas to
more general cases.

We shall finally state two characterizations |10, Proposition 3.15 and 3.16].

PROPOSITION 2.6 Ler R = Z[GYK where G is an elementary 2-group. Then the
Jollowing are equivalent:

(1) R = R, is a 2-group.
14



(2) v, (K)NZ = 2"Z for all characters y of G, and hence R is a Witt ring for G.
(3) R is local with unique prime ideal My/K.

(4) KNZ = 2"Z.

PROPOSITION 2.7 Let R = Z{G)/K where G is an elementary 2-group. Then
R, = NilR if and only if KN Z = (¢ and R is a Witt ring for G. In this case, R contains

nonmaximal prime ideals.

These two results precisely separate Witt rings of formally real and non-formally real
fields as we shall see in Chapter 4. It is here that we depart from the standard literature,
all of which has been aimed at understanding quadratic form theory. Note that any finite
ring is necessarily torsion, and so almost all of the rings we construct will fall under
Proposition 2.6. However, we shall concern ourselves with certain finite quotients of rings
falling under Proposition 2.7. They will occur as rings of functions on MinR and will
generally not occur as Witt rings of fields.

Assume for the moment that R, = Nil R. The reason these Witt rings are special is
that the reduced Witt ring R,.s = R/Nil R is still an abstract Witt ring for a subgroup
of G [10, Remark 3.13]. In [11, §3], it is shown that there is a natural embedding of

R.q into C(X(R),Z), the ring of continuous functions from X(R) to the ring of integers Z.

In C(X(R), Z), X(R) is the set of ring homomorphisms from R to Z, or equivalently
(using Lemma 2.1 and Proposition 2.7), MinR with the induced Zariski topology and
Z is endowed with the discrete topology. X(R) is a Boolean topological space, that

is, a compact, totally disconnected HausdorfY space. As such we can conclude using
15



[15, Theorem 2.4 and 3.1] that X{R) is normal and thus by Urysohn’s lemma the points of
X(R) are separated by the continuous functions of C{X(R), Z). We will denote the charac-

teristic function of a set B by eg. Recall that the characteristic function is defined by

{1 ifxe B
eg(x)= . .
0 ifxe B

Using [11, Lemma 3.5] we have that

LEMMA 2.8 For any Boolean space X, let B be the basis of all clopen (closed and
open) sels.
(1) For B\,B; € B, define
Bi+ By = (B1UB2)—(B1NB2)and B1B> = B N B,
Then B is a Boolean ring with these operations.
{2) The idempotents of C(X,Z) are the characteristic functions ep for B in B.

An element f € C(X,Z) has the form
f = 2 mi;eg,
1

where m; € Z and {B;) a partition of X by elements of B.
(3) B =C(X,Z,) viaB — es.
(4) The units of C(X,Z) are the functions of the form fg = 1 - 2eg for B in B.

Also, observe that for B,B\,B, € B
-1 on B
. { 1 on X-B

16



so that f3 = 1.
(5) f8.f2, = f5,+8,-

THEOREM 2.9 {11, Theorem 3.18] Let R be a Witt ring with R, = NilR and
lety : Z[G] = R be a ring surjection for some abelian group G of exponent 2. Then

(1) C(X(R), Z)/Rrea is a 2-primary torsion group and C(X(R),Z) is the integral
closure of Ry.q in C(X(R), Q).

(2) The sets H(g) = {x € X(R)lw(g)(x) = —1}, where g € G, and their
complements form a subbasis H(R) of the topology of X(R).

(3) H(R) is an additive subgroup of B, the Boolean ring of all clopen subsets of
X(R), containing X(R).

(3) Rrea = 7 + ZBe‘H(R) 2Zep.

And now without further ado, we are ready to define the rings that are the

subject of this thesis.

DEFINITION 2.10 A Q-Witt ring is a ring R formed by taking a finite quotient of a
torsion free abstract Witt ring S for a group G of exponent 2, viewed as a subring of

C(X,Z) with |X] < . We take the quotient by taking a function f € S to a function

fin C(X, U Z,,I) such that f(x) € Z,, for eachx € X.
xeX

By [10, Remark 3.20] we know that § < ZH\, thus it is an easy observation that a
Q-Witt ring R is a subring of [ | Z», and hence in particular a finite ring. In view of
xeX

17



Theorem 1.2, it will be useful to know when a ring breaks up as a product.

We give a topological characterization in terms of the prime spectrum.

DEFINITION 2.11 A ring R is called connected if SpecR is a connected topo-

logical space.

REMARK 2.12 From [12, Pg 79] we recall that SpecR is a connected topolo-
gical space if SpecR is not the union of two disjoint non-empty closed/open sets.

In order for us to prove the next theorem, we will remind the reader that for each
subset E of R, the closed subsets of SpecR, V(E) are the sets consisting of all prime
ideals of R containing E. Further, for any r € R, the sets U, denote the complement

of ¥({r}) in SpecR and form a basis of open sets for the Zariski topology.

THEOREM 2.13 Let ¢ : A —» B be a ring homomorphism between arbitrary
commutative rings. For any P € SpecB, we know that 1 (P) € SpecA.
Then the induced map ¢* : SpecB — SpecA is continuous,
Proof. To show that ¢* is continuous we need to show that for any open set U, in SpecA,
a € A, {(¢*)(U,) is open in SpecB. More specifically, we will show that
(¢*) (Ua) = Uya) in SpecB.
So,letac Ad. ThenP e Uyy o ¢la) € Poaec ¢ (PYc 4

¢ (P)e Us & Pe ($*)(U).

THEOREM 2.14 Let R be a finite commutative ring. Then R is a local ring if

and only if R is connected.
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Proof. Suppose R is local. Then we will show that SpecR can’t be expressed as the

union of two disjoint non-empty closed/open sets. Suppose SpecR = A U B, where A

and B are two non-empty closed sets. Then we know that 4 = V(1) and B = V(.J),

where I and .J are some ideals in R. Since R is local it contains a unique maximal ideal m,
with / € mand J © m, which impliesthatm € V(DN WJ)=ANB, soANB + 4.
Next, suppose R is not local. Then by Theorem 1.2 we know that we can express

R as a product R x R;. Then we will show that SpecR is the disjoint union of the closed
subsets of SpecR, X1and X3, which are homeomorphic to SpecR| and SpecR;
respectively, and so R is not connected.

Consider the surjective ring homomorphisms ¢; : R - R, for i = 1,2. Then by

Theorem 2.13 the induced maps ¢} : SpecR; - SpecR are continuous for i = 1,2.

We claim that for i = 1,2, SpecR; is homeomorphic to the closed subset X; = F(Ker¢,) of
SpecR. To show this is a homeomorphism, we observe that for each i, since ¢; is surjective,
there is a one to one correspondence between the prime ideals of R containing

Ker¢; and the prime ideals of R;. Thus, ¢ is a bijection of SpecR; and X; for i = 1,2.
Also, since ¢7 : SpecR; - SpecR is continuous, if we can show that ¢} (SpecR;) < X,
then the function @} ; SpecR; - X; obtained by restricting the range of ¢;

is continuous as well for i = 1,2. Thus, for any P € SpecR;, we have that

OHP) = ¢7H(P) = ¢;((0)) = Kerg;, so ¢} (P) € X; or ®} is continuous.

Similarly, @} (V(P)) = V(®;(P)) for any P € SpecR;, we have

S e V@ (P)) o S 2 @/ (P} = ¢;'(P) & ¢:5) 2 P © $:S) € 1(P).
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Hence, @7 is a homeomorphism of SpecR; and X; = V(Ker¢;). Thus, we have that
Xi € SpecR fori=1,2and so X, UX2 C SpecR.

Next, we show that SpecR is the disjoint union of X and X3. First, observe that
Xi=V(Kerd1)) ={P S R xRz |P 2 {0} xRy} and

X2 = V(Kerg:) = {P < Ry xR2 | P 2 R x {0}}. Therefore, Xy N Xz = @,
forif P € X1 N X2, then P 2 {0} x Rz and P 2 R, x {0}, which implies that

P o Ry x R;s0 P = Ry x R2. However, that is a contradiction, since Ry x Ry is
not a prime ideal. Finally, we must show that SpecR < X; U X3 to complete our
proof. So, suppose P € SpecR. Then since P is a prime, if (a.b) P then either
(a,1) € Por(1,b) € P. If(a,1) € P, then (0,1} € P. Therefore, {0} x R; € P,
which implies that P € V({0} x R;) = V(Ker¢i) = Xi. On the other hand, if
{1,b) € P, then (1,0) € P. In this event, R; x {0} < P, which implies that

P e V(R1 x {0}) = VF(Ker¢,) = X>. Hence, P € SpecR € X; UX>.

At this point we observe that if R can be expressed as a product of two rings, then
R is not connected (by the second part of the above proof). Hence, if R has nontrivial
idempotents e and /£, then R is not connected [12, Exercise 11 Page 79]. Equivalently,
if R is connected, then it contains no nontrivial idempotents. Using these observations,
Theorem 1.2 and [14, Theorem VIL.7], we see that the only finite commutative rings

with no nontrivial idempotents are local.
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The main goal of the remainder of this thesis is to analyze the structure of Q-Witt
rings. Due to Theorem 1.2, we know that since Q-Witt rings are finite rings, it is only
necessary to find the local Q-Witt rings in order to fully understand the structure of all
Q-Witt rings. We will show in the next series of theorems that if a Q-Witt ring is local

then each 71, must be a power of 2, or |[X] = 1 and n, is a power of a prime.

THEOREM 2.15 Let R be a Q-Witt ring, with R € C(X, U z,,,), X = X(R).
xeX

k
Ifne = || p¥ for some x € X, p; distinct primes and k > 2, then R is not local.
=1

Proof. We will view R as a subring of [ | Z,,. We will show that R has more than
xeX

one maximal ideal, which implies that R is not connected by Theorem 2.14. Therefore, by
Theorem 1.2 the ring R decomposes as a nontrivial direct sum of local rings.

To see that R contains more than one maximal ideal, we can construct a restriction map at x

I's
by ¥ : R - Z,,. By the Chinese Remainder Theorem, we know that Z,,, = ]—[Zp;z,-, which

i=1
implies that there is an induced ring homomorphism ¥'; : R - Z,, foreachi, 1 <i < k.
Then R/Ker('¥,} is isomorphic to the field Z,,, which implies that M, = Ker(¥;,) C Risa
maximal ideal in R for each i, Since & > 2 we know that R has at least two maximal ideals,
call them M, and M,. To see that M, is distinct from M, we need only to observe that

RIM; = R/Ker(Y ) = Zp, and R/M; = R/Ker(¥;) = Z, are not isomorphic since p1 # p».

It follows from this theorem that we need only consider Q-Witt rings where each », is a
power of a prime. In this next theorem we will investigate what happens in the event that

#, and 1, are powers of distinct primes for some x,p € X.
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THEOREM 2.16 Let R be a OQ-Witt ring, withR < C (X, U Fin, ) , Where
xcX

ny = p® and ny, = g® for some x,y € X = X(R) and distinct prime integers p and ¢.

Then R is not connected, hence is not local.

Proof. We view the ring R as a subring of | [ Z,e:. Then we can construct a restriction
xeX

map at x by ¥y : R 5 Zpes, and similarly a residue map aty by ¥, : R = Z .

These induce ring surjections P, : R > Z,and P, : R - Z,.

Since R/Ker(¥) is isomorphic to the field Z, and R/Ker(F,) is isomorphic to the field Z,,
we have that M, = Ker(P.) and M, = Ker('F,) are both maximal ideals in R, and are dis-

tinct as in the previous proof.

As a result of the above theorem we can concentrate on Q-Witt rings where each n; is a
power of the same fixed prime. We will consider two cases. First, we will look at the case
when each », is a power of an odd prime, and lastly we will show the rings we obtain when

each », is a power of 2, actually are connected so are local.

THEOREM 2.17 Let R be a O-Witt ring, with R C C(X, U Zp ) where
xeX

X = X(R) and p is an odd prime. Then
(1} if|X] = 1, then R is a local ring,

(2) if IX] > 1, then R is rot local.
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Proof. The proof of (1) is trivial, since R = Zpe= which is a local ring.
To show (2) we recall that R is a finite quotient of a torsion free abstract Witt ring §

for a group G of exponent 2. Therefore, we have a natural ring homomorphism from

Z[G] onto § < C(X,Z) and thus from Z[G] onto R < C(X, | J Zp=:). Let us choose
x=X

z,w € X such that @; > a,. Then since we know that R separates the points of X,

there isa g € G so that z € H(g) and w ¢ H(g) for H(g) as described in Theorem 2.9.

Therefore, we can construct a restriction map @ : Z[G] - C(X,| | Zp=) to {z,w} S X.
xeX

The map @ : Z[G] = C({z,w}, Zpe: | ) Zpew) is defined by

O(ae + bg) = a1+ b(1 - 2epy)) € R. Using this ring homomorphism we will show
that in fact R contains a nontrivial idempotent and thus by earlier observations, we know

pe+1  p*+1

that R is not connected. To construct this idempotent we consider 5 78

an element of Z[G]. Then we claim that

- @ 4 | @ 4 | @ 1 3!

is an idempotent we are looking for.

To see this observe that

F@y= T - 2t L1 = 2emp (@) = p* + 1 = 1 modulo p* and

Fw)y= L a,,2+ L-Z 622+ 1 (1 - 2epg(w)) = 0 modulo p® so

it is clear that ? is a nontrivial idempotent.
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In light of the above theorem, we have now only to consider the structure of the
Q-Witt Rings, where each n; is a power of 2. We will show in the next theorem that

these rings are in fact local rings.

THEOREM 2.18 Let R be a Q-Witt ring, with R C C(X, U Zae ),X = X(R).
xeX
Then R is a local ring.

We will prove the above theorem using some lemmas, which we shall state and

prove first.
LEMMA 2.19 Suppose ry,...,r, are integers and n a positive integer withn > 2.

n H
Ifweletg; € {1} fori = 1,...,n, then we have that 3 ,r; = 3 &+ (mod2).

=1 =1

Proof. Observe that for each i, 1 —g; = 0 or 2, hence

Yor—Xeri = 3(1—&)ri = 0 (mod?2).
=1 =1 i=1

LEMMA 2.20 Suppose n and a,,...,Q, are positive integers. Then we have

n * ”n
the group isomorphism (]_[ Lo ) = [1Z3«.
=1

=1

n n *
Proof. Let f : Hzgai - (HZga;) be the map defined by f{(a;)) = (a:), where a; € Z3«,
=1 i1
foreach i, | <i < n. Then it is easy to see that fis a group homomorphism, since for
n
(@1),(b;) € [ | Z3«, we have that
=

S@) (b)) = fabi)) = (aibi) = (a:)(b;) = K (a))R(b)))
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and also f{(1;)) = (1;). fis injective, since if (a;) € Ker(f) then f(a;)) = (1,)
implies that (a;) = (1;)ora; = 1 foreach i, 1 < i < n. Finally, we need only to show

that in fact fis surjective, to show that fis an isomorphism.

So, let us suppose we have (a;) € (]_[ Zzﬂr) . Then we know there exists an element
i1
(b)) € (H Zzu;) so that (a;)(b;) = (a:b:) = (1), which implies that a; € Z3« for
i1

B
each i, 1 << a. So, the element (a;) € [ Z3.

=1
And now without further ado we prove Theorem 2.18.

Proaf. As before, we recall that R is a finite quotient of a torsion free abstract Witt
ring S for a group G of exponent 2. Therefore, by definition we know we have a natural ring

homomorphism from Z[G] onto § € C(X, Z) and thus from Z[G] onto R © C(X, | J Z2= ).
xeX

Since each g € G has exponent 2, the image of each g is a function of the form
Je = 1 —2emg in S as was described in Theorem 2.9. Using this observation we

have a ring homomorphism @ : Z[G] - § » R © C(X,{ ] Zz-) defined by
XX

(I)(Z agg) =ay + . ag(l - 2ey,) € R, where ¢' is the identity in G. Using
gl £eG

this characterization, we wili show that R has a unique maximal ideal and thus R is local.

To do this, we observe that if 7 = a, + 3_ ag{1 — 2ex)) € R, then for each
gl

x € X, by definition of the characteristic function, 1 — 2ep,)(x) € {£1}. Soif

25



we let g € {t1}, then f(x) = (as + 3 spgag)(mod2%) for each x € X, where
ged

¢' is the identity of G and cach a; € Z.
Further, we recall that if we denote by m, the maximal ideal of Zz.-, then we have that

Zow = Z3ex \J m;. Also, it is easy to see that either (a, + D en 2az) = 0(mod?2) and
g=G

50 (@ + D Eugdy) € M or (@, + 3 £ g)dg) = 1(Mod2) and s0 (a, + 3. e gttg) € Zhus
geG £5G gel
for each x € X. We can further see using Lemma 2.19 that for all x,3 € X, we have

that (@, + Y exgs) = (@s + 2 €550 {mod2), which implies that
gels g

either (@, + X 8ugag) € Myand (2, + D, eo0ag) € My, o (@ + Y Epg)dg) € Ll
£2<G 2eG geld

and (a, + Y €4.00s) € Z3+. These observations now allow us to say that (x) € m, for all
ge?

xor f(x) € Z}u forallx € X. Thus, f € Rifand onlyif T € (HZEn) U (me),
xeX xeX

x=Y

which by Lemma 2.20 means that f € (H Zz«u) U (]_[ mx) . Therefore,
xeX

R C (H Zzﬂx) u (]_[ mx), which is cleatly a local ring. This implies that R has no
xcX xeX

nontrivial idempotents, so must also be local.

PROPOSITION 2.21 The largest possible Q-Witt ring R, with
Rc C(X, U Z]ax) has the form (H Zgax) U (]—[ mx) with |R| = 2] [ 2%
*X xeX xeX rex

Proof. By [11, Example 3.9 and Theorem 3.20] the largest torsion free Witt ring
S is of the form § = Z +C(X,2Z). Therefore, the largest possible Q-Witt ring will be
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the quotient of S = Z +C(X, 2Z). By the proof of Theorem 2.18 we know that

Rc (n Lo ) 8] (H my J , and since R is the largest possible such subring implies
xeX xeX

that R must be (H Zzax) U (me). Since |Z3ex| = Imy| = 2%, we have that
weX ¥X

(2 ) v (1)

PROPOSITION 2.22 Let R be a Q-Witt ring, withR < C (X, U Zinex ) . Then
xeX

= 2]]2°. Hence, [R} = 2] 2%
xeX xeX

R is a finite quotient of a torsion free abstract Witt ring § for a group G of exponent 2.

(1) for a = max a, we have that char(R) = 2¢ and [R| divides 2 [ [ 2%,
xeX xeX

(2) the maximal ideal m of R is generated by 0 < k < |G| elements of the form
2epe) for some g € G, and

(3) the residue field of R is Z; and R is a homomorphic image of
Zys[y1,-. . Vil, JOr some indeterminates yi,..., V.

Proof. The first part of part (1) is clear. To see that |R| divides 2] [ 2%, we need
xeX
to recall from the proof of Theorem 2.18 that R is a subring of
T= (H Do ) U (H my ) Thus, by Proposition 2.21 the order of R divides
xeX xeX
the order of T so |R| divides 2] [ 2.
xeX

Observe that the maximal ideal of T is H m,, where we denote by m, the maximal
xeX

ideal of Zye: as in the proof of Theorem 2.18, hence m < [ [ m,.
xcX
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Then ®(1 — g) = 2ey € Rforall g € Gand 2ep(x) € {0,2} foreachx € X.

Thus, 2e,;(x) € m, < [ [m, for each x € X. Therefore, the ideal generated by the
xeX

set {2ep | for some g € G} is contained in m. By [10, Theorem 2.9 (iv)], we know

that the unique maximal ideal containing 2, the augmentation ideal M; in S, is generated by
the same set, Furthermore, since we have the surjection S -+ R, and S/My = Z; and

Rim = Z;, we can conclude that My maps onto m. Thus, m is contained in the ideal
generated by the set {2e ) | for some g € G}, which concludes our proof of part (2).

Finally, by Theorem 1.24 and parts (1) and (2) we can conclude part (3).
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CHAPTER 3
GROUP RINGS

In this chapter we will focus our attention on Q-Witt rings, which are simply
quotients of the integral group ring Z[G], where G is an elementary abelian 2-group. We
recall that every abstract Witt ring for a group G in fact occurs as a quotient Z[G)/K, where
the ideal X satisfies properties as in Definition 2.5. For the remainder of this chapter we will
consider the special case when the ideal X is the zero ideal. We show what all Q-Witt

rings look like in the case of |G| = 2 and generalize some of our results for |G| > 2.

THEOREM 3.1 [3, Theorem 3.8 (a),(b) & ()] Let S be a Witt ring,
S = Sy and | X(S)| = 27, n = 0. Let H(S) be a subbasis for the topology of X(S).
Then the following are equivalent:

(1) S = Z[G] (and G has order 2™),

2} if H € H(S) , H # B,X, then |H| = 2"!;

(3) [H(S)| = 2™

Recall from Chapter 2 that all abstract Witt rings, hence Q-Witt rings, are quotient
rings of Witt rings described in Theorem 3.1, that is quotients of a group ring Z[G]. We
shall see that for group rings we can do explicit computations of some of the more general
results of Chapter 2.

At first, if # = 0, then X has only one point, say x, so § = Z, thus R = Z,,. Thus,

from now on we wil] assume » > 1.
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We consider the quotients R © C({x,v}.Z,, U Zy,) of Z[Z,]. We will approach
this problem by considering four cases, all of which give us some different and interesting
results. In our first case, both 7, and ny are arbitrary integers with the only restriction
being that ged(n,,n,) = 1; in our second case we shall investigate what happens when 7,
and ny, are both positive odd integers with ged(nx, ny) > 1; thirdly we will consider
what quotients we shall realize if, without loss of generality, n, is an even positive integer
and n, is an odd positive integer. And finally, in our fourth case, we will let n, and n, be
arbitrary even integers. Our goal of this chapter will be to generalize the findings from
the case |X] = 2 to when |X] = 2. We shall write the group Z; = {¢',g} and

[a]s = amodb.

LEMMA 3.2 Let n, and n, be positive integers with ged(n,,ny) = 1.
Then R C C({x,¥}. Zu, U Ly,) is isomorphic t0 L, X L, = Ly,
Proof. First observe that R is naturally a subring of Z,, x Z,,. Let 8 be the
homomorphism Z[Z;] » C(x,y},Z) - C(4x,¥},Zn, U Ln,) = Zn, X Ln,.
Since g is a unit in Z[Z;], g is mapped to a unit f; = 1 — 2eu) € C({x,y}, Z), by
Lemma 2.8(4), and e’ is mapped to the constant function 1. We may assume that
x ¢ H(g)andy € H(g). Then @ is defined explicitly by

O(re" +5g) = ([r + ), [r — 51n,)-

Therefore, to prove our claim we must demonstrate that & is surjective. To do this
observe that we only need that ([1],,[0],) and ({0],,[1]4,) are in the image of

8, since these elements will generate all of Zy, x Z,,.
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Now, since the ged(n,,7,) = 1, we know that there exist integers «, v such that

uny +vny = 1. If we letr = vn, and s = 0, then

O(re' +58) = ([1 — unsla,, [vy]n,) = ([1)n,, [0, ).

Similarly, if we let ¥ = un, and s = 0, we find that

B(ref +Sg) = ([lmx]nx,[l - Vny]ny) = ([O]nxs[llny)a

which concludes the proof.
At this time before we discuss the other cases we would like to give an example.

EXAMPLE 3.3 We consider the quotient of Z[Z,], where we let n, = 2 and
ny = 3. Then according to Theorem 3.4, R = Zg. One can easily check this, since
the homomorphism which takes re’ + sg — ([r + 5]z, [F — s]3) gives us that, in this case
the image of Ze' already is {(1,1),(0,2),(1,0),(0,1),(1,2),(0,0)} = Zs. We can also
realize R as the quotient ring Zs[Z:)/(e' + g), since this ring has exactly 6 elements due to

the fact that the ideal (¢’ + g) = {¢’ + g,2¢' +2g,3¢’ + 3g.4¢’ + 4g,5¢' + 5g,0}.

REMARK 3.4 It is important for us to observe that our proof of Lemma 3.2 shows
that in this case R is the image of Ze', since we were able to take 5 = 0 for both preimages.
LEMMA 3.5 Let ny and ny be positive odd integers. Then R € C({x,y},Zn, U Zy,)

is isomorphic (o Ly, % L,

Proof. As before we need to show that 8 : Z[Z,] - Z,, x Zj, as defined in the proof of

Lemma 3.2 is an epimorphism.
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This time we shall show that any element ([m]x,,[k]s,) € Zp, X Zp,, must have a

pre-image in Z[Z,].

m(n, + 1) + k(n, + 1) and s = m(nx+])—k(ny+l)_

Letr = 3 = 5

It is casy to see that r,s € Z, since 2|(n, + 1) and 2|(n, + 1).

By making the above choice for » and s, we can calculate

O(re' +s58) = 6(

m(n; + l)gk(ny+ 1) e + m(ny, + l)gk(ny+ 1) ) =

([m(nJr + 1)1, . [k(ny + 1)]ny) = ([m]n,.[k]n,) € Zp, X Zy,. So indeed 6 is an epimorphism.

LEMMA 3.6 Let nx and ny, be positive integers with n, = 2k and ny = 2m + 1,

where k and m are positive integers.Then R © C({x,y},Zn, U Zy,)

is isomorphic 0 Zip, X Ln,.

Proof. As before we need to show that 8 : Z[Z;] + Z,, x Zj, as defined in the proof of
Lemma 3.2 is an epimorphism. We will show that ([1],,,[0],) and ([0],,,[1]»,) are in the
image of 8.

Now, by letting » = £+ m+ 1 and s = k£ — m, we can easily check that in fact,

O(re’ +sg) = 0((k+m+ e’ + (k—m)g) = ([2k+1],,[2m+1], ) =

([ + oo [y1) = ([11,,5[01,,) € Z, % Zon,.

Similarly, by lettingr = k+ m + 1 and s = £— m — 1, we can see that

(e’ +sg) = O((k +m+ e’ + (k—m—1)g) = ([2k], ,[2m +2],, ) =

([asdnes [y + 11,) = (01 [11n, ) € Zon, X Z,.

So indeed @ is an epimorphism.
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The above two types of Q-Wiltt rings are special cases of Q-Witt rings, which
we proved in Chapter 2 to be not connected. We confirmed this of course by specifically
proving what their ring structure is. In both of the above cases the image of the Witt rings
turned out to be the product Z,, x Z,,, which are rings that are well understood.
We point out that these rings are mentioned in [10, Theorem 3.8) but are not Witt rings for
the group Z, since they do not meet the conditions of Definition 2.5. So while our
Q-Witt rings do sometimes fall outside the category of abstract Witt rings of [10],
Chapter 2 shows that this occurs only via a product with quotients of Z.

In order for us 1o discuss the last cases we need to introduce some new notation.

Suppose £ is a positive integer, say & = 2m, where m is a positive integer. The set
Zy = {0,1,...,k~ 1} can be written as the union of E(Z;) and O(Zy), where

E(Zy) = {0.2,...,k— 2} and O(Zy) = {1,3,...,k— 1}. Clearly, we have that
E(Zy) N O(Z:) = . Also, using elementary number theory, it is easy to show that
if k1 and k- are even positive integers, then (((Zx,) x HZy,)) U (E(Zy,) % E(Zy,))
is a subring of Zy, x Zy,. In fact, if k1 and k7 are both powers of 2, this subring is

connected, so local, by Theorem 2.18 and Proposition 2.21.

LEMMA 3.7 Let n, and n, be positive even integers. Then
R < C({x,y}, Zn, U Zn, } Is isomorphic to ((Zn,) x O(Zn,)) U (E(Z5,) x E(Zn,))-
Proaf As in all the above cases, the mapping @ : Z[Z;] — R given by
B(re’ +sg) = ([r + 8]n,. [¥ — 5]»,) is a ring homomorphism. For any re' + sg ¢ Z[Z],

since ¥ + 5 =7 — smod2, we have 8(re + sg) € (O(Zn,) x H(Zp,)) U (E(Zn,) x E(Zn,)).
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To see that @ is surjective, let us first suppose ([a],,.[b],,) € NZp,) x X(Zy,). Then

n, -2
25y

there exist integers i € {0,1,..., n"z_z}andj e {0,1,...,
suchthate =2i+1and b =2j+ 1. Bylettingr =i+j+1ands =i—j, we
can see that

B(re' +3g) = ([ +/+ 1) + (=Dl [ 47+ 1) = G =D]n,) = ([a],:[P],, )-
Next, suppose ([a],,.,[8],,) € E(Zp,) x E(Zn,). Then there exist integers

ny 2 ¥}, such that g = 2kand b = 2/,

ke {0,1,....75=2yand/ € {0,1,..., .

2

By letting » = k+ ]/ and s = £ — [, we can see that

8(re’ +5g) = (k+ 1) + (k= Dl [(k+ 1) — (k= D]wy) = ({al,,..[2],, )

and hence @ is indeed onto.

EXAMPLE 3.8 We consider the Q-Witt ring R to be the quotient of Z[Z,], where
X = {x,y} and take n, = 4 and n, = 6. We view R as a subring of Z4 x Z¢. Then
using the map 8 : Z[Z2] - Z4 x Z¢ defined in Lemma 3.2, we find that
R = {{1,1),(2,2),(3,3),(0,4),(1,5),(2,0),(3,1),(0,2),(1,3),(2,4),(3,5).(0,0)}.
Observe that R is not connected, since the element (1,3) is a nontrivial idempotent.
Hence, this ring is not a local ring. Also, since |R| = 12 and char(R) = 12, R must be
isomorphic to Z12[G)/(e’ + g), since the ideal (¢’ + g) = {0,e +g,...,11le + 11g}
has 12 elements. (Compare this to Example 3.11 below.) More familiarly, R is

just Zia
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In this event R is the image of Ze', however, this is not the case in general for the
Q-Witt rings which are of the form described in Lemma 3.7, Therefore, at
this point we would like to find the ring structure of all the Q-Witt rings that

occur as in Lemma 3.7.

LEMMA 3.9 Let n; and ny be positive even integers. Then

_ ged(ny, ”y)
ged(ny, ny) !

ifk 3

= lem(#x,ny,) and m =

then R © C(X,Zn, U Zn,) is isomorphic to Z,[Z;)/(me + mg) and |R| = 25 = km.
Proof. Using the map 8 : Z[Z,] —» Zn, x Zy, defined in Lemma 3.2, we find that

R = Zi U (Zi +6(g)) U...U(Zy + (m~ 1)0(g)),
where if ¢ is determined by writing 2m = ged(n,,ny) = rh; + gny, then
mi(g) = ([Mlnwy[-m)s) = (@ny — m)([1n.s[1]n,) since gm, —m = m — rns.
Therefore, it is clear that char{R) = k, which implies that R must be isomorphic to

a quotient of Zx[Z,]. Also, by counting we obtain

IR| = km = gcc’ll(x;znyn ) ng(;”’n” ) - nx,zn.y . These two observations
X TPy

together suggest that R must be isomorphic to Z[Z2]/(me + mg), since the ideal

(me + mg) = {me +mg,..., %(me + mg) = 0} clearly has order ?nk_

It is no surprise that the Q-Witt rings we just characterized are once again not
local and thus not connected in all cases except for the following special case as we

showed in Chapter 2.
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COROLLARY 3.10 Let ny = 2" and ny = 2™, where n,m are positive integers with

m = n.Then R © C({x,y},Zn, U Zy,} is isomorphic to (Z3» x Zim) U ((2Z27) x (2Z3m))

and therefore to Zyn[Z:1/(27 (e’ + g)) and \R| = 2™,

EXAMPLE 3.11 We consider the Q-Witt ring R to be the quotient of Z[Z,], where

X = {x,y} and take n, = 2% and n,, = 23. Then we view R as a subring of Z4 x Zj.
Using the map @ : Z[Z;] - Z4 x Zs defined in Lemma 3.2, we find that

R ={(1,1),(2,2).(3,3),(0,4),(1,5).(2,6),(3,7),{0,0),

6(g) = (1,7),(2,0),(3,1),(0,2),(1,3),(2,4),(3,5),(0,6)}

so we can express R = Zg U (Zs + 6(g)). This ring R has characteristic 8, so it is
easy to see that R is a quotient of Z3[Z,]. Furthermore, it is easy to check that since
R has 16 elements R is isomorphic to Zs[Z2]/(2¢’ + 2g), where

(2e' +2g) = {2e¢' +2g,4¢’ +4g,6¢' + 64,0}
as was established in Coroliary 3.10. Further, we can observe that the units of R,
R* ={(1,1),(1,3),(1,5).(1,7),(3,1),(3,3),(3,5),(3,7)} have the property
that each has order equal to 2. In addition, the maximal ideal of R,
m = {(0,0),(0,2),(0,4),{0,6),(2,0),(2,2),(2,4),(2,6)} = ((0,2),(2,0)).

We can also easily check that m is the unique prime ideal of R. We can also conclude

that this R is not a chain ring, since the maximal ideal m is not a principal ideal.

Using the above example we can further list some interesting properties of the

Q-Witt rings of the type described in Corollary 3.10.
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PROPOSITION 3.12 Let R = (Z3 x Z3n) U ((2Z2n) x (2Z2m)) or
R = Zom[Z2)/(27 (e’ + ). Then the units of R, R* = Z3» x Z3m each have
2-power order.
Proof. To convince ourself of the above we need to only observe that Z3» is a
multiplicative subgroup of Z,» and so each element of Z3» has order, which
divides 27!, Similarly, we can say that each element of Z3» has order, which

divides 2™!. Therefore, we can state that every unit of R has 2-power order.

Next we will show you a nice calculation, which could be very useful in
certain areas, We will show explicitly what the ideals are in R and discuss their

properties. Before we do so, we introduce a definition.

DEFINITION 3.13 Let I be an ideal of a ring R. Then the nilpotency of I

is defined to be the smallest positive integer » with I = 0.

PROPOSITION 3.14 Let R = (Z3n x Z3w) U ((2Za») x (2Zam)). Then

(L ifn=m=1, then R = Z; has only the trivial ideals and the zero ideal (0)
is the maximal ideal and its nilpotency is clearly 1, so R is a chain ring.

(2)ifm>n=1, then R = Zy» has m + | ideals, each of the form (27) = 2! 7y,
where 0 < i < m; with maximal ideal (2) with nilpotency m, so R is a chain ring.

(3)ifm > n > 1, then R has exactly 2n + m — 1 ideals, and the unique maximal
and prime ideal w is not principal and has nilpotency m, so R is a local ring, but

is not g chain ring.
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Proof. Part (1) and (2) are clear. To show part (3) we need to recall that each ideal in Z,«,
where k is a positive integer, is of the form (27) = 2/Z,+ with 0 < i < k, where (2%) = Z
and (2%) = (0). Hence, there are exactly £ — 1 nontrivial proper ideals of Z,+, which are
all additive subgroups of 2Z,:. Also, it is clear that the nilpotency of the proper ideal

(27} is %. And, finally (2°) 2 (2') 2...(2") 2...2 (2%) for each i with 0 < i < k.

Using this observation, we can easily see that if we set 1, = ((2,0)) and I, = {(0,2)),
then I, I, are both principal ideals of R where the nilpotency of /, is #, and of I, is m.
These ideals are very well behaved. Observe that 7,1, = ((0.0}), which implies that
(I, + In)' = I, + I, for all positive integers /. Similarly, I}, N F, = (0,0) for all positive
integers. And finally, we have that Ii N F, = 17 as well as It N B, = I
for each positive integer i,j.
Now, to show that the nilpotency of m is m, first we observe that

Un+I)" =17+ = 0.
To convince us that m is the least positive integer with this property suppose
k is a positive integer less than m with (J, + 7,,)* = 0. Then

(Li+I) =F+15 =0,
which is a contradiction, since even if /X = 0, the nitpotency of I,
is m which means 7%, # 0 for any positive integer less than £.
Seeing all of the above, we can now state that the set of all ideals Iz of R consists of
(0),R,1ny.... 0 Ly T =1L+ L., B + 271 whence

Hrl=2+(mr-1)+(m—-1)+(n—-1)=2n+m-1.
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At this point we generalize some of our findings to the Q-Witt rings R, which are
quotients (in the sense of Definition 2.10) of arbitrary group rings. That is, we will construct

the rings R © C(X, | J Z»,) which are quotients of Z[G], where |G| = |X] = 2" with»n > 2
xeX

and certain conditions on each n,. We will generalize the first two cases that we presented

earlier in this chapter. And we will also show the ring structure of R € C(X,| ) Z,,),
xeX

where each ny is some positive integer power of 2.

In our next Propositions, we will generalize Lemma 3.2 and Lemma 3.9.

PROPOSITION 3.15 Let n, be positive integers with ged(n,,n,) = 1

for eachx,y € X. Then R € C(X(S),|J Z»,) is isomorphic to [ | Zy,.
L= g xeX

Proof. First we observe that R is naturally a subring of [ | Z.,. Next, we show that
xeX

the map 8 : Z[G] » [ Zn.. induced by Z[G] - C(X(S), | J Z»,) is a ring epimorphism.
xeX xeX

To see this we observe that | | Z,, is the image of Ze', which follows from the
xeX

Chinese Remainder Theorem.

PROPOSITION 3.16 Let n, be a positive odd integer for each x € X.

Then R < C(X,| Zn,) is isomorphic to | | Zn,.
xeX xeX

Proof. Recall that R is a finite quotient of a torsion free abstract Witt ring S for a group
|G| = 27. Therefore, we have a natural ring homomorphism from Z[G] onto
S € C(X,Z) and thus we have @ : Z[G] - R € C(X,| Z»n.) <[] Zn, defined

xeX xeX

as in the proof of Theorem 2.18.
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To show that @ is an epimorphism, let x € X. Then by [3, Lemma 3.7], there are

n
€15---,8n € G such that {x} = [} H{(g;),. Observe that for each such g;, ®(1 - g;) = 2ey,
i=1

and so ¢(ﬁ(l -g)) = 2”ﬁeH(g,) = 7. Notice that f(x) = 2" and f()) = 0
=1 =1

forallx + y e X. Now, since ged(n,,2") = 1, we know that 2" € Z; .

Thus, there is an a € Z,;, so that a2” = 1{mod#n,), which implies that

the element (m)zex withm = 1(modn,) and m = O(modn,) forallx # y e X

is in the image of ®@.

Since we chose x arbitrarily from X, we just showed that all elements of the form
(m)zex with m = 1(mod#n,) and m = O(modn,) for all x #+ y € X are in the

image of ®, which will generate [ [ Z,,.
xeX

In light of our findings in Chapter 2, we know that in the case of n > 1, the only

local Q-Witt rings are those rings R such that R = C(X, | ] Z»,), where each »; is
xeX

some positive integer power of 2 and n, > |X]. Therefore, for the remainder of this
chapter we will concentrate on the local Q-Witt rings. First, we give the ring structure

of some local Q-Witt rings and determine the order of those local Q-Witt rings, where

each ny is the same power of 2 which is greater than the order of the group G.
THEOREM 3.18 Let R be the image of Z[G] in C(X,| ) Z,.). Let ny = 2%
¥eX

with a; a positive integer for eachx € X and each ny > |G| = 2".

Then R is isomorphic to Zo=[G)/(2*"([J(e’ + e4ing)), x € X)
i=1
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where @ = max &, and {g1,...,gny is a fixed Zy-basis for G, and the

xeX

n
* signs €¢:x) are chosen depending on x € X, so that {x} = [H(-e.g,).
i=1

Proof. Recall that we have a natural ring homomorphism from S = Z[G] into C(X, Z) and

thus from S = Z[G] into C(X, | } Z.,) where |X] = 2" = |G}, » = 2. Then as in the proof
=K

of Theorem 2.18, we define ® : Z[G] - R < C(X,| ] Zn,) by
xeX

O(_ asg) = as +a; 3,(1 —2en) € R, where ¢’ is the identity in G. First, we note
g=G 2=

that, for a fixed x € X, the function f; induced by 2% [](¢’ + £40ng:) in C(X,Z) is such

=]

that £u(x} = 2% atx and fi(y) = O atall x + y € X. Therefore, fx € Ker® for each

n
x € X. Hence, we have that 2% "( [ (e’ + euxng1)), ¥ € X) © Ker®. Next we observe

=1
that the kernel of @ consists of all f € C(X, Z) in the image of the Witt ring, which satisfy
fx) = 0(mod2*) for each x € X. Observe that any such function is clearly a Z-linear
combination of functions # € C(X, Z) with A(x)} = 2% fora fixed x € X and
h(y) = O forall x + y € X. These functions % are precisely the ones we have included as

generators fot the kernel of ®. Thus, we can conclude that if 2% > 2*, then R is isomorphic

0 Z2o[GY (2% ([ [(e' +5uxgi)), x € X) where @ = max a;.
=1 xeX

The genera! case needs to be further investigated. However, we do have results in the

special case when n; is the same constant as a special case of the above Theorem.
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COROLLARY 3.19 Suppose R is as above. Let n, = 2% > |G| = 2" for each

x € X, where a is a positive integer. Then R = Zy«[G)/I'where

1= (2“"’ Il (¢' - gw), foreachr, with0 < r<m 1 <k < (f)), where the

£4,5GY
( 7)) r-subsets of {g1,...8x}, a fixed Zy-basis for G, can be indexed as
G* = {gk,,....86} for 1 <k < ("). Furthermore |R| = 2@e-m2""

Proof. First we observe that as a special case of Theorem 3.18, we have that

Zo=[GY Q2% ( [ [(e' + eangi)), x € X). Therefore, we need only to prove that the
=1

ideal (22 7( [ ](e' + guxg:)), x € X) is the same as the ideal J. To show this

=1

once again we willuse @ : Z[G] + R € C(X,| ] Z»,) as in the proof of Theorem 2.18.
xeX

By [3, Lemnma 3.7], forany r, 0 < r < n, we have H(gy,),...,H(g) in H(Z[G)),

so that = 2™ for some G¥. Then we can conclude that

n H(gk;)

gk, Gt

O( [] (¢ —2x)) =27 [1 eug,sothat2” [T epg, (x) = 27 at each
Bk; Gk Bk; <G¥ Bk eGl '

xe [ H(gy)and2" TT e, )(v) = Oateachy € X— (| H(gs).

g&iEGﬁ gkiEGﬁ gquEGlrr
Therefore, we can conclude that all the elements of the form

297 [1 (€' - gr) € Z[G] will have images of the form k € C(X,Z), with
gk, <GF

h(x) =2%ateachx € [} H(gy)and h(y) = Gateachy € X— (] H(gs).
g eGh gr,GH

42



"
Thus, 7 is contained in 2°"( [ [(e' + €ung)), x € X).
=1
To show the inclusion in the other direction, we show that the generators of the ideal

n
2 (JJ(e' +e@xngi), x € X) can be expressed as Z,«-linear combination of elements
=1

of the ideal 1. So, let 2*™( [ J(e' + £¢:xg:)) be an arbitrary generator. Observe that if
i

gy = —1 for each (i,x), then 2% "( [ [(¢' + eang?)) =2°"([ (' - &) €L
=1

i
So, we can assume that g,y = 1 for some (7,x). Without loss of generality we will

assume that gy = 1 for 1 <i < m < n, then

2en( ﬁ(e' +EGng)) = 2°7( ﬁ(e’ + g X f[ (e' = g:))). So, it suffices for us
=1

i=1 i=m+1

=

m n
to show each term of the form 2%#( [ J(e' + g)([] (¢' - g))) with 1 € i< m < n,
i=1 ;

=mt1
can be expressed asZ;--linear combination of elements of the ideal 1. We will do so using
induction on m.

First, suppose m = 1.Thene' + g = —(e' — g) + 2¢', so we can conclude that

20n( (' + g)( [T (¢ —g) =

i=m+1

~20ne - [1 (' ~g0) +2 ([T (¢ ~g0) <.

i=mt1

m-1
Next, suppose that [ [(¢' + &) = 2 aws [] (¢’ — &), where ag,y € Z;«. Then

=1 gr Gt

using case 1, we can write that
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lj(e' vg) = (€ +gm) Tagy [T € -ge)

B, €G*

=3 (-agn)e' —gm) 1] (€' —g)+ 2 2aey [1 (¢’ —gi). Therefore,

gr,<GF gx€Gh

gomng f}[(e’ v2 )] -2)) =

i=m+1

2 S-aun)e' - gn) 1 =) [T - +

gr,<GE

253((D2a6 T] (@ -ge)) ([1(' —gd)) e 1.

&5,cG} i=m+1
To complete our proof we need to find the order of this ideal .
Since there are { 7 ) r-subsets G¥ of {g1,...,2x}, there are ( 7 ) elements of the

form 2¢™ 1 (¢’ — &) in 1, which implies that
gieGr

) =272+ (5) o 2) (i) = 272" since
n(3)+m-D(7) +.+1(,7) =n((G )+ (7 Y+ (D D = mm
Therefore, we can conclude that since |Z:[G]| = (2%)%" = 297",

IR| = |ZZ°[G]I o2 P

|I'| 2”21F1
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CHAPTER 4
SQ-WITT RINGS

In this chapter, we will define a special class of Q-Witt rings, SQ-Witt rings, which
occur naturally as quotients of Witt rings of formally real fields. Finitely generated reduced
Witt rings of a formally real field are very well understood. Craven in [4] showed that
these rings can all be constructed by a very concrete recursive process. The advantage of
this observation is that theorems about them can be proven by induction via that recursion.
It is hoped that the quotient rings we describe will provide interesting classes of finite rings
with possible applications to coding theory.

We will show that all SQ-Witt rings arise from a recursive construction.

We will now give some background and definitions so we understand the Witt ring of
a formally real field. By a Witt ring #(#), we mean a ring of equivalence c¢lasses of nonde-
generate symmetric bilinear forms over the field F and W,.2(F) = W(F)/NilW(F). For
further developments and definitions on Witt rings we found [13] to be very detailed.
For the remainder of this thesis we will let F be a formally real field, i.e., a field
where —1 is not a sum of squares. A nice example of a formalily real field is of course the set
of real numbers R and similarly one easily sees that the set of complex numbers C is not
formally real. It is important to also observe that a formally real field by virtue of its
definition, must have characteristic 0.

By an ordering of a field F one means a subset P of F, which satisfies

N0 g P,2)If0+x € F, theneitherx € Por-x € P,and3) P+ P c Pand
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PP < P13, Definition 1.2 Page 224). From [11, Remark 2.7] we know that the
set of orderings on F can be identified with the ring homomorphisms W(F) » Z or
equivalently with the minimal prime ideals of () as was observed in [11, Remark 2.7].
Therefore if W(F) is Witt ring of a formally real field F then Xr may be identified with the
set of all orderings of 7. Observe that the map W(F} - C{XF, Z) is defined by taking
a representative _ a;x? for a class in W(F) and finding the signature of the form at each
ordering of F, where the signature is defined to be the number of positive a;'s minus the
number of negative a;’s.

As noted earlier, Witt rings of fields occur as special classes of the abstract
Witt rings as they were defined in [10], that is as a quotient ring of the integral group ring
Z{G], where G is a group of exponent 2. We now also note that for a formally real field F,
the group G is isomorphic 1o F*/(3_ F*2), where 3, F*? is the group of nonzero sums of

squares in F.

DEFINITION 4.1 Let R be a an abstract Witt ring for an elementary abelian
2-group. Then we say that R satisties the weak approximation property (WAP) if
H(R), the subbasis for the topology of X(R), is a basis, and R satisfies the strong
approximation property (SAP) if H(R) is the entire Boolean algebra of clopen sets

in X(R).

COROLLARY 4.2 [11, Corollary 3.21] Let F be a formally real field, Xr the
”Boolean space” of all orderings of F, and W(F) the Witt ring of F. Then the following

statements are equivalent.
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(1) Wrea(F) = Z + C(XF, 2Z).

(2) C(Xr, ZYW,eq(F) is a group of exponent 2.

(3) If U is a clopen subset of X there exists an element a of F* such that
an ordering < is in U ifand only if a < 0.

(4) (Approximation). Given any two disjoint closed sets Y1, Y2 of
orderings of F there is an element g in F* witha < Ofor<in ¥, and 0 < a

Jor<in¥,.

We note that a Witt ring of F, W(F), which satisfies part (3) of the above theorem
also satisfies SAP, and one which satisfies part (4) of the above theorem also satisfies
WAP. Further, the SAP case gives the largest possible abstract Witt ring for a given size [X].

(See proof of Proposition 2.21 and Proposition 4.4.)

DEFINITION 4.3 An SO-Witt Ring is a ring R formed by taking the quotient ring of a
torsion free Witt ring W(F), viewed as a subring of C(Xr, Z) with lXr| < o0, by taking

the function f € W{F) to a function f € C(XF, LJ Z».) such that f(x) e Z,, for each
xeXp

x € Xr That is, the restriction mapping to a point x € Xr becomes the signature at the

ordering associated with x composed with the quotient map Z —+ Z,_.

Let R be an SQ-Witt ring; that is, the quotient of a torsion free Witt ring § = W(F),
for some formally real field F with space of orderings X. By [4], the ring S can be
constructed recursively from the ring of integers Z using twoe operations:

(1) Group extension: given a ring Ry, form the group ring Ro[Z)].

(2) Direct product (in the category of torsion free Witt rings): given two rings in the
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category R; = Z + m;, i = 1,2 the product is Z + m; x m;, Here m; denotes
the unique maximal ideal of R; and is viewed as a subset of the functions C(X;,2Z).
Thus any such ring is a subring of the largest possible allowed collection of functions,

that of a SAP field, as in Corollary 4.2. Indeed, this is also the largest possibility for the
preimage of a Q-Witt ring. We refer the reader to [1] for a much more general discussion
of the torsion free rings and generalizations. Most expositions of {4, Theorem 2.1}, such as
that in [1], emphasize the effect on the sets of minimal prime ideals. For group
extension, the space X is duplicated, with the nontrivial group element being +1 on one copy

and -1 on the other. For the product, one obtains the disjoint union of X and X>.

This recursive construction is almost unique. The only non-uniqueness arises in forming
the group ring Z[Z:], which also occurs as the product of Z with itself in this category. That
is, there are two ways to form the ring with [X] = 2, whose quotients were carefully analyzed
in Chapter 3.

It is now somewhat clear that a recursive construction can be used to create any SQ-Witt

ring, but there are complications. For example, we can take # = max n,, begin with Z, in
xeX

place of Z and use the constructions above. Then at the end, factor out the additional amount
needed at each point x € X. We cannot, however, build the SQ-Witt ring R with all factori-
zations in place as we go. This is not a problem for products, as the product construction
commutes with our quotient ring construction. But the group ring construction does

not. For example, if we work with § = Z[Z; x Z,], the set X has four elements. Forming

R from a quotient of Z, then forming a group ring will make all values », the same, and
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forming it from a quotient of Ro[Z2], where Ry is a Q-Witt quotient of Z[Z;], will make
them equal in pairs. We can only obtain the full generality we want by making an additional
quotient construction at the end. While this largely loses any uniqueness for our construc-
tions, it does still allow most of the power of the recursive construction for proofs and for
computations. There is one further complication as is evident in the special case of
Corollary 3.13; group ring constructions do not inject into the ring of functions, but rather
have a two element kernel (<#& (¢ + g)).

This is a fundamental fact of our situation since we cannot distinguish the group elements
modulo 2, as they are functions taking values £1. This discussion shows now that we

have the following theorem.

THEOREM 4.4 The collection of all SQ-Witt rings with only 2-torsion is precisely the
set M of rings constructed as follows:

(1) The rings Z/2"Z € M for eachn = 1,2,...

(2) Given any R € M, the quotient of the group ring Rl{e,g} V(2= (e + g)) e M.

(3) Given R; = Z,, + m; € M, the product, Zax(n, 5y + M1 X M2 € M.

{(4) Given R € M, any further quotient as in Definition 2.10 is in M.

The restriction to having only 2-torsion is a technicality which was mentioned in
Chapter 2. Any SQ-Witt ring is a product of a finite set of rings in M and a finite set of
rings Zy, n odd, where either of the sets may be empty.

As an example of the power of the recursive construction, we point out how to count the

number of elements in an SQ-Witt ring. Two cases have been done earlier.
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PROPOSITION 4.5 Let R be the quotient of a SAP Witt ring Z + C(X,2Z), with values

ny, x € X, Then
IR =2]]2%".
¥eX

Proof. By the remark following Corolfary 4.2, we know that the SAP case gives the largest
possible abstract Witt ring for a given size [X]. Therefore, by Proposition 2.21 we have

that |R| = 2[ [ 2.
xeX

PROPOSITION 4.6 Let R be a quotient of a group ring Z{Z,), with all values of
iy = 2% Then R = 271,
Proof. This is just Corollary 3.10.

These are the two extreme cases for Q-Witt rings. That is, if |X] = 27 for any ring R,
then |R| is between the lower bound of the group ring as in Proposition 4.6 and the upper
bound given in Proposition 4.5. We have no better result for an arbitrary Q-Witt ring. But if

R is an 8Q-Witt ring, we can compute its size recursively (until the final quotient, if needed).

THEOREM 4.7

(1) If R is the product of Ry and Ry, then |R| = __,_RIZ’RE_L_

2
() IR = Rol4e, Y Y(<E (¢ + g)), then |R| = J!%L

Proof. (1) By Proposition 2.21, we have |R;| = 2)M;|, i = 1,2, and so

IR| = 2iM; x Ma| = 2M (M, | = &J%&L_

(2) This is clear since |Ro[{e,g}]] = [Ro|* and the ideal (-2£ (¢ + g)) has 2 elements.
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