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ABSTRACT

This dissertation introduces the concept of Q-Witt rings and SQ-Witt rings. A Q-Witt

ring is defined as a finite quotient ofa torsion free abstract Witt ring for an elementary 2-group

G. Local Q-Witt rings are characterized using topological and ring theoretic tools. Q-Witt rings

ofthe integral group ring Z[Z2] are classified and several properties are shown. An SQ-Witt ring

is formed as a finite quotient oftorsion free Witt rings ofa formally real field. Recursive

construction can be used to locate all SQ-Witt rings.
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CHAPTERl
lNTRODUCTION AND NOTATION

In this paper we will work in the category of commutative rings with 1. We will be

mainly interested in finite commutative rings with identity. There are many papers and books

written on the topics offinite fields as well as finite commutative groups, but only a few on

finite commutative rings. Thus, we will provide the reader with a substantial number

ofdefinitions, theorems and examples, so that we can understand these rings better and find

ways in which they will be useful.

In Chapter I we will give some of the basic definitions and structure theorems for finite

rings. In particular, we discuss Galois rings and chain rings. Finite chain rings are quotient

rings of rings of algebraic integers in finite extensions of the rationals. Chain rings have

relevance in the areas of number theory and geometry. They are used as coordinatizing rings

ofHjelmslev planes [7]. In addition, there is more and more research focusing on using local

rings in coding theory, mainly Galois rings and more general chain rings.

In Chapter 2 we describe abstract Witt rings, which have been defined in [10]. We offer

both ring theoretic and topological descriptions ofthese rings as was shown in [10] and [11].

It is here that we define a special class of finite rings in the context of [10], called Q-Witt

rings. We study their structure and give conditions for when we get local Q-Witt rings. In

Chapter 3, we look at a very special class ofQ-Witt rings, which are quotients of integral

group rings of the form Z[G] where G is an elementary abelian 2-group. We describe the

rings with IGI = 2 in great detail.
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Chapter 4 deals with a class of finite rings, which are created as quotients of reduced

Witt rings of formally real fields, called SQ-Witt rings. In order to understand this construc­

tion, we provide some background information on Witt rings offormally real fields as was

described in [II].

For the remainder of this chapter, R will denote a finite commutative ring with

identity different from 0, unless stated otherwise.

DEFINITION 1.1 A ring R is called local if it has a unique maximal ideal.

We observe that the study of finite commutative rings can be reduced to the study

of finite local rings, as stated in [14, Theorem VI.2].

THEOREM 1.2 (Structure Theorem for Finite Commutative Rings)

Anyfinite commutative ring R with unity decomposes, up to order ofsummands,

uniquely as a direct sum oflocal rings.

The proof is a nice application of the Chinese Remainder Theorem.

So, for the remainder of this chapter we will assume that R is a local ring. We let m denote

the unique maximal ideal ofR, and k ~ Rim be the residue field associated with R. Let

11: : R[x] -+ k[x] be the natural ring homomorphism. We denote the characteristic ofR by

char(R), the additive group ofR by R+, the units ofR by R', and the cardinality ofR by IRI.

The set of integers will be denoted by Z. Then Zn denotes the ring of equivalence classes of

Z under congruence modulo a fixed positive integer n.
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The structure oflocal rings has been presented very comprehensively by B. McDonald,

so for the purposes of this paper we will simply give a short synopsis with a list of major

definitions and results which we shall need later.

Let S be a finite commutative local ring, as well, with maximal ideal !In and

residue field lK = Sf !In.

DEFINITION 1.3 A ring S is said to be an extension ofR ifR is a subring ofS.

We note that ifS is an extension ofR, then S is an R-algebra with I R = Is.

We remind the reader of [8, Corollary IV.2.12], which states that all commutative

rings have the invariant dimension property. That is, every free R-module S has the

property that the cardinality ofany two bases is the same. The cardinal number of

any basis ofS is called the dimension ofS over R, denoted by dimR(S).

Since S is finite, we obtain

THEOREM 1.4 [14, Theorem XIII.I] Let RandS be finite commutative local

rings and S an extension ofR. Thenfor any a E S there is a monic polynomialfin R[x]

such thatj(a) = O. That is, S is integral over R, in the sense thateveryelementofS

satisfies a monic polynomial in R[x].

We then have as an almost immediate consequence

LEMMA 1.5 Let R, S, a andfbe as in Theorem 1.4. Then there is a natural surjective

R-algebra homomorphism R[x]f(t) .... R[a], where R[a] is the subringofS consisting of

all elements ofthe form pea), where p is in R[x].
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DEFINITION 1.6 The errveloping algebra, S', associated with an R-algebra S is the

R-algebra S 0 R S.

DEFINITION 1.7 The R-algebra S is called R-separable or a separable extension of

R ifS is a projective S'- module.

DEFINITION 1.8 The local ring S is called an unramified extension ofR if!m = Sm,

that is the maximal ideal m ofR generates the maximal ideal !m ofS.

Next we will state a result, called the Primitive Element Theorem, which can be

obtained using results from finite field extensions and Nakayama's lemma.

THEOREM 1.9 [14, Theorem XIV.7] Let RandS bejinite commutative local rings

andS a separable extension ofR. Then S is a simple extension ofR, that is S = R[a] for

some a inS.

We recall that an element a with S = R[a] is called a primitive element.

Using a series oflemmas and theorems, McDonald showed [14, Theorem XIV.6]

THEOREM 1.10 Let Rand S bejinite commutative local rings. The ring S

is a separable extension ofR ifand only ifS is an unramified extension ofR.

These characterizations are difficult to check; luckily we have another charac­

terization ofseparable extensions [14, Theorem XN.8], which will make our lives a lot

easier. In order to state this theorem however, we must introduce some more vocabulary
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and notation. We will use the usual definitions associated with polynomials and so we will

only state the new tenninology introduced by McDonald.

DEFINITION 1.11 A polynomial fin R[x] is called a regular polynomial iffis not a

zero divisor in R[x].

These polynomials have a central role in the study of local rings. Therefore, we list

some properties of regular polynomials, which can be easily checked using the natural ring

homomorphism 11: : R[x] .... k[x).

THEOREM 1.12 [14, Theorems XlII.2 and XIIL?]. LetJ{x) = ao + alx+...+a"x"

be a regular polynomial in R[x], where R is afinite commutative local ring. Then

(I) 11:(1) * 0, which implies thatfor some i, 0 :": i :": n, a i is a unit.

(2) Jf11:(I) is irreducible in k[x], thenfis irreducible.

We can check that the converse ofTheorem 1.12 (2) is not in general true. To see this,

we consider the monic regular polynomial p(x) = x2+ 1 in Z4[X). Observe that p is an

irreducible polynomial in Z4[X]; however, the image ofp in Z2[X] factors as (x + 1)2.

DEFINITION 1.13 An irreducible polynomialf E R[x) is called basic irreducible

provided that 11:(1) is irreducible in k[x).

With the proper definitions stated we are now ready to state [14, Theorem XIV.S].
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THEOREM 1.14 Let RandS be finite commutative local rings. Then 8 is a

separable extension ofR ifand only ifS ~ R[x]/(f) as an R-algebra where f is a

monic basic irreducible polynomial.

To understand Galois extensions we need to characterize the R-algebra automor­

phisms ofR[x] as well. To that end we state [14, Theorem XIII.16].

THEOREM 1.15 Let R be a finite commutative local ring and

j{x) = ao + ajX +.. .+anXn be a polynomial in R[x]. Then at : x -> j{x) induces an

R-algebra automorphism ofR[x] ifand only ifaj is a unit and a2, ... ,an are

nilpotent. Each R-algebra automorphism ofR[x] is ofthe form atfor some suchf

Suppose that 8 is an extension ofR and suppose G is a group ofR-algebra auto­

morphisms ofS. Let

SG = {s E 8/a(s) = s for all a E G},

be the subring ofS fixed by the R-algebra automorphisms in the group G.

DEFINITION 1.16 Let G be as above. Then we say that S is a Galois extension ofR

with Galois group G, denoted by GR(S), if

l)SG = R, and

2) S is a separable extension ofR.

DEFINITION 1.17 A Galois extension S ofR is called a splitting ring for a basic

irreducible fin R[x] iffis a product of linear factors in S[x] and S is generated over R by the

zeros off
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Now, without further ado we are ready to state the Galois theory for finite local

commutative rings, as stated in [14, Theorem XV.II].

THEOREM 1.18 Let R and 8 be finite local commutative rings and 8 a separable

extension ofR. Then

I) 8 is a Galois extension ofR and, iff E R[x] is a monic basic irreducible such that

8 =R[x]/(f), then the order ofthe Galois group fGR(S)1 = deg(f), 8 is a splitting ring of

f and 8 is the unique Galois extension ofR having R-dimension equal to deg(/).

2) GR(S) is cyclic, isomorphic to Gk(lK) andgenerated by a power map

a : a --> a 1kl

on a suitable primitive element a.

3) There is a lattice preserving bijection between the subfields oflK containing k

and the R-separable subrings of8 containing R.1fT is a separable extension ofR in 8,

then 8 is a separable extension ofT and

is exact.

4) 8 has a normal basis over R, that is, there exists an element a in 8 such that

{a(a) Ia E GR(S)} is afree R-basisfor 8.

EXAMPLE 1.19 Let R = Z9. Thenj(x) = x2 + 1 is an irreducible polynomial in R[x].

Since n(f) is irreducible in Z3, fis basic irreducible. Hence, by Theorem 1.18,8 = R[x]/(f)

is a Galois extension ofR. We also know that deg(f) = 2, dimR(S) = 2 and IGR(8)1 = 2,
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which means that GR(S) is isomorphic to 2:2 and so there are no proper R-separable

subrings ofS containing R.

EXAMPLE 1.20 Let R = 2:9. Thenj{x) = x4 + x3 + x2 + X + 1 is an irreducible

polynomial in R[x]. One can check that 1[(j) is irreducible in 2:3, so fis basic irreducible.

Hence, by Theorem 1.18, S = R[x]!(j) is a Galois extension ofR. We also know that

deg(j) = 4, dimR(S) = 4 and IGR(S) I = 4, which means that GR(S) is isomorphic to

2:4. Therefore, there is an R-separable subring Tof S containing R, where T ~ R[x]!(g)

and g(x) is a quadratic monic basic irreducible. By Theorem 1.18 (1), we know Tis

unique, so we can choose g(x) = x2 + I.

Observe that ifa is a root offin S, then we can factorfas

j{x) = (x - a)(x - a2 )(x - a3 )(x - (8a 3 + 8a2 + 8a + 8».
The set {I, a,a2, a 3 } is an R-basis for S. Then if GR(S) = (a), we have

a(a) = a2

a 2 (a) = 8a 3 + 8a2 + 8a + 8

a 3(a) = a3

a 4(a) = a.

To explicitly state what T is, we need to find the fixed ring of (172 ).

The polynomial g(x) = x2 + 1 factors as g(x) = (x - [a 3 + a2 + 5])(x + [a 3 + a2 + 5])

and observe that

a 2(a 3 + a2 + 5) = a 3 + a2 + 5

so a 3 + a2 + 5 is in the fixed ring of (172 ) and T = R[a3 + a2 + 5].
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As the reader may expect the examples we have just described belong to a very

special class oflocal rings, which we define next.

DEFINITION 1.21 The Galois extension of degree r ofthe prime ring Zp., where

p is a prime and n is a positive integer, is called a Galois Ring and is denoted by GR(p", r).

We should note that Galois rings were known to Krull in 1924, and were rediscovered

by Janusz and Raghavendran in 1966 and 1969 respectively [14, Pg 308].

EXAMPLE 1.22 One easily sees that the Galois ring GR(p,r) = GF(p'), the

Galois field oforder p' and GR(p", 1) = Zp•.

EXAMPLE 1.23 In Example 1.18 S is isomorphic to the Galois ring GR(3 2 ,2) and

in Example 1.20 S is isomorphic to the Galois ring GR(3 2,4) and Tis isomorphic to

GR(3 2,2).

And finally we arrive at the highlight ofthis chapter which is [14, Theorem XVIl.l].

THEOREM 1.24 (Structure Theorem for Finite Commutative Local Rings) Let R be a

finite local commutative ring ofcharacteristic p" with maximal ideal m and residue field

k. Let [k : Zp] = rand {ml, ...md} be a minimal R-generating set ofm. Then there

exists a subring T ofR such that:

(1) T 0= GR(p",r), T is unique and is the largest Galois extension ofZp" in R.

(2) R is the ring homomorphic image of1txl, ... ,Xd].

The Galois ring T is called the coefficient ring ofR.
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Hence, the theory offinite local commutative rings reduces to determining the primary

ideals P in GR(p",r)[x], ... ,Xd] and the quotient rings GR(p",r)[x] , .. . ,Xd]/P. This

is an incredibly difficult job. Therefore, it would be very hard to actually find out how

many local rings of a given order there are. Even when we restrict our attention to the

class of local principal ideal rings, we do not have a complete classification.

DEFINITION 1.25 IfR is a finite commutative local principal ideal ring, then

R is called a chain ring.

We note that ifR is a chain ring with maximal ideal m, then each ideal ofR is of

the form mi for some positive integer i. Hence, the ideals ofR form a chain, thus the

name chain ring. We finish this section by stating [14, Theorem XVII.5].

THEOREM 1.26 (Characterization ofFinite Commutative Chain Rings) Let R be afinite

commutative chain ring. Suppose that b is the least positive integer such that mb = O.

Also, let char(R) = p" and r = [k : Zp]. Then there exist positive integers t and s such that

R ;; GR(p",r)[x]/(g(x),pn-lx')

where t = b - (n - I)s > 0 and g(x) = X S +p(as-]x'~] +...+alx + ao)

where ao a unit in GR(p" ,r). Conversely, any such quotient ring is a finite commutative

chain ring.

EXAMPLE 1.27 Using the above theorem we know that R = Z4[X]/(X2+ 2,2x) is a

chain ring. The set R can be represented as {O, 1,2,3,y,y + I,y + 2,y + 3}, where y satisfies
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the equations y2 = 2 and 2y = O. The maximal ideal ofR is m = {O,y + 2,2,y} = (y) which

has the property that m 3 = O.

The classification of chain rings is of great interest. Currently, only partial classifications

have been accomplished. Clark and Liang classified all finite chain rings with invariants

p, n, r, s, t up to isomorphism provided that (p, s) = I in [2], where the invariants are as in

Theorem 1.25. In [7], Rou classified finite chain rings with invariantsp,n,r,s,t, (P,s) = I

up to isomorphism when n = 2 or when p II s but (p - I) %s, where the invariants are as in

Theorem 1.25 and p II s means pis but p2 %s. Therefore, the classification of finite chain

rings with fixed invariants up to isomorphism is far from complete as of the writing of this

paper.

The study of Galois rings as well as chain rings is also important in current research in

coding theory. In [16], Norton provided among other things a solution to the classical key

equation ofAlgebraic Coding Theory over a finite chain ring. Later, Norton with Salligan

gave a decoding algorithm for altemant codes over a finite chain ring. Examples of such

codes are BCH and Reed-solomon codes over a Galois ring. In [5] and [6], the authors

showed that finite chain rings can be used to construct some useful nonlinear codes.

The goal of this thesis is to develop some new classes of finite rings. In terms of

Theorem 1.24, the rings we construct in later chapters will have r = I and d arbitrarily large.

We shall define abstract Witt Rings and study finite quotients ofthese rings.
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CHAPTER 2
Q-WITT RINGS

In this chapter we introduce the reader to abstract Witt rings. In [10], Knebusch,

Rosenberg and Ware defined a class ofcommutative rings which are residue class rings of

Z[G] where G is an abelian torsion group. This paper gives a ring-theoretic approach to

the study of Witt rings of equivalence classes of nondegenerate symmetric bilinear forms

over a field of characteristic not 2. The main aim of this chapter is to define a special class

offinite rings within the general context of [10]. These rings do not generally occur in

quadratic form theory, but can be quotients of rings which do. This class of rings will be

called Q-Witt rings. In Chapter 4 we will consider a special subclass of these we call

SQ-Witt rings, which occur as quotients of Witt rings of formally real fields.

For the remainder of this section G is an elementary abelian 2-group, K a proper ideal of

the integral group ring Z[G], and R the residue class ring Z[G]/K. We let X be a character of

G, i.e., a homomorphism of G into iC, the field of complex numbers. Note that if G is an

elementary 2-group, then since g'2 = I for all g E G, we have that X(g) = ±1 for all X.

Every character X gives rise to a ring homomorphism If!x of Z[G] into Z. Similarly, any

ring homomorphism ofZ[G] into Z, restricted to G gives rise to a character X of G.

RadR denotes the radical ofR, which is the intersection of all maximal ideals ofR,

and NilR denotes the set ofnilpotent elements ofR. R, denotes the torsion subgroup

of the additive group ofR, which is an ideal ofR. We will use the following notation

as well. We let Rred = R/NilR. By SpeeR we mean the set ofprime ideals ofR

topologized by the Zariski topology, and MaxR and MinR denote the subspaces ofSpeeR
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consisting ofthe maximal ideals and minimal prime ideals respectively. We now state

a special case of[l 0, Lemma 3.1].

LEMMA 2.1 The minimal prime ideals ofZ[G] are the kernels P x ofthe

ring homomorphisms'llx : Z[GJ .... Z, with Z[GJ/Px ~ Z. The maximal ideals

ofZ[G] are ofthe form M = '11;/ (pZ) = Px +pZ, where p is a positive prime

integer.

Due to the fact that any ring homomorphism of Z[G] onto Z is completely detennined

by its kernel, there is a bijective correspondence between the set of characters ofG and

the minimal prime ideals ofZ[G]. Now we list some results from [10], which we shall

need later. We shall see that the finite rings we are interested in fall under the general scope

of [1 0], but are generally quite distinct from Witt rings of fields. They will be finite

quotients of the rings analyzed in [11].

From [10, Section 3], we have

LEMMA 2.2 Let R = Z[GJ/K. Then R is Jacobson; that is, each ofits prime ideals is an

intersection ofmaximal ideals, NilR = RadR and R, :::> NilR.

LEMMA 2.3 R, = NilR ifand only ifno maximal ideal ofR is a minimal prime ideal,

and R, = R ifand only ifall maximal ideals are minimal prime ideals.

LEMMA 2.4 Let p be an oddprime integer. Then the following are equivalent:

(1) There exists a character X ofG with 0 "* 1f!x(K) (l Z c pZ.

(2) R contains a minimal prime ideal M with RIM being afield ofcharacteristic p.
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(3) R has nonnilpotent p-torsion.

(4) R has nonzero p-torsion.

It is further shown in [10, Lemma 2.13] that Mo, defined as the kernel of the

augmentation map Z[G] ..... Z, defined by :Engg ..... :Eng, followed by reduction mod2,

is the unique maximal ideal ofZ[G] containing 2. It is also proven that Mo contains every

minimal prime ideal and that each maximal ideal distinct from Mo contains a unique minimal

prime ideal.

As in [10, Definition 3.12], we are now ready to define abstract Witt rings.

DEFINITION 2.5 LetR be a commutative ring of the form R ~ Z[G]IKwhere G is an

elementary abelian 2-group and K is an ideal of Z[G] with lJI xCI<) n Z = 0 or

lJI xCI<) n Z = 2"Z for all homomorphism lJI ofZ[G] and all characters X of G. Then R is

called an abstract Witt ringfor G.

We note that in the case of[10], the definition extends to Witt rings ofabelian

q-groups with q any prime. However, in this paper we will only consider Witt rings

ofelementary abelian 2-groups. In the future, we will investigate adopting our ideas to

more general cases.

We shall finally state two characterizations [10, Proposition 3.15 and 3.16].

PROPOSITION 2.6 Let R = Z[G]IK where G is an elementary 2-group. Then the

following are equivalent:

(1) R = R, is a 2-group.
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(2) 'l'xUO n Z = 2"Zforall characters X ofG, and hence R is a Wit! ringfor G.

(3) R is local with unique prime ideal Mo/K.

(4) Kn Z = 2"Z.

PROPOSITION 2.7 Let R = Z[G]/K where G is an elementary 2-group. Then

R, = NilR ifand only ifK n Z = 0 and R is a Witt ringfor G. In this case, R contains

nonmaximal prime ideals.

These two results precisely separate Witt rings offormally real and non-formally real

fields as we shall see in Chapter 4. It is here that we depart from the standard literature,

all ofwhich has been aimed at understanding quadratic form theory. Note that any finite

ring is necessarily torsion, and so almost all ofthe rings we construct will fall under

Proposition 2.6. However, we shall concern ourselves with certain finite quotients of rings

falling under Proposition 2.7. They will occur as rings offunctions on MinR and will

generally not occur as Witt rings offields.

Assume for the moment that R, = Nil R. The reason these Witt rings are special is

that the reduced Witt ring Rred = RlNil R is still an abstract Witt ring for a subgroup

of G [10, Remark 3.13]. In [II, §3], it is shown that there is a natural embedding of

Rred into C(X(R), Z), the ring ofcontinuous functions from X(R) to the ring of integers Z.

In C(X(R), Z), X(R) is the set of ring homomorphisms from R to Z, or equivalently

(using Lemma 2.1 and Proposition 2.7), MinR with the induced Zariski topology and

Z is endowed with the discrete topology. X(R) is a Boolean topological space, that

is, a compact, totally disconnected Hausdorff space. As such we can conclude using
15



[15, Theorem 2.4 and 3.1] that X(R) is normal and thus by Urysohn's lemma the points of

X(R) are separated by the continuous functions ofC(X(R), Z). We will denote the charac-

teristic function ofa set B byes. Recall that the characteristic function is defined by

(
{

I ifx E B
es x) = .o ifx ~ B

Using [11, Lemma 3.5] we have that

LEMMA 2.8 For any Boolean space X, let 8 be the basis ofall clopen (closed and

open) sets.

(I) For B],B2 E 8, define

Then 8 is a Boolean ring with these operations.

(2) The idempotents ofC(X,Z) are the characteristicfunctions esfor Bin B.

An elementf E C(X, Z) has the form

"f= ~mies,
)

where m; E Zand {B;} apartition ofX by elements of8.

(4) The units ofC(X,Z) are the functions oftheformfs = 1- 2esfor Bin B.

Also, observe thatfor B,B),B2 E 8

{
-Ion B

fs =
I on X-B
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so that!B = 1.

(5)fBJB2 = fs,+B,.

THEOREM 2.9 [11, Theorem 3.18] Let R be a Witt ring with R, = NilR and

let 'II : Z[G] ... R be a ring surjectionfor some abelian group G ofexponent 2. Then

(I) C(X(R), Z)/Rred is a 2-primary torsion group and C(X(R), Z) is the integral

closure ofRred in C(X(R), Q).

(2) The sets H(g) = {x E X(R)I'II(g)(x) = -I}, whereg E G, and their

complements form a subbasis 1t(R) ofthe topology ofX(R).

(3) 1t(R) is an additive subgroup ofB, the Boolean ring ofall clopen subsets of

X(R), containing X(R).

(4) Rred = Z + :EMI(R) 2ZeB.

And now without further ado, we are ready to define the rings that are the

subject of this thesis.

DEFlNITION 2.10 A Q-Witt ring is a ring R formed by taking a finite quotient ofa

torsion free abstract Witt ring S for a group G of exponent 2, viewed as a subring of

C(X,Z) with IX! < 00. We take the quotient by taking a functionf E S to a function

f in c(X,y.Znx ) such that f(x) E Znx for each x EX.

By [10, Remark 3.20] we know that S c ZIXl, thus it is an easy observation that a

Q-Witt ring R is a subring of IT Znx and hence in particular a finite ring. In view of
:<EX
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Theorem 1.2, it will be useful to know when a ring breaks up as a product.

We give a topological characterization in terms ofthe prime spectrum.

DEFINITION 2.11 A ring R is called connected ifSpecR is a connected topo­

logical space.

REMARK 2.12 From [12, Pg 79] we recall that SpeeR is a connected topolo­

gical space if SpecR is not the union of two disjoint non-empty closed/open sets.

In order for us to prove the next theorem, we will remind the reader that for each

subset E ofR, the closed subsets ofSpeeR, V(E) are the sets consisting of all prime

ideals ofR containing E. Further, for any r E R, the sets Ur denote the complement

of V( {r}) in SpecR and form a basis of open sets for the Zariski topology.

THEOREM 2.1 3 Let </I : A .... B be a ring homomorphism between arbitrary

commutative rings. For any P E SpecB, we know that </I-l(p) E SpecA.

Then the induced map </1* : SpecB .... SpecA is continuous.

Proof. To show that </1* is continuous we need to show that for any open set Uo in SpecA,

a E A, (</1*)-1 (Uo) is open in SpecB. More specifically, we will show that

(</I*)-I(Uo) = U,,(o) in SpecB.

So, let a E A. Then P E U~(a) (0) </I(a) ~ P (0) a ~ </I-I (P) ~ A

(0) </I-l(P) E Uo (0) P E (</1*)-1 (Uo).

THEOREM 2. I4 Let R be a finite commutative ring. Then R is a local ring if

and only ifR is connected.
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Proof Suppose R is local. Then we will show that SpeeR can't be expressed as the

union of two disjoint non-empty closed/open sets. Suppose SpeeR = A U B, where A

and B are two non-empty closed sets. Then we know that A = V(l) and B = V(J),

where I and J are some ideals in R. Since R is local it contains a unique maximal ideal m,

with I ~ m and J ~ m, which implies that m E V(l) n V(J) = A n B, so A n B '* 0.

Next, suppose R is not local. Then by Theorem 1.2 we know that we can express

R as a product R I x R2. Then we will show that SpeeR is the disjoint union ofthe closed

subsets ofSpeeR, Xl and X2, which are homeomorphic to SpeeR I and SpeeR2

respectively, and so R is not connected.

Consider the surjective ring homomorphisms.pi : R .... R i for i = 1,2. Then by

Theorem 2.13 the induced maps.pi : SpeeRi .... SpeeR are continuous for i = 1,2.

We claim that for i = 1,2, SpeeR; is homeomorphic to the closed subset Xi = V(Ker.p;) of

SpeeR. To show this is a homeomorphism, we observe that for each i, since .pi is surjective,

there is a one to one correspondence between the prime ideals ofR containing

Ker.pi and the prime ideals ofRi. Thus,.p7 is a bijection ofSpeeRi and Xi for i = 1,2.

Also, since.p7 : SpeeRi .... SpeeR is continuous, ifwe can show that .p7(SpeeRi) ~ Xi,

then the function iIl7 : SpeeR; .... X; obtained by restricting the range of .p7

is continuous as well for i = 1,2. Thus, for any P E SpeeR;, we have that

iIl7(P) = .pjl(P) ;2 .p7«O)) = Ker.p;, so .p7(P) E Xi or ill; is continuous.

Similarly, ill7(V(P» = V(iIlj(P» for any P E SpeeR;, we have

S E V(iIl;(P» ~ S;2 iIl7(P) = .pjl(P) ~ ,p,(S) ::J P ~ .pi(S) E V(P).
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Hence, <1>; is a homeomorphism ofSpeeR, and Xi = V(Kert/!,). Thus, we have that

Xi s;;; SpeeR for i = 1,2 and so X, U X2 S;;; SpeeR.

Next, we show that SpeeR is the disjoint union ofX, and X2. First, observe that

Xl = V(Kert/!l) = {P S;;; R, x R21 P ;;) {O} X R2} and

X2 = V(Kert/!2) = {P s; RI x R21 p;;) RI x {On. Therefore, XI nX2 = l'J,

for ifP EX, nxz, then P ;;) {O} x Rz and P ;;) R1 X {O}, which implies that

P ;;) RI x R2 so P = RI X R2. However, that is a contradiction, since RI x Rz is

not a prime ideal. Finally, we must show that SpeeR S;;; Xl U X2 to complete our

proof. So, suppose P E SpeeR. Then since P is a prime, if (a, b) E P then either

(a, I) E P or (I,b) E P. If(a, I) E P, then (0, I) E P. Therefore, {O} x Rz C P,

which implies that P E V( {O} x Rz) = V(Kert/!l) = Xl. On the other hand, if

(I,b) E P, then (1,0) E P. In this event, Rl x {O} S;;; P, which implies that

P E V(RI x {O}) = V(Kert/!z) = X 2. Hence, P E SpeeR S;;; Xl UXz.

At this point we observe that ifR can be expressed as a product of two rings, then

R is not connected (by the second part of the above proof). Hence, ifR has nontrivial

idempotents e and/, then R is not connected [12, Exercise II Page 79]. Equivalently,

ifR is connected, then it contains no nontrivial idempotents. Using these observations,

Theorem 1.2 and [14, Theorem VII.7], we see that the only finite commutative rings

with no nontrivial idempotents are local.
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The main goal of the remainder of this thesis is to analyze the structure ofQ-Witt

rings. Due to Theorem 1.2, we know that since Q-Witt rings are finite rings, it is only

necessary to find the local Q-Witt rings in order to fully understand the structure ofall

Q-Witt rings. We will show in the next series of theorems that if a Q-Witt ring is local

then each nx must be a power of2, or IX! = I and nx is a power ofa prime.

THEOREM 2.15 Let R bea Q-Wittring, withR ~ c (X, !JZn, ),X = X(R).

k

Ifnx = ITpfi for some x E X, Pi distinct primes and k 2: 2, then R is not local.
...1

Proof We will view R as a subring of IT Zn,. We will show that R has more than
;<EX

one maximal ideal, which implies that R is not connected by Theorem 2.14. Therefore, by

Theorem 1.2 the ring R decomposes as a nontrivial direct sum oflocal rings.

To see that R contains more than one maximal ideal, we can construct a restriction map at x

k

by'P : R -+ Zn,. By the Chinese Remainder Theorem, we know that Zn, ::= IT Zp~j, which
I~I

implies that there is an induced ring homomorphism 'P; : R -+ ZPi for each i, I S i S k.

Then RIKer('P;) is isomorphic to the field Zp" which implies that M i ~ Ker('P;) ~ R is a

maximal ideal in R for each i. Since k 2: 2 we know that R has at least two maximal ideals,

call them M, and M2. To see that Ml is distinct from M2 we need only to observe that

It follows from this theorem that we need only consider Q-Wilt rings where each nx is a

power of a prime. In this next theorem we will investigate what happens in the event that

n x and ffy are powers of distinct primes for some x,y EX
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THEOREM 2.16 Let R be a Q-Witt ring, with R ~ c(X, y..Zn,), where

nx ~ pa, and ny = qay for some x,y E X = X(R) and distinct prime integers p and q.

Then R is not connected, hence is not local.

Proof We view the ring R as a subring ofnZp'" Then we can construct a restriction
.<EX

map at x by '¥x : R -+ Zpa" and similarly a residue map at y by '¥y : R -+ Zqay.

These induce ring surjections 'Fx : R -+ Zp and 'Fy : R -+ Zq.

Since RlKer('Fx) is isomorphic to the field Zp and RlKer('Fy) is isomorphic to the field Zq,

we have that Mx = Ker('Fx) and My = Ker('Fy) are both maximal ideals in R, and are dis-

tinct as in the previous proof.

As a result of the above theorem we can concentrate on Q-Witt rings where each nx is a

power ofthe same fixed prime. We will consider two cases. First, we will look at the case

when each nx is a power ofan odd prime, and lastly we will show the rings we obtain when

each nx is a power of 2, actually are connected so are local.

THEOREM 2.17 Let R be a Q-Witt ring, with R ~ c(X, y..Zpa, ), where

X = X(R) and p is an oddprime. Then

(1) iflXI = 1, then R is a local ring,

(2) iflXI > 1, then R is not local.
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Proof The proof of(1) is trivial, since R = Zp" which is a local ring.

To show (2) we recall that R is a finite quotient of a torsion free abstract Witt ring S

for a group G of exponent 2. Therefore, we have a natural ring homomorphism from

Z[G] onto S ~ C(X,Z) and thus from Z[G] onto R ~ C(x, UZp")' Let us choose
,EX

z, W E X such that Uz 2: uw • Then since we know that R separates the points ofX,

there is ag E G so thatz E H(g) and w Ii' H(g) for H(g) as described in Theorem 2.9.

Therefore, we can construct a restriction map (J) : Z[G] -+ C(X, UZp" ) to {z, w} ~ X.
.EX

The map (J) : Z[G] -+ C( {z, w}, Zp" UZp" ) is defined by

(J)(ae + bg) = a • 1 + b(l - 2eH(g) E R. Using this ring homomorphism we will show

that in fact R contains a nontrivial idempotent and thus by earlier observations, we know

pa'+l pa'+1
that R is not connected. To construct this idempotent we consider 2 e - 2 g

an element of Z[G]. Then we claim that

__ (pa'+l _pa'+1 ) __ pa'+1 pa'+l
f - (J) - 2 e - 2 g - 2 • 1 - - 2 (1 - 2eH(g)

is an idempotent we are looking for.

To see this observe that

pa, + 1 pa, + 1
fez) = 2 • 1 - 2 (I - 2eH(g)(z» ~ pa, + 1 = 1 modulo pa, and

_ pa'+1 pa'+l
f(w) = 2 • I - 2 (1 - 2eH(g)(w» ~ 0 modulo paw so

it is clear that f is a nontrivial idempotent.
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In light of the above theorem, we have now only to consider the structure of the

Q-Witt Rings, where each nx is a power of2. We will show in the next theorem that

these rings are in fact local rings.

THEOREM 2.18 Let R be a Q-Witt ring, with R ~ c(X,xlJZ2a, ).X = X(R).

Then R is a local ring.

We will prove the above theorem using some lemmas, which we shall state and

prove first.

LEMMA 2.19 Suppose r], ... , rn are integers and n a positive integer with n "= 2.

n n

lfweletE, E {±I}fori= 1, ... ,n, then we have that2:,r, '" 2:,E,r, (mod2).
i=l i=1

Proof Observe that for each i, 1 - E, = 0 or 2, hence

n n n

Lri - LE,ri = 2:,(1 - E,)ri '" 0 (mod2).
1=1 i=1 i=1

LEMMA 2.20 Suppose n and a], ... ,an are positive integers. Then we have

(
n )* nthe group isomorphism aZ2a, '= aZia,.

n ( n )*Proof Let/: aZia, -+ aZza, bethemapdefinedbyJ{(a,)) = (a,), whereai E Zia,

for each i, 1 :s i :s n. Then it is easy to see thatfis a group homomorphism, since for

n
(ai),(b i) E nZiai, we have that

i=l

J{(ai)(b,)) =J{(a,b,)) = (aib,) = (ai)(bi) = J{(a;)}f{(b,))
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and alsoj((l j» = (Ij).fis injective, since if (aj) E Ker(f) thenj((a;» = (1;)

implies that (aj) = (I j) or aj = I for each i, I ::s i ::s n. Finally, we need only to show

that in factfis surjective, to show thatfis an isomorphism.

So, let us suppose we have (a;) E (0 Z2ai ) *. Then we know there exists an element

(b j) E (0 Z2airso that (a;)(b;) = (ajb;) = (I i), which implies that a; E Ziai for

n

each i, I ::s i::S n. So, the element (a;) E IlZia,.
i=}

And now without further ado we prove Theorem 2.18.

Proof As before, we recall that R is a finite quotient ofa torsion free abstract Witt

ring S for a group G ofexponent 2. Therefore, by definition we know we have a natural ring

homomorphism from Z[G] onto S ~ C(X,Z) and thus from Z[G] onto R ~ C(X, UZ2"')'
xU

Since each g E G has exponent 2, the image of each g is a function of the form

fg = I - 2eHrg) in S as was described in Theorem 2.9. Using this observation we

have a ring homomorphism W : Z[G] .... S .... R ~ C(x, UZ2ax) defined by
xU

W(E agg ) = ae, + Eag (1 - 2eHrg) E R, where e' is the identity in G. Using
geG geG

this characterization, we will show that R has a unique maximal ideal and thus R is local.

To do this, we observe that if f = ae' + E ag(1 - 2e H(g) E R, then for each
geG

X E X, by definition of the characteristic function, I - 2eHrg) (x) E {±I}. So if
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we let E(x,g) E {±I}, then f(x) ~ (ae' + E E(x,g)ag )(mod2a,) for each x E X, where
gEG

e' is the identity of G and each ag E Z.

Further, we recall that ifwe denote by mx the maximal ideal ofZ2", then we have that

Zz·, = Zi" U mx. Also, it is easy to see that either (ae' + E E(x,g)ag) '" 0(mod2) and
gEG

so (ae' + EE(x,g)ag) E mx or (ae' + I>(x,g)ag ) '" I (mod 2) and so (ae' + EE(x,g)ag ) E Zi"
gEG gEG gEG

for each x E X. We can further see using Lemma 2.19 that for all x,y E X, we have

that (ae' + E E(x,g)ag ) '" (ae' + E E(y,g)ag )(mod2), which implies that
gEG gEG

either (ae' + E E(x,g)ag ) E mx and (ae' + E E(y,g)ag ) E my, or (ae' + E E(x,g)ag) E Zi"
gEG gEG gEG

and (ae' + E E(y,g)ag ) E Zi.y. These observations now allow us to say that f(x) E mx for all
gEG

x or f(x) E Zi" for all x E X Thus, fER ifand only if f E (DZi" ) U (!Jmx),

which by Lemma 2.20 means that f E (n Zz.,) * U (nmx). Therefore,
xEX XE.,¥

R s:;; (DZz" ) * U (Dmx), which is clearly a local ring. This implies that R has no

nontrivial idempotents, so must also be local.

PROPOSITION 2.21 The largest possible Q-Witt ring R, with

R s:;; c(x,UZZQ,) has the form (nZZQ,) * U(nmx) with IRI = 2n2a.-1•
xe.A' xEX.rEX xEX

Proof By [II, Example 3.9 and Theorem 3.20] the largest torsion free Witt ring

Sis of the form S = Z +C(X,2Z). Therefore, the largest possible Q-Witt ring will be
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the quotient ofS = Z +C(X,2Z). By the proofof Theorem 2.18 we know that

R ~ (!JZz"' ) • U (!Jmx), and since R is the largest possible such subring implies

that R must be (!JZ2*' ) • U (!Jmx ). Since IZ;;*, I = Imxl = 2",-1, we have that

I(nZ2"')' U (nm x ) I= 2n2",-1. Hence, IRI = 2n2",-1.
xE.X xeX xEX :xEX

PROPOSITION 2.22 Let R be a Q-Witt ring, with R ~c(x,1tZ2*' ). Then

R is a finite quotient ofa torsion free abstract Witt ring Sfor a group G ofexponent 2.

(1) for a =max ax we have that char(R) = 2" and IRI divides 2n2",-1,
xEX >EX

(2) the maximal ideal mofR is generated by 0 :'0 k :'0 IGI elements ofthe form

2eH(g) for some g E G, and

(3) the residue field ofR is Z2 and R is a homomorphic image of

Z2" [yI, ... ,Yk], for some indeterminatesyI, ... ,Yk.

Proof The first part ofpart (l) is clear. To see that IRI divides 2n2",-1, we need
>EX

to recall from the proofofTheorem 2.18 that R is a subring of

T = (!JZ2*' ). U (!Jmx ). Thus, by Proposition 2.21 the order ofR divides

the order of T so IR Idivides 2n2",-I .
xEX

Observe that the maximal ideal of T is nm., where we denote by mx the maximal
xEX

idealofZ2*, asintheproofofTheorem2.18,hencem ~ nmx •
xEX
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Then <1>(1- g) = 2eH(g) E R for all g E G and 2eH(g)(x) E {0,2} for each x EX.

Thus, 2eH(g) (x) E mx s;;; nmx for each x E X. Therefore, the ideal generated by the
xEX

set {2eH(g) Ifor some g E G} is contained in ffi. By [10, Theorem 2.9 (iv)), we know

that the unique maximal ideal containing 2, the augmentation ideal Mo in S, is generated by

the same set. Furthermore, since we have the surjection S .... R, and SIMo ~ 2':2 and

Rim =: 2':2, we can conclude that Mo maps onto ffi. Thus, ffi is contained in the ideal

generated by the set {2eH(g) Ifor some g E G}, which concludes our proof of part (2).

Finally, by Theorem 1.24 and parts (I) and (2) we can conclude part (3).
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CHAPTER 3
GROUP RINGS

In this chapter we will focus our attention on Q-Witt rings, which are simply

quotients of the integral group ring Z[G], where G is an elementary abelian 2-group. We

recall that every abstract Witt ring for a group G in fact occurs as a quotient Z[G]IK, where

the ideal K satisfies properties as in Definition 2.5. For the remainder of this chapter we will

consider the special case when the ideal K is the zero ideal. We show what all Q-Witt

rings look like in the case of IGI = 2 and generalize some of our results for IGI > 2.

THEOREM 3.1 13, Theorem 3.8 (a),(b) & (e)] Let S be a Witt ring,

S = Sred and IX(S)I = 2', n 2: O. LetH(S) be a subbasisfor the topologyofX(S).

Then the following are equivalent:

(1) S = Z[G] (and G has order 2');

(2) ifH E H(S) , H "* 0,X, then !HI = 2n-1;

(3) IH(S)I = 2n+1.

Recall from Chapter 2 that all abstract Witt rings, hence Q-Witt rings, are quotient

rings ofWitt rings described in Theorem 3.1, that is quotients ofa group ring Z[G]. We

shall see that for group rings we can do explicit computations of some of the more general

results of Chapter 2.

At first, ifn = 0, then X has only one point, say x, so S = Z, thus R ~ Z'x' Thus,

from now on we will assume n 2: 1.
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We consider the quotients R ~ C({x,y},Z., u Z.y) ofZ[Z2]. We will approach

this problem by considering four cases, all of which give us some different and interesting

results. In our first case, both nx and ny are arbitrary integers with the only restriction

being that gcd(nx, ny) = 1; in our second case we shall investigate what happens when nx

and ny are both positive odd integers with gcd(nx,ny) > I; thirdly we will consider

what quotients we shall realize if, without loss ofgenerality, nx is an even positive integer

and ny is an odd positive integer. And finally, in our fourth case, we will let nx and ny be

arbitrary even integers. Our goal of this chapter will be to generalize the findings from

the case IXI = 2 to when IXI = 2·. We shall write the group Z2 = {e',g} and

[ah = amodb.

LEMMA 3.2 Let nx and ny be positive integers with gcd(nx • ny) = 1.

Then R ~ C({x,y},Z., U Z.,) is isomorphic to Z., x Z.y ~ Z.,.,..

Proof First observe that R is naturally a subring ofZ., x Z.y. Let e be the

homomorphism Z[Z2] .... C({x,y},Z) .... C({x,y},Z., U Z.y) ~ Z., x Z.y.

Since g is a unit in Z[Z2], g is mapped to a unitfg = I - 2eH(g) E C({x,y}, Z), by

Lemma 2.8(4), and e' is mapped to the constant function I. We may assume that

x It H(g) andy E H(g). Then eis defmed explicitly by

e(re' +sg) = ([r +s].,,[r-s].,).

Therefore, to prove our claim we must demonstrate that eis smjective. To do this

observe that we only need that ([1]." [O].y) and ([0]." [1].,) are in the image of

e, since these elements will generate all of Z., x Z.y.
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Now, since the gcd(nx,ny) = 1, we know that there exist integers u, v such that

unx + vny = 1. Ifwe let r = vny and s = 0, then

(J(re' +sg) = ([1- unx]n.,[vny].) = ([1]n.,[O]ny).

Similarly, ifwe let r = unx and s = 0, we find that

(J(re' +sg) = ([unx]n.,[I-vny]ny) = ([O]n.,[1].y),

which concludes the proof.

At this time before we discuss the other cases we would like to give an example.

EXAMPLE 3.3 We consider the quotient of Z[Z2], where we let nx = 2 and

ny ~ 3. Then according to Theorem 3.4, R =' Z6. One can easily check this, since

the homomorphism which takes re' + sg -+ ([r + sh, [r - sh) gives us that, in this case

the image ofZe' already is {(I, I), (0,2), (1,0), (0, I), (l,2),(0,0)} =' Z6. We can also

realize R as the quotient ring Z6 [Z2]/(e' + g), since this ring has exactly 6 elements due to

the fact that the ideal (e' +g) = {e' +g,2e' +2g,3e' +3g,4e' +4g,5e' +5g,0}.

REMARK 3.4 It is important for us to observe that our proofofLemma 3.2 shows

that in this case R is the image of Ze', since we were able to take s ~ °for both preimages.

LEMMA 3.5 Let nx andny be positive odd integers. Then R ~ C({x,y},Zn, U Zny)

is isomorphic to Zn, x Zny.

Proof As before we need to show that (J : Z[Z2) -+ Zn, x Zny as defined in the proof of

Lemma 3.2 is an epimorphism.
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This time we shall show that any element ([m]." [k].y) E 11:., x l1:.y, must have a

pre-image in 11:[11:2].

L
m(nx + I) + k(ny + I) d _ m(nx + I) - k(ny + I)

etr= 2 ans- 2 .

It is easy to see that r,s E 11:, since 21(nx + I) and 21(ny + I).

By making the above choice for r and s, we can calculate

(J( ' ) (J(m(nx +1)+k(ny +I), m(nx+I)-k(ny+I»
re +sg = 2 e + 2 g =

([m(nx + 1)]." [k(ny + 1)].J = ([m].,,[k].y) E 11:., x l1:.y ' So indeed (J is an epimorphism.

LEMMA 3.6 Let nx and ny be positive integers with nx = 2k and ny = 2m + 1,

where k and m are positive integers. Then R ~ C( {x,y}, 11:., U l1:.y )

is isomorphic to :l., x :lny.

Proof As before we need to show that (J : 11:[11:2] ~ 11:., x l1:.y as defined in the proof of

Lemma 3.2 is an epimorphism. We will show that ([I]." [O]'y) and ([0]." [I].y) are in the

image of(J.

Now, by letting r = k + m + I and s = k - m, we can easily check that in fact,

(J(re' + sg) = (J«k+ m + I)e' + (k - m)g) = ([2k+ Ik,[2m + I].,.) =

Similarly, by letting r = k + m + I and s = k - m - I, we can see that

(J(re' + sg) = (J«k + m + I)e' + (k- m -l)g) = ([2k]." [2m + 2].,.) =

([nx]n,,[ny + I].y) = ([O].,,[I].y) E :In, x :l.y'

So indeed (J is an epimorphism.
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The above two types of Q-Witt rings are special cases ofQ-Witt rings, which

we proved in Chapter 2 to be not connected. We confirmed this ofcourse by specifically

proving what their ring structure is. In both of the above cases the image of the Witt rings

turned out to be the product Zn. x Zny, which are rings that are well understood.

We point out that these rings are mentioned in [10, Theorem 3.8J but are not Witt rings for

the group Z2, since they do not meet the conditions of Definition 2.5. So while our

Q-Witt rings do sometimes fall outside the category ofabstract Witt rings of [1 OJ,

Chapter 2 shows that this occurs only via a product with quotients ofZ.

In order for us to discuss the last cases we need to introduce some new notation.

Suppose k is a positive integer, say k = 2m, where m is a positive integer. The set

Zk = {O, 1, ... ,k - I} can be written as the union ofE(Zk) and O(Zk), where

E(Zk) = {0,2, .. . ,k - 2} and O(Zk) = {I,3, ... ,k - I}. Clearly, we have that

E(Zk) n O(Zk) = 0. Also, using elementary number theory, it is easy to show that

ifk! and k2 are even positive integers, then (O(Zk,) x O(Z",)) U (E(Zk,) x E(Zk,))

is a subring ofZk, x Zk,. In fact, ifkI and k2 are both powers of2, this subring is

connected, so local, by Theorem 2.18 and Proposition 2.21.

LEMMA 3.7 Let nx and ny be positive even integers. Then

R ~ C({X,y},Zn. U Zn,) is isomorphic to (O(Zn,) x O(Zn,)) U (E(Zn,) x E(Zny)).

Proof As in all the above cases, the mapping 0 : Z[Z2J --> R given by

O(re' + sg) = ([r + SJn" [r - shy) is a ring homomorphism. For any re' + sg E Z[Z2],

since r + s '" r - smod2, we have O(re + sg) E (O(Zn,) x O(Zny)) U (E(Zn,) x E(Zn,)).
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To see that eis suJjective, let us first suppose ([a]." [b].) E O(Z•.) x O(Z.y). Then

th .. . {O I nx - 2 } d· {O I ny - 2 }ere eXIst mtegers1 E , , ... , 2 an} E , , ... , 2 '

such that a = 2; + I and b = 2j + I. By letting r = ; +j + I and s = i - j, we

can see that

e(re' +sg) = ([(i+j+ I) + (i-j)l",,[(i+j+ I)-(i-j)].y) = ([a].,,[b].J.

Next, suppose ([a]." [b ]'y) E E(Z.,) x E(Z.y). Then there exist integers

n, - 2 ny - 2 } _ _
kE{O,I, ... , 2 }andIE{O,I, ... , 2 ,suchthata-2kandb-21.

By letting r = k + I and s = k - I, we can see that

(J(re' + sg) = ([k+ I) + (k -l)]"" [(k + I) - (k -l)].y) = ([al." [b].J,
and hence eis indeed onto.

EXAMPLE 3.8 We consider the Q-Witt ring R to be the quotient ofZ[Z2], where

x = {x,y} and take nx = 4 and ny = 6. We view R as a subring of Z. x Z6. Then

using the map e : Z[Z2] -+ Z. x Z6 defined in Lemma 3.2, we find that

R = {(I, I), (2, 2), (3, 3), (0,4), (1,5), (2, 0), (3, I), (0,2), (1,3), (2,4), (3, 5), (O,O)}.

Observe that R is not connected, since the element (1,3) is a nontrivial idempotent.

Hence, this ring is not a local ring. Also, since IRI = 12 and char(R) = 12, R must be

isomorphic to ZdG]/(e' + g), since the ideal (e ' + g) = {O,e + g, ... , lIe + Ilg}

has 12 elements. (Compare this to Example 3.11 below.) More familiarly, R is

just Z12
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In this event R is the image of Ze', however, this is not the case in general for the

Q-Witt rings which are ofthe form described in Lemma 3.7. Therefore, at

this point we would like to find the ring structure of all the Q-Witt rings that

occur as in Lemma 3.7.

LEMMA 3.9 Let nx and ny be positive even integers. Then

then R >;; C(X, Zn. U Zn,) is isomorphic to Zk[Zz]/(me + mg) and IRI = n,;, = /em.

Proof Using the map () : Z[Zz] .... Zn. x Zn, defined in Lemma 3.2, we find that

where if q is determined by writing 2m = gcd(nx, ny) = rnx + qny, then

Therefore, it is clear that char(R) = k, which implies that R must be isomorphic to

a quotient ofZk[Zz]. Also, by counting we obtain

IRI -- km -_ nx,ny gcd(nx,ny) nx,ny Th b'= -2-' ese two 0 servatIons
gcd(nx,ny) 2

together suggest that R must be isomorphic to Zk[Zz]/(me + mg), since the ideal

(me + mg) = {me + mg, ... , ~ (me + mg) = O} clearly has order ~ .

It is no surprise that the Q-Witt rings we just characterized are once again not

local and thus not connected in all cases except for the following special case as we

showed in Chapter 2.
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COROLLARY 3.10 Let nx = Z· and ny = zm, where n,m are positive integers with

m ?: n. Then R !:;; C({x,y}, Z., U Z'y) is isomorphic to (Zi* x Zim) U ((ZZ2*) X (ZZ2m»

and therefore to Z2m [Z2]1(Zn-l (e' +g» and IRI = Zn+m--I.

EXAMPLE 3.11 We consider the Q-Witt ringR to be the quotient ofZ[Z2], where

X = {x,y} and take nx = Z2 and ny = 23. Then we view R as a subring ofZ4 x Zg.

Using the map 0 : Z[Z2] .... Z4 x Zg defined in Lemma 3.Z, we find that

R = {(I, I), (2,Z), (3, 3), (0, 4), (l, 5), (Z, 6), (3, 7), (0, 0),

O(g) = (1,7),(2,0),(3,1),(O,Z),(1,3),(2,4),(3,5),(O,6)}

so we can express R = Zg U (Zg + O(g». This ring R has characteristic 8, so it is

easy to see that R is a quotient of Zg[Z2]. Furthermore, it is easy to check that since

R has 16 elements R is isomorphic to Zg[Z2]!(2e' + Zg), where

(Ze ' +2g) = {Ze' +Zg,4e' +4g,6e' +6g,0}

as was established in Corollary 3.10. Further, we can observe that the units ofR,

R* = {(1, I), (I, 3), (I, 5), (I, 7), (3, I), (3, 3), (3, 5), (3, 7)} have the property

that each has order equal to Z. In addition, the maximal ideal ofR,

m = {(O, 0), (0,2), (0,4), (O,6),(Z,0),(Z,Z),(Z,4),(Z,6)} = «O,2),(Z,0)).

We can also easily check that m is the unique prime ideal ofR. We can also conclude

that this R is not a chain ring, since the maximal ideal m is not a principal ideal.

Using the above example we can further list some interesting properties of the

Q-Witt rings of the type described in Corollary 3.10.
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PROPOSITION 3.12 Let R '" (Zi. x Zim) U «2Zz') x (2Zz-» or

R '" Zz_[Zz]/(2n-l(e' +g». Then the unitsofR,R* ~ Zi. x Zi- each have

2-pawer order.

Proof To convince ourself of the above we need to only observe that Zi. is a

multiplicative subgroup of Zz. and so each element ofZi. has order, which

divides 2n-l. Similarly, we can say that each element of Zi- has order, which

divides 2m-I. Therefore, we can state that every unit ofR has 2-power order.

Next we will show you a nice calculation, which could be very useful in

certain areas. We will show explicitly what the ideals are in R and discuss their

properties. Before we do so, we introduce a definition.

DEFINITION 3.13 Let/be an ideal ofa ringR. Then the nilpotency of I

is defined to be the smallest positive integer r with l' = O.

PROPOSITION 3.14 Let R =(Zi. x Zi-) U «2Zz') x (2Zz-». Then

(1) ifn ~ m = 1, then R =Zz has only the trivial ideals and the zero ideal (0)

is the maximal ideal and its nilpotency is clearly 1, so R is a chain ring.

(2) ifm > n = 1, then R =Zz- has m + 1 ideals, each ofthe form (2') = 2'Zz-,

where 0 ::; i ::; m; with maximal ideal (2) with nilpotency m, so R is a chain ring.

(3) ifm 2: n > 1, then R has exactly 2n + m - 1 ideals, and the unique maximal

and prime ideal m is not principal and has nilpotency m, so R is a local ring, but

is not a chain ring.
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Proof Part (I) and (2) are clear. To show part (3) we need to recall that each ideal in Zz"

where k is a positive integer, is of the form (2 i
) = 2iZZ' with 0 :s: i :s: k, where (2°) = Zz'

and (2k) = (0). Hence, there are exactly k - I nontrivial proper ideals of ZZ" which are

all additive subgroups of2Zz" Also, it is clear that the nilpotency of the proper ideal

(2 i ) is ~ . And, finally (2°) ~ (2 1) ~••• (2') ;;;l..•~ (2k ) for each i with 0 :s: i :s: k.
I

Using this observation, we can easily see that ifwe setIn = (2,0)) and 1m = «0,2)),

then In,Im are both principal ideals ofR where the nilpotency of In is n, and of1m is m.

These ideals are very well behaved. Observe that InIm = «0,0)), which implies that

(In +1m)' = p" + I'm for all positive integers i. Similarly, P" n Pm ~ (0,0) for all positive

integers. And finally, we have that 1" nt" = Cax(iJ) as well as I:" n1;" = r:,ax(i
j

)

for each positive integer i,j.

Now, to show that the nilpotency ofm is m, first we observe that

To convince us that m is the least positive integer with this property suppose

k is a positive integer less than m with (In + Im)k = O. Then

which is a contradiction, since even ifI~ = 0, the nilpotency of1m

is m which means I~ * 0 for any positive integer less than k.

Seeing all of the above, we can now state that the set of all ideals IR ofR consists of

IIRI = 2 + (n -1) + (m - I) + (n - I) = 2n + m - 1.
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At this point we generalize some of our findings to the Q-Witt rings R, which are

quotients (in the sense of Definition 2.10) ofarbitrary group rings. That is, we will construct

the rings R c;;; C(X, UZnJ which are quotients ofZ[G], where IGI = IXI = 2n with n ~ 2
>EX

and certain conditions on each n,. We will generalize the first two cases that we presented

earlier in this chapter. And we will also show the ring structure ofR c;;; C(X, UZnJ,
,EX

where each n, is some positive integer power of2.

In our next Propositions, we will generalize Lemma 3.2 and Lemma 3.9.

PROPOSITION 3.15 Let nx be positive integers with gcd(n"ny) = 1

for eachx,y E X. Then R C;;; C(X(S), UZnJ is isomorphic to n Zn,.
,EX >EX

Proof First we observe that R is naturally a subring ofn Zn,. Next, we show that
,EX

the map () : Z[G] -+ n Zn" induced by Z[G] -+ C(X(S), U Zn,) is a ring epimorphism.
~X xEX

To see this we observe that n Znx is the image of ;Le', which follows from the
xEX

Chinese Remainder Theorem.

PROPOSITION 3.16 Let nx be a positive odd integerfor each x E X.

Then R C;;; C(X, UZnJ is isomorphic to n Znx·
xEX xEX

Proof Recall that R is a finite quotient ofa torsion free abstract Witt ring S for a group

IGI = 2n • Therefore, we have a natural ring homomorphism from Z[G] onto

s C;;; C(X,Z) and thus we have (jl : Z[G] -+ R c;;; C(x, UZnJ C;;; n Zn, defined
xEX xeX

as in the proof of Theorem 2.18.
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To show that lI> is an epimorphism, let x EX. Then by [3, Lemma 3.7], there are

n
gl, ... ,gn E Gsuchthat {x} = nH(gi),. Observe that for each suchgj , lI>(1-gi) = 2eH(,gi)

j=)

n

and so lI>(D(1- gi))
i=l

n

~ 2n D eH(g,) = f. Notice that f(x) = 2n and fCy) = 0
1=1

for all x * y E X. Now, since gcd(nx,2n ) = I, we know that 2n E Z~"

Thus, there is an a E Z~, so that a2n '" I(modnx ), which implies that

the element (m)ZE,\"withm :; I(modnx)andm:; O(modny) for all x '1'y EX

is in the image of lI>.

Since we chose x arbitrarily from X, we just showed that all elements of the form

(m)zEXwith m :; 1(modnx ) and m:; O(modny) fora/Ix * y E Xare in the

image ofll>, which will generate D Zn,.
xEX

In light ofour findings in Chapter 2, we know that in the case ofn 2: I, the only

local Q-Witt rings are those rings R such that R >;; C(X, UZn,), where each nx is
xEX

some positive integer power of2 and nx 2: IXI. Therefore, for the remainder of this

chapter we will concentrate on the local Q-Witt rings. First, we give the ring structure

of some local Q-Witt rings and determine the order of those local Q-Witt rings, where

each nx is the same power of2 which is greater than the order of the group G.

THEOREM 3.18 Let R be the image ofZ[G] in C(X, UZnJ. Let nx = 2a,
xU'

with ax a positive integerfor each x E X and each nx 2: IGI = 2n.

n

Then R is isomorphic to Z2_[G]/(2 a,-n( D(e' + E(i,x)gi)), X E X)
i=l
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where a = max ax, and {gl, ... ,g,} is aflXed'I.2-basisjor G, and the
xeX

,
± signs E(i,x) are chosen depending on x E X, so that {x} = nH(-Eigi).

;=1

Proof Recall that we have a natural ring homomOlphism from S = Z[G] into C(X,Z) and

thus from S = Z[G] into C(X, U 'I.,x> where IX! = 2' = IGI, n 2.> 2. Then as in the proof
xeX

of Theorem 2.18, we define $ : 'I.[G] .... R ~ C(X, U 'I.,x> by
xeX

$(:Eagg) = ae' + ag:E(l- 2eH(g» E R, where e' is the identity in G. First, we note
goG goG

,
that, for a fixed x E X, the functionjx induced by 2a,-,n(e' + E(i,x)gi) in cex, 'I.) is such

j=]

thatfx(x) = 2a, atxandfx(y) = oat all x *y E X. Therefore,fx E Ker4lforeach

,
x E X. Hence, we have that (2a,-,( nee' + E(i,x)gi», x E Xl c Ker4l. Next we observe

i=1

that the kernel of$ consists ofallj E C(X,'I.) in the image of the Witt ring, which satisfY

j{x) '" O(modZa,) for each x E X. Observe that any such function is clearly a 'I.-linear

combination of functions hE C(X,Z) with hex) = 2a , for a fixed x E Xand

h(y) = 0 for all x * y E X. These functions h are precisely the ones we have included as

generators fot the kernel of$. Thus, we can conclude that ifZa, 2.> Z', then R is isomorphic

,
to 'I.2.[G]/(za,-n( nee' + E(i,xlgi», X E X) where a = max ax.

i=1 x€X

The general case needs to be further investigated. However, we do have results in the

special case when nx is the same constant as a special case of the above Theorem.
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COROLLARY 3.19 Suppose R is as above. Let n. = 2a :::: IGI = 2n for each

X E X, where a is a positive integer. Then R ~ Z2" [G]/I where

1= (2 a-r n ,(e' - gk,),jor each r, with 0 :s; r:S; n, 1 :s; k:s; (;»), where the
gkjEGr

( ; ) r-subsets of{gl, .. ,gn}, afixed Z2-basis for G, can be indexed as

G~ = {gk" ... ,gk,} for 1 :s; k:s ( ; ). Furthermore IRI = 2(2a-n)2~f.

Proof First we observe tbat as a special case ofTheorem 3.18, we have that

n

Z2"[G]/(2a--n( nee' + E('.x)g,», X E X). Therefore, we need only to prove that the
i=1

n

ideal (2 a-n( nee' + E('.x)g,», x E X) is the same as the ideal I. To show this
i:=1

once again we will use <D : Z[G] ~ R £:;: C(X, UZn,) as in the proofof Theorem 2.18.
.reX

By [3, Lemma 3.7], for any r, 0 :s r :s n, we have H(gk,), ... ,H(gk,) in H(Z[G]),

so that n H(gkj ) = 2 H for some G~. Then we can conclude that
gkiEG~

<D( n (e' - gk,) = 2' n eH(g,,) so that 2' n eH(g,,l(x) = 2' at each
~~ ~~ ~~

Therefore, we can conclude that all the elements ofthe form

2a-r n (e' - gk,) E Z[G] will have images ofthe form hE C(X,Z), with
gkjEG~

hex) = 2a at each x E n H(gk;) and hey) = 0 at each y E X - n H(gk,).
~~ ~~
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•
Thus, I is contained in (20

-'( TI(e' + &(i,x)gi)), X EX).
i=1

To show the inclusion in the other direction, we show that the generators ofthe ideal

•
(20

-'( TI(e' + &(i,x)gi)), X E X) can be expressed as Z2·-linear combination of elements
i=1

•
of the ideal I. So, let 2 0

-'( TI(e' + &(i,x)g,)) be an arbitrary generator. Observe that if
i=1

•
&(i,x) = -I for each (i,x), then2°-'(TI(e' +&(i,x)gi»

i=l

•
= 2 0

-.( TI(e' - gi»)
i=1

So, we can assume that &(I,x) = I for some (i,x). Without loss of generality we will

assume that &(I,x) = 1 for I :'0: i :'0: m :'0: n, then

•
2 0

-'( TI(e' + &(i,x)gi»
;=1

m •

~ 2a-.( TI(e' + gi)( TI (e' - gi»). So, it suffices for us
;'=1 ;=m+l

m •

to show each term of the form 2a-.( TI(e' + gi)( TI (e' - gi») with 1 :'0: i:'O: m :0; n,
i=1 i=m+l

can be expressed asZ2.-linear combination ofelements of the ideal I. We will do so using

induction on m.

First, suppose m = I. Then e' + g = -(e' - g) + 2e', so we can conclude that

n

2a- n( (e' + g)( TI (e' - gi»))
i=:=m+l

n n
- 2a-'(e' - g)( TI (e' - gi» + 20 -n+l ( TI (e' - gi») E I.

i=m+I i=m+1

m-I

Next, suppose that TI (e' + gi) = ~ a(k;r) TI (e' - gk,), where a(k;r) E Z2" Then
;=1 gkiEG~

using case I, we can write that
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m

TI(e' + gil = (e' + gm) I:a(k,,) TI (e' - gk,)
i=t gkiEG~

= I:(-aCk,,))(e'-gm) TI (e'-gk,)+ I: 2aCk,,) TI (e'-gk,). Therefore,
gkj~G~ gklEG~

m 0

2o- 0
( TI(e' +gi)( TI (e' - gil))

i=J i=m+l

o

2o-n(L;(-ac~))(e' - gm) TI (e' - gk,))( TI (e' - gil)) +
gklEG~ i=m+l

o

20
-

0 ((L;2a(k,') TI (e' - gk,)) ( TI (e' - gil)) E 1.
SA-iEG: j=m+1

To complete our proofwe need to find the order of this ideal 1.

Since there are ( ~ ) r-subsets G~ of {gl, ... ,go}, there are ( ~ ) elements of the

form 20
-

7 TI (e' - gil in I, which implies that
gjEGr

n( ~ ) + (n - 1) ( ~ ) +...+I ( :-1 ) = n( ( n~1 ) + ( "\1 ) +...+I ( :::: )) = n2o- l •

Therefore, we can conclude that since IZ2"[GJI = (2")2" = 202",
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CHAPTER 4
SQ-WITT RINGS

In this chapter, we will define a special class ofQ-Witt rings, SQ-Witt rings, which

occur naturally as quotients ofWitt rings offonnally real fields. Finitely generated reduced

Witt rings ofa fonnally real field are very well understood. Craven in [4] showed that

these rings can all be constructed by a very concrete recursive process. The advantage of

this observation is that theorems about them can be proven by induction via that recursion.

It is hoped that the quotient rings we describe will provide interesting classes of finite rings

with possible applications to coding theory.

We will show that all SQ-Witt rings arise from a recursive construction.

We will now give some background and definitions so we understand the Witt ring of

a fonnally real field. Bya Witt ring W(F), we mean a ring ofequivalence classes ofnonde-

generate symmetric bilinear forms over the field F and Wred(F) = W(F)/NiIW(F). For

further developments and definitions on Witt rings we found [13] to be very detailed.

For the remainder of this thesis we will let F be a fonnally real field, i.e., a field

where -1 is not a sum of squares. A nice example ofa fonnally real field is ofcourse the set

of real numbers lR. and similarly one easily sees that the set of complex numbers iC is not

fonnally real. It is important to also observe that a fonnally real field by virtue of its

definition, must have characteristic O.

By an ordering of a field F one means a subset P ofF, which satisfies

1)0 ~ P, 2) If0 'f'X E F, then either X E Por-x E P, and3)P+P c Pand
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pp c P [13, Definition 1.2 Page 224]. From [11, Remark 2.7] we know that the

set of orderings on F can be identified with the ring homomorphisms W(F) .... Z or

equivalently with the minimal prime ideals of W(F) as was observed in [II, Remark 2.7].

Therefore if W(F) is Witt ring of a formally real field F then Xp may be identified with the

set ofall orderings ofF. Observe that the map W(E) .... C(Xp,Z) is defined by taking

a representative :Eaix; for a class in W(E) and finding the signature ofthe form at each

ordering ofF, where the signature is defined to be the number ofpositive ai's minus the

number ofnegative ai'S.

As noted earlier, Witt rings of fields occur as special classes of the abstract

Witt rings as they were defined in [10], that is as a quotient ring of the integral group ring

Z[G], where G is a group of exponent 2. We now also note that for a formally real field F,

the group G is isomorphic to F*/(:EF*2), where :EF*2 is the group ofnonzero sums of

squares in F.

DEFINITION 4.1 Let R be a an abstract Witt ring for an elementary abelian

2-group. Then we say that R satisfies the weak approximation property (WAP) if

H(R), the subbasis for the topology ofX(R), is a basis, and R satisfies the strong

approximation property (SAP) ifH(R) is the entire Boolean algebra ofclopen sets

inX(R).

COROLLARY 4.2 [II, Corollary 3.21] Let F be aformally realfield, Xp the

"Boolean space" ofall orderings ofF, and W(E) the Witt ring ofF. Then the following

statements are equivalent.
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(2) C(XF, Z)IWred(E) is a group ofexponent 2.

(3) IfU is a clopen subset ofXF there exists an element a ofF* such that

an ordering < is in U ifand only ifa < O.

(4) (Approximation). Given any two disjoint closed sets Y1, Yz of

orderings ofF there is an element a in F* with a < 0 for < in Yl and 0 < a

for < in Yz.

We note that a Witt ring ofF, W(E), which satisfies part (3) ofthe above theorem

also satisfies SAP, and one which satisfies part (4) of the above theorem also satisfies

WAP. Further, the SAP case gives the largest possible abstract Witt ring for a given size IXI.

(See proof ofProposition 2.21 and Proposition 4.4.)

DEFINITION 4.3 An SQ-Witt Ring is a ring R formed by taking the quotient ring ofa

torsion free Witt ring W(E), viewed as a subring of C(XF, Z) with IXFj < 00, by taking

the functionf E W(E) to a function f E C(XF, U Z.J such that f(x) E Z., for each
,EXF

X E XF. That is, the restriction mapping to a point x E XF becomes the signature at the

ordering associated with x composed with the quotient map Z ... Z'r

Let R be an SQ-Witt ring; that is, the quotient of a torsion free Witt ring S = W(E),

for some formally real field Fwith space of orderings X. By [4], the ring S can be

constructed recursively from the ring of integers Z using two operations:

(I) Group extension: given a ring Ro, form the group ring Ro[Zz].

(2) Direct product (in the category oftorsion free Witt rings): given two rings in the
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category R i = Z + mi, i = 1,2 the product is Z + ml x m2. Here mi denotes

the unique maximal ideal ofRi and is viewed as a subset of the functions C(Xi ,2Z).

Thus any such ring is a subring ofthe largest possible allowed collection offunctions,

that of a SAP field, as in Corollary 4.2. Indeed, this is also the largest possibility for the

preimage of a Q-Witt ring. We refer the reader to [1] for a much more general discussion

of the torsion free rings and generalizations. Most expositions of[4, Theorem 2.1], such as

that in [1], emphasize the effect on the sets ofminimal prime ideals. For group

extension, the space X is duplicated, with the nontrivial group element being +I on one copy

and -Ion the other. For the product, one obtains the disjoint union ofXl and X2.

This recursive construction is almost unique. The only non-uniqueness arises in forming

the group ring Z[Z2], which also occurs as the product ofZ with itselfin this category. That

is, there are two ways to form the ring with IX! = 2, whose quotients were carefully analyzed

in Chapter 3.

It is now somewhat clear that a recursive construction can be used to create any SQ-Witt

ring, but there are complications. For example, we can take n = max n., begin with Zn in
.EX

place of Z and use the constructions above. Then at the end, factor out the additional amount

needed at each point x E X. We cannot, however, build the SQ-Witl ring R with all factori-

zations in place as we go. This is not a problem for products, as the product construction

commutes with our quotient ring construction. But the group ring construction does

not. For example, ifwe work with S = Z[Z2 X Z2], the setXhas four elements. Forming

R from a quotient ofZ, then forming a group ring will make all values n. the same, and
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forming it from a quotient ofRO[Z2], where Ro is a Q-Witt quotient ofZ[Z2], will make

them equal in pairs. We can only obtain the full generality we want by making an additional

quotient construction at the end. While this largely loses any uniqueness for our construc-

tions, it does still allow most of the power ofthe recursive construction for proofs and for

computations. There is one further complication as is evident in the special case of

Corollary 3.13; group ring constructions do not inject into the ring of functions, but rather

have a two element kernel ( c~R (e + g».

This is a fundamental fact ofour situation since we cannot distinguish the group elements

modulo 2, as they are functions taking values ±1. This discussion shows now that we

have the following theorem.

THEOREM 4.4 The collection ofall SQ-Witt rings with only 2-torsion is precisely the

set M ofrings constructed asfollows:

(1) TheringsZ/2nZ EMforeachn = 1,2, ...

(2) Given any REM, the quotient o/the group ring R[{e,g}]/( c~rR (e + g» E M.

(3) Given Ri = Zn! + mi E M, the product, Zmax(n,,n,) +mIx m2 E M.

(4) Given REM, anyjitrther quotient as in Definition 2.10 is in M.

The restriction to having only 2-torsion is a technicality which was mentioned in

Chapter 2. Any SQ-Witt ring is a product ofa finite set of rings in M and a finite set of

rings Zn, n odd, where either ofthe sets may be empty.

As an example of the power ofthe recursive construction, we point out how to count the

number of elements in an SQ-Witt ring. Two cases have been done earlier.
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PROPOSITION 4.5 Let R be the quotient ofa SAP Witt ring Z + C(X, 2Z), with values

n" x E X. Then

Proof By the remark following Corollary 4.2, we know that the SAP case gives the largest

possible abstract Witt ring for a given size IXI. Therefore, by Proposition 2.21 we have

that IRI = 2n2"~1.
XEX

PROPOSITION 4.6 Let R be a quotient ofa group ring Z[Z2], with all values of

Proof This is just Corollary 3.1 O.

These are the two extreme cases for Q-Witt rings. That is, if IXI = 2" for any ring R,

then IRI is between the lower bound of the group ring as in Proposition 4.6 and the upper

bound given in Proposition 4.5. We have no better result for an arbitrary Q-Witt ring. But if

R is an SQ-Witt ring, we can compute its size recursively (until the final quotient, ifneeded).

THEOREM 4.7

IRol 2

(2) lfR = Ro[{e,g}]I( c7R (e + g», then IRI = T'
Proof. (I) By Proposition 2.21, we have IRil = 21MI, i = 1,2, and so

(2) This is clear since IRo[{e,g}] I = IRol2 and the ideal (C7R (e + g» has 2 elements.
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