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Automated alignment of transcriptions to audio files expedites the process of
preparing data for acoustic analysis. Unfortunately, the benefits of auto-alignment
have generally been available only to researchers studying majority languages, for
which large corpora exist and for which acoustic models have been created by
large-scale research projects. Prosodylab-Aligner (PL-A), from McGill University,
facilitates automated alignment and segmentation for understudied languages. It
allows researchers to train acoustic models using the same audio files for which
alignments will be created. Those models can then be used to create time-aligned
Praat TextGrids with word and phone boundaries marked.

For the benefit of others who wish to use PL-A for research projects, this paper
reports on our use of PL-A on Tongan field recordings, reviewing the software,
outlining required steps, and providing tips. Since field recordings often contain
more background noise than the laboratory recordings for which PL-A was de-
signed, the paper also discusses the relative benefits of removing background noise
for both training and alignment purposes. Finally, it compares acoustic measures
based on various alignments and compares boundary placements with those of
human aligners, demonstrating that automated alignment is both feasible and less
time-consuming than manual alignment.

1. Introduction Linguists engaged in sociolinguistics and language documentation
face similar problemswhen it comes to efficiently processing large corpora of recorded
speech. Though field recordings can be collected efficiently, it may take months or
years to process the audio for certain types of analysis. In addition to the effort
involved in transcription, phonetic analysis often requires the time-consuming align-
ment of transcription to audio. The expense related to this process may limit both
the questions researchers can explore and the amount of data they can analyze. How-
ever, recent advances in speech recognition technology have led to the development
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Forced Alignment for Understudied Language Varieties 81

of tools to automate time alignment of transcription to audio, particularly for En-
glish data (See, for example, Evanini et al. 2009; Goldman 2011; Kisler et al. 2012;
Rosenfelder 2013; Reddy & Stanford 2015).1

Can researchers investigating understudied languages benefit from these techno-
logical advances? Cross-language forced alignment – aligning recordings and tran-
scriptions of an understudied language using a model trained on a majority language
– has been attempted with some success (Kempton et al. 2011; Kurtic et al. 2012;
DiCanio et al. 2013; Strunk et al. 2014; Kempton 2017). However, difficulties in
matching phonemic inventories, the need to convert orthographic transcriptions to
another system, and the expected errors due to language mismatch make this ap-
proach less than ideal.

Fortunately, new tools make it possible to train acoustic models specifically for
any language using as little as one hour of transcribed recordings. This paper reviews
the use of one such tool, Prosodylab-Aligner (PL-A) (Gorman et al. 2011), developed
at McGill University’s Prosody Lab. Our tests show that PL-A produced good align-
ments from a relatively small corpus ofTonganword list recordings. Though it lacks a
user-friendly interface and some of the features offered bymore sophisticated aligners,
its success demonstrates the feasibility and utility of trained forced alignment with
understudied languages, and suggests that researchers need not resort to majority-
language models. Despite the time required to prepare files and make corrections
to TextGrid outputs, we have found that forced alignment can increase efficiency,
consistency, and replicability.

The paper is divided into five main sections. In §2, we provide background on
the Tongan Ethnolinguistic Project and on forced alignment. In §3, we review PL-A’s
major components and outline each step in the training and alignment process. In
order to help others who are considering the use of the tool in their own research,
we include troubleshooting notes and tips. In §4 we compare the results of multiple
alignment tests with different types of files and different parameter settings. A key
question explored in this section is how well PL-A performs on long field recordings
with background noise. In §5 we compare PL-A’s alignment to a manually corrected
sample, and in §6 we summarize our conclusions and recommendations for potential
users.

2. Background

2.1 Tongan Ethnolinguistic Project The Tongan Ethnolinguistic Project is a large-
scale study of post-migration Tongans/Tongan Americans in the United States that
will include longitudinal and cross-sectional data on the formation of new post-mi-
gration ethnolinguistic identities. In order to identify potentially important linguistic

1Special thanks to Kyle Gorman and Craig Johnson for help in technical troubleshooting and compiling, to
Keelan Evanini for HTK explanations, and to Carter Holt for his work on file cleanup. Project supported
by: Bell, Adrian V.& Di Paolo,Marianna. 2014. Language, ethnic markers, and the adaptation of Tongan
immigrants to Utah. University Research Council Grant, University of Utah. Also supported by: Holt,
Carter. 2015. Boosting phonetics research through technology. Undergraduate Research Opportunity
Program. Summer 2015 Research Assistantship. (Marianna Di Paolo, mentor).
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variables, we are collecting recordings from Tongans in the United States and in the
Kingdom of Tonga. In 2014, team members visited several villages across the Ton-
gan islands of Tongatapu, Ha‘apai, Vava‘u, and ‘Eua, recording interviews, word lists,
and short reading passages from a total of 40 speakers. The long-term project plan
includes collecting both English and additional Tongan speech samples through in-
terviews and crowd-sourcing. Recognizing the time required to transcribe and align
existing and future recordings for sociophonetic analysis, we began searching for
tools that might expedite the process. After attending a presentation at the 2015
Linguistic Society of America Annual Meeting (Bale et al. 2015) and speaking with
the creator of PL-A, we determined to test the forced alignment tool on our word
list data. Although we will ultimately be aligning and analyzing connected speech
as well, these preliminary tests with word list readings were conducted to determine
whether forced alignment would be a feasible and efficient option with the kind of
recordings contained in our corpus.2

2.2 Forced alignment In recent years, several tools have been developed to time-
align an orthographic transcription to recorded speech at the word and phone level,
sometimes combining this with automated formant extraction. Those tools include:
the Penn Phonetics Lab forced aligner (Yuan & Liberman 2008), now wrapped into
the Forced Alignment and Vowel Extraction (FAVE) (Rosenfelder et al. 2011; Rosen-
felder 2013); EasyAlign (Goldman 2011); Prosodylab-Aligner (Gorman et al. 2011);
MAUS/WebMAUS (Kisler et al. 2012); and the Dartmouth Linguistic Automation
suite (DARLA)3 (Reddy & Stanford 2015). Though the specific methods vary some-
what, these so-called “forced alignment” tools rely on the Hidden Markov Model
Toolkit (HTK) (Cambridge University 1989-2015) speech recognition technology to
create a statistical model associating phonetic symbols to speech signals. Some newer
tools – Gentle (Ochshorn&Hawkins 2016) andMontreal ForcedAligner (McAuliffe
et al. 2016; McAuliffe et al. 2017a; McAuliffe et al. 2017b) – employ the Kaldi ASR
Toolkit (Povey et al. 2011) rather than HTK to create their statistical models.

Forced alignment can be classified as unconstrained or constrained based on the
kind of transcription used. In unconstrained alignment, the aligner is given no infor-
mation about where to look for given words in a recording and must try to align the
words and phones based only on linear order starting at the beginning of the audio
file (Strunk et al. 2014). This type of alignment can be contrasted with constrained
alignment, in which the transcription is time-aligned to sections of the recording, such
as utterances or breath groups. Pre-aligning the data in this way provides the aligner
with additional information about where to look for particular words and phones,
generally leading to better results. A particular alignment tool may use unconstrained
alignment, constrained alignment, or both. For example, the FAVEweb interface uses

2Forced alignment of connected speech is addressed in the first author’s review of Montreal Forced Aligner
(in preparation).
3Technically, DARLA is not a new forced alignment tool. It uses Prosodylab-Aligner behind the scenes
to create aligned TextGrids. DARLA’s innovation is to combine speech recognition technology, forced
alignment, and automated vowel formant extraction in a single, user-friendly, web-based environment.
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constrained alignment, while DARLA and MAUS offer both constrained and uncon-
strained options.

Forced alignment tools promise great savings in time, and therefore cost. Manu-
ally aligning a transcription at the phone level can take up to 800 times the duration
of the audio – or as much as 13 hours for a one-minute recording (Goldman 2011;
Schiel et al. 2012). Automating that process has made formerly impossible studies of
large corpora a reality.⁴ That the FAVE system is becoming a standard tool in English
variationist sociolinguistics speaks to the utility and efficiency of such advances.

Another benefit of forced alignment is improved consistency and replicability.
Manual alignments are not perfect, and trained professionals do not always agree
on where boundaries should be placed. Strunk et al. (2014) report differences in
word boundary placement between human annotators for several languages. Across
eight samples from five languages, the mean interaligner difference was 85.5 ms, and
the median was 35.5 ms. In a test using English recordings, Goldman (2011) found
human vs. human agreement on phone boundary placement to be 79% at a 20 ms
threshold and 62% at 10 ms. The results were similar when French recordings were
used, showing 81% agreement at 20 ms and 57% at 10 ms. The same study found
agreement between a machine alignment and each human alignment to be compa-
rable to the inter-human agreement. Citing previous reviews, DiCanio et al. (2013)
make a more general statement about agreement rates between forced alignment and
hand alignments, stating that “forced alignment on models trained on their target
language …typically average above 80% within 20 ms” (2240).

Though automated alignment is not expected to be error free, some have sug-
gested that the consistency provided by forced alignment may make even the errors
predictable, which may be an advantage over human error. (See, for example, Sikve-
land et al. 2010; Kurtic et al. 2012.) Reddy & Stanford (2015) suggest that this
allows for replicability and the reporting of error rates along with results in the same
way that they are reported in statistical modeling. In addition, we contend that where
manual adjustments must be made to boundary placement, researchers can focus on
fixing specific problems based on well-articulated criteria. This may improve con-
sistency compared to when a human must segment and align an entire recording,
considering a multitude of factors at once.

Unfortunately, most of the benefits of forced alignment have been restricted to
research on English and other resource-rich languages.⁵ Major aligners have been
trained using copious data, sometimes hundreds of hours of transcribed speech. Many
researchers have assumed that a full alignment system could not be created for lan-
guages with considerably less available data (Kempton et al. 2011; Kurtic et al. 2012;
DiCanio et al. 2013; Strunk et al. 2014; Kempton 2017). In order to work around the
small data problem, those researchers have resorted to cross-language forced align-

⁴Achieving the correct balance between accuracy and efficiency is a complicated task and depends on the
type of analysis to be undertaken. For more detailed discussions about accuracy and efficiency, see Schiel
et al. (2012), Goldman (2011), and Reddy & Stanford (2015).
⁵EasyAlign is available for English, French, Spanish, and Taiwan Min. A complete list of languages
supported by MAUS can be found at https://clarin.phonetik.uni-muenchen.de/BASWebServices/#!/ser-
vices/WebMAUSGeneral.
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ment (CLFA), using models trained on unrelated mainstream languages to align data
from understudied and endangered languages. Although this process is not expected
to produce the same quality of results as a tool like FAVE, it can be used “to give a
good initial alignment on small amounts of challenging data in the under-resourced
language” (Kurtic et al. 2012: 1326). Researchers using CLFA report their various
results as “encouraging” (Strunk et al. 2014; Kempton 2017) and “fairly good” (Di-
Canio et al. 2013). Though differences in data and study design make direct compar-
isons difficult, some results from CLFA studies are included in Table 1.

Table 1. Example study results for cross-language forced alignment (CLFA)

Study Training
Language

Aligned Language Type of data % Agreement
<20 ms

DiCanio et al. (2013) English
(hmalign)

Yoloxóchitl Mixtec isolated words 61%

DiCanio et al. (2013) English
(p2fa-Penn)

Yoloxóchitl Mixtec isolated words 52%

Kempton (2017) Czech Nikyob (Nigeria) isolated words 66%
Kurtic et al. (2012) Russian Bosnian Serbo-Croatian free conversation 49%
Kurtic et al. (2012) Hungarian Bosnian Serbo-Croatian free conversation 41%
Kurtic et al. (2012) American

English
Bosnian Serbo-Croatian free conversation 43%

Kurtic et al. (2012) Czech Bosnian Serbo-Croatian free conversation 47%

Strunk et al. (2014) report results differently, using differences in boundary placement
measured in milliseconds. Table 2 shows results for several language samples using
the MAUS “sampa” mode, which combines acoustic models from several languages
supported byMAUS.⁶Note that this study only considered word boundary placement
and did not analyze word-internal phone boundaries.

Table 2. Strunk et al. (2014) results for six test samples using MAUS sampa model
for constrained forced alignment

Language and difficulty of
sample

# of Words Mean difference Median difference Max difference

Baure (easy)* 502 160 ms 101 ms 1,030 ms
Baure (hard) 689 204 ms 60 ms 3,214 ms
Bora (easy) 289 148 ms 30 ms 3,338 ms
Even (easy) 405 196 ms 34 ms 2,272 ms
Even (hard) 236 248 ms 63 ms 770 ms
Sri Lanka Malay (easy) 204 207 ms 41 ms 6,127 ms

*The authors define “easy” texts as good quality recordings of single speakers with few background
noises; “hard” texts have multiple speakers, overlapping speech, and more background noise.

As noted by study authors, CLFA shows promise, though manual adjustments
would generally be required. However, there are downsides to the CLFA approach.
For example, the accuracy of CLFA depends partly on how closely the phone set,

⁶The table shows only the results for constrained alignment, which were generally much better than the
results for unconstrained alignment.
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syllable structure, and phonological rules of the target language match those of the
language on which the acoustic model was trained (DiCanio et al. 2013). Finding
the best fit between model and target language can be time consuming and may re-
quire testing of candidate models (Kempton et al. 2011; Kurtic et al. 2012; Kempton
2017). Once a model is selected, transcriptions may need to be converted to match
the conventions of the model. This step requires extra effort or tools, and the result-
ing time-aligned transcriptions may look nothing like the orthography of the study
language.

Prosodylab-Aligner (PL-A), reviewed in this paper, takes another approach, allow-
ing users to train their own acoustic models for less-studied languages using a small
amount of data. Given a set of sound files, simple orthographic transcriptions, and
a pronunciation dictionary file, PL-A produces time-aligned TextGrid files for use in
Praat (Boersma & Weenink 2015) or for import into other software, such as ELAN
(Max Planck Institute for Psycholinguistics). To date, PL-A has been used with a vari-
ety of majority and minority languages, including English (U.S.A., Canadian, British,
Aviation, South African), French, Arabic (Gulf), Irish, Cantonese, German, Polish,
Mandarin,Tagalog, Spanish, Ch’ol,Mi’gmaq, andKaqchikel (Gorman, p.c.). Though
models trained with small amounts of data may not be as good as those trained on
large corpora, the language-specific model still offers advantages over CLFA.Notably,
a language-specific model can be refined as new data and information become avail-
able. During the initial stages of research, information on variation may be sparse,
but further research may reveal alternate pronunciations that can be added to the
dictionary, leading to improved acoustic models and alignments. (Note the examples
of alternate pronunciations included in the English pronouncing dictionary in Figure
3, below, which is representative of the CMU dictionary (Carnegie Mellon University
1993–2016) used by both PL-A and FAVE.)

Prosodylab-Aligner is one of the first tools to make language-specific model train-
ing available to linguists who are not software programmers. Its specific requirements
and components are described in the next section. For each step in the preparation,
training, and alignment processes we provide general instructions as well as a review
of how that process worked in our own tests.

3. Using Prosodylab-Aligner

3.1 Getting started Prosodylab-Aligner, developed at McGill by Kyle Gorman and
Michael Wagner, is a set of Python scripts for performing forced alignment using
HTK.⁷ It is available for free download from GitHub (https://github.com/prosodylab-
/Prosodylab-Aligner). Officially, it has been tested on Mac OS X and Linux, and in-
structions are provided for Mac installation (http://cslu.ohsu.edu/ gormanky/aligner-
/aligner-tutorial-startup.html). Since our tests were conducted on a PC, we know

⁷The McGill Prosody Lab has recently produced a second tool for forced alignment on understudied lan-
guages. This software, Montreal Forced Aligner, is easier to use and offers some advances over PL-A. It is
not discussed here but will be reviewed in a separate paper.
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that a Windows environment is also an option. Regardless of platform, the instal-
lation and setup process is somewhat complicated, though doable. In general, users
must install Python and related packages and must install and compile HTK⁸ before
installing the set of scripts that comprise the aligner itself.

Though we began by installing all of the components on aMac, we eventually ran
all of our tests on aWindows machine (Microsoft Surface Pro 3,⁹ Intel Core i5-4300U
processor, 8GB LPDDR3 RAM, 256GB SSD, and 200GB micro SD). Our choice to
use aWindows platform was based primarily on the availability of resources. The PC
at our disposal was newer and faster than our Mac, and we had access to aWindows
programmer to help with troubleshooting.1⁰ We have written up our instructions to
build on a Windows x64 PC, and they will be made available upon request.

Unlike FAVE and DARLA (which work only on English), PL-A doesn’t have a
user-friendly web interface or comprehensive documentation. At first, linguists with-
out programming experience may find the installation and command line interface
intimidating. For this reason, we will share tips that may help others learn from our
experience and navigate the process more easily.

3.2 Data Preparation PL-A requires the following for the training and alignment
processes:

• audio files

• transcription files

• a dictionary file

• a configuration file

3.2.1 Audio files PL-A requires audio files in .wav format. The default sample rate
is 16 kHz (the standard minimum acceptable sample rate), and recordings at other
sample rates are automatically resampled. To avoid this resampling process, which
can be very slow,11 users can either resample their files before running the training
command (using the resample.sh script included in the package or using software like
Audacity, available at http://www.audacityteam.org/download/) or can override the
resampling process by changing the sample rate setting in the configuration file. (See
§3.2.4.) The recommendedminimum amount of training data is one hour of recorded

⁸The version of HTK downloaded and used for the Tongan tests described here is 3.4. Since that time, a
newer version, 3.5 has been released.
⁹The last two models were trained on the Surface Pro 4, Core i5 6300u 2.4ghz, Intel 520 Graphics, 8GB
RAM, 256 GB Samsung MZFLV256 NVMe SSD. The last two alignment tests were also performed on
this machine.
1⁰This doesn’t mean that the tool would not have worked on our Mac. Though we encountered some errors
early in the process, the PL-A developer was very helpful in resolving them. Since most people use PL-A
on a Mac, it’s likely to run most smoothly on that platform.
11Of the automatic resampling performed by PL-A, the README file states: “Resampling this way can take
a long time, especially with large sets of data. It is therefore recommended that sample rate specifications
are made using resample.sh. This requires installing SoX.” (https://github.com/prosodylab/Prosodylab-
Aligner/blob/master/README.md)
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audio. PL-A was designed with laboratory recordings in mind. The instructions
recommend using audio files and transcripts corresponding to single sentences or
breath groups, though longer or shorter files may also be used. Using very short
sound files is a way of constraining the alignment or limiting where the aligner can
look for words and phones. However, because one-sentence audio files recorded in
a lab are not the only kind of data field linguists deal with, we tested the tool on
long field recordings of word lists to determine how it would perform under those
conditions.

The audio data used for the present study consist of word list recordings extracted
from longer interviews featuring other speech styles as well. They were recorded
in Tonga during May of 2014 using lavalier microphones (Audio-Technica AT831b
Miniature Cardioid Condenser Microphone) and a Zoom H4n digital recorder set at
16 bit and 44.1 kHz. (We did not resample to 16kHz.) Because wewanted to preserve
the word list context for each speaker, we did not edit the audio files into small, single-
utterance files. The recordings were made in a field setting rather than a laboratory,
and despite efforts to minimize problems, most of the recordings contain the kind of
background noise that is typical of field recordings. In this case, extraneous noises
include sounds from animals, cars, wind, church bells, laughter, etc. In order to test
the effects of such noise on the training and alignment processes, we performed tests
on two sets of files hereafter referred to as dirty and clean.

• Dirty files: These files include all background noises in the recording. The only
editing performed on these files used Audacity to eliminate extraneous conver-
sation and isolate the word list reading from other parts of the interview.12

• Clean files: These files have been edited to remove tokens with background
noise as well as extraneous noise between words.13 Because these recordings
will be used for acoustic analysis, we made no alterations to the audio signal.
Thus, the clean-up refers only to the purging of ambient noises and of affected
tokens while leaving the remaining tokens untouched. Cleaning 22 audio files
took an undergraduate research assistant 120–150 hours.1⁴ Table 3 illustrates
the extent to which the recordings were edited, listing both the original record-
ing length and the edited recording length for the first five speakers’ word list
readings.1⁵

12A few tokens were also removed due to wind interference that was severe enough to prevent speech from
being heard and recognized.
13In addition to background noise, this process also eliminated long pauses. However, a minimum of 20 ms
of “silence” was left on either side of each included word token, and all boundaries were placed at zero
crossings.
1⁴This estimate includes the time required to train the research assistant to use Praat and make the edits.
1⁵A reviewer points out that we could have cleaned the files by inserting stretches of silence over background
noise or problematic tokens rather than by deleting them. This would have preserved the original lengths
of the files, as well as information about speech rate that may be useful for some kinds of analysis. That
method would also have allowed us to make direct comparisons between TextGrids created using clean
and dirty versions of the same recordings. We agree that is probably a superior approach, though we did
not think of it when we began our project.
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The resulting dataset includes 22 clean files (one per speaker), for a total recording
time of 1:41:30, and 16 dirty files (one per speaker, different speakers from those in
the first group), for a total recording time of 2:39:44. For comparison, we also have
dirty versions of five of the recordings in the clean set (1:23:01). Both clean and
dirty files contain only one voice, and only the single track recorded by that speaker’s
lavalier microphone.1⁶ Both the clean set and the dirty set include recordings from
both men and women.

Table 3. Original and edited recording length for first five speakers

Speaker ID# Original Recording Length Edited Recording Length

001 16:22 5:59
002 13:48 5:31
003 15:42 6:22
004 16:22 4:59
005 20:45 4:50

3.2.2 Transcription files PL-A does not require (or accept) any time-aligned tran-
scription input, placing it firmly into the unconstrained alignment category.1⁷ Tran-
scription files must be in plain text format, using UTF-8 encoding, and saved with a
.lab extension. The prescribed format requires single spaces between words and no
carriage returns or punctuation. Regular spelling conventions can be followed using
Unicode for special characters. Figure 1 provides an English example from the PL-A
documentation.

Figure 1. Transcription example (English text, from PL-A README file)

The simplest way to create PL-A transcriptions is to type them directly into a
basic text editor program (like TextEdit or Notepad). The PL-A developers have
also provided Python scripts that can be used to prepare transcription files from tab-
delimited text files or from transcriptions made in ELAN or Praat. Information on
these scripts can be found at https://github.com/prosodylab/prosodylab.alignertool-
s/blob/master/README.md.

We began our transcription process in ELAN using a controlled vocabulary based
on the word list and setting loose boundaries around individual words. For clean file
transcriptions, we exported the relevant tier as a TextGrid then used Praat to edit the

1⁶On the same trip, two other recordings were made accidentally using the built-in microphones on the
recorder rather than the lavalier microphones. These recordings were excluded from the training and
alignment tests because of the high level of background noise and relatively poor recording of the speaker’s
voice.
1⁷As noted in §3.2.1 and §6, one way of constraining alignment in PL-A is to use very short audio and
transcription files, as recommended by the software developer.
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transcriptions, leaving labels only in the intervals containing clear tokens without
background noise. Extracting non-empty intervals, concatenating recoverably, and
writing to table produced transcriptions (paired with edited audio files) that could
then be edited in Word and Notepad++. The transcriptions of dirty files were ex-
ported from ELAN as tab-delimited text and then formatted inWord and Notepad++.
Traditional Tongan orthography was used, with one exception: glottal stops were rep-
resented with an IPA (Unicode) character <ʔ> rather than with the traditional symbol
<‘>, since apostrophes and quotation marks can cause problems when running scripts
(Figure 2).

Figure 2. Transcription example (Tongan word list, from Tongan Ethnolinguistic
Project)

3.2.3 Dictionary file The PL-A download includes a North American English dictio-
nary file based on the CMU dictionary. The creators also maintain an online repos-
itory for dictionaries at https://github.com/prosodylab/prosodylab.dictionaries. To
train acoustic models for other languages, users must provide their own pronuncia-
tion dictionary, in plain text format, UTF-8 encoding, saved with a .dict extension.
The dictionary must follow the prescribed format as in Figure 3: word entry followed
by phones separated by single spaces. Each entry appears on a separate line. Note that
alternate pronunciations for the same word appear on separate lines. When creating
a dictionary file, you can choose your own transcription system for pronunciations.
However, if you use special characters, they need to be Unicode compatible. You will
provide PL-A with the key to reading your pronunciations in the configuration file,
described in §3.2.4.

Crucially, the dictionary entries must be sorted according to the Python sort or-
der, which may not match the sort performed by other software or the traditional
alphabetical order in printed dictionaries for your language. Proper sorting can be
achieved using the command “sort.py,” which invokes the Python sorted() function
supplied by PL-A.1⁸ Information on Python scripts that can create a dictionary file
from transcriptions can be found at https://github.com/prosodylab/prosodylab.align-
ertools/blob/master/README.md.

BecauseTongan orthography is characterized as being phonemic (Shumway 2009),
and because little research is available on variation, the pronunciations in the test

1⁸For information on this function, refer to: https://wiki.python.org/moin/HowTo/Sorting.
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dictionary were based solely on the traditional spelling (Churchward 1959). For the
pilot test on Tongan data, we created a dictionary file containing only the words used
in the word list1⁹ task (TonganWL.dict). An excerpt is shown in Figure 4.

Figure 3. Dictionary file example (English, included in download)

Figure 4. Dictionary file example (Tongan, created from word list task)

1⁹The word list used in the recordings is a modification of Tongan Swadesh List (The Rosetta Project and
the Long Now Foundation 2010). The original 180-word list was reduced to 130 words for some speakers
to reduce the overall length of the interview. Most speakers read the word list two or three times.
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3.2.4 Configuration file 2⁰The configuration file provides the instructions and settings
to be used in the model training process. The file contains a phoneset to be used with
the dataset, as well as a few settings. The phoneset is the list of characters used in
the pronouncing dictionary file described in §3.2.3. The aligner package includes a
configuration file for aligning English transcriptions to recordings. The phoneset in
the English configuration file uses ARPAbet, the transcription conventions used in the
CMU pronunciation dictionary. Training acoustic models and aligning transcriptions
in other languages requires a separate configuration file, in plain text format, UTF-
8 encoding, saved with a .yaml extension.21 The following screenshot shows the
phoneset and default settings in the English configuration file.

Figure 5. Configuration file example (English, included in PL-A download)

In general, the user doesn’t need to adjust the settings in the configuration file, hence
the warning to “change at your own risk.”

We created the configuration file for our Tongan tests (Figure 6) by making the
following modifications to the English file:

1. A Tongan phoneset was substituted for the English, including a digraph (ng)22
for a velar nasal and Unicode characters for long vowels and the glottal stop.

2⁰The configuration file is described in current instructions (https://github.com/prosodylab/Prosodylab-
Aligner/blob/master/README.md) but is not mentioned in the online tutorial videos for earlier versions
(http://prosodylab.org/tools/aligner/). People learning about the tool from video tutorials should keep this
in mind.
21If you choose to use ARPAbet for a language other than English, it would have to be modified. IPA
characters in Unicode may be a better option.
22We chose to use the digraph in order to followTongan orthographic convention. Alternatively, the Unicode
<ŋ> could have been used.
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2. To avoid resampling, we changed the sample rate setting to 44100 Hz.23

3. For some of the tests we made a slight modification to the TARGETRATE2⁴
setting as described in §3.3.2.

Figure 6. Configuration file example (Tongan, created by modifying the English file)

3.2.5 Data preparation: Troubleshooting The formats for all of these files are simple,
but we found that small issues can cause big problems, and solutions may not be
immediately obvious.

• The requirement that dictionary entries be listed according to the Python sort
order, for example, is not well documented, though noncompliance will cause
the aligner to crash.

• Saving files with UTF-8 encoding seems straightforward, but a word processing
program (such asWord) that allows users to save files in plain text with UTF-8
encodingmay insert a byte order mark (BOM) at the beginning of the document.
The BOM is not visible, but it will also cause the aligner to crash. Therefore, it’s
important to save all text files usedwith PL-Awithout the BOM. If you are using
a PC, the free program Notepad++ (https://notepad-plus-plus.org/) provides an
option to “Encode in UTF-8” (as opposed to “Encode in UTF-8-BOM”), which
will produce usable text files.2⁵

23See the information in §3.2.1 and footnote 11 about resampling.
2⁴Because of constraints in place when the first version of HTK was created, TARGETRATE is measured
in 100 nanosecond units. That means that when the TARGETRATE is set at the default of 100000,
measurements are extracted every 10 msec. (Young et al., 1995–2006:62, footnote 1).
2⁵One reviewer recommends UniRed (http://www.esperanto.mv.ru/UniRed/ENG/index.html) as another
convenient Unicode text editor.
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• Further problems can be caused by a carriage return at the end of a file. Like
the BOM problem, this causes the aligner to crash, but the error message does
not specifically identify the problem or specify a solution. A carriage return
can be removed easily in any text editing program in the way that you would
normally remove an extra line. We used Notepad++.

• Finally, some programs automatically add a .txt extension to text files, even
when the filename already includes another extension, such as the .lab, .yaml,
and .dict extensions required by PL-A. If this occurs, you must remove .txt
for the aligner to run. Note: If your operating system preferences are set to
hide extensions, you might not be aware of the problem. You may have to
change your preference settings in order to reveal and remove the superfluous
extensions.2⁶

These observations are not included to discourage use of Prosodylab-Aligner. On
the contrary, we hope that being aware of possible problems will help others avoid
or resolve them quickly. Slight improvements to the aligner’s error reporting mecha-
nisms would also make it easier for non-programmers to use.

3.3 Training: Creating an acoustic model

3.3.1 The model training process The model training process produces an acoustic
model that will be used to align transcriptions to audio. Model training is executed
by entering a Python script in a command line interface (Terminal on a Mac or Com-
mand Prompt on a PC). The directory should be set to the Prosody folder, which con-
tains all of the scripts and tools downloaded during the installation process. When
entering the command for the script, the user specifies the following:

• the path to the configuration file

• the path to the dictionary file

• the path to the folder containing training data

• the name of the .zip file to which the model will be written

The script requires that all training data – the full set of audio and transcription files
– be located in the same folder. Because the aligner relies on filenames to associate
transcriptions with the audio, each pair of audio and transcription files must have
the same name. (The extensions, of course, will be different: .wav for audio and .lab
for transcription text.) Though it’s not strictly necessary, Gorman (p.c.) recommends

2⁶An additional problem arose from copying characters between specific programs. To minimize input
errors, transcriptions for a short reading passage were sometimes copied directly from the PowerPoint
presentation used to present the stimuli for the task. However, PowerPoint does not properly read Unicode
characters, so symbols for long vowels were improperly imported into the transcriptions and needed to be
replaced later. This was an easy problem to fix, but identifying the problemwas somewhat time-consuming.

Language Documentation & Conservation Vol. 12, 2018



Forced Alignment for Understudied Language Varieties 94

using the ISO 639-3 three-character code (SIL International 2015) for the language
in the name of the .zip file for the acoustic model.

The model training is accomplished in cycles, with a set number of iterations,
or epochs, in each cycle. The default number of epochs is five, but another number
can be specified. Because the aligner performs three rounds of training, increasing the
number of epochs by one will triple the time required to complete the process. Finally,
the user can also request “verbose” or even “more verbose” output when entering the
command. We recommend the latter. The training process begins when the command
is entered. When the system encounters no problems, progress is indicated by status
updates in the interface (“Preparing corpus,”“Training iteration 1,” etc.).

The quality of the acoustic model can be affected by many factors, including the
amount of data, the quality of the data, and various parameter settings. To test the
effects of multiple variables, we used our word list recordings to produce the eight
test models shown in Table 4. We call each run of the training procedure a “training
test” and identify the input data, the settings, and the output model associated with
each test in the table.

Table 4. Summary of training tests and runtimes

Test ID # Type and Number
of Audio Files

# of
Epochs

TARGETRATE Name of Acoustic
Model Created

Runtime

TonT001 clean (22 files) 5 100000 ton-001-mod.zip 1:04:43
TonT002 clean (22 files) 10 100000 ton-002-mod.zip 0:28:45
TonT003 clean (22 files) 15 100000 ton-003-mod.zip 1:00:49
TonT004 dirty (16 files) 5 125000 ton-004-mod.zip 1:11:05
TonT005 clean & dirty

(38 files)
5 125000 ton-005-mod.zip 1:44:00

TonT006 clean (22 files) 5 125000 ton-006-mod.zip 0:17:52
TonT010 clean (17 files) 5 100000 ton-010-mod.zip 0:16:00
TonT011 dirty (11 files) 5 125000 ton-011-mod.zip 0:18:00

Each test is given a unique ID number. Test IDs beginning “TonT” are training tests,
each of which produced one acoustic model.2⁷ Comparisons between models are
discussed in §4 below.

The length of time required to train a model varies, but in our tests the process
took from 16 minutes to one hour 44 minutes, with most tests being completed in
under 30 minutes.2⁸ Factors influencing the runtime may include the amount of data,
the number of epochs specified, and the processing power of the computer. Using the
computer for other tasks while the training module is running may affect available

2⁷The test numbers are discontinuous here because several models were trained using reading passage record-
ings before the final two training tests using only word list data. Because the models using reading passage
recordings have not been properly tested yet, those have been omitted from these results. As mentioned in
a previous footnote, the last two training tests were performed on a Surface Pro 4 rather than a Surface
Pro 3. See footnote 9 for complete specifications.
2⁸The runtime for the first test was unusually long, considering the amount of data and the specified settings.
We think that the computer went to sleep in the middle of the process, so this runtime should not be
considered representative.
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computing power. Note that the PL-A process runs on a single core, so running it on
a machine with multiple cores will not significantly alter processing speed.

3.3.2 Troubleshooting the training process

• The training process will fail if the files or directories have not been properly
prepared or if the syntax for the command is not correct. In such cases, an
error message may identify the source of the problem (e.g., “No such file or
directory” or “Formatting error in dictionary”).

• One common error results from a mismatch between the transcription files and
the pronunciation dictionary. If any of the transcription files contains a word
not listed in the dictionary – either because of a transcription error or because
of a missing entry in the dictionary file – the training process will abort. To
help users resolve this issue, PL-A produces a list of out-of-dictionary words in
the form of a text file called OOV.txt. Unfortunately, that file does not indicate
which transcription file(s) contain(s) the out-of-dictionary word(s), making it
difficult to locate the problem in a large data set.2⁹ To improve this process, we
added a few lines of code to include the name of the file(s) with the missing
word(s) in the output.3⁰ (In case this will be useful to others, we will submit
this as a pull request to the PL-A GitHub.) On a UNIX-like (e.g. Mac OS X)
system, the grep31 -l function can help the user identify which .lab files contain
out-of-dictionary words (Gorman, p.c.). On a PC, users can search all files in
a specified folder for problem words using Notepad++.

• When training models using dirty files, we encountered one error (“ERROR
[+7390] StepAlpha: Alpha prune failed”) that was not documented in the PL-
Amaterials or the HTK Book (Young et al. 1995–2006). After a web search, we
resolved the issue by increasing the TARGETRATE setting in the configuration
file from 100000 (default) to 125000.32 This change resulted in acoustic feature
measurements being extracted every 12.5 ms rather than every 10 ms. Potential
effects of this change are considered in §4 below.

3.4 Alignment: Producing time-aligned TextGrids

3.4.1 The alignment process Once you have created an acoustic model for your
research language, you can use that model to produce two-tiered time-aligned Praat
TextGrids, as in Figure 7. The“words” tier shows the boundaries between words and
indicates sections of silence (labeled “sp” between words and “sil” at the beginning

2⁹This problem has been corrected in the Prosody Lab’s newer product, Montreal Forced Aligner (see foot-
note 7).
3⁰Code written by Craig Johnson.
31One reviewer notes that grep can also be installed on Windows with the GnuWin32 tools (http://gnuwin-
32.sourceforge.net/).
32See footnote 24.
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and the end of the file). The “phones” tier subdivides each word into individual
segments based on the sequence of phones given in the pronunciation dictionary file.

Figure 7. Sample TextGrid with two tiers, created by Prosodylab-Aligner

Like the training process, the alignment process is initiated by executing the Python
script in Terminal or Command Prompt. Again, the directory should be set to the
Prosody folder. The command specifies:

• the name and path of the acoustic model (.zip file) to be used

• the path to the dictionary file

• the path to the folder containing the audio and transcription files to be aligned

The TextGrids are created in the same folder as the sound and transcription files
and are given the same names, with the .TextGrid extension. The system also creates
a .csv file listing a confidence score for each file. Gorman (p.c.) describes these as
log probabilities for each alignment (for the file as a whole), but they are not well
documented in either the PL-A instructions or the HTK Book. So far, we have not
found these to be useful, since they are very difficult to interpret.33

The alignment process is quicker than the training process. Among our test align-
ments, the longest took about 52 minutes (for 38 files, 4:21:14 total recording time),
and the shortest four minutes (for five files, 1:23:01 total recording time). We con-
ducted 16 alignment tests using the eight models created during the training tests, as

33The aligner also creates a text file (.aligned.mlf) listing timestamps for all of the boundaries placed dur-
ing that alignment session, written as integers. The boundaries are listed as beginning and endpoints of
segments on the “phones” tier, and the label for the segment is included. This is an intermediate file the
aligner produces before creating TextGrids. On a Mac system, this file is hidden (Gorman, p.c.). However,
if you run the aligner on a PC, you will see this file in the folder with your TextGrids.
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summarized in Table 5. Each alignment test is given a unique ID number that begins
with “TonA.”3⁴ A complete explanation of each test and comparisons of results are
included in §4, below.

Table 5. Summary of alignment tests and runtimes

Test ID # Type and Number of
Aligned Files

Acoustic Model Used in
Alignment (and Type of
Training Files)

# of
Epochs

TARGETRATE Runtime

TonA001 clean (22) ton-001-mod.zip 5 100000 0:13:19
(trained on clean)

TonA002 clean (22) ton-002-mod.zip 10 100000 0:12:45
(trained on clean)

TonA003 clean (22) ton-003-mod.zip 15 100000 0:20:20
(trained on clean)

TonA004 dirty (16) ton-001-mod.zip 5 100000 0:36:58
(trained on clean)

TonA005 clean & dirty (38) ton-004-mod.zip 5 125000 0:30:45
(trained on dirty)

TonA006 clean & dirty (38) ton-005-mod.zip 5 125000 0:51:50
(trained on clean &
dirty)

TonA007 dirty (16) ton-002-mod.zip 10 100000 0:25:50
(trained on clean)

TonA008 dirty (16) ton-003-mod.zip 15 100000 0:26:20
(trained on clean)

TonA009 dirty (5) ton-001-mod.zip 5 100000 0:17:15
(trained on clean)

TonA010 dirty (5) ton-002-mod.zip 10 100000 0:18:55
(trained on clean)

TonA011 dirty (5) ton-003-mod.zip 15 100000 0:26:00
(trained on clean)

TonA012 dirty (5) ton-004-mod.zip 5 125000 0:14:00
(trained on dirty)

TonA013 dirty (5) ton-005-mod.zip 5 125000 0:11:40
(trained on clean &
dirty)

TonA014 clean & dirty (43) ton-006-mod.zip 5 125000 0:39:10
(trained on clean)

TonA017 clean (5) ton-010-mod.zip 5 100000 0:04:00
(trained on clean)

TonA018 dirty (5) ton-011-mod.zip 5 125000 0:05:00
(trained on dirty)

3.4.2 Troubleshooting the alignment process

• As in the training process, problems with the script syntax or in the location
or format of files will terminate the alignment process and produce an error
message.

3⁴The test numbers are discontinuous, as explained in footnote 27.
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• In our experience, the alignment module gave no feedback indicating status
when it was progressing normally. We monitored the progress using the Pro-
cesses tab in Task Manager.

• When opened in Praat, the TextGrids show one strange inconsistency between
the tiers. In the “words” tier, the labels match the format of the transcriptions
and dictionary file. The macrons over long vowels and the Unicode glottal
stop character <ʔ> display correctly. However, the Unicode characters do not
display correctly in the “phones” tier. Where Unicode characters were used
for pronunciations in the dictionary file, a code is displayed in the TextGrid.
For example, the Unicode <ʔ> appears as <24> on the tier display. When that
interval is selected, the Praat text window shows 1224. This is not a serious
problem, though: the codes are consistent for each character, the identity of
the character is obvious from the word transcription, and the problem can be
corrected with a search and replace operation or script. However, it is worth
noting, since any scripts for extracting measurements would need to reference
the label as it appears in the TextGrid file.

4. Alignment comparisons So far, we have explained how to use PL-A (1) to create
acoustic models for a language using field recordings and (2) to align orthographic
transcriptions of those recordings to the audio signal. We have also described our
specific experience using PL-A to train an acoustic model based on our Tongan word
list recordings and to produce time-aligned Praat TextGrids for those recordings. In
this section, we discuss the comparisons we made between alignments to assess the
effects of different variables on the training and alignment processes. The alignments
we created are listed in Table 5, above.

In §4.1, we explain the logic behind each test comparison, the variables involved,
and the apparent effects. To illustrate the qualitative differences between alignments,
we include screenshots of sample TextGrids for each comparison we discuss. The
screenshots are just samples and may or may not be representative of the full corpus.
They do, however, match our impressions as we reviewed sections of alignments for
several speakers, visually inspecting the TextGrids at different zoom levels and listen-
ing to words, phones, and“silences” as segmented by PL-A. For most of our tests, the
clean set of files and the dirty set included different speakers. Therefore, the clean file
alignment examples in this section are for Speaker 003’s recording, and the dirty file
alignment examples are for Speaker 026’s recording. (See §3.2.1 for an explanation
of the dirty and clean files.) The speaker number is in the top left corner of each
screenshot. The tier names (on the right side of the screenshot) reflect the alignment
test numbers in the comparisons.

Each screenshot is followed by a table that includes timestamps for each bound-
ary in the screenshot, as well as the difference in boundary placement between the
models in the figure. The table only includes information for boundaries shown in
the screenshot and is included as an example. The mean and median figures may not
be representative of the full recording or of other speakers’ recordings.
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In §4.2 we make quantitative comparisons between the alignments to assess how
large an effect each change in variable produced. In that section, we refer to the com-
parisons and variables discussed in §4.1. However, the quantitative comparisons
offered in §4.2 take into account the full word list recording for each speaker, rather
than just the snapshots presented in §4.1. Because we are ultimately interested in
using forced-aligned data to feed automated phonetic analysis, our quantitative dis-
cussion compares extracted measurements of F1 and F2, common measures used in
sociophonetic study.

4.1 Comparisons of test alignments Sections 4.1.1 through 4.1.4 describe the key
variables in our alignment tests and the implications associated with each. Because we
were most concerned about the effects of file cleanup and the amount of time required
to prepare data, we discuss the clean/dirty comparisons first. The other comparisons
relate to changes in settings and to the effects of using the same dataset for training
and alignment.

4.1.1 Clean vs. dirty The most basic distinction in the tests is whether the audio
files are clean or dirty. As explained in §3.2.1, files in the former category have been
cleaned up extensively, eliminating extraneous background noises between words
(e.g., wind, cars, roosters, pigs) and removing any tokens that could be problematic
because of background noise. Dirty files retain almost all of the background noise.
The basic questions related to the clean/dirty comparisons are these:

• Does PL-A do a better job when the files used in model training have been
cleaned?

• Does PL-A do a better job when the files to be aligned have been cleaned?

• Ultimately, is it worth the time and effort to clean up files before training and/or
alignment?

Because training and alignment are completed in two steps, we needed to assess
the effect of using clean files at each stage. Table 6 summarizes the tests we performed
and the kinds of files we used at each stage. The alignment tests are referenced by
test ID (e.g., TonA001), and speakers are identified by three-digit reference numbers.

Table 6. Basic clean/dirty test summary

Models Trained on Clean Files Models Trained on Dirty Files Models Trained on Clean and
Dirty Files

Aligning
Clean Files

TonA001 TonA005 TonA006
(Aligned Speakers 001-023*) (Aligned Speakers 001-023*) (Aligned Speakers 001-023*)

Aligning
Dirty Files

TonA004 TonA005 TonA006
(Aligned Speakers 024-041**) (Aligned Speakers 024-041**) (Aligned Speakers 024-041**)

*There are no recordings for Speaker 008.
**Recordings for speakers 032 and 033 were excluded because of different recording conditions.
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Figure 8. Clean file alignment based on a clean model (top, TonA001) and on a dirty
model (bottom, TonA005) – beginning of recording

When comparing the alignments created in each test, we found thatmodels trained
on clean files produced much better alignments than those trained on dirty files. In
the TextGrid comparison in Figure 8, the top alignment (TonA001) was based on a
model trained on clean data, while the bottom alignment (TonA005) was based on a
model trained on dirty files. In both cases, the transcription was being aligned to the
same clean audio file for Speaker 003.

The screenshot shows the first words in the word list recording and demonstrates
that the alignment based on the clean model is reasonable, while the alignment based
on the dirty model is wrong from the very beginning. Table 7 compares the placement
of boundaries shown in Figure 8 and shows amean difference of 192ms and amedian
difference of 173 ms for these boundaries.

The screenshot in Figure 9 shows the same two alignments for the last word of
the sound file. Over six and a half minutes into the recording, the boundaries in the
top alignment (based on the clean model) still appear reasonable, and those in the
bottom alignment (based on the dirty model) are still misaligned. In fact, Table 8
shows that the boundary differences at the end of the recording are even greater than
at the beginning.

We see similar results when aligning dirty files. The comparison in Figure 10
shows two TextGrids created for the same dirty recording. The top alignment (TonA-
004) is based on a model trained on clean files. The bottom alignment (TonA005) is
based on a model trained on dirty files.

In this example, the clean model alignment on top looks quite good, though the
aligner seems to be cutting off the very end of the words. However, the dirty model
alignment on the bottom failed to even find the words. The large differences in bound-
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ary placement summarized in Table 9 suggest that using a clean model is even more
important when aligning dirty files than when aligning clean ones. (Though we don’t
include a separate screenshot, these models continue in much the same way through-
out the recording, and an example from the end would support the analysis here.)

Table 7. Differences in boundary placement for screenshot in Figure 8 – clean align-
ment based on clean model (TonA001) and dirty model (TonA005) – beginning of
recording

Boundary TonA001 Timestamp TonA005 Timestamp Difference

sil/k 0.03 0.2625 233 ms
k/o 0.13 0.3000 170 ms
o/t 0.29 0.3375 48 ms
t/o 0.41 0.8500 440 ms
o/a 0.67 0.9875 318 ms
a/sp 0.91 1.0250 115 ms
sp/p 1.04 1.0250 15 ms
p/e 1.10 1.4875 388 ms
e/a 1.34 1.5500 210 ms

a/sp 1.53 1.5875 57 ms
sp/m 1.67 1.5875 83 ms
m/a 1.79 1.6250 165 ms
a/n 1.94 1.6625 278 ms
n/u 2.10 1.9250 175 ms

mean 192 ms
median 173 ms

Table 8. Differences in boundary placement for screenshot in Figure 9 – clean align-
ment based on clean model (TonA001) and dirty model (TonA005) – end of recording

Boundary TonA001 Timestamp TonA005 Timestamp Difference

h/i 381.75 382.1250 375 ms
i/n 381.96 382.3625 403 ms
n/a 382.07 382.4000 330 ms

a/sp (h) 382.21 382.5000 290 ms
(a) sp/h 382.35 382.5000 150 ms

h/a 382.48 382.9500 470 ms
a/i 382.69 383.0125 322 ms

i/sil 382.87 383.0500 180 ms

mean 315 ms
median 326 ms
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Figure 9. Clean file alignment based on a clean model (top, TonA001) and on a dirty
model (bottom, TonA005) – end of recording

Figure 10. Dirty file alignment based on a clean model (top, TonA004) and on a dirty
model (bottom, TonA005)
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Even including dirty files along with clean files in the training data had a detrimen-
tal effect on overall alignment, though this was less problematic when aligning clean
files than when aligning dirty files. Consider the TextGrid comparison in Figure 11.
The top alignment (TonA001) was based on a model trained on only clean files. The
bottom alignment (TonA006) was based on a model trained on both clean and dirty
files. In both cases, the transcriptions were aligned to a clean recording, the same one
as in Figures 8 and 9.

Table 9. Differences in boundary placement for screenshot in Figure 10 – dirty file
alignment based on a clean model (TonA004) and a dirty model (TonA005)

Boundary TonA004 Timestamp TonA005 Timestamp Difference

sil/k 0.20 1.0500 850 ms
k/o 0.28 1.4625 1183 ms
o/t 0.46 1.9125 1453 ms
t/o 0.53 2.3125 1783 ms
o/a 0.77 2.6500 1880 ms
a/sp 0.83 3.3500 2520 ms
sp/p 1.93 3.5125 1583 ms
p/e 1.98 3.7625 1783 ms
e/a 2.19 5.1500 2960 ms

a/sp 2.34 5.2750 2935 ms

mean 1893 ms
median 1783 ms

Figure 11. Clean file alignment based on a clean model (top, TonA001) and on a
mixed clean and dirty model (bottom, TonA006) – beginning of recording
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The exact differences between boundary placements shown in Figure 11 are sum-
marized in Table 10. The biggest difference shown in this example arises between
the words kotoa and pea. The first alignment appropriately inserts a silence segment
between the two words, while the second alignment includes the silence in the p seg-
ment.

This alignment is not as bad as that shown in Figure 8, which used a model trained
on all dirty files. In this case, the aligner did a better job finding manu after misalign-
ing pea, and the mean andmedian differences for the boundaries inTable 10 are much
smaller than those in Table 8. However, the alignment at the end of the recording
is not as good, and we found that including dirty files in the training data generally
lowered the quality of clean file alignments.

Table 10. Differences in boundary placement for screenshot in Figure 11 – clean file
alignment based on a clean model (TonA001) and on a mixed clean and dirty model
(TonA006) – beginning of recording

Boundary TonA001 Timestamp TonA006 Timestamp Difference

sil/k 0.03 0.0250 5 ms
k/o 0.13 0.0625 68 ms
o/t 0.29 0.3125 23 ms
t/o 0.41 0.3500 60 ms
o/a 0.67 0.7375 68 ms

a/sp (p) 0.91 0.8625 48 ms
(a) sp/p 1.04 0.8625 178 ms

p/e 1.10 1.0500 50 ms
e/a 1.34 1.3250 15 ms

a/sp 1.53 1.5000 30 ms
sp/m 1.67 1.6625 7 ms
m/a 1.79 1.7875 2 ms
a/n 1.94 1.9375 2 ms
n/u 2.10 2.1000 0 ms
u/sp 2.29 2.2500 40 ms

mean 40 ms
median 30 ms

Including dirty files in the training data was an even bigger problem when the files
to be aligned were dirty.3⁵ In Figure 12, the top alignment (TonA004) is based on a
clean model. This is the same alignment as seen in Figure 10. The bottom alignment
(TonA006) is based on a mixed model trained on both clean and dirty files. The
boundary differences in the example are summarized in Table 11.

In this example, the model that included dirty files in the training data has consid-
erable difficulty finding the first two words. Although it recovers somewhat formanu,
similar problems occur throughout the recording. All the dirty alignments based on
a mixed clean and dirty model had similar problems. Though they weren’t as bad
as the alignments based only on dirty training data (compare Table 11 to Table 9),

3⁵As a reviewer points out, this is probably due to the training process incorporating noise into the acoustic
models which is then found again and associated with certain segments in the alignment phase.
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they were problematic enough to cause serious concern. Correcting those alignments
would require much more time than correcting the alignments based on only clean
data.

The screenshots shown in this section provide only snapshots from alignments for
two speakers. However, they illustrate the kinds of differences we observed between
clean model and dirty model alignments for other speakers as well. Models trained
on clean files generally produced better alignments than those trained on dirty files or
on a combination of clean and dirty files, regardless of whether the files to be aligned
were clean or dirty. Interestingly, having a clean model was even more important
when the files to be aligned were dirty. For our dataset, it seems more important, and
time efficient, to clean the files to be used in training (at least an hour of recorded
data) than to clean all of the files to be aligned.

Figure 12. Dirty file alignment based on a clean model (top, TonA004) and on a mixed
clean and dirty model (bottom, TonA006) – beginning of recording

4.1.2 TARGETRATE: 100000 vs. 125000 As explained in §3.3.2, the models trai-
ned using dirty files (models trained on only dirty files and models trained on both
clean and dirty files) required a different TARGETRATE setting from the default to
avoid a software crash. Could what appear to be clean/dirty effects actually result
from the difference in TARGETRATE setting? The next comparison was made to
answer that question.
In this comparison, the same clean files were aligned based on clean models that
differed only in TARGETRATE setting. In TonA001, the TARGETRATE was set
at the default 100000; in TonA014, it was set at 125000. Figure 13 illustrates this
comparison at the beginning of the word list audio file for Speaker 003.
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Table 11. Differences in boundary placement for screenshot in Figure 12 – Dirty file
alignment based on a clean model (TonA004) and on a mixed clean and dirty model
(TonA006) – beginning of recording

Boundary TonA004 Timestamp TonA006 Timestamp Difference

sil/k 0.20 0.0875 113 ms
k/o 0.28 0.2125 68 ms
o/t 0.46 0.4375 23 ms
t/o 0.53 0.4750 55 ms
o/a 0.77 1.9250 1155 ms
a/sp 0.83 2.3125 1483 ms
sp/p 1.93 2.3125 383 ms
p/e 1.98 2.6875 708 ms
e/a 2.19 3.3875 1198 ms

a/sp 2.34 3.4250 1085 ms
sp/m 3.51 3.5000 10 ms
m/a 3.62 3.6125 8 ms
a/n 3.75 3.7500 0 ms
n/u 3.91 3.9000 10 ms
u/sp 4.03 3.9875 43 ms
sp/t 5.29 3.9875 1303 ms

mean 478 ms
median 90 ms

Table 12. TARGETRATE comparison

Models Trained on Clean Files, Models Trained on Clean Files,
at 100000 TARGETRATE at 125000 TARGETRATE

TonA001 (Aligned Speakers 001-023*) TonA014 (Aligned Speakers 001-023*)

*There are no recordings for Speaker 008.

The alignments made based on the two models with different TARGETRATE settings
are nearly identical at the beginning of Speaker 003’s word list recording. Table 13
shows very small differences in boundary placement in the screenshot, with a mean
difference of 8 ms and a median difference of 3 ms. The greatest distance shown
was in the o/t boundary, at 65 ms. At the beginning of this recording, the alignment
based on a clean 125000 TARGETRATE model (Figure 13) is much better than the
alignment based on a dirty 125000 TARGETRATE model (Figure 8).

From the snapshot at the beginning of the recording (Figure 13), it is difficult
to determine whether the clean 100000 TARGETRATE model or the clean 125000
TARGETRATE model produced the better alignment. The differences are clearer
when we look at the alignments for the end of the recording, as shown in Figure 14.

After six and a half minutes, the TextGrid based on the model with the TAR-
GETRATE of 125000 is misaligned. The differences in boundary placement in this
screenshot are summarized in Table 14.
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Figure 13. Clean file alignment based on a 100000 TARGETRATE model (top,
TonA001) and a 125000 TARGETRATE model (bottom, TonA014) – beginning of
recording

Table 13. Differences in boundary placement for screenshot in Figure 13 – clean
file alignment based on model with 100000 TARGETRATE setting (TonA001) and
125000 TARGETRATE setting (TonA014) – beginning of recording

Boundary TonA001 Timestamp TonA014 Timestamp Difference

sil/k 0.03 0.0250 5 ms
k/o 0.13 0.1250 5 ms
o/t 0.29 0.2250 65 ms
t/o 0.41 0.4125 3 ms
o/a 0.67 0.6750 5 ms
a/sp 0.91 0.9125 2 ms
sp/p 1.04 1.0375 2 ms
p/e 1.10 1.1000 0 ms
e/a 1.34 1.3375 3 ms

a/sp 1.53 1.5375 8 ms
sp/m 1.67 1.6750 5 ms
m/a 1.79 1.7875 2 ms
a/n 1.94 1.9375 2 ms

mean 8 ms
median 3 ms
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Figure 14. Clean file alignment based on a 100000 TARGETRATE model (top,
TonA001) and a 125000 TARGETRATE model (bottom, TonA014) – end of record-
ing

Table 14. Differences in boundary placement for screenshot in Figure 14 – clean
file alignment based on model with 100000 TARGETRATE setting (TonA001) and
125000 TARGETRATE setting (TonA014) – end of recording

Boundary TonA001 Timestamp TonA014 Timestamp Difference

f/e44 (e)̄ 381.10 381.2250 125 ms
e44 (e)̄ /sp 381.43 381.6000 170 ms

sp/h 381.52 381.6875 168 ms
h/i 381.55 381.7250 175 ms
i/n 381.59 381.7750 185 ms
n/e 381.65 381.8375 188 ms
e/h 381.72 381.8875 167 ms
h/i 381.75 381.9250 175 ms
i/n 381.96 382.1375 178 ms
n/a 382.07 382.2500 180 ms
a/sp 382.21 382.3875 178 ms
sp/h 382.35 382.5375 188 ms
h/a 382.48 382.6500 170 ms
a/i 382.69 382.8625 173 ms

i/sil 382.87 383.0500 180 ms

mean 173 ms
median 175 ms
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It is important to note, however, that the TonA014 misalignment at the end of
the recording in Figure 13 is not as problematic as the alignments based on models
trained on dirty files (Figure 9 and Table 8). Though TARGETRATE does affect the
alignment to some degree, it seems unlikely to account for all of the clean/dirty effects
described in §4.1.1.

4.1.3 Same vs. different For most of the tests, we were working with one set of
recordings that had been cleaned, and a different set of recordings that had been
left dirty. That means that when a model trained on clean files aligned clean files, it
aligned the exact files on which it had been trained. The same is true for dirty files
aligned by a model trained on dirty files. Could what appear to be clean/dirty effects
actually result from the aligner encountering the exact same files in both the training
and alignment contexts? The next comparison was made to answer that question.3⁶

Consider the comparison in Figure 15. The top alignment is TonA001, used in
previous examples. The cleanmodel bywhich the alignment wasmadewas trained on
the same files that were to be aligned. The second alignment, TonA017, was aligned
using a model that was similar to that used in TonA001, the only difference being
that the five files aligned in that test had been removed from the training dataset.3⁷
(See TonT001 and TonT010 in Table 4, above.)

Table 15. Same vs. different comparisons

Training Files Same as Aligned Files Training Files Different from Aligned Files

Clean-Clean TonA001 TonA017
(Training files · Trained on speakers 001-023* clean · Trained on speakers 006-023* clean
and aligned · Aligned speakers 001-023* clean · Aligned speakers 001-005 clean
files both
clean)

· (Compare speakers 001-005 clean)

*There are no recordings for Speaker 008.

The screenshot in Figure 15 shows small alignment differences at the beginning
of the recording, with the two models placing nearly half of the shown boundaries
at identical locations. The differences in the placement of boundaries shown in this
screenshot are summarized in Table 16. The average differences are minor, with a
mean of 8 ms and a median of 10 ms.

The screenshot in Figure 16, showing the same two alignments at the end of the
recording, also shows many identical boundaries in the two alignments. The differ-
ences are summarized in Table 17.

3⁶Although PL-A developers advertise its ability to use the same corpus for training and alignment, an
attendee at NWAV 44 pointed out that aligners are generally tested using different files for the training
and alignment steps. We appreciated the feedback and designed the tests in §4.1.3 in response.
3⁷A reviewer notes that removing the training files results in a smaller dataset used for training as well as a
training dataset that does not include the files to be aligned, both of which could affect the quality of the
model and the resulting alignments. Because removing the five files produced a relatively small effect, we
did not perform further tests to determine which factor was more significant.
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Figure 15. Clean file alignment based on a clean model that included alignment files
in training (top, TonA001) and a clean model that did not (bottom, TonA017) –
beginning of recording

Figure 16. Clean file alignment based on model that included alignment files in train-
ing (top, TonA001) and a model that did not (bottom, TonA017) – end of recording
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Table 16. Differences in boundary placement for screenshot in Figure 15 – clean file
alignment based on model that included alignment files in training data (TonA001)
and one that did not (TonA017) – beginning of recording

Boundary TonA001 Timestamp TonA017 Timestamp Difference

sil/k 0.03 0.03 0 ms
k/o 0.13 0.13 0 ms
o/t 0.29 0.29 0 ms
t/o 0.41 0.42 10 ms
o/a 0.67 0.68 10 ms
a/sp 0.91 0.92 10 ms
sp/p 1.04 1.04 0 ms
p/e 1.10 1.09 10 ms
e/a 1.34 1.34 0 ms

a/sp 1.53 1.53 0 ms
sp/m 1.67 1.68 10 ms
m/a 1.79 1.82 30 ms
a/n 1.94 1.96 20 ms
n/u 2.10 2.12 20 ms
u/sp 2.29 2.29 0 ms
sp/e 2.43 2.45 20 ms
e/f 2.53 2.53 0 ms
f/u 2.72 2.71 10 ms

mean 8 ms
median 10 ms

Table 17. Differences in boundary placement for screenshot in Figure 16 – clean file
alignment based on model that included alignment files in training data (TonA001)
and one that did not (TonA017) – end of recording

Boundary TonA001 Timestamp TonA017 Timestamp Difference

e44/sp 381.43 381.38 50 ms
sp/h 381.52 381.52 0 ms
h/i 381.55 381.55 0 ms
i/n 381.59 381.59 0 ms
n/e 381.65 381.65 0 ms
e/h 381.72 381.72 0 ms
h/i 381.75 381.75 0 ms
i/n 381.96 381.98 20 ms
n/a 382.07 382.10 30 ms
a/sp 382.21 382.24 30 ms
sp/h 382.35 382.35 0 ms
h/a 382.48 382.48 0 ms
a/i 382.69 382.70 10 ms

i/sil 382.87 382.88 10 ms

mean 11 ms
median 0 ms

Language Documentation & Conservation Vol. 12, 2018



Forced Alignment for Understudied Language Varieties 112

Whether the acoustic model was trained on the same files as those used in the
alignment had little effect on the alignment in this example, as evidenced by the 0
ms median difference in Table 17. From this snapshot we cannot determine which
alignment is better, and the two alignments remain similar from the beginning to the
end of the recoding. The overall difference between the two models is quantitatively
assessed in §4.2. We conducted a similar test using dirty files. However, given the
poor general performance of dirty models (§4.1.1), those results are not discussed
here. They are summarized with the other quantitative comparisons in §4.2.

4.1.4 Number of epochs As explained in §3.3.1, model training is accomplished in
cycles, with a set number of iterations, or epochs, in each cycle. The default number
of epochs in each cycle is five, but PL-A gives the user the opportunity to adjust
that number. Since training is accomplished in three cycles, increasing the number of
epochs by one increases the total number of iterations by three. We wanted to know
whether increasing the number of epochs improved the quality of the alignments. The
next comparisons were made to answer that question. We trained acoustic models
using the same clean training files at three different epoch settings: 5, 10, and 15. We
then used those models to align transcriptions to the clean recordings, as summarized
in Table 18.

Figure 17. Clean file alignment based on models trained in 5 epochs (top, TonA001).
10 epochs (middle, TonA002) and 15 epochs (bottom, Ton003)

The screenshot in Figure 17 shows that changing the number of epochs in the
training cycle had little effect on the alignments in this example. The summary of
boundary differences inTable 19 shows only very small differences in boundary place-
ment, with a mean difference of 4 ms and a median difference of 0 ms. As with the

Language Documentation & Conservation Vol. 12, 2018



Forced Alignment for Understudied Language Varieties 113

previous example, it is difficult to guess from this snapshot which alignment is better,
but the overall size of the effect will be demonstrated in the next section.

Table 18. Epoch setting comparison

Clean-Clean 5 epochs Clean-Clean 10 epochs Clean-Clean 15 epochs

TonA001 TonA002 TonA003
(Aligned Speakers 001-023*) (Aligned Speakers 001-023*) (Aligned Speakers 001-023*)

*There are no recordings for Speaker 008.

Table 19. Differences in boundary placement for screenshot in Figure 17 – clean file
alignment based on models trained in 5 epochs (TonA001), 10 epochs (TonA002)
and 15 epochs (TonA003)

Boundary TonA001 Timestamp TonA002 Timestamp TonA003 Timestamp Difference

sil/k 0.03 0.03 0.03 0 ms
k/o 0.13 0.13 0.13 0 ms
o/t 0.29 0.29 0.30 10 ms
t/o 0.41 0.41 0.42 10 ms
o/a 0.67 0.67 0.68 10 ms
a/sp 0.91 0.91 0.91 0 ms
sp/p 1.04 1.04 1.04 0 ms
p/e 1.10 1.10 1.10 0 ms
e/a 1.34 1.33 1.33 10 ms

a/sp 1.53 1.53 1.54 10 ms
sp/m 1.67 1.67 1.67 0 ms
m/a 1.79 1.79 1.79 0 ms
a/n 1.94 1.94 1.94 0 ms

mean 4 ms
median 0 ms

4.2 Quantitative comparisons: Euclidean distance measures The analysis of the
screenshots provided in the previous sections provides an evaluation of the PL-A
boundaries based on a sample of tokens from several speakers. Because we plan to
use the corpus for automated sociophonetic analysis, we have also compared the ef-
fects on extracted vowel formant measurements, a commonly analyzed variable, from
TextGrids created in different alignment tests across full recordings from all speak-
ers.3⁸ For each comparison described in §4.1, we used PraatR (Albin 2014) to extract
F1 and F2 measurements for all tokens of phonemically short vowels from 10% to
90% into the vowel’s trajectory, sampled at 1% intervals.3⁹ After normalizing using
a Lobanov transformation (Lobanov 1971), we used R to calculate the Euclidean

3⁸Here we follow the lead set by Reddy & Stanford (2015), who used Euclidean distance between vowel
formants to compare the results of two automated alignment and extraction tools. They presented their
results in the form of vowel plots and mean distance in Hz.
3⁹The default settings extracted measurements for vowels with a duration longer than .001 seconds. For the
purposes of the present study, we assume that the Tongan phonemic inventory has five short vowels (i, e, a,
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distance between formant measurements and then averaged across all speakers. The
average distance of all vowels was compared, as well as the average distance for each
of the five vowels. Table 20 presents the full list of the comparisons we made in our
tests and the distance measures associated with them. A higher number indicates a
greater difference. (Standard deviations are included in parentheses.)

The relative difference in distance measures for Comparisons A-L are illustrated
in Figure 18. For simplicity, the graph shows only the distance measures averaged
across all vowels.

Figure 18. Graph of distance measures in Table 20 (all vowels)

The distance measures listed in Table 20 and represented in Figure 18 do not tell
us which alignments are better. They only indicate how different the measurements
extracted from the two alignments in each comparison are. However, they confirm
the observations made in §4.1 and lead us to the following conclusions based on our
dataset:

• Clean vs. dirty (§4.1.1)

– Our discussion and examples show that models trained on clean data cre-
ate better alignments of both clean and dirty files. Comparisons A and D
confirm that this distinction has a large effect across all the recordings.

– We observed that including dirty files in the training data negatively af-
fected both clean and dirty file alignment. Comparisons B and E confirm
that this effect is much greater for dirty file alignment than for clean file
alignment.

o, u) and five corresponding but contrasting long vowels. This distinction is represented in the orthography,
with long vowels being written with a macron. We acknowledge that some researchers have argued that
the long vowels are better described as a sequence of two vowels (Taumoefolau 2002; Anderson & Otsuka
2006), but we believe that the different phonological analysis would not lead to different hypotheses for
our study.
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– Comparisons C and F are less meaningful because they indicate great dif-
ferences between two bad alignments, one based on a dirty model and one
based on a mixed clean and dirty one.

• TARGETRATE (§4.1.2): We observed that changing the TARGETRATE set-
ting from 100000 to 125000 had a negative effect over time, though its effects
were not obvious at the beginning of the example alignment. Comparison G
confirms that TARGETRATE effect is smaller than the clean/dirty effect across
all files in the comparison.

• Same vs. different (§4.1.3): We noticed very little difference in alignments based
on whether the files to be aligned were included in the training dataset when
both the training and alignment files were clean. Comparison I confirms that
this effect was small across all clean-clean alignments. Though we can’t defini-
tively say which alignment was better, we see no reason to exclude files to be
aligned when performing model training. (Comparisons H and J show much
larger effects, but both of these compared two bad, dirty-model alignments.)

• Number of epochs (§4.1.4): In our observation, changing the epoch setting cre-
ated very small changes in alignments of clean files using clean models. Com-
parisons K and L confirm that the effect of this change is very small across all
files in the comparison. We did not test the effect of epoch setting on aligning
dirty files.

5. Comparison to human aligners In order to compare the difference between PL-
A’s results and what a human aligner might do, we took a 60-word sample from the
corpus andmade hand corrections to it. The sample consisted of the first six words for
the first five speakers, taken from both the clean and dirty versions of their recordings.
The total number of boundaries in the sample was 534. The PL-A alignments used
in the test were aligned based on a model trained on clean files with default settings
for TARGETRATE (100000) and epochs (5).

After discussing boundary placement criteria and testing those criteria together on
a separate“practice”set of tokens, two researchers independently made corrections to
the 60-word sample and tracked howmuch time they spent making those corrections.
We then compared the actual differences in where each researcher and PL-A placed
the boundaries, measured in milliseconds. Figure 19 presents the results of these
comparisons. In the figure,“Word Start” and“Word End” refer to boundaries placed
at word edges. “Phone Start” and “Phone End” refer to boundaries for all phones,
including those at word edges. Therefore, the “Average Phone” measurement refers
to the mean “Phone Start” and “Phone End.”

We see the greatest variance in word boundaries, as shown by the first two bars
in each section. This is not surprising, since word-final (and even some word-initial)
vowels may be partially devoiced, making the boundary between vowel and silence
somewhat difficult to determine. In some cases, prevoicing on initial consonants
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Table 20. Quantitative comparisons between alignments

C
om

pa
ri
so
n Candidate 1 Candidate 2 Description of

Comparison
Distance Measures with Standard Deviations in
Parentheses (Difference in F1 and F2 measure-
ments, averaged across speakers. Higher number
means greater difference.)

All vowels a e i o u

Comp
A

TonA001
Trained on
CLEAN-
Aligning
CLEAN

TonA005
Trained on
DIRTY-
Aligning
CLEAN

Same clean files
aligned on a
clean model
and aligned on
a dirty model

142.5
(50.3)

140.6
(51.1)

158.2
(29.6)

122.7
(47.1)

107.8
(45.2)

183.5
(41.2)

Comp
B

TonA001
T.CLEAN-
A.CLEAN

TonA006
T.BOTH-
A.CLEAN

Same clean files
aligned on a
clean model
and a clean &
dirty model

37.6
(22.2)

32
(18.0)

35
(21.8)

32.1
(17.9)

34.5
(18.4)

54.6
(26.9)

Comp
C

TonA005
T.DIRTY-
A.CLEAN

TonA006
T.BOTH-
A.CLEAN

Same clean files
aligned on a
dirty model
and a clean &
dirty model

137.2
(51.3)

140.2
(50.9)

142.2
(30.0)

120.3
(48.4)

101.8
(49.6)

181.3
(41.0)

Comp
D

TonA004
T.CLEAN-
A.DIRTY

TonA005
T.DIRTY-
A.DIRTY

Same dirty files
aligned on a
clean model
and a dirty
model

123.3
(39.0)

127.5
(15.4)

151.8
(15.0)

98.6
(18.2)

75.9
(21.5)

162.8
(34.1)

Comp
E

TonA004
T.CLEAN-
A.DIRTY

TonA006
T.BOTH-
A.DIRTY

Same dirty files
aligned on a
clean model
and a clean &
dirty model

107.8
(45.4)

145.2
(27.2)

153.8
(37.1)

78.9
(27.4)

68.2
(15.9)

92.9
(34.6)

Comp
F

TonA005
T.DIRTY-
A.DIRTY

TonA006
T.BOTH-
A.DIRTY

Same dirty files
aligned on a
dirty model
and a clean &
dirty model

137.2
(51.3)

140.2
(50.9)

142.2
(30.0)

120.3
(48.4)

101.8
(49.6)

181.3
(41.0)

Comp
G

TonA001
T.CLEAN-
A.CLEAN-
100K

TonA014
T.CLEAN-
A.CLEAN-
125K

Same clean files
aligned on a
clean model,
differing only
by target rate

42.1
(23.5)

25.5
(7.3)

32.5
(14.8)

36.3
(19.3)

54.4
(20.8)

61.6
(28.3)

Comp
H

TonA005
T.DIRTY-
A.DIRTY-
SAME

TonA018
T.DIRTY-
A.DIRTY-
DIFFERENT

Same dirty files,
aligned on one
dirty model
that included
those files in
training and
another dirty
model that did
not

62.1
(31.7)

117
(18.9)

42.3
(8.2)

62.1
(12.1)

35.4
(9.0)

53.9
(12.0)

Comp
I

TonA001
T.CLEAN-
A.CLEAN-
SAME

TonA017
T.CLEAN-
A.CLEAN-
DIFFERENT

Same clean
files, aligned on
one clean
model that
included those
files in training
and another
clean model
that did not

8.8
(5.1)

14
(5.2)

5.1
(2.0)

6.9
(3.9)

9.4
(5.2)

8.8
(5.0)
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Continued from previous page

C
om

pa
ri
so
n Candidate 1 Candidate 2 Description of

Comparison
Distance Measures with Standard Deviations in
Parentheses (Difference in F1 and F2 measure-
ments, averaged across speakers. Higher number
means greater difference.)

All vowels a e i o u

Comp
J

TonA012
T.DIRTY-
A.DIRTY-
DIFFERENT

TonA017
T.CLEAN-
A.CLEAN-
DIFFERENT

Same speakers,
aligning both a
clean version
and a dirty
version. The
dirty version is
aligned using a
model trained
on different
dirty files, and
the clean
version is
aligned using a
model trained
on different
clean files

128.9
(33.2)

136
(15.1)

150.3
(28.5)

107.4
(35.9)

105.6
(27.9)

145.2
(36.1)

Comp
K

TonA001
T.CLEAN-
A.CLEAN-
5E

TonA002
T.CLEAN-
A.CLEAN-
10E

Same clean files
aligned one
clean model set
at 5 epochs
and one set at
10 epochs.

4.5
(3.1)

3.1
(1.1)

2.8
(1.7)

6.9
(3.6)

3.6
(2.0)

5.9
(3.7)

Comp
L

TonA001
T.CLEAN-
A.CLEAN-
5E

TonA003
T.CLEAN-
A.CLEAN-
15E

Same clean files
aligned one
clean model set
at 5 epochs
and one set at
15 epochs.

7.1
(3.6)

3.6
(1.4)

10
(2.6)

8.1
(3.6)

6.3
(2.6)

7.4
(4.2)

made placing those boundaries less straightforward than expected as well.⁴⁰ Even
with these complications, the average differences for each of the three comparisons,
as shown by the last bar in each section, are similar at 19.23 ms, 18.18 ms, and 17.15
ms.

Table 21 lists rates of agreement between PL-A boundaries and those placed by the
human aligners. Rates are shown for all boundaries and for word-internal boundaries.
The higher agreement rates for word-internal boundaries arise from the large variance
in word-boundary placement.

Although this sample is small, the results clearly support our assertion that trained
forced alignment is a feasible time-saving option. First, they indicate that the agree-
ment between PL-A and a manual alignment would not be substantially different
from the agreement between two manual alignments. Second, they compare favor-
ably to the results of cross-language forced alignment summarized in Tables 1 and
2 in §2.2. Even with a small amount of training data, long audio files, and uncon-
strained alignment, the language-specific model seems to perform well when trained
on clean data.

⁴⁰DiCanio et al. (2013) also found that agreement at word edges was much lower than at non-edges, though
the causes may have been different.
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Figure 19. Differences between PL-A alignment and manual adjustments (60-word
sample)

Finally, after performing this test, we believe that making manual corrections to
forced alignments would require far less time than manually aligning the files from
scratch. One researcher spent an average of 1 minute per phone when making adjust-
ments, while the other researcher averaged about 2 minutes per phone. For both, the
speed increased as they became more familiar with the data. In our experience, this
was much faster than aligning transcriptions to recordings by hand, especially with
little information about phonetic detail and possible variation. In addition, making
corrections to a consistent forced alignment allows the researcher to devote more
time and attention to problematic areas rather than to the simple boundary place-
ments that the aligner successfully handles. The focused attention on problematic
boundaries has also revealed interesting features of the language that may warrant
further study.

6. Conclusions and Recommendations In general, we find Prosodylab-Aligner to
be a useful tool in processing recordings for phonetic analysis, despite the lack of
a user-friendly interface and some errors we encountered along the way. As a first
step, it provides a foundation upon which language-specific trained forced alignment
technology can build. Based on our tests, we make the following recommendations
regarding the use of Prosodylab-Aligner with long field recordings containing back-
ground noise:

• Cleaning at least one hour of the recordings and using only clean files for model
training

• Using the default TARGETRATE setting (100000)

• Making manual adjustments to boundaries before taking acoustic measure-
ments
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At this stage, it’s unclear what level of cleaning is required to produce the positive
effects we have seen in model training with PL-A. The clean recordings used in this
study were heavily edited to remove all background noise. Further study may reveal
that removing only the worst problems provides the same or similar benefits at a
lower cost.

There may be ways of producing even better results than those described in this
paper. For example, increasing the amount of clean training data may improve model
performance. Providing the aligner with different kinds of data could also make a
difference. Since our tests used word list recordings, the data were limited to a small
set of words in citation form. For each of these words, our dictionary file contained
only one pronunciation, based solely on orthography. Including connected speech, in-
creasing the number of words, and providing alternate pronunciations could provide
the aligner with more information about phonemes in various contexts. Finally, since
Prosodylab-Aligner was developed and tested using short audio files containing single
utterances, we expect that using short files would produce better results with fewer
cascading errors than what we saw when dirty files were used in model training. In
fact, breaking up long audio files into individual utterances could be one lower-cost
way of cleaning dirty files and constraining alignment.⁴1

Beyond these specific observations related to Prosodylab-Aligner, our tests show
that forced alignment with acoustic models trained specifically for underdocumented
languages is feasible and can be accomplished by linguists without programming ex-
perience. Our results suggest that as little as an hour of clean recordings can create
an acoustic model that produces reasonably good alignments, even when aligning
transcriptions to recordings with background noise. Under such circumstances, cross-
language forced alignment may not be necessary, and using a language-specific model
offers the opportunity to refine the model as more recordings become available and
as researchers learn more about pronunciation and variation.

Based on our tests, we conclude that forced alignment can greatly increase effi-
ciency in preparing sound files for phonetic analysis even for underdocumented lan-
guages. Runtimes are remarkably short, and the time required to clean training files
and make manual corrections is substantially shorter than aligning transcriptions to-
tally by hand.
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