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Abstract 

Approximately 60% of all reported cases of Ciguatera Fish Poisoning (CFP) in 

the state of Hawaii were due to  toxin-contaminated fish caught in the coastal 

waters of the Big Island. The vast majority o f  these cases (87%) were reported 

from the West, or  leeward side, of the island. However, studies have shown that  

toxin-producing dinoflagellates, the causative agents for ciguatera, are present on 

both sides of the island. To date, there have been no studies focusing on fish in 

East Hawaii t o  make a preliminary determination whether the difference in 

reported cases of ciguatera is based on fish toxici ty or other factors (e.g., 

shoreline accessibility, fishing pressures, environmental conditions, etc.). This study 

focused on two species, Ctenochaetus strigosus (KO le) and Cephalopholis argus (Ro i), 

both of which are listed in the top five fish species implicated in ciguatera 

outbreaks on the Big Island since 1980. Samples obtained were cut from the epaxial 

musculature posterior t o  the head. The samples were tested for presence of 

ciguatoxins using a monoclonal immunoassay (MIA) stick test. The occurrence of 

toxici ty in the fish was compared in leeward (West) vs. windward (East) samples 

using Chi Square analyses. Of 117 fish tested (51 windward & 66 leeward), there 

was no significant difference found in east vs. west samples: i.e. fish on both sides 

of the island appear to  be equally prone t o  ciguatera. 



Introduction 

Ciguatera fish poi'soning (CFP) is today a well-known malady of social and 

economic concern, endemic t o  tropical and subtropical regions (Anderson e t  al., 

1982; Hokama e t  al., 1987; Epidemiology, State of Hawaii, 1988; Chinain e t  al., 

1999). CFP is conservatively estimated to  affect from 25,000 (Lewis e t  a!, 1999) 

t o  possibly greater than 60,000 people . . annually (Hokama & Yoshi kawa-Ebesu, 2001). 

The toxins responsible for CFP, known as ciguatoxins, are made up of lipid soluble, 

heat-stable polyether compounds that  promote movement of sodium ions through 

cell walls of nerves and muscles (Shirai e ta / ,  1991; Ebesu & Hokama, 1995; Manger 

e t  al, 1995; Lewis e t  al, 1999, Hawaii bept. o f  Health, 2001). The primary source 

of the ciguatoxins is benthic dinof lagel lates, the best- known being Gambierdlscus 

toxicus, Adachi e t  Fukuyo (1979) named after i ts  origin of discovery in the Gambier 

I s  lands, French Polynesia. Since then, several species of Gambierdlscus have been 

described. Gambierdiscusspp. are known to  grow on a variety of macrophytes tha t  

are ingested by herbivorous fishes (e.9. filamentous algae, Abbott & Wilder, 1995). 

I n  the next higher trophic level, carnivorous f ish that  consume the contaminated 

fish can become contaminated themselves. Human ingestion of fish bearing the 

ciguatoxins results in CFP of varying degrees and symptoms, and in rare cases, 

death (Anderson e t  al., 1982; Shirai e t  al., 1991; Hokama & Yoshikawa-Ebesu, 2001). 

I t  is believed that  CFP is grossly underreported as well as misdiagnosed due 

t o  the flu-like symptoms (e.9. weakness, nausea, diarrhea, and aches) often 



associated with the disease (Anderson e t  al., 1982; Hokama et  al., 1988, Lewis, 

personal comm.). To date; over 175 symptoms have been associated with ciguatera 

(Becker & Sanders, 1991). Ciguatera affects the gastrointestinal, neurological, and 

cardiovascular systems in humans and other mammals. Temperature reversal (hot 

feels cold and cold feels hot) and circumoral paresthesias (tingling) are both 

characteristic of reported cases (Anderson et  a/, 1982). Symptoms typically onset 
. , 

within one t o  three hours af ter  ingestion of the fish, although they sometimes can 

be delayed as much as 24-48 hours, and can last hours t o  days, o r  weeks t o  months 

(Katz et al., 1993; Legrand, 1998; Lewis, 2001; Hawaii Dept. of Health, 2001). 

Symptoms are also known t o  be recurrent, showing up after exercise, alcohol 

consumption, or ingestion of more contaminated fish (Higerd, 1982). Additionally, 

peanuts, chicken, and pork have been implicated as prompting recurrent symptoms 

as well (Lewis, 2001). 

Ciguatera is the major cause of fish poisoning in Hawaii, where fishing is a 

cultural mainstay (Shirai etal., 1991). Of the four most populated Hawaiian Islands, 

approximately 60% of all reported cases since 1980 occurred on the island of 

Hawaii, also known as the Big Island (Hawaii Dept. of Health, 1988). The vast 

majority of reported CFP cases (87%) and related ciguatera research on Hawaii 

have been on the west or leeward side*of the island (Anderson et  a / ,  1982; 

Ichinotsubo et al., 1994; State Department of Health, 2000). This difference in 

reported CFP cases for East vs. West Hawaii is known to  the general public: i.e. fish 



known to  occasionally be "hot", or  ciguatoxic, on the west or  leeward side are 

considered to  be safe To consume on the east or windward side of the island 

(personal obs.). However, this belief may be unfounded, as Gambierdscus spp. and 

other toxin-producing dinoflagellates have been found on macrophytes in windward 

waters, indicating a potential for toxicity in fish as well as increasing the validity of 

the previously reported cases (Robbins, 1999; Page, 2000; Parsons et  al, 2002). 
.,. 

Additionally, the Hawaii State Department of Health (1992) reports "fish have 

tested positive even where no human illnesses have been reported", although it is 

unknown if East Hawaii fish were tested. 

I n  addition to  an apparent geographic distribution of ciguatera on the Big 

Island, several observations point to  a possibility of seasonal occurrences of 

ciguatera. The reported cases of ciguatera on the Big Island when compiled for a 

20-year period (1980-2001) show peaks in number in May and September. Puako on 

the leeward shore of the Big Island is an area known for persistent outbreaks 

where, in a study by Ichinotsubo et  al (1994), high cell counts of G exicus were 

found in April, and the highest percentage of fish showing presence of ciguatoxin 

was in April and August. A t  Mauna Lani, an area just a few miles south of Puako, 

Gumbierdiscus spp. was found to  be abundant in summer and fall months (Abbott & 

Wilder, 1995). Seasonal variation in cell abundances has been observed in other 

regions as well (Bomber et al, 1988; Chinain et al,  1999). However, there are 



studies that  have found no evidence of seasonal fluctuations of Gambierdiscus spp. 

abundances (Ballantine e f  al., 1985; McCaffrey et al., 1992). 

Seasonal fluctuations in toxicity in fish are apparently less studied and less 

understood. Tosteson e t  al. (1992) observed seasonal fluctuations in the  toxicity of 

barracuda,; however, Lewis e t  al. (1992) did not detect any seasonal variability in 

their eel samples. This may be a reflection of several factors including stabil ity of 
.,. 

physical environmental conditions, decay of the toxins in the fish over time, 

fluctuations in toxicity of the prey, and/or seasonal variability of toxigenic benthic 

dinoflagellates and bacterial flora (Lewis, 2001). 

While limited studies on ciguatera have been done in East Hawaii, none t o  

date are known to  focus on fish; the only data come from the CFP cases reported t o  

the State Department of Health (DOH). The DOH data infer that  ciguatoxic fish 
Q 

are more prevalent on the leeward shore, possibly resulting in a misconception; 

ciguatera may be deemed nearly absent in East Hawaii because it hasn't been 

properly studied. 

One could address several variables that  could contribute t o  the higher 

number of reported cases of CFP in West Hawaii: 

@ Fish toxicity: Are ciguatoxic reef fish more prevalent on the leeward coast? 

42 Shoreline accessibility: The windward coast is considerably more rugged in 

i ts topographical features and less accessible than the leeward coast. 



Q Fishinq pressures: Has overexploitation of nearshore resources caused a 

shift in the diet of some fish? 

433. Environmental conditions: I s  the windward shore environment less hospitable 

for Gambierdiscusspp., inhibiting cell proliferation or toxin production? 

@* Ratio of fish beinq cauqht (east vs. west): Are there 8-9x more fish being 

caught on the leeward coast to  substantiate the 87% of reported ciguatera 
.,. 

cases on the leeward coast? 

For my project, I proposed to answer the f i rst  of these questions: 

Are ciguatoxic reef fish more prevalent on the leeward shore than the windward 

shore of the Big Island? 

My hypotheses are: 

Ho: There is no difference in the prevalence of ciguatoxic reef fish for leeward 

(west) vs. windward (east) coasts of the Big Island. 

Hi: Ciguatoxic reef fish are more prevalent on the leeward shore of the Big 

Island. 

Reef associated fishes are predominantly responsible for ciguatera 

outbreaks in Hawaii (Hawaii Dept. of Health, 2001). For this study two nearshore 

reef fish: the Peacock Grouper, Cephalopholis argus (Tahitian and local name: roi), 

and the Gold Ring Surgeonfish, Ctenochaetus strlgosus (Hawaiian name: kole), were 

chosen as target species (recommended by Dr. William J. Walsh, Division of Aquatic 

Resources, DLNR) due to the high incidence of CFP cases related to these fish 



(Shirai et  al,  1991, Ichinotsubo et  al,  1994, Hawaii Dept. of Health, 2001). Both 

have been listed in the top five fish implicated in ciguatera outbreaks since 1980, 

and roi  has been listed as the number one fish responsible for reported cases of 

ciguatera in the past five years as published by the Hawaii Department of Health 

(2001). 

Materials,. and Methods 

Fish samples were obtained from many people including personal, solicited, 

and unsolicited contacts. Samples were solicited using flyers (Appendix A) 

advertising specifics posted a t  local fishing supply stores, and by speaking a t  both 

the East and West Hawaii YMCA Freediving Club meetings. Additionally, students 

from the West Hawaii Explorations Academy (WHEA) contributed t o  our collection 

e f for t  as part of a school assignment. Samples were collected by myself, friends, 

WHEA students, local fishermen, and with the help of the Division of Aquatic 

Resources (DAR) West Hawaii Aquarium Project (WHAP) divers, laboratory and 

boat resources. Personal collection of samples was conducted via freediving 

(snorkeling) and/or SCUBA diving, using a three-prong pole spear. 

For standardization, samples of the fish were cut from the epaxial 

musculature posterior to  the head (Okomoto, 1981, I t o  et  al ,  1984, Ichinotsubo et  

al ,  1994). The size of the sample varied due t o  the variety of sources (solicited 

and donated) and relative sizes of the fishes. Care was taken t o  extract  a clean 



core subsample from the collected samples (i.e. from the interior) for the analysis 

using a biopsy punch or a scalpel and tweezers. 

The Membrane Immunobead Assay (MIA) procedure was used t o  analyze for 

the presence/absence of ciguatoxins in the fish tissue samples (Hokama 81 

Yoshikawa-Ebesu, 2001). The Membrane Immunobead Assay (MIA) and related 

materials used t o  tes t  for ciguatoxins were graciously donated by Dr. Yoshitsugi 

Hokama, Department of Pathology, John A. Burns Medical School, University of 

Hawaii. A muscle sample approximately the size of a grain of r ice was placed in a 

vial containing 12 drops methanol. A tes t  stick was placed membrane-end down into 

the vial and lef t  t o  soak for 15 minutes. The test  stick was then removed and 

allowed t o  air dry for a t  least 15-20 minutes. The dry tes t  stick is then set into a 

test tube containing 12 drops of the blue latex bead solution t o  soak membrane- 

side down for 10 minutes. The membrane stick was then rinsed using distilled water 

and patted dry on a paper towel. 

Dr. Hokama supplied control sticks illustrating a weakly positive (2.5 ppb) 

result and strongly positive (5.0 ppb) result, and a negative control stick. 

Additionally, negative controls were run with each test  session. Any color present 

on a stick indicates some ciguatoxin present and is considered t o  be unfit for 

consumption (Hokama, personal comm.). An interpretation of positive (+), borderline 

positive (+/-), or negative (-) was assigned t o  the tes t  results. Positive sticks 

illustrate a blue coloration present with a clearly defined meniscus, the borderline 



positive sticks show a blue coloration without a clearly defined meniscus, and 

negative sticks demonstrated negligible coloration present on the tes t  stick. 

The occurrence of toxicity in the fish was compared in leeward (west) vs. 

windward (east) samples using Chi-square analysis. Seasonality was analyzed using 

ranked tes t  results in a One-way ANOVA. Fisher's Exact tes t  was used for all 

other analyses. . . 

Results 

A total of 117 samples were collected (Table 1). Windward samples totaled 

51 fish, comprised of 11 Cephalopholis argus (roi), 19 Ctenochaetus str@osus (kole), 

and 21 additional samples including one Aphareus furca (wahanui), four Caranx 

melampygus ( ' om i l u) , nine Chlorurus sordidus (u h u ) , one Mono taxis grandoculis (mu), 

one Naso lituratus (umaumalei), two Sphyraena helleri (kawele' a), one 5. barracuda 

(kdku), and two Scarus rubroviolaceus (piilukaluka). Leeward samples totaled 66 

fish, comprised of 30 C argus, 21 C rtr~gosus, and 15 supplemental samples 

including one Ctenochaetus hawaiiensis (Hawaiian kole), one 6: melampygus (' omilu), 

one Lutjanus kasmira (ta' ape), one Scomberoides lysan (lai), two Oxycheilinus 

unifasciatus ( po' ou), one Parupeneus multifasciatus (moano), three Acan thurus s p p. 

(palani), and five uhu (Scarus spp. and Chlorurus spp.) (identifications from Shore 

Fishes of Hawaii, by J.E. Randall, 1998). A complete summary of tes t  results for 

species sampled is listed in Table 2. 



Table 2. Summary of species sampled and Membrane Immunoassay (MIA) test results. Test results 
were placed into three categories: positive (+), borderline-positive (+/-), and negative (-). Positive 
sticks illustrated a blue coloration present wi lh a clearly defined meniscus, the borderline-positive 
sticks showed a blue coloration without a clearly defined meniscus, and negative sticks demonstrated 
negligible coloration present on the test stick. 

1 1 
SPECIES Positive (+) 

Positive (+ / - ) 
m: 0 
1 3 1  0 

-1 1 
9 

1 

Negative (-) I I 

: - Cfenochoe -- tus hawaiiensis (H  . ko le) I 1 0 I 

Oxycheilinus unifosciatus - (po' ou) [L- 0 

Parupeneus mult~fosc~atus (moano) I 1 ; 0 ! 
Scarus rubrov~o/aceus (pal u ka l u ka) 1 0 

Scarus sp. & Chlorurus sp. (uhu) I&_ 0 

Scombero~des & a n  (lai) - 'I. 0 
Sphyraena barracuda (k6k0) 1, 0 I 

1 1 Sphyraena helleri (kawele' 6) I 1 1 0 I 
The majority of the MIA test  results fell between the negative and 

weakly positive controls; i.e., the coloration lef t  on the test  stick membrane ranged 

from some blue with no clear meniscus t o  more blue with a clearly defined meniscus. 



The resultant color variations on the tes t  stick were subtle and somewhat 

ambiguous; therefore, in order t o  attain an accurate interpretation, 15 of the tes t  

sticks were sent t o  Dr. Hokama on Oahu for his interpretation. Those sticks were 

then used as guidelines by Dr. Mike Parsons, Dr. Randy Kosaki and myself in 

evaluating the remaining tes t  sticks. 

Table 3. Summary of test results for windward vs. leeward samples. Membrane Immunoassay (MIA) 
test  results were placed into three categories'.positive (+), borderline-positive (+/-), and negative (-). 
Positive sticks illustrated a blue coloration present with a clearly defined meniscus, the borderline- 
positive sticks showed a blue coloration without a clearly defined meniscus, and negative sticks 
demonstrated negligible coloration present on the  test stick. 

Chi-square analysis for windward vs. leeward samples pooled (all species) 

revealed no significant difference in prevalence of ciguatoxins in the fishes tested 

regardless of shoreline (P-value 0.166). I therefore accepted my null hypothesis, 



indicating no difference found between the prevalence of ciguatoxic fish for 

windward vs. leeward facing shores. 

Additionally, Fisher's Exact statistical test  was used t o  compare toxici ty 

frequency between species on the same shore (roi vs. kole for both windward and 

leeward shores), within species but between shores (windward kole vs. leeward kole 

& windward ro i  vs. leeward roi), and carnivore vs. herbivore (uhu were classified as . , 

herbivores and po'ou as carnivores) for same and opposing shores. A summary of 

MIA test  results for grouped by category is found in Table 3. Positive and 

borderline-positive results were pooled t o  accommodate tes t  parameters. All 

comparisons generated a P-value = >0.05, thereby indicating no significant 

differences (Table 4). 

Table 4. Summary of statistical analyses using Fisher's Exact test. Positive and borderline-positive 
results were lumped to  accommodate test parameters. All comparisons generated a P-value = >0.05, 
thereby indicating no significant differences. 

I Variables !! Fisher 3 Exact Test P- value I l 
I 

A one-way ANOVA was applied t o  samples when ranked by test  result as 

Windward vs. Leeward samples lumped 

Carnivore: windward vs. leeward shores 

Herbivore: windward vs. leeward shores -- 

follows: Positive (+) = 2; Borderline-positive (+/-) = 1; Negative (-) = 0. Ranked tes t  

I 0.097486 

1 0.22642 

0.219782 - 

results were analyzed statistically for seasonality, where seasons were grouped as 



follows: Fall = September, October, & November; Winter = December, January, & 

February; Spring = March', April, & May; Summer = June, July, & August. Since only 

two samples were collected from the summer season and both tested positive, they 

were excluded from the ANOVA in order t o  obtain a clearer analysis. Analysis 

yielded a P-value of 0.005 (n = 115), indicating significantly higher frequency of 

toxicity in samples procured in the spring months vs. both fall and winter months 
.,. 

(Figure 1). 

SEASON 

Figure 1. Interval plot of ranked mean degree of toxicity for each season sampled. A one-way 
ANOVA was applied to  samples when ranked by test  result as follows: Positive (+) = 2; Borderline- 
positive (+/-) = 1; Negative (-) = 0. Ranked test  results were analyzed statistically for seasonality, 
where seasons were grouped as follows: Fall = September, October, & November; Winter = December, 
January, & February; Spring = March, April, & May; Summer = June, July, & August. Analysis yielded a 
P-value of 0.005, indicating significantly higher frequency of toxicity in samples procured in the spring 
months vs. both fal l  and winter months. 



Discussion 

According t o  this study, reef associated fishes are just as likely t o  be 

ciguatoxic on the east or windward shore as they are on the west or leeward shore 

of the island of Hawaii. If there is a difference in the presence of toxici ty in 

reef-associated fishes for windward vs. leeward shores, this study did not find one. 

The belief that  fishes caught in windward waters are safe t o  eat may simply be a 

misconception. 

A remarkably high number of samples tested positive f o r  ciguatoxins. This 

may be due t o  this study's focus on two of the most implicated fish in ciguatera 

outbreaks, kole and roi. However, the supplemental species turned out t o  have a 

higher incidence of positive results, possibly due to  less frequent targeting of more 

difficult t o  catch and/or less frequently seen species (except with respect t o  uhu) 

or  toxin sensitivity t o  the M I A  tes t  method (as expounded on below). 

If ciguatoxins are so prevalent in fishes here, why are there not more 

frequent cases of ciguatera? The effectiveness of the tes t  was questioned by 

many of the fishermen I obtained samples from since they did not feel symptoms 

af ter  ingestion of a fish that  tested positive. I t  is pertinent t o  reiterate that  the 

majority of my test  results corresponded to  the range of color between the 

negative and weakly positive control sticks, which signifies that  maybe the levels or  

amounts of toxins present are not sufficient to  produce recognizable symptoms in 



those consuming the fish. The epidemiology of ciguatoxin is very complex, with 

variables such as "individual susceptibility, dosage, and toxin profile" (Lewis, 2001). 

Recently , twenty structures of ciguatoxins have been resolved (Yasumoto e t  

a/ ,  2000). Ciguatoxins biotransform as they move through the marine food chain 

(Legrand et  a/,  1992; Lewis, 2001), increasing in toxici ty by up to  ten fold in 

carnivores (known as P-CTX-1) from the origination of the toxins produced by 
. , 

Gambierdscus spp. (known as P-CTX-3C; Yasumoto et  a/ ,  1992; Lewis, 2001). The 

M I A  tes t  stick method is reported t o  have a "sensitivity of 92% and a specificity 

of 86%" (i.e., sensitivity = the number of positive DOH fish detected by M I A  x 

100/ total number of positive fish implicated in ciguatera, & specificity = the 

number of negative results in DOH fish using M I A  x 100/ total number of fish 

tested, presumed to  be negative for ciguatera; Hokama & Yoshikawa-Ebesu, 2001). 

However, it is st i l l  unconfirmed which of the many structures of ciguatoxin the 

M I A  stick tes t  is reacting t o  (Hokama, personal comm.; Yoshikawa-Ebesu, personal 

comm.). 

The Oceanit Cigua-check@ test  k i t  (MIA procedure) is a simple tes t  t o  use; 

however, it is expensive for everyday use given the large amount of fishing typical 

t o  Hawaiian culture, and the results are ambiguous without some training as t o  how 

t o  read them. As mentioned before, any blue coloration of the membrane on the 

tes t  stick indicates that  ciguatoxin is present in the fish. The degree of toxici ty 

(i.e., amount of toxin present) is gauged by the intensity of the color and the 



strength of definition of the meniscus, the lat ter  being the key signifier. 

Negligible coloration on the test  stick indicates a negative result. It is noteworthy 

t o  mention that  Dr. Joanne Yoshikawa-Ebesu a t  Oceanit Test Systems re-tested 

my f i rs t  46 samples for confirmation of my results, using non-ciguatoxic fish as 

negative controls, and found all 46 samples t o  be positive t o  some degree. My 

results for the same fish agreed for . 36 , o f  the samples, however 10 disagreed, as 

they were interpreted as negative results. 

Gambierdscus toxicus has been confirmed as the origin of Pacific 

ciguatoxins (Yasumoto e t  al,  2000). However, several other benthic dinoflagellates 

produce toxins, including Gymnodinium spp., Prorocentrum spp., Ostreopsisspp., and 

Coolia spp. (Anderson & Lobel, 1987; Faust, 1995; Landsberg e t  a[ 1999; Parsons, 

personal comm). Although further study is needed, these dinoflagellates have been 

proposed as contributing t o  the many symptoms observed in ciguatera cases 

(Ballantine e t  al., 1985; Tosteson e t  al., 1992; Hokama e t  al., 1995; Ebesu & Hokama, 

1995). Structural similarity of polyether toxins, such as okadaic acid produced by 

Prorocentrum spp., has been shown to  cross react with monoclonal immunoassay tes t  

procedures and is therefore speculated to  influence the results of the M I A  tes t  

methods (Lewis, 1995). 

Given the low levels yet  high frequency of ciguatoxins present in the 

samples tested leads t o  the question of seasonality. As stated earlier, the peaks in 

numbers of reported ciguatera cases for  the last twenty years have occurred in 



May and September, inferring seasonal fluctuations in the disease on the Big 

Island. Additionally, Bomber (1987) noted similar fluctuations in ciguatera cases in 

Florida, hypothesizing the phenomena t o  be a reflection of seasonally fluctuating 

environmental conditions. On the Big Island as well as in other regions 

Gambierdiscus spp. has been shown to  exhibit seasonal fluctuations in cell 

abundances, with marked peaks in cell abundance in the beginning and/or end of the 
. , 

hot  (summer) season (Bomber e t  al., 1988; Ichinotsubo e t  a l ,  1994; Abbott & 

Wilder, 1995; Chinain ef al ,  1999). Increases in Gambierdiscus spp. coincide with 

increases in host macrophytes during summer and fall months, when algae are most 

abundant (Grzebyk e t  al., 1994; Abbott & Wilder, 1995). Tosteson, e t  al. (1995) 

found "apparent seasonal variability" in ciguatoxic barracuda. Furthermore, analysis 

of ranked samples showed significantly higher frequency of toxici ty in fish samples 

caught during spring months as opposed t o  both fal l  and winter months (Figure 1). 

I n  two of my latest samples acquired in mid-April, the coloration of the meniscus on 

the test  stick was a strikingly darker blue than any previously tested samples. This 

leads me t o  anticipate higher toxicity levels in samples procured in the upcoming 

summer months. 

Summary 

On the island of Hawaii where 87% of reported cases of ciguatera occur on 

the west or leeward side of the island, tests for ciguatoxins in reef-associated 

fishes indicated no difference in the prevalence of ciguatoxic reef fish for 



windward vs. leeward shores. The local idea that  fishes f rom windward waters are 

safe may simply be a misconception. The elucidation of twenty di f ferent  structures 

of ciguatoxins with different levels of toxicity and the presence of  structurally 

reminiscent toxins produced by other benthic dinoflagellates indicates that  more 

studies are needed with regard t o  detection methods. The high frequency yet low 

toxici ty of ciguatoxins in fishes tested may indicate a seasonal trend, with 
. . 

expected increases in toxicity appearing throughout the upcoming summer months, 

though further study is needed. The higher incidence of reported CFP cases on the 

leeward shore of the Big Island is most likely due t o  ease of accessibility and 

preferable environmental conditions, both of which influences the amount of fishing 

taking place on the leeward shoreline vs. the windward shoreline. 
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