On the Archaeological Association of the Fossil Hominid from Hathnora, Madhya Pradesh, India

Received 11 September 1985

SALAHUDDIN, R. K. GANJOO, G. L. BADAM, and S. N. RAJAGURU

INTRODUCTION

The Narmada River originates at Amarkantak (22°40'N, 81°40'E) in eastern Madhya Pradesh and flows for about 1300 km before emptying into the Gulf of Cambay near Broach in Gujarat. Deposits between Bedaghat (23°08'N,79°47'E) and Hoshangabad (22°45'N,77°45'E), rich in Pleistocene vertebrate fauna and Palaeolithic artifacts, have interested Quaternary geologists, palaeontologists, and archaeologists for over a century (Theobald 1860; Blanford 1869; Pilgrim 1905; De Terra and Paterson 1939; Khatri 1961; Supekar 1968; Badam 1979a; Biswas and Dassarma 1981; Badam and Salahuddin 1982). The discovery of a fossil hominid skull cap of Homo erectus narmadiensis by Sonakia (1984) at Hathnora (22°52'N,77°53'E), c. 40 km northeast of Hoshangabad (Fig. 1), sparked great interest among palaeoanthropologists in India and abroad. In February 1985, we conducted an exploration to evaluate the association of a prehistoric stone tool assemblage found at the fossil hominid site and the assemblage's probable age. A new understanding of the stratigraphy at the site was brought to light.

GENERAL STRATIGRAPHY OF THE CENTRAL NARMADA VALLEY

Since the time of the first systematic work on fossils, conducted by Theobald (1860), a large number of scholars have contributed to the understanding of the stratigraphy of the area (De Terra and Chardin 1936; De Terra and Paterson 1939; Sen and Ghosh 1963; Khatri 1966). The general stratigraphy of the Narmada alluvium is represented in Table 1.

The Narmada alluvium has been divided into two groups: (1) a lower group of Middle Pleistocene to early Upper Pleistocene age (150,000–40,000 B.P.) (Joshi et al. 1981; Badam 1979b, 1982); and (2) an upper group that is dated to the Upper Pleistocene on the basis of a radiocarbon date of 31,750 + 1820 – 1625 B.P. (Agrawal and Kusumgar

Dr S. N. Rajaguru is Professor in Geo-Archaeology, Dr G. L. Badam is Reader in Palaeontology, Sri R. K. Ganjoo is Research Assistant (Prehistory) in the Department of Archaeology, Deccan College Postgraduate and Research Institute, Pune, and Dr Salahuddin is Technical Assistant in Aligarh Muslim University, Aligarh, India.
1974), fluorine/phosphorus ratio (3.2–8.16) of bones (Joshi 1985), nitrogen analysis of bones (0.97–1.20%) (Badam 1979a) and faunal data (Badam 1979b; Biswas and Dassarma 1981). The nitrogen bone tests were carried out by Dr K. P. Oakley (pers. comm.) on two fossil bones from the Upper Narmada Group.

When the bore hole data presented by Supekar (1968), in which gravel layers at intervals of 21.65 m, 29 m, 39 m, and 76.5 m below surface were tapped, it seems that the proximity of suitable lithological (e.g., Bogra Conglomerates) and topographical (e.g., Vindhyan Escarpment) features has been responsible for the strata building of the valley. This is further supported by the presence of cemented, bouldery, gravel bed in the proximity of the Narmada River and by fine sand and silt, as its homotaxis, in the river’s tributaries. Such variation in the lithological composition within the valley is better explained by the lateral migration of the river. Therefore, a comprehensive stratigraphy of the valley involves a detailed study of the subsurface alluvium, which should yield interesting results.

STRATIGRAPHY AT HATHNORA

The site proper is situated on the northern bank of the Narmada River c. 40 km northeast of Hoshangabad. A thick deposit of c. 15 m exposed at the site is divisible into
TABLE 1. COMPOSITE LITHOSTRATIGRAPHY OF THE CENTRAL NARMADA VALLEY

<table>
<thead>
<tr>
<th>PLIOcene</th>
<th>MIDDLE PLEISTOCENE</th>
<th>HOLOCENE TO MIDDLE PLEISTOCENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper group</td>
<td>Black cotton soil</td>
<td>Younger Cotton soil group</td>
</tr>
<tr>
<td>Pale brownish alluvium</td>
<td>Irregular beds of sand and conglomerate</td>
<td>Black cotton soil</td>
</tr>
<tr>
<td>Red-yellow clay conglomerate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower group</td>
<td>Red-yellow clay</td>
<td>Boulder conglomerate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUPEKAR (1968) BADAM (1979b) BISWAS AND DASSARMA (1981)

<table>
<thead>
<tr>
<th>EARLY UPPER PLEISTOCENE</th>
<th>EARLY UPPER TO LATE MIDDLE PLEISTOCENE</th>
<th>UPPER PLEISTOCENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black cotton soil</td>
<td>Dark brown consolidated silt and gravel</td>
<td>Black cotton soil</td>
</tr>
<tr>
<td>Yellow-brown kankerised silt</td>
<td>Yellow-brown calcreted silt, sand and gravel</td>
<td>Gray silt</td>
</tr>
<tr>
<td>Sandy pebbly gravel</td>
<td>Reddish brown calcareous silt</td>
<td>Pedocol layer</td>
</tr>
<tr>
<td>Red-brown concretionary silt</td>
<td>Cemented boulder gravel</td>
<td>Gray sand w/lime concretions</td>
</tr>
<tr>
<td>Boulder conglomerate</td>
<td></td>
<td>Pinkish clay and silt, lime concretions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grit and sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boulder bed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep red clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep red boulder bed</td>
</tr>
</tbody>
</table>

five lithological units (Fig. 2). The basal unit, about 1.5 m thick, comprises cemented grayish cross-bedded sand with matrix-supported pebbles at the top. This unit is conformably overlain by cemented bouldery/pebbly gravel c. 0.5 m thick and is what yielded the partial fossil hominid skull (Sonakia 1985). Late Acheulian tools and remains of fossil bovids and proboscidea were collected from the same horizon during the February 1985 exploration. This unit grades into unconsolidated sandy/pebbly gravel c. 5 m
thick, having subrounded to rounded and unimbricated matrix-supported pebbles and gravels. A rich faunal collection has been made from this unit elsewhere in the Central Narmada Valley, along with Middle Palaeolithic tools and Late Acheulian artifacts (Table 2). Over this unit lies pebbly/cobbly and silty clay, c. 2 m thick, with calc-nodules yielding Middle Palaeolithic artifacts. Capping it is yellow, silty clay 4 m thick that, in turn, is overlain by black cotton soil.

PREHISTORIC ARCHAEOLOGY AT HATHNORA

The cemented bouldery gravel bed, a sheet deposit, has yielded Early to Middle Acheulian tools elsewhere in the Central Narmada Valley (Misra 1975–1976), but only
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnivora</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Perissodactyla</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Equus namadicus</td>
<td>Equus namadicus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hexaprotodon namadicus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bubalus palaeindicus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Proboscidea</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stegodon insignis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stegodon ganesa</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Elephas namadicus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Palaeoloxodon namadicus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Reptilia</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Trionyx sp.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Emys sp.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Pl. 1. (See explanation on facing page.)
Late Acheulian tools have been found at Hathnora. Tools of the Middle Stone Age reported from this bed elsewhere (Supekar 1968; Khan 1972), have been assigned a greater antiquity than the Middle Stone Age tools of the overlying unconsolidated sandy/pebbly gravel. Such occurrences of scrapers and small tools in association with Acheulian and pebble tools are also reported from other Old World sites (Sankalia 1978; Le Colle 1984; Corvinus 1983).

The Late Acheulian tools collected from the cemented bouldery/pebbly bed at Hathnora, though very small in number, are significant in that they have been collected from the hominid yielding bed and are in association with fossils. The artifacts are made of red Vindhyan sandstone. Typologically the tool kit comprises amorphous cores (Pl. 1j,k), a discoidal core, side flakes (Pl. 1e), end flakes (Pl. 1a,c,f,g), indeterminate flake, and scrapers. The cores are small in size (average length, breadth, and thickness 88 mm, 55 mm, and 28 mm, respectively) and have several small flake scars with negative bulbs of percussion. One of the cores (Pl. 1i) is elongated and comparatively thin, with alternate flake scars on both sides, thus appearing as a handaxe. The discoidal core (Pl. 1l) is more or less round in shape and flaked along the periphery and its central portion. Flakes are thin and well dressed with small flake scars on the dorsal side. A few flakes have a prepared platform. Most of them are more or less symmetrical with no cortex; one is comparatively large (Pl. 1h), having deep negative and positive bulbs of percussion on its dorsal and ventral sides, respectively. The other flakes have small and defused bulbs of percussion, indicative of the cylinder hammer technique. Of two scrapers in the assemblage, one is made on an end flake (Pl. 1b) and the other is made on an indeterminate flake (Pl. 1d). Both are concave, very well dressed and thin, with a small and defused bulb of percussion.

The assemblage in question defines all the requisite characters of the Late Acheulian industry (e.g., Issac 1969; Misra 1975–1976; Paddayya 1977). The tools are thin and symmetrical compared to the Early and Middle Acheulian tools; they have small and shallow flake scars, very little cortex, and prepared platforms. All these characters are indicative of cylinder hammer technique.
STATUS OF LATE ACHEULIAN IN INDIA

Owing to the absence of any stratified context of the prehistoric tools in India, it is difficult to segregate the Late Acheulian complex from that of the Early and Middle Acheulian. The tools are generally collected from the surface where both complexes lie on a par with each other. Typological differentiation must be considered in the segregation of tool complexes and the establishment of a cultural chronology.

The Hathnora tool kit could be compared typo-technologically to the Late Acheulian industries of Cuddapah (Raju 1981), Tirupati Valley (Jacob 1983), Raisen (Jacobson 1975), Wainganga group A (Joshi 1966), and Jethian Valley (Sankalia 1974). The only report of the Mousterian facies of the terminal Acheulian tradition is from the stratified context at Bhimbetka (Misra 1975–1976). The Late Acheulian from Gangapur (Upper Godavari Valley) is relatively dated, on the basis of geomorphological evidence, to the late Pleistocene (Kumar 1985).

LATE ACHEULIAN OUTSIDE INDIA

The most well-known site of a Late Acheulian hominid is that of Kolombo Falls on the Zambian–Tanzanian border. It is dated to >190,000 B.P., which is in agreement with material from Isimila in central Tanzania, where the Acheulian from stratified context is dated to 260,000 B.P. The Upper Acheulian from Olorgesailie lake beds and Mesak beds (top of Olduvai sequence) are dated to 450,000 B.P. and 400,000 B.P., respectively (Clark 1976). It is unlikely that any of these assemblages is older than 700,000 years or earlier than 125,000 years ago. The evidence suggests that the evolved form of Acheulian continued until somewhere between 125,000 and 115,000 years ago (Clark 1981).

Fossil hominids, two females and one male from Steinheim (Germany), Swanscombe (England), and Arago (France), represent an anatomically archaic form of *Homo sapiens* that spans the time between the appearances of *Homo erectus* and *Homo sapiens* (Haviland 1979). The Saldanha skull found at Elandsfontian in the Cape Province of South Africa in association with Late Acheulian artifacts is designated as archaic *Homo sapiens* (Singer and Wymer 1968; Rightmire 1983). The discoveries of the Bodo skull from Ethiopia (Conroy et al. 1978; Kalb et al. 1982) and the Lake Ndutu skull from northern Tanzania (Clark 1976; Mturi 1976), both archaic *Homo sapiens*, have also been made in association with a Late Acheulian assemblage.

Three Acheulian sites in northwestern Africa (Casablanca, Robot, and Ternifine) are associated with *Homo erectus*. On the basis of an analogy with East Africa, it seems likely that *Homo erectus* manufactured the earlier Acheulian artifacts, and the later ones were shaped by archaic *Homo sapiens* (Rightmire 1976). The fossil *Homo erectus* specimens from Java, China, Lake Turkana and Olduvai Gorge (East Africa), Swartkrans (South Africa), Ternifine (North Africa), and Vertesszőllos (Hungary) are dated between 1.5 m.y. and 400,000 years ago (Deacon 1975).

Clear evidence from North Germany to East Africa pointing to the presence of *Homo sapiens* during the terminal Middle Pleistocene and of *Homo erectus* in the Middle Pleistocene leaves no doubt that archaic *Homo sapiens* evolved from *Homo erectus* (Jurmain et al. 1984). The morphological characters also point to the derivation of *Homo sapiens* from *Homo erectus*. The timing is disputed (± 500,000–400,000 B.P.), which favors contemporaneity of these different species of hominids (Rightmire 1981).
HATHNORA: SEAT OF ERECTUS OR SAPIENS?

The occurrence of Late Acheulian tools in the base of the bouldery/pebble bed (and at no other level) and the presence of Late Acheulian tools along with Middle Palaeolithic tools in the immediately overlying unconsolidated sandy/pebbly gravel clearly indicate a cultural succession at the Hathnora site and the contemporaneity of the Late Acheulian and Middle Palaeolithic cultures.

We considered the archaeological chronology, typo-technological similarities, vertebrate faunal assemblage, and geomorphology of the site and assigned the fossil hominid bearing bed a late Middle Pleistocene to early Upper Pleistocene age. The makers of these tools at the site may be anatomically archaic *Homo sapiens* and not *Homo erectus*.

The association of archaeological material with the hominid fossil may not be taken as a criterion for identifying the taxon, as rightly pointed out by Kennedy (1985). However, a review of the associated hominid remains from various Late Acheulian sites all over the world, as given in the earlier pages, suggests the association of archaic *Homo sapiens* with the culture. This association may hold true for the Narmada hominid skull as well.

REFERENCES

Agrawal, D. P., and S. Kusumgar

Badam, G. L.
1979a *Pleistocene Fauna of India*. Pune: Deccan College.

Badam, G. L., and Salahuddin

Biswas, S., and D. C. Dassarma

Blanford, W. T.

Clark, J. D.

Conroy, G. C., C. J. Jolly, D. Cramer, and J. E. Kalb

Corvinus, G.
De Terra, H., and T. T. Paterson

De Terra, H., and P. T. De Chardin

Deacon, H. J.

Haviland, W. A.

Isaac, G. L.

Jacob, S. J.

Jacobson, J.

Joshi, R. V.

Joshi, R. V., G. L. Badam, and R. P. Pandey
1981 Fresh data on the Quaternary animal fossils and Stone Age cultures from the Central Narmada Valley, India. *AP* 21(2):164–181.

Jurmain, R., H. Nelson, and W. A. Turnbaugh

Kalb, J. E., E. B. Oswald, S. Tebedge, A. Mebrate, E. Tola, and D. Peak

Kennedy, K. A. R.

Khan, E.

Khatri, A. P.

Kumar, Arun

Le Colle, F.
Misra, V. N.

Mturi, A. A.

Padayya, K.

Pilgrim, G. E.

Raju, D. R.

Rightmire, G. P.

Sankalia, H. D.

Sen, D., and A. K. Ghosh

Singer, R., and J. J. Wymer

Sonakia, Arun

Supkar, S. G.

Theobald, W.