Notes on Oodemmas, with Descriptions of New Forms
(Col.—Curculionidae)

BY DR. R. C. L. PERKINS

(Presented by O. H. Swezey at the meeting of August 2, 1934)

This short paper is based on mostly recent material sent for examination by Mr. O. H. Swezey, nearly all the specimens having been collected by himself, though a few, as duly noted under the species, were captured by others. I am very much indebted to him for giving me the opportunity of studying this very interesting collection, which contains a number of species still very imperfectly known and some that appear to have been undescribed previously, amongst which is one very remarkable new form. In the course of this study I have examined Blackburn’s paratypes of such species as it was necessary to compare with the recent captures and also a large number of the specimens collected by myself and described or enumerated in the “Fauna Hawaiiensis.” In the case of a few species my friend Dr. Hugh Scott of the British Museum has compared Blackburn’s actual types with the paratypes examined by me, or else (in the case of unique types) with specimens that I considered to be the same as Blackburn’s species and he has given me definite information on special points about which I had enquired. Dr. Scott’s knowledge of their variability, and the difficulty attending the discrimination of species in the large genera of endemic Hawaiian beetles renders his assistance of great value.

Although I have given a very large amount of time to the study of the species of this genus, the result is far from satisfactory to me. As in other genera of the endemic beetles this is due to the variability of the species, the structures from which the specific characters have to be drawn being so frequently variable. Thus I have felt it necessary, as did Blackburn, to consider the lengths of the two basal joints of the funicle of the antennae as a character of great importance, but in some species there is certainly variation in the length of these joints and in some cases there is a distinct tendency to greater elongation either of both or of the second joint.

in the female sex. Such variations render the tabulation and description of the species extremely difficult, for in the case of certain species some individuals which are said to have the first joint shorter than the second, would, if the former were fully displayed, be found to have the joints little if at all different in length on actual measurement. Similarly characters taken from the size, sculpture, form, etc., are all variable in most species. There is no doubt that Blackburn realized these difficulties though in a lesser degree than if he had had larger series of the species he described and these from more diverse stations. One might, I think, collect large numbers of individuals of some species without obtaining one that is practically identical in structure with the actual type. The late Dr. Sharp after making a rather careful survey of the specimens collected by me in the course of the six years 1892-97 wrote to me that he considered these to represent about 60 species, but in the "Fauna" I treated them as belonging to 41* only. As he considered a very large number of the 60 species to be represented by single specimens, it is probable that I treated many of these uniques as aberrations of other species. For a long time I have considered the species of some of these large genera of beetles to be in a condition very similar to that of those in some of the large genera of endemic flowering plants. The great variability of these and the difficulty of discriminating species, so that very diverse views may be held as to their number, can be gathered from various statements made by the eminent botanist and explorer, Dr. Joseph F. Rock, in his work on the "Indigenous Trees of the Hawaiian Islands." I should infer that many of the great genera of endemic land-shells show similar features. In striking contrast are the many species of Odynerus, so easy to distinguish by constant structural or even color differences; the many fulgorid leafhoppers with definite specific characters in the male genitalia; and the species of agrionid dragonflies easily separated, however they may vary otherwise, by the abdominal appendages, of the males. So far as we have examined them, the male genital characters in the beetles have been of little or no help in separating difficult species.

Although some of the species of Oodemass certainly have special habits, many, so far as we can tell, are not at all particular as

* Species collected by Blackburn, but not by myself, were not considered in the numbers given above.
to the kind of wood on which they live. For instance, *Oodemas aenuscens* may be found on the hardest and softest of forest trees, in pith cavities of shrubs, in tree ferns, in dry stems of herbaceous plants and according to Blackburn even under stones. As with many of the other endemic beetles of the forest such as live on dead wood, one is astonished at the scarcity of many species when food, apparently suitable, is unlimited. Only a few species seem to be really abundant, e.g. *O. nivicola* and *O. borrei*, often found in numbers under stones at high elevations on Haleakala, Maui; *O. infernum* (*multiforme*) of which we many times noticed from a score to a hundred specimens under a single log or in other situations on Hawaii, with a few others. The birds of the genus *Heterorhynchus* and *Hemignathus* are adepts at finding these beetles, the former particularly so, as nearly all the individuals examined contained some and often very many of these weevils in their stomachs. In other birds they are rarely, if ever, found, but the localities frequented by *Heterorhynchus* were always rich in individuals and generally also in species of *Oodemas*.

I have attempted to tabulate the numerous species found on Oahu and Maui, but the tables are not very satisfactory. The species on Kauai are many of them still too imperfectly known, and those of Hawaii not numerous enough to make it worth while to attempt their tabulation at present. The species on Molokai and Lanai are evidently so closely allied to, when not actually identical with, the Maui species, that they should later be included in a table with these.

Species from Oahu

Oodemas dilatipes Perkins.

The single female of this species captured by myself some ten years after the type (which was a male) is readily distinguished from *O. olindae* by the much more slender funicle of the antennae, the third and fourth of these seven joints being quite elongate and comparatively slender, and by the simple basal margin of the elytra (i.e., they are not evidently margined) while the interstices are simple, not raised so as to form shallow grooves for the serial punctures. The latter are not all coarser than those of the female *olindae* I have examined. Hence, the sculpture of the elytra of this female differs considerably from that of the male (*Fauna Hawaiensis*, II, p. 156, 1900) but probably both are variable.
Oodemas williamsi sp. nov.
Size moderate to large, conspicuously aeneous, the elytra and sometimes
the pronotum brightly shining, the antennae and tarsi rufescent. Rostrum
rather finely punctured, antennae rather slender, the first funicle joint
elongate and equal to the second in length, or in some aspects it may even
appear a trifle longer. Pronotum with fine and feeble, but quite distinct
punctures. Elytra without definite striae, but with rows of mostly remote
punctures, which are somewhat fine considering the size of the insect and are
more or less ill-defined or changeable in outline. The interstices have a very
conspicuous shallow puncturation and are not at all convexly raised between
the serial punctures, while the interstitial ones remain distinct right to the
apex of the elytra. The abdomen at the base beneath is remotely, finely and
feebly punctate, while the metasternum also is sparsely and feebly punctured.

This species seems to me to be quite distinct from the others
on Oahu, the characters afforded by the antennae, the sculpture
of the elytra and of the abdomen beneath being sufficient together
to distinguish it from any other.

Hab.—Oahu, Mt. Kaala, 4030 ft., VII-22-29, two specimens,
the larger being the type (F. X. Williams); Mt. Kaala, V-18-20,
two specimens of smaller size (O. H. Swezey).

Oodemas halticoides Blackburn
This species varies considerably in size, form and sculpture, but
its narrow form and bright metallic color aid in its recognition. It
seems to have occurred chiefly or only in the mountains at the
Honolulu end of the Koolau range and to be rather uncommon.
Swezey has sent two examples from Wailupe taken from dead
Smilax and two from Mt. Tantalus, one of these from Pipturus
albidus, the other probably found dead as it is black and has lost
its antennae. Most of the specimens that I myself collected were
from the dried stems of low or herbaceous plants, but I also noted
it on Pipturus trees. I have seen three examples collected by
Blackburn.

Oodemas aenescens Boheman
A series of a dozen specimens captured by Swezey during
recent years in the Koolau range at no great distance from Hono-
lulu was obtained, as usual, from very different trees or plants:
Scaevola, Broussaisia arguta, Cheirodendron, bamboo, Cibotium
and under logs. It is also found in the dead wood of many other
trees and shrubs. Two older specimens sent were collected in 1906
on the windward side of the island at Maunawili by the late F. W.
Terry.
Oodemas aenescens var. kahanae v. nov.

A fine series of an Oodemas consisting of about three dozen specimens captured on various occasions at Kahana exhibits much variability and is very difficult to deal with. Some of the individuals approach very closely to O. aenescens as represented by specimens from the mountains near Honolulu, but rather to aberrant ones than to the most typical examples. As a rule Kahana specimens are distinguished by the less coarse strial punctures of the elytra, the less convex, sometimes nearly flat interstices, and the less coarse but often more numerous punctures at the base of the abdomen beneath. As a whole the specimens are less robust or more elongate than typical aenescens, the pronotum is often dull from the stronger development of the surface sculpture, and even the elytra may be more or less dull. As I am unable to separate some individuals from more ordinary aenescens, although taken at the same time and from the same species of tree as the most aberrant individuals, I consider the Kahana form to be a local race of aenescens.

The following data on the Kahana specimens should be noted:
Twelve on II-8-31, eleven from Broussaisia, one from Xanthoxylum; eleven on XI-29-31 from Broussaisia; three on IV-15-28 from Cheirodendron; ten without note of food plant, one of which was collected by E. M. Ehrhorn, all the others by Swezey.

Oodemas robustum Blackburn

This species was described by Blackburn from two specimens which he collected in the Waianae mountains, as stated in his final enumeration of the Hawaiian beetles, when he corrected an earlier statement that it had occurred on Oahu or Maui. The card on which the paratype is mounted does bear the cross line by which he indicated the locality as Maui, while that of the type has a different marking and not the one used to indicate Oahu generally, though possibly it may have been used to distinguish specimens from the western range of mountains. Consequently one cannot feel sure that Blackburn’s specimens both came from the same island.

The specimens now sent for examination and referred by me to this species have the strial punctures of the elytra generally less coarse than in the type, but they themselves vary considerably in sculpture, size and other respects. The specimens that I collected in the Waianae mountains were very small examples, but robust and as coarsely punctured as Blackburn’s, though so inferior in size. One or two specimens collected by me 40 years ago on Molokai are also very small, but agree closely with some of Swezey’s
specimens. *O. robustum* is extremely like *O. insulare* Blackburn in most respects, but in the latter the funicle of the antennae is altogether stouter, with the second joint shorter and more robust, and it is no longer than the first. Blackburn collected *insulare* in the Koolau range, no doubt in the lower forest, as he says it is found on *Jambosa malaccensis*. Although I specially searched for this beetle I found no trace of it, the trees of the "ohia ai," where I examined them, being overrun with the ant *Pheidole megacephala*, and native beetles entirely absent.

Hab.—Oahu, Waianae mountains; Mt. Kaala, three on Broussaisia; Puu Kalena, four on Metrosideros, one on Cibotium; Mt. Kaala, two on Metrosideros, one on *Acacia koa*; Haleauau, one on *Ipomoea bona-nox*; all these collected by Swezey. Also one on the summit of Kaala (F. X. Williams). Evidently occurs at all seasons of the year. Molokai, Kalae, VIII-7-93 (Perkins).

Oodemas angustum Blackburn

This species was described on a single specimen from the Waianae mountains and compared by Blackburn with his *O. obscurum* of Maui. Later, I described, also on a single specimen, a small species from the same locality, which seemed to be distinct from *angustum* and was named *parallelum*. Finally, in Fauna Hawaiensis, III, p. 654, 1910, I referred a number of specimens, forming a variable series with many highly aberrant examples, to the latter. The specimens now received from Swezey are numerous and show perhaps still greater diversity in form and sculpture, though some of them are quite similar to individuals captured by myself. All this variability renders it highly probable that *parallelum* should be considered a synonym of *angustum* Blkb., as some individuals of the series I have examined might as well be referred to the one as to the other. Amongst the large number of specimens examined by me there remain a few concerning which I feel quite uncertain as to whether they are extreme aberrations or belong to other species. These highly aberrant examples are mostly represented by single specimens and rarely, if ever, are two of them so alike in all details that one can be sure that they belong to a single species. I have considered that the large front and middle tarsi in the male is an important character for distinguishing *angustum* (*parallelum*) but I do not feel sure that all the individuals with
small tarsi are certainly females, and even in the males the tarsi appear to vary somewhat in size. Some examples with wide pronotum and above the average in size greatly resemble *O. ramulo-rum*, but the pronotum is more shining and the tarsi smaller; also one or two, captured singly, might possibly be very small depauperated individuals of *O. hanticoides*.

As the species stands at present it is chiefly recognized by its small size and its habitat—the Waianae mountains—and the fact that it differs in some point of structure from all the other species in those mountains.

Swezey's specimens bear the following data: fourteen from Mt. Kaala, on Broussaisia; four, Puu Kaua, on this same tree; six, Puu Kaua, on Smilax, one very immature, having been bred from the pupa; two on Coprosma, one on Byronia and one on Metrosideros from Mt. Kaala; one, Kanehoa on Alyxia; one, Hapapa on Campylototheca; three, Haleauau, from lehua, Ipomoea and Pipturus, singly; three from Kaala without note of plant; one Kamokuiki Valley on sedge (F. X. Williams). My own specimens were obtained from Broussaisia, Alyxia, Pelea and other small trees. Most of Swezey's were obtained from November to May, some in August, and it no doubt occurs throughout the year. A few of my specimens without data came, I believe, from the lower part of the forest of the Koolau range, which formerly was continuous with that of the Waianae mountains across the base of the plateau now dividing them.

TABLE OF OAHU SPECIES

1. Rostrum conspicuously widened on the apical half; male with the second joint of the front and intermediate tarsi very wide, about as wide as the lobate third joint..2

 Rostrum rarely a little widened on the apical half (or in front of the insertion of the antennae), in most species with the sides parallel or even slightly convergent from base to apex..3

2. Rostrum long, twice or more than twice as long as its width near the base in the female; first funicle joint of the antennae strongly elongate, subequal to, but slightly stouter than the second; elytra with rows of moderately large punctures and fine interstitial ones...*dilatatipes* Perkins

 Rostrum shorter; first funicle joint stout, the second longer than this, but not strongly elongated; elytra with copious fine punctures, the serial ones hardly stronger than the interstitial...*punctulatissimum* Perkins
3. Antennae with the first funicle joint very elongate and twice as long as the second. *nilidissimun* Perkins

3. Antennae with the first joint at most a little longer than the second, sometimes equal to or shorter than the latter. 4

4. Antennae with the first joint of the funicle elongate and subequal to the second. 5

5. Antennae with short and stout funicle, the first and second joints of about equal length, the latter rather more slender than the first; elytra striate, striae strongly or coarsely punctured, the sculpture not becoming much obliterated apically; a robust species (length, fide Blackburn, 4.75 mm.) *insulare* Blackburn

Funicle not notably stout; striation and puncturation of the elytra often becoming subobsolete or much finer apically, in some species the striation is feeble and the interstices nearly flat, or the serial punctures may be feeble or fine. 6

6. Punctures of the basal abdominal segment beneath strong and deep, sometimes very coarse, on its basal portion. 7

7. Elytra very coarsely punctured on the basal half or more, appearing strongly striate, owing to the convex interstices; abdomen with a few extremely large punctures at the base of the first sternite. *aenescens* Boheman

8. Rostrum distinctly widened on its apical portion; elytra with deep narrow striae in which are remote, fine or ill-defined punctures, the interstices hardly convex, the funicle of the antennae usually stout, the lobate joint of front tarsi large. *striatipenne* Perkins

9. Medium-sized, moderately robust species (about the size of *aenescens*) elytra with the strial punctures coarse or moderate, the striae more or less distinct throughout; basal abdominal sternite strongly punctured over a large part of its surface, though the punctures become finer towards the apex. *robustum* Blackburn

Small species or of moderate-sized narrow, elongate form with a brassy yellow metallic color; punctures of basal sternite finer and often feebly impressed. 10

10. A brassy-yellow, metallic species, shining and of narrow form, of much larger average size than the following, the serial punctures moderately large but the striation of the elytra variable. *hallicoides* Blackburn

Species small or very small. 11
11. As a rule shining aeneous, the pronotum often very shining as well as the elytra, a very variable species in size, form and sculpture, found in the Waianae range............................. *angustum* Blackburn

Elytra black with a more or less distinct purple reflection; pronotum dull or not very shining, lobate joint of front tarsi large for the size of the insect, which is found in the Koolau range......... *ramulorum* Perkins

In the Waianae range there occur specimens very similar in general appearance to *ramulorum*, but the tarsi are smaller. It is not clear whether these are a form of the female of *angustum* (the male of which has large tarsi for its size) or belong to another species.

Species from Maui

Oodemas nivicola Blackburn

Eight specimens collected under stones at 8,500 ft. on Haleakala, Maui, and two at 7,000 ft. on "greensword" were taken by R. R. Whitten on VIII-17-29 and VIII-18-29, respectively, are mostly males; another male on *Argyroxyphium virescens* (greensword) at 6,000 ft., VI-15-27, was collected by Swezey. Blackburn recorded it as occurring from 4,000-10,000 ft., but I never myself found it below 5,000 ft., though in various localities above this it was very common. No doubt its food is varied, as it even occurred where only bunches of grass were present. It is often found in company with the equally common *O. borrei*.

Oodemas molokaiense Perkins

This species is very imperfectly known by me, few specimens having been examined. As stated in Fauna Hawaiiensiis, II, p. 158, 1900, I had doubts as to the specific identity of the specimens taken on Lanai with those on Molokai. Swezey obtained a female in the Iao Valley, Maui (II-28-26) on Perrottetia and considered it to be this species. It is brightly shining with the serial punctures of the elytra very fine and, owing to the convexity of the interstices, placed in wide feeble grooves which extend almost to the base; the puncturation of the interstices is practically wanting. The first funicle joint of the antennae is not much shorter than the second, and although there is some variation in these joints in the Molokai and Lanai examples, the relative length of the second is greater in these than in the Maui form. The latter may prove specifically distinct, but at present may be named *molokaiense* var. *iaoense*.
Oodemas borrei Blackburn

Blackburn appears to have been rather uncertain as to the elevation, at which he captured this species and I suspect that it was not found so low down as 4,000 ft., but more probably at 6,000 or more. In his original description he says the serial punctures are fine, but in his final paper (Trans. Dublin Soc., p. 257, 1885) that they are strong. In reality they vary a good deal in size, number and strength, and often change in appearance in different aspects. The specimen now sent to me was found under a stone at 8,500 ft. by R. R. Whitten. It is shining, with the serial punctures of the elytra mostly remote and the interstitial ones more distinct than in many specimens, but much more feeble and fine than the serial. The latter disappear towards the apex of the elytra. This species with nivicola used to be very abundant on the upper open country of Haleakala and throughout the crater.

Oodemas sculpturatum Blackburn

This species is generally recognizable by its short, broad form, the elytra being unusually wide for their length. The sculpture in some specimens does not greatly differ from some varieties of borrei. The interstices of the elytra are as a rule distinctly sub-convex, so that viewed from the apex, the large serial punctures appear to be placed in shallow grooves. I did not myself ever find this species in the same abundance as nivicola, borrei and corticis and like the latter it is only found in the forest, usually under bark. Three specimens, one of which is immature, were taken in August, 1929, at Olinda by R. R. Whitten; three at Olinda in July, 1906, by Swezey.

Oodemas corticis Perkins

Three specimens from koa, Waikamoi, Maui, 4,500 ft., in January and one under bark of the same tree at Olinda in February, collected and determined by Swezey.

TABLE OF MAUI SPECIES

1. Rostrum, antennae and legs all long, the former strongly dilated on the part in front of the antennae, about twice as long as its basal width or still longer in the female; elytra conspicuously margined at the base; front tarsi of male with the second joint very large, hardly less wide than the lobate third joint..............olindae Blackburn
Without some or without any of the above characters..........................2
2. Robust species with longish slender antennae, the rostrum notably dilated on the part in front of the antennae; second joint of front tarsi of male hardly less wide than the lobate third joint, which is small for the size of the insects. ...3
Species with the apical part of the rostrum rarely dilated and if so they are not robust forms...4

3. Large species with the eyes not, or hardly convex..............*nivicola* Blackburn
 Smaller species, with more convex eyes......................*molokaiense* var. Perkins

4. Color shining golden-brown; elongate-ovate species with the rostrum somewhat widened in front of the antennae; the sculpture of the elytra very feeble or indefinite; second joint of front tarsi of male large, the lobes of the third joint also largely developed.............

 chrysodorum Perkins

Not as above..5

5. Bright metallic copper-colored, elongate, the elytra with regular rows of moderately strong punctures, sometimes more or less distinctly striate; funicle of the antennae with very short joints, the second hardly elongate and not longer than the first; eyes convex; rostrum not widened apically..*cupreum* Perkins

Not as above..6

6. Antennae with the first funicle joint slender and very long, much longer than the second..*mauiense* Blackburn

First funicle joint not longer than the second and often shorter than the latter...7

7. Small to medium-sized ovate species, not particularly robust; male with the second and third joints or one of these joints of the front and middle tarsi much longer than in the female...8

 Much larger species—though, as throughout the genus, small or starved specimens occur—sometimes of robust, wide form..10

8. Elytra with the serial or strial punctures much more developed than those of the interstices, and very distinct, though closer in some specimens than in others; second joint of front tarsi large in the male, but the lobate third joint rather small..................*obscurum* Blackburn

Elytra with the punctures of the series often very fine and remote, or with the interstitial punctures so developed as to render the others inconspicuous...9

9. Elytral punctures feebly developed, subobsolescent or feeble; front tarsi of male less large..*haleakalae* Perkins

Elytral punctures on basal half dense, the interstitial ones strongly developed and very conspicuous; male with larger lobate third joint of front tarsi..10

 tardum Blackburn

10. Usually large and very robust—“ovate, almost subquadrate” (Blackburn)—elytra very wide with rows of foveae or large punctures, and often appearing fluted owing to convexity of the interstices; eyes convex; rostrum not dilated, strigose-punctate..

 sculpturatum Blackburn

Large species of more elongate or ordinary form..11

11. Elytra with the serial punctures strong and deep, generally closely set and regular in the rows, usually distinctly striate, the interstices being convex, rarely flat..*solidum* Perkins
Elytra with the serial punctures fine and more or less shallow or feeble; if large, the serial punctures are usually remote from one another or irregular, often shallow or indefinite in outline.

12. Serial punctures of elytra always fine, the sculpture variable, these punctures sometimes fairly close and regular, but in some specimens much sparser and not very noticeable amongst the interstitial puncturation which is copious and conspicuous. The average size is larger than that of the next species. coriticis Perkins

Serial punctures large and not confused with the interstitial ones, generally remote from one another in the rows, often irregular or with the punctures of indefinite outline, the interstitial punctures generally feebly impressed, sometimes obsolete. The largest specimens are about equal to moderate-sized coriticis..............borrei Blackburn

Species from Kauai

Oodemus comitans sp. nov.

Nigroaeneus, shining, the pronotum sometimes less so than the elytra or even dull, the antennae, tarsi and sometimes the tibiae more or less red. An elongate, somewhat narrow species, the elytra being much less rounded at the sides than most, to a considerable extent approaching a subparallel condition. Antennae with the first funicle joint short and stout, the second more slender and elongate. The rostrum, looked along from the base, has usually the sides slightly convergent to the apex and is more or less rugulosely punctured, at least towards the sides. The pronotum is always distinctly and copiously and more or less evenly punctured and although the punctures vary somewhat in strength in different specimens, they are as a rule strong for a by-no-means large species of the genus. The elytra are copiously punctured, the serial punctures, often of indefinite outline, are as a rule remote from one another in the rows that are nearest to the suture, and they are much larger than the conspicuous interstitial punctures. The interstices in some aspects appear slightly and narrowly raised so that the serial punctures appear to be in wide and excessively shallow grooves, but in some specimens this grooving is hardly or not at all evident. Beneath, the abdomen has strong punctures at the base and in some specimens, especially in larger ones, the punctuation is coarse even so far back as the small intermediate segments, while in others it becomes fine, sparse or obsolete. I am not certain whether this great difference in sculpture is not connected with sex. Length 3-4.25 mm.

All the specimens but one are labeled “Kumuweia” and are collected from Bidens and Lobelia. On the same dates and from the same plants the next following species seems always to have been collected with this. One specimen labeled “Halemanu” was collected from kauila (Alphitonia) and from this tree on the same date the following species also was collected. Nevertheless, variable as these two species of Oodemus are, they appear to be quite distinct from one another. This species was collected by myself at Halemanu, Kauai, in May, 1895, when I was chiefly engaged in
investigating the avifauna of that locality. Probably it was left undescibed for want of sufficient material to satisfy me that it was distinct from some other of the Kauai species.

Hab.—Kauai, Kumuweia, six on *Bidens cosmoides* in June, five on Bidens in March, six on *Lobelia yuccoides* in June and two in March (Swezey). Halemanu, one on kauila in March (Swezey) and in May, 1895, without other data (Perkins).

Oodemans leiothorax Perkins

The species described by me under this name was very imperfectly known, only three examples having been taken, and one of these, supposed to be the female sex of the others, differed considerably and in an unusual manner in the antennal characters from the male. In one of the original specimens of this sex the first funicle joint is fully as long as the second. Swezey has collected on Kauai a series of specimens of which some appear to be almost identical with what I considered the male of *leiothorax*. The individuals representing his series exhibit considerable variation in size and sculpture and some in form. I do not think they can be the same species as the original female assigned by me to *leiothorax*. As mentioned under the last species, the specimens he captured were from the same localities and from the same species of plants as that one. Without an adequate series of specimens from the original locality for comparison with those from Halemanu and that neighborhood, the specific identity of the two must remain doubtful. Some of the specimens from Lobelia come nearest to the type; those from kauila are large but elongate. Length 3.25-4.25 mm.

Hab.—Kauai, Kumuweia, III-10-28, eight on *Lobelia yuccoides* and three on *Bidens cosmoides*; Halemanu, III-9-28, three on kauila (Swezey).

Oodemans dubiosum Perkins

Two large-sized Oodemans were obtained at Kumuweia from ohia lehua, III-9-28. Both specimens are more or less mutilated, possibly in extracting them from the wood, and consequently I have not subjected them to any manipulation. One of these agrees in many respects with the female which I assigned to *dubiosum*, but its specific identity is not certain. The second specimen is apparently different and referable to the following species.
Oodemas pachysoma Perkins

Besides the mutilated example, above mentioned, collected by Swezey, I have received two large specimens collected at Halemanu by H. T. Osborn, without note of food-plant. Except for the larger size these do not appear to differ in any important manner from the original specimens, captured elsewhere.

Oodemas swezeyi sp. nov.

Reddish brown, thorax and head sometimes more or less infuscate, submetallic, shining, of elongate form, the elytra unusually long and from a little behind the shoulders nearly parallel-sided to the narrow apical portion. Rostrum shining, very slightly narrowing to the apex and very delicately punctured, the eyes subconvex, the antennae with the second funicle joint not at all strongly elongate, the first if fully extended being stouter, but as long as, or even longer than the second. Pronotum rather small and narrow, considering the development of the elytra, and varying in the intensity of the puncturation. Elytra subcylindrical, with the strial punctures distinct and the interstitial punctures much finer, but more or less copious. Middle coxae much less widely separated than in typical Oodemas (such as *aescens*), but there is considerable difference between these and some of the other species. The sculpture of the basal abdominal segments shows considerable variation, being much less developed in one of the smaller than in the largest example. Length 3.75 to nearly 5 mm.

This remarkable species in several respects approaches the genus Anotheorus, as suggested to me by its discoverer, after whom I have named it. Although it might not unreasonably be separated generically from Oodemas, I think it is better for the present that it should be placed there. Naturally the condition of the eyes excludes it from Anotheorus.

Hab.—Kauai, Alakai swamp, VII-11-32, three specimens from the tree fern *Cibotium chamissoi* (Swezey).